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Abstract

We extend and strengthen both Athey�s (2001) and McAdams�(2003)
results on the existence of monotone pure strategy equilibria in Bayesian
games. We allow action spaces to be compact locally-complete metrizable
semilatttices and can handle both a weaker form of quasisupermodularity
than is employed by McAdams and a weaker single-crossing property than
is required by both Athey and McAdams. Our proof � which is based upon
contractibility rather than convexity of best reply sets � demonstrates that
the only role of single-crossing is to help ensure the existence of monotone
best replies. Finally, we do not require the Milgrom-Weber (1985) absolute
continuity condition on the joint distribution of types.

�I wish to thank David McAdams and Max Stinchcombe for helpful conversations. The
paper has also bene�tted from comments provided by participants of the August 2004 theory
conference at The University of British Columbia. I am especially grateful to Sergiu Hart and
Benjamin Weiss for providing an example of a compact metrizable semilattice that is not locally
complete. Financial support from the National Science Foundation (SES-9905599) is gratefully
acknowledged.



1. Introduction

In an important paper, Athey (2001) demonstrates that a monotone pure strategy
equilibrium exists whenever a Bayesian game satis�es a Spence-Mirlees single-
crossing property. Athey�s result is now a central tool for establishing the existence
of monotone pure strategy equilibria in auction theory (see e.g., Athey (2001),
Reny and Zamir (2004)). Recently, McAdams (2003) has shown that Athey�s
results, which exploit the assumed total ordering of the players�one-dimensional
type and action spaces, can be extended to settings in which type and action spaces
are multi-dimensional and only partially ordered. This permits new existence
results in auctions with multi-dimensional signals and multi-unit demands (see
McAdams (2004)).
At the heart of the results of both Athey (2001) and McAdams (2003) is a

single-crossing assumption. Roughly, the assumption says that if a player prefers
a high action to a low one given his type, then the high action remains better
than the low one when his type increases. That is, as a function of his type, the
di¤erence in a player�s payo¤ from a high action versus a low one crosses zero at
most once and from below � it undergoes a �single crossing�of zero.
It is not di¢ cult to see that a single-crossing condition of the sort described

above is virtually necessary if one�s goal is to establish the existence of a monotone
pure strategy equilibrium. After all, if the condition fails, then a higher type
sometimes prefers a lower action, and ruling this out in equilibrium would require
very special additional assumptions.
One of the roles of single-crossing, therefore, is to ensure that players possess

monotone best replies. However, previous research suggests that this is not its
only role, and perhaps not even its most central role. Indeed, McAdams remarks
(2003, p. 1202), �... existence of a monotone best response is far from guaranteeing
monotone equilibrium.�This comment re�ects the fact that the proof techniques
of both Athey and McAdams rely on a su¢ ciently strong version of single-crossing,
one that not only helps ensure that monotone best replies exist, but also helps
ensure that each player�s entire set of optimal actions is, as a function of his type,
increasing in the strong set order.1 The import of the latter requirement is that
it renders a player�s set of monotone pure-strategy best-replies convex, in a sense
pioneered by Athey and extended by McAdams. Speci�cally, Athey observed that

1When actions are real numbers, this means that if some action is optimal given one�s type
and another action is optimal when one�s type changes, then the higher of the two actions is
optimal for the higher type and the lower of the two actions is optimal for the lower type.
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monotone functions from the unit interval into a �nite totally ordered action set
are characterized by their jump points and that even though sets of monotone best
reply functions are not convex, their associated sets of jump points are convex
when the strong set-order property holds. This impressive convexity result per-
mits Athey and McAdams to establish the existence of a monotone pure strategy
equilibrium through an application of Kakutani�s theorem in the case of Athey,
and Glicksberg�s theorem in the case of McAdams.
In the present paper, we provide a generalization of the results of both Athey

and McAdams and we do so through a new route which, by avoiding the convexity
issue altogether, furnishes additional insights into the role of the single-crossing
assumption and eliminates the need to view monotone strategies as a collection of
jump points, a view that is helpful only when action spaces are restricted to �nite
sets. In particular, our main result (Theorem 4.1) can be specialized to show that
when action spaces are one-dimensional (as in Athey) or are such that distinct
dimensions of a player�s own action vector are complementary (as in McAdams),
then the existence of monotone best replies alone does guarantee the existence
of a monotone pure strategy equilibrium.2 Hence, we �nd that the role of the
single-crossing assumption in establishing the existence of monotone pure strategy
equilibria is simply to ensure the existence of monotone best replies, nothing
more. In particular, there is no need to impose a more restrictive single-crossing
assumption so as to ensure that players�sets of optimal actions are increasing in
the strong set order as their types vary. Thus, while the strong set-order property
remains important for comparative statics exercises (see Milgrom and Shannon
(1994)), we �nd that it is unrelated to the existence of monotone pure strategy
equilibria per se. Moreover, because we work directly with the monotone strategies
themselves, not their jump points, we are able to handle in�nite action spaces with
no di¢ culty.
The key to our result is to abandon the use of both Kakutani�s and Glicks-

berg�s theorems. In their place, we instead employ a corollary (Theorem 5.1) of
a �xed point theorem due to Eilenberg and Montgomery (1946). Whereas Athey
and McAdams impose additional assumptions to obtain convexity of the players�
sets of best replies, we instead take advantage of the fact that the Eilenberg-
Montgomery corollary only requires best reply sets to be contractible, a property
that is remarkably straightforward to establish in the class of Bayesian games we
study. In particular, so long as action spaces are compact locally-complete metriz-

2Actions of distinct players need not be complementary. That is, we do not require the game
to be one of strategic complements.
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able semilattices, our approach applies whether action spaces are �nite (as in both
Athey and McAdams) or in�nite; whether they are one dimensional and totally
ordered (as in Athey), �nite dimensional and partially ordered (as in McAdams),
or in�nite dimensional; and whether they are sublattices of Euclidean space (as
in both Athey and McAdams) or not. Further, the transparency of our proof
of contractibility is in rather stark contrast to the technique cleverly employed
by McAdams to extend Athey�s convexity results from one-dimensional totally-
ordered to �nite-dimensional partially-ordered types and actions. By focusing on
contractibility rather than convexity of best reply sets, and by relying upon a
more powerful �xed point theorem, we obtain a more direct proof under strictly
weaker hypotheses.
If in addition to our assumptions on payo¤s, the actions of distinct players are

strategic complements, Van Zandt and Vives (2003) have shown that even stronger
results can be obtained. They prove that monotone pure strategy equilibria exist
under more general distributional, type-space and action-space assumptions than
we impose here, and demonstrate that such an equilibrium can obtained through
iterative application of the best reply map.3 In our view, Van Zandt and Vives
(2003) have obtained perhaps the strongest possible results for the existence of
monotone pure strategy equilibria in Bayesian games when strategic complemen-
tarities are present. Of course, while many interesting economic games exhibit
strategic complements, many do not. Indeed, most auction games satisfy the
single-crossing property required to apply our result here (see e.g., Athey (2001),
McAdams (2004), Reny and Zamir (2003)), but fail to satisfy the strategic com-
plements condition.4 The two approaches are therefore complementary.
The remainder of the paper is organized as follows. Section 2 provides a simple

�rst-price auction example satisfying the hypotheses of our main result but not
those of Athey (2001) or McAdams (2003). The essential ideas behind the present
technique are also provided here. Section 3 describes the formal environment,
including semilattices and related issues. Section 4 contains our main result and a
corollary which itself strictly generalizes the results of both Athey and McAdams.
Section 5 provides the corollary of Eilenberg and Montgomery�s (1946) �xed point

3Related results can be found in Milgrom and Roberts (1990) and Vives (1990).
4In a �rst-price IPV auction, for example, you might increase your bid if your opponent

increases his bid slightly when his private value is high. However, for su¢ ciently high increases
in his bid at high private values, you might be better o¤ reducing your bid (and chance of
winning) to obtain a higher surplus when you do win. Such non monotonic responses to changes
in the opponent�s strategy are not possible under strategic complements.
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theorem that is central to our approach, and Section 6 contains the proof of our
main result.

2. An Example

We begin with a simple example highlighting the essential di¤erence between the
approach taken by Athey and McAdams and that which we adopt here.
Consider a �rst-price auction between two bidders for a single item. Bidder 1�s

value is v1 = 7=2 and is public information. Bidders 1 and 2 each receive a private
signal, x and y; respectively. Bidder 2�s value, v2(x; y); depends upon both x and
y; and is nondecreasing in each argument. The signals x and y are either each
drawn independently and uniformly from [0; 1=2); or each drawn independently
and uniformly from [1=2; 1]; with each of these two possibilities being equally
likely. Consequently, the signals are a¢ liated.
For the purposes of this example, bidder 1 must submit a bid from the set

f1; 2; 3g, while bidder 2 must submit a bid from the set f0; 1; 2; 3; 4g: Ties are
broken randomly and uniformly.
There is no reason not to expect a monotone pure strategy equilibrium to exist

here, and in fact, at least one does exist. Nevertheless, the proof techniques of
Athey and McAdams, which rely upon the convexity (up to a homeomorphism)
of the players�monotone best reply sets, cannot be directly applied.5 Indeed, we
will show that, in this example, there is a monotone bid function for bidder 2
against which bidder 1�s set of monotone best replies is not mapped onto a convex
set by the ingenious mapping introduced by Athey (2001). Indeed, we will show
that there is no homeomorphism mapping 1�s set of monotone best replies onto a
convex set.

5It is possible to perturb this simple example so that the Athey-McAdams approach can be
applied to the perturbed game, and then take limits to obtain existence in the unperturbed
game. In general, however, our main result cannot be obtained through a limiting argument
based upon Athey�s or Mcadams�results (e.g., see Remark 5).
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2.1. A Nonconvex Set of Monotone Best Replies

Consider the following monotone bid function for bidder 2, as a function of his
signal, y:

�(y) =

8<:
0;
3;
4;

if y 2 [0; 1=18);
if y 2 [1=18; 1=2);
if y 2 [1=2; 1]:

Our interest lies in the set of monotone best replies for bidder 1, as a function
of his signal, x: Note that when x < 1=2; bidder 1 knows that y is uniform on
[0; 1=2) and so knows that 2�s bid is 0 with probability 1=9 and 3 with probability
8=9. Consequently, bidder 1 is indi¤erent between bidding 1 and 3, each of which
is strictly better than bidding 2. On the other hand, when x > 1=2; bidder 1
knows that y is uniform on [1=2; 1] and so knows that bidder 2 bids 4. Hence any
bid, 1, 2, or 3, is optimal since each bid loses with probability one. All in all,
bidder 1�s best reply correspondence is as follows:

B(x) =

�
f1; 3g;
f1; 2; 3g;

if x 2 [0; 1=2);
if x 2 [1=2; 1]:

Consequently, a monotone best reply for bidder 1 is any monotone step function
of x taking the values 1, 2, or 3, such that a bid of 2 occurs only when x � 1=2:
As observed by Athey, totally-ordered actions and signals permit monotone

step functions to be represented by the signals at which they jump from one
action to the next. With three actions, namely the bids 1, 2, and 3, just two jump
points are required. Therefore, every monotone bid function for bidder 1 can be
mapped into a vector in [0; 1]2 lying weakly above the diagonal. Conversely, each
vector in [0; 1]2 lying weakly above the diagonal, let is call this set D; determines
a monotone bid function for bidder 1.6 Consequently, each monotone bid function
for bidder 1 can be mapped to a vector in the compact convex set D and vice
versa. Moreover, for an appropriate topology on monotone bid functions, the
mapping is continuous in both directions and so is a homeomorphism. Following
McAdams (2003), let us call this very useful map the �Athey-map.�
The Athey-map shows that 1�s set of monotone bid functions (and similarly

2�s) is homeomorphic to a convex set. Athey�s (2001) main insight is noting that,
under a su¢ ciently strong form of single-crossing, each player�s set of best replies

6For the purposes of determining ex-ante payo¤s, it is not necessary to specify bids at the
�nitely many jump points themselves because each particular jump point has prior probability
zero.
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is increasing in the strong set order as a function of his type, and that this implies
that each player�s set of monotone best replies is also homeomorphic (again via
the Athey-map) to a convex set. This permits Athey to apply Kakutani�s �xed
point theorem to obtain the existence of a monotone pure strategy equilibrium.
In the present example however, Athey�s technique (and therefore McAdams�

also) does not work. The underlying reason is that 1�s best reply correspondence is
not increasing in the strong set order. Indeed, a bid of 3 is best for any particular
signal less than 1/2 and a bid of 2 is best for any particular signal greater than
1/2. However, the smaller of these two bids, namely 2, is not best for the smaller
of the two particular signals, which is less than 1/2. A consequence of this is that
the image under the Athey-map of bidder 1�s set of monotone best replies against
bidder 2�s strategy is not convex, and this precludes the all important application
of Kakutani�s theorem. Let us now demonstrate the nonconvexity.
According to the Athey-map, bidder 1�s set of monotone best replies against

the above monotone bidding function of bidder 2 is mapped into those vectors,
(x1; x2) 2 [0; 1]2; in the set

f0 � x1 = x2 � 1=2g [ f1=2 � x1 � x2 � 1g:7

This �ag-shaped set, depicted in Figure 2.1, is clearly not convex.
But just because one particular homeomorphism, the Athey-map, fails to map

1�s set of monotone best replies into a convex set, does not mean that some other
homeomorphism might not do so. That is, it may still be the case that bidder 1�s
set of monotone best replies is homeomorphic to a convex set and so one might
still ultimately be able to apply Kakutani�s theorem, which, in some sense, is the
heart of the Athey-McAdams approach. But this too fails, as we show next.
To see that bidder 1�s set of monotone best replies is not homeomorphic to a

convex set, it su¢ ces to show that the set in Figure 2.1, to which it is homeomor-
phic, is itself not homeomorphic to a convex set. To see this, let us suppose that it
were. Then, the convex set would have to be two dimensional, because dimension
is preserved under a homeomorphism. Hence, the Figure 2.1 set, let us call it C;
would have to be homeomorphic to a disc. But then Cnf(1=2; 1=2)g would be
homeomorphic to the disc minus the image of (1=2; 1=2): But this is impossible

7The �rst set corresponds to monotone best replies that jump from a bid of 1 to a bid of
3 at some signal weakly less than 1/2. The second set corresponds to monotone best replies
that either jump from 1 to 3 at a signal weakly above 1/2, or that jump from 1 to 2 at a signal
x1 � 1=2 and then from 2 to 3 at a signal x2 > x1:
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Figure 2.1: Non-Convex Bext Reply Set

since the latter set is connected, while Cnf(1=2; 1=2)g is not, and connectedness
is preserved under a homeomorphism.

2.2. An Alternative Approach

Perhaps the main contribution of the approach taken here lies in moving away
from imposing conditions that ensure that sets of best replies are homeomorphic
to convex sets as in Athey (2001) and McAdams (2003)). Indeed, the only reason
for insisting upon convexity of best reply sets is to prepare for an application of
Kakutani�s (or Glicksberg�s) �xed point theorem. But there are more powerful
�xed point theorems one can instead rely upon, theorems which do not require
convexity. Rather, these theorems rely upon the more permissive condition of
contractibility.
Loosely, a set is contractible if it can be continuously shrunk, within itself, to

one of its points. Formally, a subset X of a topological space is contractible if for
some x0 2 X there is a continuous function h : [0; 1] �X ! X such that for all
x 2 X; h(0; x) = x and h(1; x) = x0: We then say that h is a contraction for X:
Note that every convex set is contractible since, choosing any point x0 in the

set, the function h(� ; x) = (1��)x+�x0 is a contraction. On the other hand, there
are contractible sets that are not convex (e.g., any curved line in R2 that does
not intersect itself). Hence, contractibility is a strictly more permissive condition
than convexity.
Returning to the auction example, it is not di¢ cult to show that, against
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the given bidding function for bidder 2, bidder 1�s set of best replies, while not
homeomorphic to a convex set, is contractible. One way to see this is to �rst
apply the Athey-map to 1�s set of best replies, leading to the homeomorphic set
in Figure 2.1. It then su¢ ces to show that this latter set is contractible since
contractibility is preserved under homeomorphism. But the set in Figure 2.1 is
clearly contractible. Consider, for example, the contraction that shrinks the set
radially into the point (1=2; 1=2):
But is this a general property? That is, is each bidder�s set of monotone

best replies contractible no matter what monotone strategy is employed by the
other bidder? Establishing the contractibility of a set is not, in general, trivial.
However, establishing the contractibility of each bidder�s set of monotone best
replies, for any given monotone bidding function of the other, is rather simple.
Indeed, contractibility can be established without referring to the Athey map and
without considering jump points at all. The simplest approach is to consider the
monotone bidding functions themselves.
So, �x some monotone bidding function for bidder 2, and suppose that b0 :

[0; 1] ! f1; 2; 3g is a monotone best reply for bidder 1.8 We shall provide a con-
traction that shrinks bidder 1�s set of monotone best replies, within itself, to the
function b0: The simple, but key, observation is that a bidding function is a best
reply if and only if it it is an interim best reply for almost every signal x 2 [0; 1]:
Consider the following candidate contraction map (see Figure 2.2). For � 2

[0; 1] and any monotone best reply, b; for bidder 1, de�ne h(� ; b) : [0; 1]! f1; 2; 3g
as follows:

h(� ; b)(x) =

8<:
b(x);
b0(x);
max(b0(x); b(x));

if x � j1� 2� j and � < 1=2;
if x � j1� 2� j and � � 1=2;
if x > j1� 2� j :

Note that h(0; b) = b; that h(1; b) = b0; and that h(� ; b)(x) is always either b0(x) or
b(x); and so is a best reply given the signal x. The function h(� ; b)(�) is also clearly
monotone. It can also be shown that the monotone function h(� ; b)(�) varies con-
tinuously in the arguments � and b; when the set of monotone functions is endowed
with the topology of almost everywhere pointwise convergence.9 Consequently, h is
a contraction, and we have established that, given any monotone bidding function
for bidder 2, bidder 1�s set of monotone best replies is contractible.

8We assume that a monotone best reply exists, which in fact it does. The existence of
monotone best replies will be explicitly considered in the general setup of the sequel (see Section
4.1).

9That is, bn(�)! b(�) if and only if bn(x)! b(x) for a.e. x 2 [0; 1]:
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Figure 2.2 shows how the contraction works. Three step functions are shown
in each panel. The thin dashed line step function (black) is b; the thick solid line
step function (green) is b0; and the very thick solid line step function (red) is the
step function determined by the contraction.
In panel (a), � = 0 and so the very thick (red) step function coincides with

b. The position of the vertical line (blue) appearing in each panel represents the
value of � : When � = 0 the vertical line is at the far right-hand side, as shown
in panel (a). As indicated by the arrow, the vertical line moves continuously
toward the origin as � moves from 0 to 1=2. The very thick (red) step function
determined by the contraction is b(x) for values of x to the left of the vertical line
and is max(b0(x); b(x)) for values of x to the right; see panels (a)-(c). Note that
this step function therefore changes continuously with � ; in a pointwise sense, and
that when � = 1=2 this function is max(b0(�); b(�)):
In panels (d)-(f), � increases from 1=2 to 1 and the vertical line moves from

the origin continuously to the right. For these values of � ; the very thick (red)
step function determined by the contraction is now b0(x) for values of x to the
left of the vertical line and is max(b0(x); b(x)) for values of x to the right. Hence,
when � = 1; the contraction yields b0(�); see panel (f). So altogether, as � moves
continuously from 0 to 1; the image of the contraction moves continuously from b
to b0:
It can similarly be shown that, for any monotone bidding function of bid-

der 1, bidder 2�s set of monotone best replies is contractible. Consequently, so
long as each player possesses a monotone best reply whenever the other employs
a monotone bidding function, an appropriate generalization of Kakutani�s theo-
rem � relying on contractible-valuedness instead of convex-valuedness � can be
employed to establish that the example possesses a monotone pure strategy equi-
librium.10 Note that this is so even though the strong set order property fails to
hold. Our approach goes through in general, whether or not the strong set order
property holds.
Note also that single-crossing plays no role in the demonstration that best reply

sets are contractible. In this totally-ordered action space example, best reply sets
are contractible whether or not single-crossing holds since contractibility follows
from the pointwise nature of best replies. But this does not mean that the single-
crossing assumption is not useful. Recall that, for simplicity, we assumed the
existence of monotone best replies. When single-crossing holds, one can prove

10The appropriate generalization is due to Eilenberg and Montgomery (1946). See Section 4
below.
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Figure 2.2: The Contraction

their existence (as we shall do in Section 4.1). But note well that when we do
assume single-crossing, we shall do so only to ensure the existence of monotone
best replies, nothing more. This permits us to employ a weaker single-crossing
assumption than both Athey and McAdams. The remainder of the paper is based
entirely upon these simple ideas.

3. The Environment

3.1. Lattices and Semilattices

Let A be a non empty set and let � be a partial order on A:11 For a; b 2 A; if
the set fa; bg has a least upper bound (l.u.b.) in A; then it is unique and will
denoted by a _ b, the join of a and b: In general, such a bound need not exist.
However, if every pair of points in A has an l.u.b. in A; then we shall say that
(A;�) is a semilattice. It is straightforward to show that, in a semilattice, every
11That is, � is transitive (a � b and b � c imply a � c); re�exive (a � a); and antisymmetric

(a � b and b � a imply a = b):
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�nite set, fa; b; :::; cg; has a least upper bound, which we denote by _fa; b; :::; cg
or a _ b _ ::: _ c:
If the set fa; bg has a greatest lower bound (g.l.b.) in A; then it too is unique

and it will be denoted by a ^ b; the meet of a and b: Once again, in general, such
a bound need not exist. If every pair of points in A has both an l.u.b. in A and
a g.l.b. in A, then we shall say that (A;�) is a lattice.12
Clearly, every lattice is a semilattice. However, the converse is not true. For

example, employing the coordinatewise partial order on vectors in Rm; the set of
vectors whose sum is at least one is a semilattice, but not a lattice.
A topological semilattice is a semilattice endowed with a topology under which

the join operator, _; is continuous as a function from A� A into A.13 ;14 Clearly,
every �nite semilattice is a topological semilattice. Note also that because in a
semilattice b � a if and only if a _ b = b, in a topological semilattice f(a; b) 2
A � A : b � ag is closed. When the topology on A rendering the join operator
continuous is metrizable we say that (A;�) is a metrizable semilattice. When the
topology on A renders A compact, we say that (A;�) is compact.
A semilattice (A;�) is complete if every non empty subset S of A has a least

upper bound, _S; in A: A topological semilattice (A;�) is locally complete if
for every a 2 A and every neighborhood U of a; there is a neighborhood W of a
contained in U such that every non empty subset S ofW has a least upper bound,
_S; contained in U:15
Many metrizable semilattices are locally complete. For example, local com-

pleteness holds trivially in any �nite semilattice, and more generally in any metriz-
able semilattice (A;�) where A is a compact subset of RK and � is the coordi-
natewise partial order (see Lemma C.3). On the other hand, in�nite-dimensional
compact metrizable semilattices need not be locally complete.16 Indeed, it can be

12De�ning a semilattice in terms of the join operation, _, rather than the meet operation, ^;
is entirely a matter of convention.
13Product spaces are endowed with the product topology throughout the paper.
14For example, the set A = f(x; y) 2 R2+ : x + y = 1g [ f(1; 1)g is a semilattice with

the coordinatewise partial order. But it is not a topological semilattice when supplemented
with, say, the Euclidean metric because whenever an 6= bn and an; bn ! a; we have (1; 1) =
lim(an _ bn) 6= (lim an) _ (lim bn) = a.
15We have not found a reference to the concept of local completeness in the lattice-theoretic

literature.
16Whether or not every compact metrizable semilattice is locally complete was to us an open

question until a recent visit to The Center for the Study of Rationality at The Hebrew University
of Jerusalem. Shortly after we posed the question, Sergiu Hart and Benjamin Weiss settled
the matter by graciously providing a subtle and beautiful example of a compact metrizable
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shown (see Lemma C.2) that a compact metrizable semilattice (A;�) is locally-
complete if and only if for every a 2 A and every sequence an ! a; limm(_n�man) =
a:17 A distinct su¢ cient condition for local completeness is given in Lemma C.4.
Finally, we wish to mention that because our main result requires only a notion

of least upper bound, we have found it natural to consider semilattices rather than
lattices in most of our formal development. On the other hand, a development
within the con�nes of a lattice structure would entail little loss of generality since
any complete semilattice becomes a complete lattice when supplemented with
single point that is deemed less than all others.18 However, our assumptions
would then have to be stated with explicit reference to the join operator. For
example, local completeness in a semilattice as de�ned above is equivalent to local
completeness �with respect to the join operator�in a lattice. Such a quali�cation
would be important since local completeness �with respect to the meet operator,�
is a substantive additional restriction that is not necessary for our results. Our
choice to employ semilattices is therefore largely a matter of convenience as it
avoids the need for such quali�cations.

3.2. A Class of Bayesian Games

Consider any Bayesian game, G; described as follows. There are N players, i =
1; 2; :::; N: Player i�s type space is Ti = [0; 1]ki endowed with the Euclidean metric
and the coordinatewise partial order, and i�s action space is a partially ordered
topological space Ai: All partial orders, although possibly distinct, will be denoted
by � : Player i�s bounded and measurable payo¤ function is ui : A � T ! R;
where A = �Ni=1Ai and T = �Ni=1Ti: The common prior over the players�types is
a probability measure � on the Borel subsets of T: This completes the description
of G:
A subset C of [0; 1]m is a strict chain if for any two points in C; one of them

is strictly greater, coordinate by coordinate, than the other. We shall make use

semilattice that is not locally complete (see Hart and Weiss (2005)). In contrast, such examples
are not di¢ cult to �nd if compactness is not required. For instance, no Lp space is locally
complete when p < +1:
17Hence, compactness and metrizability of a lattice under the order topology (see Birkoh¤

(1967, p.244) is su¢ cient, but not necessary, for local completeness of the corresponding semi-
lattice.
18Given any subset B of a complete semilattice, its set of lower bounds is either non empty

or empty. In the former case, completeness implies that the join of the lower bounds exists and
is then the g.l.b. of B: In the latter case, the added point is the g.l.b. of B:
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of the following assumptions, where �i denotes the marginal of � on Ti: For every
player i; and every Borel subset B of Ti;

G.1 �i(B) = 0 if B \ C is countable for every strict chain C in Ti.

G.2 (Ai;�) is a compact locally-complete metrizable semilattice.

G.3 ui(�; t) : A! R is continuous for every t 2 T:

Assumptions G.1-G.3 strictly generalize the assumptions in Athey (2001) and
McAdams (2003) who assume that each Ai is a �nite sublattice of Euclidean space
and that � is absolutely continuous with respect to Lebesgue measure.19

Note that G.1 implies that each �i is atomless because we may set B = ftig
for any ti 2 Ti. Note also that we do not require the familiar absolute continuity
condition on � introduced in Milgrom and Weber (1985). For example, when
each player�s type space is [0; 1] with its usual total order, G.1 holds if and only
if �i is atomless. In particular, G.1 holds when there are two players, each with
unit interval type space, and the types are drawn according to Lebesgue measure
conditional on any one of �nitely many positively or negatively sloped lines in the
unit square. Assumption G.1 helps ensure the compactness of the players�sets of
monotone pure strategies (see Lemma 6.1) in a topology in which ex-ante payo¤s
are continuous. This assumption therefore plays the same role for monotone pure
strategies as the Milgrom-Weber (1985) absolute-continuity assumption plays for
mixed strategies.
It can be shown (see Lemma A.1) that every compact metrizable semilattice

is equivalent to a compact semilattice in the Hilbert cube, [0; 1]1; with the coor-
dinatewise partial order and the coordinatewise Euclidean metric. On the other
hand, assumption G.2 as stated above is more easily veri�ed in practice than
its Hilbert cube counterpart because the natural description of the players�ac-
tion spaces might not be as subsets of the Hilbert cube (e.g., when players are
consumers in an exchange economy with private information and their actions
are demand functions to submit to an auctioneer). As mentioned in the previ-
ous subsection, G.2 holds for example whenever (Ai;�) is a compact metrizable
semilattice in Euclidean space with the coordinatewise partial order (see Lemma
C.3).

19Absolute continuity of � implies G.1 because, if for some Borel subset B of i�s type space,
B \C is countable for every strict chain C; then B \C is countable for every strict chain of the
form [0; 1]ti with ti 2 Ti: But then Fubini�s theorem implies that B has Lebesgue measure zero,
and so �i(B) = 0 by absolute continuity.
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A pure strategy for player i is a measurable function, si : Ti ! Ai: Such a pure
strategy is monotone if t0i � ti implies si(t0i) � si(ti):20
An N -tuple of pure strategies, (ŝ1; :::; ŝN) is an equilibrium if for every player

i and every pure strategy s0i;Z
T

ui(ŝ(t); t)d�(t) �
Z
T

ui(s
0
i(ti); ŝ�i(t�i); t)d�(t);

where the left-hand side, henceforth denoted by Ui(ŝ); is player i�s payo¤ given
the joint strategy ŝ; and the right-hand side is his payo¤ when he employs s0i and
the others employ ŝ�i.
It will sometimes be helpful to speak of the payo¤ to player i�s type ti from

the action ai given the strategies of the others, s�i: This payo¤, which we will
refer to as i�s interim payo¤, is

Vi(ai; ti; s�i) �
Z
T

ui(ai; s�i(t�i); t)d�i(t�ijti);

where �i(�jti) is a version of the conditional probability on T�i given ti: A single
such version is �xed for each player i once and for all.

4. The Main Result

Call a set of player i�s pure strategies join-closed if for any pair of strategies, si; s0i;
in the set, the strategy taking the action si(ti) _ s0i(ti) for each ti 2 Ti is also in
the set.21 We can now state our main result, whose proof is provided in Section
6.

Theorem 4.1. If G.1-G.3 hold and for each player i; whenever the others employ
monotone pure strategies, player i�s set of monotone pure best replies is non empty
and join-closed, then G possesses a monotone pure strategy equilibrium.

20Note that both de�nitions involve the entire set Ti; not merely a set of full �i-measure. This
is simply a matter of convention. In particular, if a strategy, si; is monotone on a subset, C;
having full �i-measure, the strategy, ŝi; de�ned by ŝi(ti) = _fsi(t0i) : t0i � ti; t0i 2 Cg, coincides
with si on C and is monotone on all of Ti. When (Ai;�) is a compact metrizable semilattice,
as we shall assume, Lemma C.1 ensures that ŝi is well-de�ned, and Lemma A.4 takes care of
measurability.
21Note that when the join operator is continuous, as it is in a metrizable semilattice, the

resulting function is measurable, being the composition of measurable and continuous functions.
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Remark 1. In any setting in which the action sets are totally ordered (as in Athey
(2001)), each player�s set of monotone best replies is automatically join-closed.

Remark 2. Athey (2001) assumes that the Ai are �nite and totally ordered, and
McAdams (2003) assumes that each (Ai;�) is a �nite sublattice of Rk with the
coordinatewise partial order. This additional structure, which we do not require,
is necessary for their Kakutani-Glicksberg-based approach.22

It is well-known that within the con�nes of a lattice, quasisupermodularity and
single-crossing conditions on interim payo¤s guarantee the existence of monotone
best replies and that sets of monotone best replies are lattices and hence join-
closed. In the next section, we provide slightly weaker versions of these conditions
and, for completeness, show that they guarantee that the players�sets of monotone
best replies are non empty and join-closed.

4.1. Su¢ cient Conditions on Interim Payo¤s

Suppose that for each player i; (Ai;�) is a lattice. We say that player i�s interim
payo¤ function Vi is weakly quasisupermodular if for all monotone pure strategies
s�i of the others, all ai; a0i 2 Ai; and every ti 2 Ti

Vi(ai; ti; s�i) � Vi(ai ^ a0i; ti; s�i) implies Vi(ai _ a0i; ti; s�i) � Vi(a0i; ti; s�i):

This weakens slightly Milgrom and Shannon�s (1994) concept of quasisupermod-
ularity by not requiring the second inequality to be strict if the �rst happens to
be strict. McAdams (2003) requires the stronger condition of quasisupermod-
ularity. When actions are totally ordered, as in Athey (2001), interim payo¤s
are automatically supermodular, and hence both quasisupermodular and weakly
quasisupermodular.

22Indeed, consider the lattice A = f(0; 0); (1; 0); (1=2; 1=2); (0; 1); (1; 1)g in R2; with the coor-
dinatewise partial order and note that A is not a sublattice of R2. It can be shown that the
set of monotone functions from [0; 1] into A; endowed with the topology of almost everywhere
pointwise convergence, is not homeomorphic to a convex set. Indeed, it is instead homeomorphic
to three triangles joined at a common edge to form a three-bladed arrowhead in R3: Hence, if
each player has action set A; then neither Kakutani�s nor Glicksberg�s theorems can be applied
to the game�s monotone best-reply correspondence. On the other hand, the set of monotone
functions in this example is an absolute retract (see Lemma 6.2), which is su¢ cient for our
approach.
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A simple way to verify weak quasisupermodularity is to verify supermodu-
larity. For example, it is well-known that Vi is supermodular in actions (hence
weakly quasisupermodular) when Ai = [0; 1]K is endowed with the coordinatewise
partial order, and the second cross-partial derivatives of Vi(ai1; :::; aiK ; ti; s�i) with
respect distinct action dimensions are nonnegative. Thus, complementarities in
the distinct dimensions of a player�s own actions are natural economic conditions
under which weak quasisupermodularity holds.23

We say that i�s interim payo¤ function Vi satis�es weak single-crossing if for
all monotone pure strategies s�i of the others, for all player i action pairs a0i � ai;
and for all player i type pairs t0i � ti;

Vi(a
0
i; ti; s�i) � Vi(ai; ti; s�i)

implies

Vi(a
0
i; t

0
i; s�i) � Vi(ai; t0i; s�i):24

To ensure that each player�s set of monotone best replies is homeomorphic to
a convex set, both Athey (2001) and McAdams (2003) assume that Vi satis�es
a more stringent single-crossing condition. In particular they each require that,
in addition to the above, the second single-crossing inequality is strict whenever
the �rst one is. Returning to the example of Section 2, bidder 1�s interim payo¤
function there satis�es weak single-crossing but it fails to satisfy Athey�s and
McAdams�single-crossing condition because, for example, a bid of 3 is strictly
better than a bid of 2 for bidder 1 when his signal is low, but it is only weakly
better when his signal is high. Because of this, bidder 1�s set of monotone best
replies is not homeomorphic to a convex set and the results of Athey andMcAdams
cannot be directly applied.
In contrast, the following corollary of Theorem 4.1 states that pure monotone

equilibria exist if each Vi is weakly quasisupermodular and satis�es weak single-
crossing.

Corollary 4.2. If G.1-G.3 hold, each (Ai;�) is a lattice, and the players�interim
payo¤s are weakly quasisupermodular and satisfy weak single-crossing, then G
possesses a monotone pure strategy equilibrium.

23Complementarities between the actions of distinct players is not required. This is useful
because, for example, many auction games satisfy only own-action complementarity.
24For conditions on the joint distribution of types, �; and the players�payo¤ functions, ui(a; t);

leading to the weak single-crossing property, see Athey (2001, pp.879-81), McAdams (2003,
p.1197) and Van Zandt and Vives (2005).
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Proof. By Theorem 4.1, it su¢ ces to show that weak quasisupermodularity
and weak single-crossing imply that whenever the others employ monotone pure
strategies, player i�s set of monotone pure best replies is non empty and join-
closed. To see join-closedness, note that if against some monotone pure strategy
of the others, actions ai and a0i are interim best replies for i when his type is
ti; then weak quasisupermodularity implies that so too is ai _ a0i: Since two pure
strategies are best replies for i if and only if they specify interim best replies for
almost every ti; join-closedness follows. (Because the join operator is continuous
in a metrizable semilattice, the join of two measurable functions is measurable,
being the composition of measurable and continuous functions.)
Fix a monotone pure strategy, s�i; for player i�s opponents, and let Bi(ti)

denote i�s interim best reply actions against s�i when his type is ti: By action-
continuity, Bi(ti) is compact and non empty, and by the argument in the previous
paragraph Bi(ti) is a subsemilattice of (Ai;�). De�ne �si : Ti ! Ai by setting
�si(ti) = _Bi(ti) for each ti 2 Ti: Lemma C.1 together with the compactness and
subsemilattice properties of Bi(ti) imply that, for every ti; �si(ti) is well de�ned
and �si(ti) 2 Bi(ti):
We next show that �si is monotone. Suppose that t0i � ti: Then

Vi(�si(ti); ti; s�i) � Vi(�si(ti) ^ �si(t0i); ti; s�i); (4.1)

since �si(ti) 2 Bi(ti): By weak single-crossing, (4.1) implies that

Vi(�si(ti); t
0
i; s�i) � Vi(�si(ti) ^ �si(t0i); t0i; s�i): (4.2)

Hence, applying weak quasisupermodularity to (4.2) we obtain

Vi(�si(t
0
i) _ �si(ti); t0i; s�i) � Vi(�si(t0i); t0i; s�i);

from which we conclude that �si(t0i) _ �si(ti) 2 Bi(t0i): But �si(t0i) = _Bi(t0i) is the
largest member of Bi(t0i): Hence �si(t

0
i)_ �si(ti) = �si(t0i); implying that �si(t0i) � �si(ti)

as desired.
Lastly, we must ensure measurability. But for this we may appeal to Lemma

A.4, which states that, because �si is monotone, there exists a measurable and
monotone ŝi that coincides with �si �i almost everywhere on Ti: Hence, ŝi is a
monotone pure strategy and is a best reply. Player i�s set of monotone pure best
replies is therefore non empty.

Remark 3. Weak quasisupermodularity is used to ensure both join-closedness
and that monotone best replies exist. On the other hand, weak single-crossing is
employed only in the proof of the latter.
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Remark 4. Finite lattices are automatically compact, locally complete, metriz-
able semilattices. Hence, Corollary 4.2 generalizes the main results of Athey
(2001) and McAdams (2003). In fact, the corollary is a strict generalization be-
cause its hypotheses are satis�ed in the example of Section 2, whereas the stronger
hypotheses of Athey (2001) and McAdams (2003) are not.

Corollary 4.2 will often su¢ ce in applications. However, the additional gener-
ality provided by Theorem 4.1 is sometimes important. For example, Reny and
Zamir (2004) have shown in the context of asymmetric �rst-price auctions with
�nite bid sets that monotone best replies exist even though weak single-crossing
fails. Since action sets (i.e., bids) are totally ordered, best reply sets are necessar-
ily join-closed and so the hypotheses of Theorem 4.1 are satis�ed while those of
Corollary 4.2 are not.

5. A Useful Fixed Point Theorem

The proof of Theorem 4.1 relies on a corollary of Eilenberg and Montgomery�s
(1946) �xed point theorem. This corollary is interesting in its own right because it
is a substantial generalization of Kakutani�s theorem, yet, like Kakutani�s theorem,
its hypotheses require only elementary topological concepts, which we now review.
Recall from Section 2 that a subset X of a metric space is contractible if for

some x0 2 X there is a continuous function h : [0; 1] �X ! X such that for all
x 2 X; h(0; x) = x and h(1; x) = x0: We then say that h is a contraction for X:
A subset X of a metric space Y is said to be a retract of Y if there is a

continuous function mapping Y onto X leaving every point of X �xed. A metric
space (X; d) is an absolute retract if for every metric space (Y; �) containing X
as a closed subset and preserving its topology, X is a retract of Y: Examples of
absolute retracts include closed convex subsets of Euclidean space or of any metric
space, and many non convex sets as well (e.g., any contractible polyhedron).25

Theorem 5.1. (Eilenberg andMontgomery (1946)) Suppose that a compact met-
ric space (X; d) is an absolute retract and that F : X � X is an upper hemi-
continuous, non empty-valued, contractible-valued correspondence. Then F has
a �xed point.
25Indeed, a compact subset, X; of Euclidean space is an absolute retract if and only if it

is contractible and locally contractible. The latter means that for every x0 2 X and every
neighborhood U of x0; there is a neighborhood V of x0 and a continuous h : [0; 1]�V ! U such
that h(0; x) = x and h(1; x) = x0 for all x 2 V:
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Proof. The result follows directly from Eilenberg and Montgomery (1946) The-
orem 1, because every absolute retract is a contractible absolute neighborhood
retract (Borsuk (1966), V (2.3)) and every non empty contractible set is acyclic
(Borsuk (1966), II (4.11)).

6. Proof of Theorem 4.1

Let Mi denote the set of monotone pure strategies for player i; and let M =
�Ni=1Mi: Let Bi : M�i � Mi denote player i�s best-reply correspondence when
players are restricted to monotone pure strategies. Because, by hypothesis, each
player possesses a monotone best reply (among all measurable strategies) when
the others employ monotone pure strategies, any �xed point of �ni=1Bi :M �M
is a monotone pure strategy equilibrium. The following steps demonstrate that
such a �xed point exists.

6.1. The Mi are Compact Absolute Retracts

We �rst demonstrate that each player�s space of monotone pure strategies can be
metrized so that it is a compact absolute retract. Without loss, we may assume
that the metric dAi on Ai is bounded:

26 Given dAi ; de�ne a metric �Mi
on Mi as

follows:27

�Mi
(si; s

0
i) =

Z
Ti

dAi(si(ti); s
0
i(ti))d�i(ti):

This metric does not distinguish between strategies that are equal �i almost
everywhere. This is natural since, from each player�s ex-ante viewpoint, such
strategies are payo¤ equivalent.
Now, suppose that sni is a sequence in Mi: Then, by the semilattice-extension

of Helley�s theorem given in Lemma A.5, sni has a �i almost everywhere pointwise
convergent subsequence. That is, there exists a subsequence, snki ; and si 2 Mi

such that
snki (ti)!k si(ti) for �i almost every ti 2 Ti:

26For any metric, d(�; �); an equivalent bounded metric is min(1; d(�; �)):
27Formally, the resulting metric space (Mi; �Mi

) is the space of equivalence classes of strategies
in Mi that are equal �i almost everywhere. Nevertheless, analogous to the standard treatment
of Lp spaces, in the interest of notational simplicity we focus on the elements of the orginal
space Mi rather than on the equivalence classes themselves.
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Consequently, dAi(s
nk
i (ti); si(ti)); a bounded function of ti; converges to zero �i

almost everywhere as k ! 1, so that, by the dominated convergence theorem,
�Mi
(snki ; si)!k 0: We have therefore established the following result.

Lemma 6.1. The metric space (Mi; �Mi
) is compact.

The metric �Mi
also renders (Mi; �Mi

) an absolute retract, as stated in the next
lemma, whose proof follows directly from Lemma B.3 in Appendix B.

Lemma 6.2. The metric space (Mi; �Mi
) is an absolute retract.

Remark 5. One cannot improve upon Lemma 6.2 by proving, for example, that
Mi; metrized by �Mi

; is homeomorphic to a convex set. It need not be (e.g., see
footnote 21). Evidently, our approach can handle action spaces that the Athey-
McAdams approach cannot easily accommodate, if at all. An economic example
of this type would certainly be of some interest.

6.2. Upper-Hemicontinuity

We next demonstrate that, given the metric �j on each Mj; each player i�s payo¤
function, Ui : M ! R; is continuous under the product topology. This imme-
diately yields upper-hemicontinuity of best reply correspondences. To see pay-
o¤ continuity, suppose that sn is a sequence of joint strategies in M; and that
sn ! s 2 M: By Lemma B.1, this implies that for each player i; sni (ti) ! si(ti)
for �i a.e. ti in Ti. Consequently, s

n(t)! s(t) for � a.e. t 2 T: Hence, since ui is
bounded, Lebesgue�s dominated convergence theorem yields

Ui(s
n) =

Z
T

ui(s
n(t); t)d�(t)!

Z
T

ui(s(t); t)d�(t) = Ui(s);

establishing the continuity of Ui:
Now, because each player i�s payo¤ function, Ui; is continuous and each Mi is

compact, an application of Berge�s theorem of the maximum immediately yields
the following result.

Lemma 6.3. Each player i�s best-reply correspondence, Bi : M�i � Mi; is non
empty-valued and upper-hemicontinuous.
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6.3. Contractible-Valuedness

The simple observation at the heart of the present paper is that each player i�s
set of monotone best replies is contractible. A straightforward contraction map
follows, where the vector of 1�s is denoted by 1:
De�ne h : [0; 1]�Mi �Mi !Mi as follows: For every ti 2 [0; 1]ki ;

h(� ; f; g)(ti) =

8<:
f(ti);
g(ti);
f(ti) _ g(ti);

if 1 � ti � j1� 2� j ki and � < 1=2
if 1 � ti � j1� 2� j ki and � � 1=2
if 1 � ti > j1� 2� j ki

(6.1)

Note that h(� ; f; g) is indeed monotone because, if for example � < 1=2; then
h(� ; f; g)(ti) is f(ti); a monotone function of ti, when 1 � ti � j1� 2� j ki; and is
f(ti)_g(ti), which is both monotone and larger than f(ti), when 1�ti > j1� 2� j ki:
Also, note that h(0; f; g) = f and h(1; f; g) = g: Continuity will be established
below.
Figure 6.1 provides snapshots of h(� ; f; g) as � moves from zero to unity when

ki = 2: The axes are the two dimensions of the type vector and the arrow within the
�gures depicts the direction in which the diagonal line, fti : 1 � ti = j1� 2� j kig;
moves as � increases locally. For example, panel (a) shows that when � = 0;
h(� ; f; g) is equal to f over the entire unit square. On the other hand, panel (f)
shows that when � = 5=6; h(� ; f; g; ) is equal to g below the diagonal line and
equal to f _ g above it.

Lemma 6.4. Bi :M�i �Mi is contractible-valued.

Proof. Fix s�i 2 M�i: To establish the contractibility of Bi(s�i); suppose that
f; g 2 Bi(s�i): Because, by hypothesis, Bi(s�i) is join-closed, the monotone func-
tion, f _ g; taking the action f(ti) _ g(ti) for each ti 2 [0; 1]ki is also in Bi(s�i):
Consequently, [h(� ; f; g)](ti); being equal to either f(ti); g(ti); or f(ti)_g(ti);must
maximize Vi(ai; ti; s�i) over ai 2 Ai for almost every ti 2 [0; 1]ki ; because this �i
almost-everywhere maximization property holds, by hypothesis, for every member
of Bi(s�i) and so separately for each of f; g; and f _ g. But this implies that for
every � 2 [0; 1]; h(� ; f; g) 2 Bi(s�i): So, because h(0; f; g) = f; h(1; f; g) = g and
h(�; �; �) is, by Lemma B.2, continuous, h(�; �; g) is a contraction for Bi(s�i):

6.4. Completing the Proof.

The following lemma completes the proof of Theorem 4.1.
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g

Figure 6.1: h(� ; f; g) as � varies from 0 (panel (a)) to 1 (panel (g)) and the domain
is the unit square.

Lemma 6.5. The product of the players�best reply correspondences, �ni=1Bi :
M �M; possesses a �xed point.

Proof. By Lemmas 6.1 and 6.2, each (Mi; �Mi
) is a compact absolute retract.

Consequently, under the product topology, M is both compact and, by Borsuk
(1966) IV (7.1), an absolute retract. By Lemmas 6.3 and 6.4, �ni=1Bi :M �M is
u.h.c., non empty-valued, and contractible-valued. Hence, applying Theorem 5.1
to �ni=1Bi :M �M yields the desired result.

Appendices

A. Canonical Semilattices

It is not di¢ cult to see that any �nite semilattice (A;�) can be represented as
a �nite semilattice in Euclidean space with the coordinatewise partial order.28

Thus, for �nite semilattices, Euclidean space with its coordinatewise partial order

28Assign to each a 2 A the vector x 2 RA where xa0 = 1 if a � a0 and xa0 = 0 otherwise.
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is canonical. We now describe a similar result for arbitrary compact metrizable
semilattices.
Say that two metrizable semilattices (A;�A) and (B;�B) are equivalent if

there is a homeomorphism � mapping A onto B such that for all a; b 2 A;

a �A b if and only if �(a) �B �(b) (A.1)

Recall that the Hilbert cube is the normed space [0; 1]1 with norm kxk =P
n
1
2n
xn: It is partially ordered by the coordinatewise partial order (i.e., x � y

i¤ xn � yn all n): The following result states that given any compact metrizable
semilattice (A;�); one can assume without loss of generality that A is a compact
subset of the Hilbert cube and that � is the coordinatewise partial order.29

Lemma A.1. Every compact metrizable semilattice is equivalent to a compact
semilattice in the Hilbert cube.

Proof. Let (A;�A) be a compact metrizable semilattice with metric d and sup-
pose without loss that d(a; b) � 1 for all a; b 2 A: Let A0 = fa1; a2; :::g be a
countable dense subset of A: De�ne the function � from A into the Hilbert cube
[0; 1]1; by �(a) = (mina0 d(a0 _ a; a1);mina0 d(a0 _ a; a2); :::); where each minimum
is taken over all a0 2 A: To see that � is continuous, note that, for each n; Berge�s
theorem of the maximum and the fact that the join operator is continuous imply
that the n-th coordinate function mina0 d(a0 _ a; an) is continuous in a:
We next wish to show that

a �A b if and only if �(a) � �(b); (A.2)

where � is the coordinatewise partial order on [0; 1]1. Before proving this, note
that a corollary is that � is one to one and hence, by compactness, a homeo-
morphism from A onto �(A): Hence, the proof will be complete once we prove
(A.2).
So, suppose �rst that a �A b: Then, for each n;

min
a0
d(a0 _ a; an) = min

a0�Aa
d(a0; an)

� min
a0�Ab

d(a0; an)

= min
a0
d(a0 _ b; an);

29But note that x _ y = (max(xn; yn))1n=1 need not hold since the coordinatewise max need
not be a member of A.
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and so �(a) � �(b): Conversely, suppose that �(a) � �(b): Then for each n;
mina0 d(a

0 _ a; an) � mina0 d(a
0 _ b; an): In particular, this holds true along a

subsequence, ank of an; converging to a: Consequently, 0 = mina0 d(a
0 _ a; a) �

mina0 d(a
0 _ b; a); so that a0 _ b = a for some a0 2 A: But this means that a �A b;

as desired.
Lemma A.1 is useful because it permits one to prove results about compact

metrizable semilattices by considering compact semilattices in the Hilbert cube.
The lemmas below can be proved by �rst proving them when (A;�) is a compact
semilattice in the Hilbert cube and then applying Lemma A.1. Since the Hilbert
cube proofs amount to separate proofs for each of the countably many copies of
[0; 1]; and the proofs for [0; 1] are standard, the proofs are omitted.
In each of the lemmas below, it is assumed that (A;�) is a compact metriz-

able semilattice and � is a probability measure on [0; 1]m satisfying assumption
G.1 from Section 3. Assumption G.1 is used to ensure that every measurable and
monotone function f : [0; 1]m ! A is continuous v almost everywhere. This is a
consequence of the fact that the restriction of f to any strict chain C is discon-
tinuous at no more than countably many points in C; which itself implies that
D\C is countable for all strict chains C; where D denotes the set of discontinuity
points of f: These latter two results are standard and so we omit their proofs.

Lemma A.2. If an; cn are sequences in A converging to a; and an � bn � cn for
every n; then bn converges to a:

Lemma A.3. Every nondecreasing sequence and every nonincreasing sequence
in (A;�) converges.

Lemma A.4. If f : [0; 1]m ! A is monotone, then there is a measurable and
monotone g : [0; 1]m ! A such that f and g are equal and continuous � almost
everywhere on [0; 1]m.

Lemma A.5. (Helley�s Theorem). If fn : [0; 1]m ! A is a sequence of monotone
functions, then there is a subsequence, fnk ; and a measurable monotone function,
f : [0; 1]m ! A; such that fnk(t)!k f(t) for � almost every t 2 [0; 1]m:
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B. The Space of Monotone Functions

Throughout this appendix it is assumed that (A;�) is a compact metrizable semi-
lattice with metric d which is assumed without loss to satisfy d(a; b) � 1 for all
a; b 2 A: We also let M denote the set of measurable monotone functions from
[0; 1]m into A; and de�ne the metric, �; onM by

�(f; g) =

Z
[0;1]m

d(f(t); g(t))d�(t);

where � is a probability measure on [0; 1]m satisfying assumption G.1 from Section
3.

Lemma B.1. In (M; �); fk converges to f if and only if in (A;�); fk(t) converges
to f(t) for � almost every t 2 [0; 1]m:

Proof. (only if) Suppose that �(fk; f) ! 0: By Lemma A.4 it su¢ ces to show
that fk(t)! f(t) for all interior continuity points, t; of f:
Suppose that t0 is an interior continuity point of f: Because A is compact,

it su¢ ces to show that an arbitrary convergent subsequence, fkj(t0); of fk(t0)
converges to f(t0). So, suppose that fkj(t0) converges to a 2 A: By Lemma A.5,
there exists a further subsequence, fk0j and a monotone function, g 2 M; such
that fk0j(t) ! g(t) for a.e. t in [0; 1]m: Because d is bounded, the dominated
convergence theorem implies that �(fk0j ; g) ! 0: But �(fk0j ; f) ! 0 then implies
that �(f; g) = 0 and so fk0j(t)! f(t) for a.e. t in [0; 1]m:
Because t0 is in the interior of [0; 1]m; for every " > 0 there exist t"; t0" each

within " of t0 such that t" � t0 � t0" and such that fk0j(t")!j f(t") and fk0j(t
0
")!j

f(t0"): Consequently, fk0j(t") � fk0j(t0) � fk0j(t
0
"); and taking the limit as j ! 1

yields f(t") � a � f(t0"); and taking next the limit as " ! 0 yields f(t0) � a �
f(t0); so that a = f(t0); as desired.
(if) To complete the proof, suppose that fk(t) converges to f(t) for � almost

every t 2 [0; 1]m: Then, because d is bounded, the dominated convergence theorem
implies that �(fk; f)! 0:

Lemma B.2. The function h : [0; 1]�M�M!M de�ned by

h(� ; f; g)(t) =

8<:
f(t);
g(t);
f(t) _ g(t);

if 1 � t � j1� 2� jm and � < 1=2
if 1 � t � j1� 2� jm and � � 1=2
if 1 � t > j1� 2� jm

(B.1)

is continuous, where 1 denotes the vector of 1�s.
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Proof. Suppose that (� k; fk; gk) ! (� ; f; g) 2 [0; 1] � M � M: By Lemma
B.1, there is a full � measure subset, D; of [0; 1]m such that fk(t) ! f(t) and
gk(t) ! g(t) for every t 2 D: There are three cases: � = 1=2, � > 1=2 and
� < 1=2:
Suppose that � < 1=2: For each t 2 D such that 1 � t < j1� 2� jm; we have

1 � t < j1� 2� kjm for all k large enough. Hence, h(� k; fk; gk)(t) = fk(t) for all
k large enough, and so h(� k; fk; gk)(t) = fk(t) ! f(t) = h(� ; f; g)(t): Similarly,
for each t 2 D such that 1 � t > j1� 2� jm; h(� k; fk; gk)(t) = fk(t) _ gk(t) !
f(t) _ g(t) = h(� ; f; g)(t); where the limit follows because (A;�) is a metrizable
semilattice. By G.1, �(ft 2 [0; 1]m : 1 � t = j1� 2� jmg) = 0: Consequently, if
� < 1=2; h(� k; fk; gk)(t) ! h(� ; f; g)(t) for � a.e. t 2 [0; 1]m and so, by Lemma
B.1, h(� k; fk; gk)! h(� ; f; g):
Because the case � > 1=2 is similar to � < 1=2; we need only consider the

remaining case in which � = 1=2: In this case, j1� 2� kj ! 0: Consequently, for
any nonzero t 2 [0; 1]m; because 1 �t > 0; we have h(� k; fk; gk)(t) = fk(t)_gk(t) for
k large enough and so h(� k; fk; gk)(t) = fk(t)_gk(t)! f(t)_g(t) = h(1=2; f; g)(t)
for every non zero t 2 [0; 1]m: Hence, by G.1, h(� k; fk; gk)(t)! h(1=2; f; g)(t) for
� a.e. t 2 [0; 1]m, and so again by Lemma B.1, h(� k; fk; gk)! h(� ; f; g):

Lemma B.3. The metric space (M; �) is an absolute retract.

Proof. As a matter of notation, for f; g 2M; write f � g if f(t) � g(t) for � a.e.
t in [0; 1]m: Also, for any sequence of monotone functions f1; f2; :::; inM; denote
by f1_f2_ ::: the monotone function taking the value limn[f1(t)_f2(t)_ :::_fn(t)]
for each t in [0; 1]m: This is well-de�ned by Lemma A.3.
Let h : [0; 1] �M �M ! M be the continuous function de�ned by (B.1).

Since for any g 2 M; h(�; �; g) is a contraction for M, (M; �) is contractible.
Hence, by Borsuk (1966, IV (9.1)) and Dugundji (1965), it su¢ ces to show that
for each f 0 2 M and each neighborhood U of f 0; there exists a neighborhood V
of f 0 and contained in U such that the sets V n; n � 1; de�ned inductively by
V 1 = h([0; 1]; V; V ); V n+1 = h([0; 1]; V; V n); are all contained in U:30

For each V , note that if g 2 V 1; then g = h(� ; f0; f1) for some � 2 [0; 1] and
some f0; f1 2 V: Hence, by the de�nition of h; we have g � f0 _ f1 and either
30This condition, which is intimately related to the local contractibility ofM; can more easily

be related to local convexity. For example, ifM is convex, instead of merely contractible, and
h(�; f; g) = �f+(1��)g is the usual convex combination map, the condition follows immediately
ifM is, in addition, locally convex.
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f0 � g or f1 � g:We may choose the indices so that f0 � g � f0_ f1: Inductively,
it can similarly be seen that if g 2 V n; then there exist f0; f1; :::; fn 2 V such that

f0 � g � f0 _ ::: _ fn: (B.2)

Suppose now, by way of contradiction, that there is no open set V containing
f 0 2M and contained in the neighborhood U of f 0 such that all the V n as de�ned
above are contained in U: Then, successively for each k = 1; 2; :: , taking V to be
B1=k(f

0); the 1=k ball around f 0, there exists nk such that some gk 2 V nk is not
in U: Hence, by (B.2), there exist fk0 ; :::; f

k
nk
2 V = B1=k(f 0) such that

fk0 � gk � fk0 _ ::: _ fknk : (B.3)

Consider the sequence f 10 ; :::; f
1
n1
; f20 ; :::; f

2
n2
; ::: . Because fkj is in B1=k(f

0); this
sequence converges to f 0: Let us reindex this sequence as f1; f2; ::: . Hence, fj ! f 0:
Because for every n the set ffn; fn+1; :::g contains the set ffk0 ; :::; fknkg whenever

k is large enough, we have

fk0 _ ::: _ fknk � _j�nfj;

for every n and all large enough k. Combined with (B.3), this implies that

fk0 � gk � _j�nfj (B.4)

for every n and all large enough k.
Now, fk0 ! f 0 as k ! 1: Hence, by Lemma B.1, fk0 (t) ! f 0(t) for � a.e. t

in [0; 1]m: Consequently, if for � a.e. t in [0; 1]m; _j�nfj(t) ! f 0(t) as n ! 1;
then (B.4) and Lemma A.2 would imply that for � a.e. t in [0; 1]m; gk(t)! f 0(t):
Then, Lemma B.1 would imply that gk ! f 0 contradicting the fact that no gk is
in U; and completing the proof that (M; �) is an absolute retract.
It therefore remains only to establish that for � a.e. t 2 [0; 1]m; _j�nfj(t) !

f 0(t) as n ! 1: But, by Lemma C.2, because (A;�) is locally complete this
will follow if fj(t) !j f

0(t) for � a.e. t; which follows from Lemma B.1 because
fj ! f 0:
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C. Completeness and Local Completeness

In each of the lemmas below, it is assumed that (A;�) is a compact metrizable
semilattice.

Lemma C.1. (A;�) is a complete semilattice.

Proof. Because A is compact and metrizable, S has a countable dense subset,
fa1; a2; :::g: Let a� = limn a1_ :::_an; where the limit exists by Lemma A.3. Now,
suppose that b is an upper bound for S and that a is an arbitrary element of S:
Then, some sequence, ank ; converges to a: Moreover, ank � a1 _ ::: _ ank � b for
every k: Taking the limit as k !1 yields a � a� � b: Hence, a� = _S:

Lemma C.2. (A;�) is locally complete if and only if for every a 2 A and every
sequence an converging to a; limn(_k�nak) = a:

Proof. For each n; let bn = limk�n(an _ ::: _ ak): This is well-de�ned by Lemma
A.3 since an_ :::_ak is nondecreasing in k: Consequently, limn bn = limn(_k�nak)
exists by Lemma A.3 since fbng is nonincreasing.
We �rst demonstrate the �only if�direction. Suppose (A;�) is locally complete

and that U is a neighborhood of a: Then, there exists a neighborhood W of a
contained in U such that every subset of W has a least upper bound in U: In
particular, because for n large enough fan; an+1; :::g is a subset of W; the least
upper bound of fan; an+1; :::g; namely _k�nak; is in U for n large enough. Since
U was arbitrary, this implies limn(_k�nak) = a:
We now turn to the �if� direction. Fix any a 2 A; and let B1=n(a) denote

the open ball around a with diameter 1=n: For each n; _B1=n(a) is well-de�ned
by Lemma C.1. Moreover, because _B1=n(a) is nondecreasing in n; limn _B1=n(a)
exists. We �rst argue that limn _B1=n(a) = a: For each n; we may construct,
as in the proof of Lemma C.1, a sequence fan;mg of points in B1=n(a) such that
limm(an;1_:::_an;m) = _B1=n(a):We may therefore choosemn su¢ ciently large so
that the distance between an;1_ :::_an:mn and _B1=n(a) is less than 1=n: Consider
now the sequence fa1;1; :::; a1;m1 ; a2;1; :::; a2;m2 ; a3;1; :::; a3;m3 ; :::g: Because an;m is in
B1=n(a); this sequence converges to a: Consequently, by hypothesis,

lim
n
(an;1 _ ::: _ an;mn _ a(n+1);1 _ ::: _ a(n+1);m(n+1)

_ :::) = a:

But because every ak;j in the join in parentheses on the left-hand side above
(denote this join by bn) is in B1=n(a); we have

an;1 _ ::: _ an;mn � bn � _B1=n(a):
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Therefore, because for every n the distance between an;1_ :::_a1;mn and _B1=n(a)
is less than 1=n; Lemma A.2 implies that limn _B1=n(a) = limn bn: But since
limn bn = a; we have limn _B1=n(a) = a, as desired. Next, for each n; let Sn be
an arbitrary non empty subset of B1=n(a); and choose any sn 2 Sn: Then sn �
_Sn � _B1=n(a): Because sn 2 B1=n(a); Lemma A.2 implies that limn _Sn = a:
Consequently, for every neighborhood U of a; there exists n large enough such
that _S (well-de�ned by Lemma C.1) is in U for every subset S of B1=n(a): Since
a was arbitrary, (A;�) is locally complete.

Lemma C.3. If A is a subset of RK and � is the coordinatewise partial order,
then (A;�) is locally complete.

Proof. Suppose that an ! a: By Lemma C.2, it su¢ ces to show that limn(_k�nak) =
a: By Lemma A.3, limn(_k�nak) exists and is equal to limn limm(an_:::_am) since
an _ ::: _ am is nondecreasing in m; and limm(an _ ::: _ am) is nonincreasing in n:
For each dimension k = 1; :::; K; let akn;m denote the �rst among an; an+1; :::; am
with the largest kth coordinate. Hence, an _ :::_ am = a1n;m _ :::_ aKn;m; where the
right-hand side consists of K terms. Because an ! a, limm a

k
n;m exists for each k

and n; and limn limm a
k
n;m = a for each k: Consequently, limn limm(an_ :::_am) =

limn limm(a
1
n;m _ ::: _ aKn;m) = a _ ::: _ a = a, as desired.

Lemma C.4. If for all a 2 A; every neighborhood of a contains a0 such that
b0 � a0 for all b0 close enough to a; then (A;�) is locally complete.

Proof. Suppose that an ! a: By Lemma C.2, it su¢ ces to show that limn(_k�nak) =
a: For every n and m; am � am _ am+1 _ ::: _ am+n, and so taking the limit �rst
as n ! 1 and then as m ! 1 gives a � limm _k�mak; where the limit in the
center exists by Lemma A.3 because the sequence is monotone. Hence, to show
that limsupmam = a; it su¢ ces to show that limm _k�mak � a.
Let U be a neighborhood of a and let a0 be chosen as in the statement of the

lemma. Hence, for m large enough, am 2 U and so am � a0: Consequently, for m
large enough and for all n, am _ am+1 _ ::: _ am+n � a0: Taking the limit �rst in
n and then in m yields limm _k�mak � a0: Because for every neighborhood U of a
this holds for some a0 in U; limm _k�mak � a; as desired.
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