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one good. We begin with an example in which an agent’s consumption is zero eventually

with probability one even if she has correct beliefs and is marginally more patient. We

then provide two general results: (a) a precise statement indicating that if markets are

effectively incomplete forever then on any path on which some agent’s consumption is

eventually bounded away from zero, the other agent’s consumption is arbitrarily close to

zero infinitely often, and (b) for a robust class of economies with incomplete markets,

there are equilibria in which an agent’s consumption is zero eventually with probability

one even though she has correct beliefs. Our results mark a sharp contrast with the case

studied by Sandroni (2000) and Blume and Easley (2004) where markets are complete.
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1. INTRODUCTION

The main purpose of general equilibrium models of macroeconomic and financial phe-

nomena is to explain the behaviour of consumption and that of the prices of goods and

assets in economies with heterogeneous agents, and recent results let us claim that in the

case of models with dynamically complete markets, there is a complete understanding of

the asymptotic properties of these variables. Indeed, for some time now it has been known

that if agents have homogeneous beliefs (even if they are not correct) and the same degree

of impatience, Pareto optimality of equilibrium allocations implies that the consumption

of every agent must be bounded away from zero, i.e. every agent “dominates” (this tech-

nical term has become standard in the literature and corresponds to the word “survive” in

less formal parlance), regardless of attitudes towards risk; furthermore, if agents differ in

their degree of impatience, then in the long run only the most patient have positive wealth,

consume the entire output of the economy, and determine prices regardless of the agents’

preferences towards risk. The result was conjectured by Ramsey (1928 pp. 558-559) and

later proved by Becker (1980), Rader (1981) and Bewley (1982). The line of research

was completed by considering the case with heterogeneous beliefs, results due to Sandroni

(2000) and Blume and Easley (2004).1 Sandroni considered a Lucas tree economy with

dynamically complete markets and populated by expected utility maximizers. He showed

that an agent whose belief has higher entropy accumulates more wealth and so entropy of

beliefs is the appropriate measure of belief accuracy to study wealth accumulation. As a

result, among agents with the same discount factor, only traders with correct beliefs, or

those whose forecasts merge with the truth, dominate, and in the absence of such traders,

no investor whose forecasts are persistently wrong dominates in the presence of a learner.

Blume and Easley (2004) showed that Pareto optimality of the allocation guarantees the

results. One concludes that in dynamically complete market economies, survival depends

only on the degree of impatience and the accuracy of beliefs since the equilibrium alloca-

tion is necessarily Pareto optimal; attitudes toward risk are irrelevant. This is significant

because it appears to validate the market selection hypothesis (henceforth, MSH) which,

in the weak form due to Alchian (1950) and Friedman (1953), requires that only agents

whose behaviour is consistent with rational and informed maximization of returns can

survive and affect prices in the long run.2

The natural question is whether the fact that survival depends only on discount factors

1Sandroni (2000) and Blume and Easley (2004) respond to the earlier work of Blume and Easley
(1992), a pioneering paper that studied the general equilibrium dynamics of wealth accumulation when
agents use fixed savings rates and arbitrary portfolio rules. It showed that a trader with correct beliefs
who uses a portfolio rule that does not lead to the maximization of the one period ahead expected value
of the logarithm of wealth (the Kelly criterion) need not dominate. The principal criticism of that result
is that agents do not optimally choose consumption and saving in an intertemporal framework.

2There is more than one view of what constitutes the MSH. Authors like Cootner (1967) and Fama
(1965) offered a stronger version of the MSH which claims that markets select for investors with correct
beliefs. A common implication of both versions is that rational expectations models are appropriate to
describe long run outcomes. The stronger version of the MSH due to Cootner (1967) and Fama (1965)
implies also that in the long run correct beliefs can be inferred from equilibrium prices.
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and the accuracy of beliefs reflects an intrinsic property of competitive markets or whether

it is a consequence of the assumption that markets are dynamically complete. Very little

is known about this and that is the question we address by considering an economy with

only one good in which two agents trade a single inside asset over an infinite horizon in

dynamically incomplete markets.

We begin with a leading example where agent 1 has arbitrary CRRA preferences and

a positive stochastic endowment forever, and agent 2 has logarithmic preferences and a

positive endowment only at date zero. We show that even if agents are equally patient

and have correct beliefs, one can find a time invariant asset structure such that the

consumption of the agent with logarithmic preferences converges to zero with probability

one in every equilibrium. A continuity argument shows that the same is true even if agent

2 is marginally more patient or if she holds correct beliefs and agent 1 does not.

The example shows that the factors determining survival with complete markets have

little relevance when markets are dynamically incomplete. As for the MSH in dynamically

incomplete markets economies, our example shows that no entropy measure can be critical

to understanding survival because any properly defined entropy measure must attain its

maximum when beliefs are correct and, as per the example, the mere fact that one has

correct beliefs does not guarantee survival.3

Our leading example leads us to two rather different conjectures about the implications

of market incompleteness in general infinite horizon economies: (a) that the consumption

of some agent comes arbitrarily close to zero infinitely often, and (b) that the consumption

of some agent is eventually close to zero. In the rest of the paper we refine and strengthen

these conjectures to obtain a strong set of results.

Before stating and discussing our results let us recall the economics that drives the

result when markets are complete. In such a framework, at an interior allocation, the

utility gradients of the different agents point in the same direction. It follows that with

preferences that are additively separable across time, the ratio of (the one-period ahead

intertemporal) marginal rates of substitution—so they are probability weighted where

the beliefs could be subjectively held, i.e. heterogeneous and incorrect—of the two agents

weighted by the discount factors is one independent of the date and event; that is the key

implication of Pareto optimality and that drives all the results. In particular, if both the

agents have correct beliefs and the same discount factor then both dominate, that is their

consumption is eventually uniformly positive. We write the ratio of (the one-period ahead

ratio of the) marginal utilities—the ratio of the derivatives of the Bernoulli functions—of

the two agents as the ratio of two stochastic processes where each is a product martingale

with conditional mean one. At any Pareto optimal allocation, the ratio of the processes

3This resolves an open question posed by Sandroni (2004 on page 10) as the following quotation
indicates: “The results in this paper can only suggest, but they do not prove, that belief accuracy
measured by a properly defined entropy measure is critical for survival in dynamic incomplete market
economies.” The question was posed in response to an example in Blume and Easley (2004) discussed in
footnote 10 below.
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that we construct is degenerate and we recover the result for Pareto optimal equilibrium

allocations due to Blume and Easley (2004).4 However, when markets are incomplete,

typically, the utility gradients of different agents are not aligned and the ratio of our

martingales is not degenerate. In fact since the logarithms of the processes have an

additive structure, their limiting behaviour can be analyzed by using a suitable Strong

Law of Large Numbers; under appropriate assumptions, the limit could even be zero or

infinity from which it follows that one or the other agent vanishes.

Our first main result is very intuitive since it is based on the idea that if market

incompleteness has bite then marginal rates of substitution will not be equalized and

therefore one can have arbitrarily long strings of states where the ratio (across agents) of

marginal utilities keeps rising; the technical tool used is Levy’s conditional form of the

Second Borel-Cantelli Lemma further generalized by Freedman (1973). More formally,

in Theorem 1 (i) we show that if in the limit the ratio of marginal rates of substitution

does not display one period ahead conditional variability, then the marginal rates of

substitution are equalized in the limit. Theorem 1 (ii) shows that if, on the other hand,

the ratio of marginal utilities does display one period ahead conditional variability, then

some agent must consume arbitrarily close to zero infinitely often. Simply put, if market

incompleteness is effective forever then either (a) one of the two agents will eventually

cease to consume, or (b) the equilibrium is complicated in that the consumption of some

agent will be arbitrarily close to zero infinitely often. The results hold with probability

one and applies equally regardless of whether beliefs are homogeneous or heterogeneous.

Theorem 1 shows that examples of infinite horizon economies with incomplete markets

that have appeared in the literature are very special. In many of those examples, after

some finite date the continuation economy displays effectively complete markets.5 In

others, though markets are effectively incomplete, the asset structure is specified in a

manner that ensures that trading possibilities are so narrow that the idea behind our

proof of Theorem 1 (ii) has no bite. There is one further possibility that is not covered

by our discussion so far, namely, that the ratio of marginal utilities does not display

one period ahead variability even though the ratio of marginal rates of substitution does

display such variability so that both the agents have consumption uniformly bounded

away from zero. Such a case is very special and can arise only with heterogeneous and

well chosen beliefs; Coury and Sciubba (2005) provide such an example.6 All of these

examples are discussed in Section 4.3.7

4The result in Sandroni (2000) is not covered by our approach since we restrict attention to short
maturity assets while he considers Lucas trees.

5Although this feature is very useful in constructing examples, it clearly goes against the motivation
for studying models with incomplete markets.

6Their construction appears to be special since they start with a Pareto optimal allocation that can
be supported as an equilibrium with incomplete markets with homogeneous beliefs, and then they change
beliefs and/or discount factors in a manner that leaves demand behaviour unchanged so that the same
allocation continues to specify equilibrium consumption in the economy with heterogeneous beliefs.

7Duffie et al (1994) provide an existence theorem for Lucas-tree economies with incomplete markets
in which consumption is uniformly bounded away from zero. For that result it is crucial that there are
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Our second main result, Theorem 4, shows that for a robust family of endowment

distributions, there are equilibria with homogeneous and correct beliefs in which the

same agent eventually consumes zero on almost all paths, i.e. we specify a class of

economies where the phenomenon exhibited by the example holds. This result is much

more surprising and less intuitive. It appears to require a fairly strong restriction on the

distribution of endowments across agents and little else.

In fact, our approach is constructive. We propose a method for constructing feasible

consumption processes that satisfy the Euler equations, that have summable supporting

prices, and that have an additional property that ensures that one of the agents vanishes.

The method generates consumption processes that are uniquely specified for each value

of consumption at the initial date; furthermore, the consumption processes induced are

continuous and monotone in the initial value. We trivially obtain a family of “no trade”

equilibria that are supported with trivial asset portfolios so that the process that specifies

the value of the portfolios is uniformly bounded. The latter has been proposed as a

desirable property of equilbria in infinite horizon economies and has been studied in detail

by Magill and Quinzii (1994), Levine and Zame (1996), Hernandez and Santos (1996), and

Florenzano and Gourdel (1996).8 We then show that for each such no trade equilibrium,

there is an open set of endowment distributions that leads to an equilibrium that is

weaker in that there may be no uniform bound across paths on debt. This equilibrium

concept requires maximization subject to a sequence of budget constraints and a single

transversality condition at date zero, and market clearing. We prove that it does not

permit Ponzi schemes.9

Our work has implications for the MSH which we now highlight. Blume and Easley

(2004) conclude that the accuracy of beliefs is not the key that explains survival and that

the MSH may fail because wrong beliefs can lead to greater savings, a point also made

by Sandroni (2004). They do so on the basis of an example of an incomplete markets

economy where an agent with correct beliefs is driven out of the market by traders with

less accurate beliefs.10 Our second result indicates that market incompleteness rather than

wrong beliefs cause greater savings. Furthermore, our example, where agents with correct

no short sales and no one period inside assets either.
8Equilibria with a uniform bound on the value of debt, a condition that is often equivalent to requiring

a transversality condition at every date and event, are usually justified by appealing to an unmodeled
institutional device that ensures that the economy is immune to Ponzi schemes.

9So our equilibrium concept provides a less demanding institutional framework that achieves the
purpose noted in footnote 8. Santos and Woodford (1997) propose a notion of equilibrium without
uniform bounds for a much more general set-up. Blume and Easley (2004) provide an example in which
the equilibrium value of an agent’s debt diverges according to the agent’s subjectively held incorrect
belief, i.e. the one relevant for specifying the agent’s budget set.

10In their example the economy is deterministic but some agent mistakenly believes it to be stochastic;
as a consequence, completing the market in their example economy leads to nonexistence, a fact that
they note. In our leading example completing the market leads to an equilibrium where the allocation is
Pareto optimal and, by the result in Blume and Easley (2004), both the agents dominate.

These authors present a second example that shows that there are situations in which relative entropy
is simply the wrong measure of belief accuracy because it does not match well with the asset structure.
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beliefs are driven out by agents with wrong beliefs, makes very clear that even the version

of the MSH due to Alchian (1950) and Friedman (1953) does not hold in general. Coury

and Sciubba (2005) argue that, when markets are incomplete, agents with wrong beliefs

may survive and so one cannot infer the true probability distribution by only observing

asset prices; their claim is based upon assuming the existence of an equilibrium where an

agent with correct beliefs has consumption that is uniformly positive infinitely often and

then showing that there must exist an economy with heterogeneous beliefs with the same

consumption profiles. Since prices are “as if” agents had correct beliefs, their result casts

some doubt on the version of the MSH due to Cootner (1967) and Fama (1965) but it is

consistent with the version due to Alchian (1950) and Friedman (1953).

To summarize, this paper contributes to various areas. It provides an almost complete

characterization of limiting consumption behaviour when markets are incomplete and

shows that about the only way that one can get simple limiting behaviour is if one agent

is driven out of the market. It goes on to show that such a possibility is a robust outcome.

It follows that the strong results regarding the validity of the MSH that have appeared

depend critically on having complete markets or a Pareto optimal allocation. The paper

also contributes to the general equilibrium literature by pointing out hitherto unknown

properties of infinite horizon economies with incomplete markets; this is all the more

important because of the widespread use of such models in the modern literature in

macroeconomics. Finally, the method for constructing equilibria that we propose sheds

light on the structure of the equilibrium set when markets are incomplete;11 also, the

method might be of use to researchers in the area of computational general equilibrium.

In Section 2 we introduce the model and define the relevant notions of survival. Section

3 contains the leading example. Afterwards, in Section 4 we develop the general approach

to study the long run dynamics of equilibria and present Theorem 1 and our discussion

of earlier examples in the literature. Finally, in Section 5 we construct the equilibria in

which only one agent survives. Concluding remarks are presented in Section 6. All the

proofs are gathered in the Appendix.

2. MODEL

2.1 PROBABILITY NOTATION

We consider an infinite horizon with dates t = 0, 1, 2, · · ·. The temporal state space

is S := {1, 2, · · · , S}. St is the t-fold Cartesian product of S and Ω := S∞ with typical

element ω = (s1, s2, · · ·) where st is the realization at date t ≥ 1. In fact, we shall write

ω = (s1(ω), s2(ω), · · ·). Also st = (s1, · · · , st) and if we wish to make the dependence on ω

explicit, we shall use st(ω) := (s1(ω), · · · , st(ω)). Ω(st) := {ω ∈ Ω : ω = (st, st+1, · · ·), st ∈
St} is a t-cylinder and Ft is the σ-algebra obtained by considering finite unions of the

sets Ω(st) for fixed t. This induces a sequence of σ-algebras on Ω denoted {Ft}∞t=1 where

Ft−1 ⊂ Ft for all t ≥ 1; we set F0 := {∅, Ω}, and we set σ
(
∪t≥0 Ft

)
⊂ F . That is our

11We remind the reader that very little is known about this beyond the analysis in Levine and Zame
(2001) for the case of one good economies with idiosyncratic shocks and increasing patience.
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filtration with F a σ-algebra on Ω. All statements will be made using (Ω,F).

Any function X : Ω → R that is F -measurable is a random variable. From here on a

process denotes X = {Xt}∞t=0 with Xt : Ω → R and Ft-measurable.

For Q : F → [0, 1] a probability measure, let dQt be the Ft measurable function

defined by dQt(ω) := Q(Ω(st(ω))) for t ≥ 1 and dQ0 := 1, i.e. dQt(ω) is the probability

of the cylinder Ω(st(ω)). We also define the one period ahead conditional probability that

state s occurs by Qt(ω) := dQt(ω)
dQt−1(ω)

. EQ[X|G] denotes the expectation operator applied to

the random variable X : Ω → R restricted to the σ-algebra G where G ⊂ F and where the

expectation is taken with respect to the measure Q. EQ[X|G] is a G-measurable random

variable. Recall that L∞(Ω,F , Q) denotes the (equivalence class of) measurable functions

that are bounded in the essential sup norm with respect to the measure Q. We define12

Ψt := {f : Ω → R : f isFt −measurable}
Ψt,Q

+ := {f ∈ Ψt : f(ω) ≥ 0 Q− a.s. ω}
ΨQ := {(f0, f1, · · ·) ∈ ×∞

t=0Ψ
t : supt≥0 ess supω∈Ω;Q |ft(ω)| < ∞}

ΨQ
+ := {(f0, f1, · · ·) ∈ ×∞

t=0Ψ
t
+ : supt≥0 ess supω∈Ω;Q |ft(ω)| < ∞}.

2.2 THE ECONOMY

There is only one perishable good at each date. An agent is denoted i ∈ I. There are

two agents, so I := {1, 2}, each of whom lives forever.

ω ∈ Ω is chosen according to the objective probability measure P while agent i’s sub-

jective belief is denoted Pi. So we work with three probability triples: the objective triple

(Ω,F , P ) that is relevant for economic aggregates, and the subjective triples (Ω,F , Pi),

i = 1, 2, that are the relevant spaces for the agents’ decisions. For the main results we shall

assume that the one period ahead conditional probability that state s occurs is uniformly

positive and agents correctly believe that these probabilities are uniformly bounded away

from zero.13 So, define p := inft≥0 ess. infω∈Ω;P Pt(ω).

ASSUMPTION A.1: 0 < p ≤ inft≥0 ess. infω∈Ω;Pi
Pi,t(ω).

The aggregate endowment process is denoted Z := {Zt}∞t=0 and its range is [z, z̄] so

that for all t ≥ 0, Zt(ω) ∈ [z, z̄] P−a.s. ω. The endowment process of i is denoted

zi := {zi,t}∞t=0, a nonnegative process. Of course, z1 + z2 = Z; we also assume that

the filtration {Ft}∞t=0 is generated by the union of σ(z1) and σ(z2) where, for a random

variable X, σ(X) is the σ-algebra generated by X.

ASSUMPTION A.2: [z, z̄] ⊂ R++. zi ∈ ×∞
t=0Ψ

t,Pi
+ .

ui is i’s state independent Bernoulli utility function. βi is agent i’s discount factor.

βi = 0 is ruled out to avoid the trivial case.

12For h an F-measurable function, the notation ess supω∈Ω;Qh is used to denote the essential supremum
of h taken over the set Ω with respect to the measure Q.

13This assumption is standard in the literature (see Sandroni (2000) and Blume and Easley (2004)).

7



ASSUMPTION A.3: ui : R+ → R is strictly increasing, strictly concave, and C2 with

limc→0+u′i(c) = ∞. βi ∈ (0, 1).

To prove our robust existence result, Theorem 4, we need to impose a bound on the

degree of relative risk aversion.

ASSUMPTION A.4: For i = 1, 2, 1 ≥ − c·u′′i (c)

u′i(c)
for all c > 0.

There is a single asset available in zero net supply. It pays the return r, where r is a

process whose range is [r, r̄] so that for all t ≥ 0, rt(ω) ∈ [r, r̄] P−a.s. ω. The returns are

assumed to be nonnegative and nontrivial, and the asset trades at the price process q.

ASSUMPTION A.5: [r, r̄] ⊂ R++.

A.5 does not allow the asset to be an Arrow security; the role of this restriction will

be discussed in Section 4.3.

The next assumption will be used to prove that the consumption processes that we

construct and use in Theorems 3 and 4 are supportable as equilibria. Notice that, under

A.2-3 and A.5, M < ∞ where M is specified in A.6.

ASSUMPTION A.6: βi < 1/M where M := max
{

r̄·u′2(z/2)

r·u′2(z̄)
;

r̄·u′1(z/2)

r·u′1(z̄)

}
.

We shall impose one further assumption; it will be stated and discussed in Section 5.1.

REMARK 1: Assumptions A.4 and A.6 will be used only in Section 5. The discussion

in Section 5.5 will indicate that an assumption that is weaker than A.4, but more cum-

bersome to state since it takes into account the characteristics of the endowment process,

suffices for Theorem 4 to go through. Also, instead of Assumption A.6 we can impose

a weaker condition that is appropriate when the aggregate endowment process and as-

set return process are not i.i.d.; once again, this is not stated formally since the gain in

generality is not justified by the notational complication.

An economy is a list (P, Z, P1, P2, β1, β2, u1, u2, r). A private ownership economy is a list

(P, z1, z2, P1, P2, β1, β2, u1, u2, r) and is related to an economy by the relation Z = z1 + z2.

The consumption process of i is denoted ci. We require ci ∈ ΨPi
+ and for such a ci, the

utility payoff is given by limT→+∞
∑T

t=0 βt
i EPi

[ui(ci,t)|F0](ω). i’s holding of the asset is a

process denoted θi. θi,−1(ω) = 0 is introduced as a convenient notational convention.

The pair (c1, c2) is feasible if ci ∈ ΨPi
+ for i ∈ I and at every t ≥ 0, c1,t(ω) + c2,t(ω) =

Zt(ω) P−a.s. ω. A market clearing allocation consists of (c1, c2, θ1, θ2) such that (c1, c2)

is feasible and, at every t ≥ 0, θ1,t(ω) + θ2,t(ω) = 0 P−a.s. ω.

At each pair (ω, t), agents trade in the asset market and in the spot market for the

good. Since there is only one good, given q and zi, each ci determines one and only one
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θi. Given the consumption process ci, θi is a supporting portfolio process at the prices q if

(i) θi,t ∈ Ψt,Pi ∀ t ≥ 0 and

(ii) ∀ t ≥ 0, ci,t(ω) + qt(ω) · θi,t(ω) ≤ zi,t(ω) + rt(ω) · θi,t−1(ω) Pi − a.s. ω.

2.3 EQUILIBRIUM—NECESSARY CONDITIONS

A notion of equilibrium in our model economy requires the specification of a budget

set subject to which each agent maximizes. Evidently, the budget set will incorporate a

sequence of budget constraints, i.e. it will require the existence of a supporting portfolio

process; additional conditions will be imposed to guarantee that a maximizer exists.

The first condition is that asset prices satisfy the no arbitrage property. Define

P(q; Q) :=
{
p ∈ ×∞

t=0Ψ
t,Q
+ : ∀ t ≥ 0, pt(ω)·qt(ω) = EQ[pt+1·rt+1|Ft](ω) Q−a.s. ω

}
,

where we have one degree of freedom (normalization), the set of Arrow price processes

for the asset price process q and the measure Q. The no arbitrage property requires that

P(q; Q) 6= ∅ where Q = P, Pi (Q = P when beliefs are correct).

In our framework, at any interior solution to the maximization problem with a sup-

porting portfolio process a set of first order conditions necessarily hold. Say that ci is an

Euler process at the price process q if

∀ t ≥ 0, qt(ω) = βi ·
EPi

[rt+1 · u′i(ci,t+1)|Ft](ω)

u′i(ci,t(ω))
Pi − a.s. ω.

Evidently, if ci is an Euler process at the price process q then P(q; Pi) 6= ∅.
Furthermore, in infinite horizon models one must also rule out Ponzi schemes, i.e. a

trading plan that generates income at a date-event and rolls over debt in a manner that

prevents an income loss at every other date-event, since, with monotonically increasing

preferences, the existence of a Ponzi scheme in the budget set would imply that there is

no maximizer and therefore no equilibrium. We follow Magill and Quinzii (1994) to define

a Ponzi scheme at a no arbitrage price process q.

DEFINITION 1: Given i, let q be such that P(q; Pi) 6= ∅. A Ponzi scheme is a θ and

a pair (ω′, t′) such that (i) θt ∈ Ψt,Pi ∀ t ≥ 0, (ii) θt(ω) = 0 for all ω ∈ Ω if t < t′ and

θt(ω) = 0 for all t if ω /∈ Ω(st(ω′)),

−1 = qt′(ω
′) · θt′(ω

′),

0 = rt(ω) · θt−1(ω)− qt(ω) · θt(ω) for all t ≥ t′ + 1 and Pi − a.s. ω.

2.4 IDC EQUILIBRIUM

We introduce a notion of equilibrium with uniform bounds on the value of debt. i’s

IDC (implicit debt constraint) budget set is defined as

BCi(q) :=
{
ci ∈ ΨPi

+ : there exists θi, with θi,t ∈ Ψt,Pi ∀ t ≥ 0, such that

∀ t ≥ 0, ci,t(ω) + qt(ω) · θi,t(ω) ≤ zi,t(ω) + rt(ω) · θi,t−1(ω) Pi − a.s. ω,

supt≥0 ess supω∈Ω;Pi
|qt(ω) · θi,t(ω)| < ∞

}
.
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The first set of conditions require that the consumption process be in i’s consumption

set, the second that there exists a supporting portfolio process, and the last condition

is an implicit debt constraint that requires that the value of debt be uniformly bounded.

Implicit debt constraints have been treated extensively in earlier literature on incomplete

market economies with an infinite time horizon, e.g. Magill and Quinzii (1994) who

provide conditions such that in any equilibrium where a transversality condition holds at

every date-event, the value of debt is uniformly bounded.

For i, ci is an IDC maximizer given q if (i) ci ∈ BCi(q) and (ii) there is no c̃i ∈ BCi(q),

with supporting portfolio θ̃i, for which

limT→+∞
∑T

t=0 βt
i EPi

[ui(c̃i,t)|F0](ω) > limT→+∞
∑T

t=0 βt
i EPi

[ui(ci,t)|F0](ω).

DEFINITION 2: An IDC equilibrium is a tuple (c∗1, c
∗
2, θ

∗
1, θ

∗
2, q

∗) that is a market clearing

allocation such that, at the prices q∗, c∗i , with supporting portfolio θ∗i , is an IDC maximizer

for i = 1, 2.

In an IDC equilibrium, an agent maximizes discounted expected utility by choosing

a process for consumption, i.e. {ci,t}+∞
t=0 with the restriction that, for all t, ci,t is Ft-

measurable, that the spot market budget constraints are met, and an additional condition

is met so as to ensure that the budget sets are appropriately bounded so that a maximizer

exists. The IDC budget set does not permit Ponzi schemes (see Magill and Quinzii (1994)).

2.5 SURVIVAL

We formalize the various notions of asymptotic behaviour that we shall use by following

the definitions that have been established in the literature. The term “survive” in its usual

meaning corresponds to the formal “dominates”.

DEFINITION 3: Fix a path ω.

Agent i dominates on ω if lim inft ci,t(ω) > 0.

Agent i survives on ω if lim inft ci,t(ω) = 0 and lim supt ci,t(ω) > 0.

Agent i vanishes on ω if lim supt ci,t(ω) = 0.

The definitions given are made operational by considering the behaviour of marginal

utility. Given consumption processes for i ∈ I, define the ratio of marginal utilities

yt(ω) :=
u′2(c2,t(ω))

u′1(c1,t(ω))
.

The proof of the following lemma is straightforward hence omitted.

LEMMA 1: Assume A.3. Then

agent 2 vanishes on ω ⇐⇒ limt yt(ω) = ∞;

agent 2 survives on ω ⇐⇒ 0 ≤ lim inft yt(ω) < lim supt yt(ω) = ∞;

agent 2 dominates on ω ⇐⇒ 0 ≤ lim inft yt(ω) ≤ lim supt yt(ω) < ∞.

10



The corresponding results for agent 1 are obtained by studying the behaviour of 1/yt(ω).

Both the agents dominate on ω if and only if 0 < lim inft yt(ω) ≤ lim supt yt(ω) < ∞.

Clearly, for feasible processes and strictly positive aggregate endowments, on a given path,

both agents cannot vanish.

3. A LEADING EXAMPLE

We turn to our example which has five salient features. (i) u1(x) = (1/(1 − a))x1−a

with a > 0 and u2(x) = log x. (ii) z2,0(ω) = Z0(ω) and z2,t(ω) = 0 otherwise. (iii) The

uncertainty in the model comes from 1’s endowment which follows an i.i.d. process with

two points in its support: Z ∈ {z, z̄} with probability p ∈ (0, 1) and (1− p) respectively.

(iv) The asset is on the aggregate endowment so rt(ω) = Zt(ω). (v) The beliefs of each

agent are (pi, (1− pi)) with pi ∈ (0, 1) and both could hold incorrect beliefs (though one

or both could hold the correct belief).

It is known that 2’s decision rule is

c2,t(ω) = (1− β2) · w2,t(ω) and θ2,t(ω) = β2 · [w2,t(ω)/qt(ω)]

where w2,t(ω) = rt(ω)·θ2,t−1(ω) = Zt(ω)·θ2,t−1(ω) so that it is independent of p2. It follows

that at a feasible allocation where agent 2 optimizes given prices qt(ω), in particular

at equilibrium, θ2,t(ω) = β2 · [Zt(ω) · θ2,t−1(ω)/qt(ω)] so that such prices, in particular

equilibrium prices, must satisfy

qt(ω) = β2 · Zt(ω) · [θ2,t−1(ω)/θ2,t(ω)].

As for 1, when agent 2 optimizes and the allocation is feasible, we must have

c1,t(ω) = Zt(ω)− c2,t(ω) = Zt(ω)− (1− β2) · w2,t(ω) = Zt(ω)[1− (1− β2) · θ2,t−1(ω)].

Furthermore, the first order conditions for 1 are

β1 EP1 [(c1,t)
−a · Zt|Ft−1](ω) = qt−1(ω) · (c1,t−1(ω))−a

where we use the fact that rt(ω) = Zt(ω).

By substituting for c1,t and qt−1 we obtain

β1 EP1

[(
Zt[1− (1− β2) · θ2,t−1])

−a
)
Zt|Ft−1

]
(ω)

= β2 · Zt−1(ω) · θ2,t−2(ω)

θ2,t−1(ω)
·
(
Zt−1(ω)[1− (1− β2) · θ2,t−2(ω)]

)−a
.

We have obtained a stochastic difference equation in θ2,t such that if an allocation is

feasible, if it is maximizing for 2, and if it satisfies the first order conditions for 1 then θ2,t

must satisfy the difference equation; therefore, a θ2,t process that obtains in equilibrium

will satisfy the stochastic difference equation.14

By simplifying the condition we obtain

β1

β2

· (1− β2) · θ2,t−1(ω)

[1− (1− β2) · θ2,t−1(ω)]a
=

[Zt−1(ω)]1−a

EP1 [Z
1−a]

· (1− β2) · θ2,t−2(ω)

[1− (1− β2) · θ2,t−2(ω)]a
.

It follows that if (1− β2) · θ2,t−1(ω) ∈ (0, 1) then (1− β2) · θ2,t(ω) ∈ (0, 1) and the system

14Existence of an IDC equilibrium follows from our Theorem 3.
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has a real valued solution. By iterating we see that

⇔ (1− β2) · θ2,T (ω)

[1− (1− β2) · θ2,T (ω)]a
=
(

β2

β1

)T

·
ΠT

t=1

(
Zt(ω)]1−a

)
(
EP1 [Z

1−a]
)T · (1− β2) · θ2,0(ω)

[1− (1− β2) · θ2,0(ω)]a

⇔ 1

T
·log

(
(1− β2) · θ2,T (ω)

[1− (1− β2) · θ2,T (ω)]a

)
= log

(
β2

β1

)
+
(

1

T

T∑
t=1

log [Zt(ω)]1−a
)
−log

(
EP1 [Z

1−a]
)

+
1

T
· log

(
(1− β2) · θ2,0(ω)

[1− (1− β2) · θ2,0(ω)]a

)
.

Since Zt is an i.i.d. process (and obviously uniformly bounded), the Strong Law of Large

Numbers guarantees that

1

T

T∑
t=1

log [Zt(ω)]1−a → EP [logZ1−a] P − a.s.

with the consequence that, by Jensen’s inequality,(
limT→∞

1

T

T∑
t=1

log [Zt(ω)]1−a
)
− log

(
EP [Z1−a]

)
< 0 P − a.s.

It follows that if p1 = p, so that 1’s beliefs are correct, and β1 = β2 = β, so that both the

agents are equally impatient, then

log
(

(1− β) · θ2,T (ω)

[1− (1− β) · θ2,T (ω)]a

)
→ −∞ P − a.s.

⇔
(

(1− β) · θ2,T (ω)

[1− (1− β) · θ2,T (ω)]a

)
→ 0 ⇔ θ2,T (ω) → 0 ⇔ c2,T (ω) → 0 P − a.s.

and so in every equilibrium of the example, agent 2 vanishes with probability one.

Since the application of Jensen’s inequality above is strict, agent 2 could have correct

beliefs and agent 1 could have incorrect ones in an open set around p and 1 could even be

marginally more impatient than 2, and yet 2 vanishes almost surely in every equilibrium.

The example shows in a very clear manner that no entropy measure can be critical

to understanding survival because any properly defined entropy measure must attain its

maximum when beliefs are correct.

REMARK 2: We note the following feature of the example. Since c2,t(ω) = (1−β2)·rt(ω)·
θ2,t−1(ω), qt(ω) ·θ2,t(ω) = β2 ·w2,t(ω) = β2 · (c2,t(ω)/(1−β2)) so debt is uniformly bounded

in any equilibrium since consumption is nonnegative and bounded by the uniform upper

bound on the aggregate endowment.

For later reference we note that rt(ω) · u′2(c2,t(ω)) = rt(ω)/c2,t(ω) = 1/((1 − β2) ·
θ2,t−1(ω)); so rt(ω) · u′2(c2,t(ω)) is an Ft−1−measurable quantity. Also

rt(ω) · u′1(c1,t(ω))

EP1 [rt · u′1(c1,t)|Ft−1](ω)
→ rt(ω) · u′1(Zt(ω))

EP1 [rt · u′1(Zt)|Ft−1](ω)
,
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a nondegenerate random variable; this ensures that the assumption that we introduce as

A.7 in Section 5.1 holds in the example.

The analysis in this section depends heavily on the endowment structure where 2 has

no endowment except in period 0. Theorem 4 will show that, in fact, the property we

identify is robust to changes in the endowment process, preferences, and asset structure.

3.1 THE GENERAL LESSON

The example in Section 3 is indicative of a very interesting phenomenon that appears to

be driven by the fact that markets are incomplete. In fact the phenomenon in the example

leads to two rather different conjectures about the implications of market incompleteness:

(a) that the consumption of some agent could be repeatedly arbitrarily close to zero

and (b) that the consumption of some agent stays close to zero eventually. We would

like to know the extent to which these results are a general property of economies with

dynamically incomplete markets. With appropriate formalizations of the fact that markets

are effectively incomplete forever, Theorem 1 in Section 4.2 will show that (a) holds while

Theorem 4 in Section 5.5 will show that, in a robust class of economies, (b) holds. More

precisely, Theorem 1 (ii) will show that on every path on which the ratio of the (one

period ahead ratio of) marginal utilities, yt/yt−1, displays variability, the consumption of

some agent gets arbitrarily close to zero infinitely often; while Theorem 4 will specify a

robust class of economies with equilibria in which the consumption of an agent stays close

to zero eventually on every path. We remark that one expects a version of Theorem 1 to

hold in specifications of infinite horizon economies with incomplete markets that are not

covered by our analysis.

4. RULING OUT DOMINANCE

In this section we prove our first main result: we shall show that market incompleteness

is incompatible with both agents consuming uniformly positive quantities eventually. To

be able to prove the results, we use the insights gained from the analysis of the example to

formulate the problem in general terms. In Section 4.1 we use the Euler equations for the

two agents to express the ratio of the derivatives of the Bernoulli utility functions of the

two agents, the ratio of marginal utilities, as a stochastic process with a very convenient

structure and identify some key properties that the transformed process satisfies. This

reformulation is valid even when the subjective beliefs of the agents do not coincide with

the truth and are not homogeneous. Then, in Section 4.2 we state and discuss Theorem

1. Section 4.3 relates our result to examples of infinite horizon economies with incomplete

markets that have appeared in the literature.

4.1 FIRST ORDER CONDITIONS AND THEIR IMPLICATIONS

As Sandroni (2000) and Blume and Easley (2004) show, in the case where markets

are complete, the behaviour of the variable yt is rather simply determined by the ratio of

13



the discount factors, the ratio of the posterior beliefs of agents, and an initial condition.

In Proposition 1 we show that, when markets are incomplete, the behaviour of yt can be

captured succinctly using the ratio of two processes where each is the product of random

variables with conditional mean one (taken with respect to the subjectively held belief)

in addition to the ratio of the discount factors and an initial condition.

Given consumption processes for i ∈ I, define

r̂i,t(ω) :=
rt(ω) · u′i(ci,t(ω))

EPi
[rt · u′i(ci,t)|Ft−1](ω)

, Ri,T (ω) := ΠT
t=1r̂i,t.

PROPOSITION 1: Assume A.2, A.3, and A.5. Then EPi
[r̂i,t|Ft−1](ω) = 1. Furthermore,

if the consumption processes ci are Euler processes at the price process q, then

(i) Ri,1+T (ω) = βT+1
i ·u

′
i(ci,1+T (ω))

u′i(ci,0(ω))
·ΠT

t=0

(
r1+t(ω)

qt(ω)

)
,

(ii)
r̂2,t(ω)

r̂1,t(ω)
=

β2

β1

· yt(ω)

yt−1(ω)
and yT (ω) =

(
β1

β2

)T

·R2,T (ω)

R1,T (ω)
·y0(ω),

(iii) yt−1(ω) =
β2

β1

·EP2 [r̂1,t·yt|Ft−1](ω),
1

yt−1(ω)
=

β1

β2

·EP1

[
r̂2,t·

1

yt

∣∣∣∣∣Ft−1

]
(ω).

REMARK 3: When we consider Pareto optimal allocations obtainable as competitive

equilibria, (β2/β1) · P2,T (ω)

P1,T (ω)
· yT (ω) = yT−1(ω) and (β2/β1)

T ·ΠT
t=1

(
P2,t(ω)

P1,t(ω)

)
· yT (ω) = y0(ω).

From Proposition 1 (ii) it follows that r̂2,t(ω)

r̂1,t(ω)
= P1,t(ω)

P2,t(ω)
∀ t ≥ 0, P − a.s. ω. In the case

where beliefs are homogeneneous one obtains the result that both agents dominate if and

only if β1 = β2 while i dominates and −i vanishes if and only if βi > β−i. This turnpike

result for complete market economies is well known (Becker (1980), Rader (1981), and

Bewley (1982)). When beliefs are heterogeneous and β1 = β2 both agents dominate on a

path if and only if 0 < lim inf ΠT
t=1

(
P2,t(ω)

P1,t(ω)

)
and lim sup ΠT

t=1

(
P2,t(ω)

P1,t(ω)

)
< ∞. This result is

due to Sandroni (2000) and Blume and Easley (2004).

4.2 THE RESULT

In this section we restrict attention to the case where the agents are equally impatient

and we study the asymptotic behavior of their consumption processes on paths where (a)

the ratio of marginal rates of substitution does not display one period ahead conditional

variability in the limit, and (b) the ratio of marginal utilities does display such variability

infinitely often, i.e. markets are effectively incomplete forever. A third case is (c) where

the ratio of marginal rates of substitution does display variability infinitely often but

only because of the variability in beliefs, a case displaying perverse behaviour that we

shall discuss at some length. Theorem 1 provides a very strong result when markets are
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effectively incomplete forever: the consumption of some agent approaches zero infinitely

often and it could even happen that consumption is zero eventually.

To be more precise, we define the sets

V0 :=
{
ωlimt var

[
log

(
P2,t

P1,t

· yt

yt−1

) ∣∣∣∣Ft−1

]
(ω) = 0

}
,

Vε :=
{
ω : lim supt var

[
log

(
P2,t

P1,t

· yt

yt−1

) ∣∣∣∣Ft−1

]
(ω) ≥ ε

}
,

V y
ε :=

{
ω : lim supt var

[
log

(
yt

yt−1

) ∣∣∣∣Ft−1

]
(ω) ≥ ε

}
.15

Recall that in the case of Pareto optimal allocations, as noted in Remark 3, marginal

rates of substitution are equal at every date-event. In Theorem 1 (i) we show that when

one restricts attention to paths in V0, marginal rates of substitution are equalized in the

limit, limt

(
P2,t(ω)

P1,t(ω)
· yt(ω)

yt−1(ω)

)
= 1; the result has an interesting implication for the behaviour

of consumption in the case where beliefs are homogeneous and this is discussed later.

On the other hand, for paths in ∪ε>0V
y
ε that satisfy a very weak additional property,

every positive lower bound on consumption is violated infinitely often for some agent.

This result, Theorem 1 (ii), can be read as showing that when markets are effectively

incomplete forever, the only simple equilibria are the ones in which only one agent lives

in the limit since in all the others some agent must consume arbitrarily close to zero

infinitely often.

There are two cases to which Theorem 1 (ii) does not apply— (c) above where perverse

behaviour is generated by choosing beliefs appropriately, and paths in ∪ε>0V
y
ε that do not

satisfy an additional property—that we now discuss in detail.

Ω/(∪ε>0V
y
ε ) is the set on which for any economy with homogeneous beliefs, markets

are effectively complete in the limit, i.e. yt/yt−1 does not display one period ahead vari-

ability. In an economy with heterogeneous beliefs it is possible that even though yt/yt−1

converges, the ratio of marginal rates of substitution displays variability, i.e. V sub 6= ∅
where V sub :=

(
∪ε>0 Vε

)
∩
(
Ω/(∪ε>0V

y
ε )
)

and “sub” denotes the perverse behaviour in-

duced by well chosen subjective beliefs. This case, identified as (c) at the beginning of the

subsection, appears to be very special since the consumption processes in the limit must be

supportable as a Pareto optimal allocation in an economy with homogeneous beliefs even

though marginal rates of substitution do not converge when beliefs are heterogeneous.

This is the first case in which Theorem 1 (ii) does not apply.

Also, Theorem 1 (ii) does not apply when we consider the set of paths, denoted V y
∞

below, where the ratio of marginal utilities displays one period ahead variability infinitely

often but very rarely, in the sense that the maximal length of the time interval until it dis-

plays variability again diverges on each path. To formalize the notion we need some defini-

tions. For ε > 0 and every ω ∈ V y
ε , define ∆ε

t(ω) := infk≥1 var
[
log

(
yt+k

yt+k−1

) ∣∣∣∣Ft+k−1

]
(ω) ≥

15Since ∪ε>0 Vε = Ω/V0, V0 and ∪ε>0 Vε partition the set of paths in accordance with the limiting
behaviour of the variance of the ratio of one period ahead marginal rates of substitution.
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ε as the minimum number of periods it takes for the ratio of marginal utilities to display

one period ahead variability after date t. Clearly, ∆ε
t(ω) is finite for every ε, t and ω ∈ V y

ε .

However, it may diverge as t diverges. For T ∈ [0, +∞), define the set

V y
T,ε :=

{
ω : lim supt var

[
log

(
yt

yt−1

) ∣∣∣∣Ft−1

]
(ω) ≥ ε and supt ∆ε

t(ω) = T
}
.

The set of paths where the ratio of marginal utilities displays one period ahead vari-

ability infinitely often, ∪ε>0 V y
ε , can be partitioned into two sets, one containing those

paths where the ratio of one period ahead marginal utilities displays variability on some

bounded interval of time of length T < ∞, ∪T,ε>0 V y
T,ε, and its complement, the set V y

∞ on

which supt ∆ε
t(ω) = +∞. The interest of studying paths in the set V y

∞ is not evident.16

We turn to the implication of Theorem 1 (i) for consumption behaviour in the case

where beliefs are homogeneous and correct. The fact that, in the case of Pareto optimal

allocations, marginal rates of substitution are equal at every date-event implies that, when

both the agents have positive wealth, both agents have consumption bounded away from

zero. One might conjecture that the same is true for consumption for paths in V0 since

marginal rates of substitution are equal in the limit but this is far from obvious; we do

not have an example but we believe that it is possible that an agent has consumption

that is simultaneously arbitrarily close to zero infinitely often or even eventually zero.

In the example and in the results in Section 5, since r̂2,t(ω) = 1 always, r̂1,t(ω) must

display variability to guarantee that agent 2 vanishes and so, by Proposition 1, yt/yt−1

also displays variability. So, although both parts of Theorem 1 are compatible with

the consumption of an agent being arbitrarily close to zero eventually, our construction

confirms the phenomenon for paths in ∪ε>0V
y
ε , the case covered by Theorem 1 (ii).

We can now state our result.

THEOREM 1: Consider an IDC equilibrium. Assume that β1 = β2, that A.1, A.2, A.3,

and A.5 hold. Then,

(i) limt

(
P2,t(ω)

P1,t(ω)
· yt(ω)

yt−1(ω)

)
= 1 P -a.s. ω ∈ V0.

(ii) for every T < ∞, ε > 0, and n,

lim inft ci,t(ω) < 1/n P -a.s. ω ∈ V y
T,ε ∩ {ω : lim inft cj,t(ω) ≥ 1/n}.

The idea behind the proof of Theorem 1 (i) is relatively straightforward. For the proof

of Theorem 1 (ii) we use a version of the Second Borel-Cantelli Lemma that does not

require independence and appears in Freedman (1973). It is easier to grasp the intuition

of the proof in the case where beliefs are homogeneous. In that case we use the result

that we just mentioned to show that the event “the ratio of marginal utilities never falls

and rises by a pre-fixed amount each time for a pre-fixed number of times,” an event that

has uniformly positive conditional probability under A.1, implies that that event happens

infinitely often on the set identified in the statement of Theorem 1 (ii). The event that we

16Results on the lack of collinearity of marginal utility vectors in generic finite horizon incomplete
market economies suggest that the set V y

∞ might even be null for generic economies.
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have identified can be specified so as to ensure that the ratio of marginal utilities violates

any prespecified upper bound infinitely often and that clinches the result.

4.3 RELATING TO EARLIER EXAMPLES

We begin the section by relating Theorem 1 to an example in Coury and Sciubba (2005)

of an infinite horizon economy with incomplete markets where both the agents dominate.

They construct the example by starting with a Pareto optimal allocation supportable with

incomplete markets and then changing beliefs in a manner that leaves demand unchanged.

This is possible since markets are incomplete and leads to a suboptimal allocation with

respect to the new beliefs. However, the construction is clearly degenerate. Their example

corresponds to the set labeled V sub in Section 4.2. As we indicated, even though one can

study survival on that set with our tools, the interest of doing so is not evident.

We turn to an example provide by Levine and Zame (2001) in which both agents

dominate. They show how a random selection from a static economy can be used to

construct a sunspot equilibrium in the infinite horizon economy. This requires two goods

at each date so that there is multiplicity of equilibria in the static economy. Since the

sunspot realization is fixed once and for all at the first date, markets are effectively

complete from then onwards and Theorem 1 (i) applies.

Kubler and Schmedders (2002) provide various examples of economies that are par-

ticular cases of our general model where both agents dominate. Theorem 1 (ii) does not

apply since the main feature in all of their examples is that assets are restricted to be

Arrow securities a case that we rule out by A.5. This causes trades to be restricted in a

special way that, together with the fact that, on the set where assets do not pay, the range

of behaviour is very limited since it must be driven by the endowment process which has

finite support, makes the marginal utility process degenerate even though markets are

effectively incomplete. In fact, if we carry out an analysis analogous to that in Theorem

1 we are led to the conclusion that in their equilibria once one conditions on trading the

securities and continuing to a state in which some traded Arrow security has a nonzero

payoff, the ratio of marginal utilities is degenerate. This lack of variability breaks the

intuitive mechanism that makes Theorem 1 (ii) work.

Blume and Easley (2004) provide an example where an agent with correct beliefs

vanishes, a phenomenon that is along the lines of our leading example except that their

probabilistic structure is much simpler; also, as the authors note, their construction is not

robust to completing the market since in that case equilibrium fails to exist.

Constantinides and Duffie (1996) and Krebs (2004) consider economies like ours but

with a dividend paying asset. Since they allow endowments to grow without any upper

bound, it is not clear that an analogue of Theorem 1 can be proved in their framework.

5. EQUILIBRIA WHERE SOMEONE VANISHES

In this section we turn to our second main result. We will show that the property that

the example displays, namely, that some agent vanishes with probability one, is a robust
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implication of market incompleteness. We do so by combining the following two results:

(i) for equilibria where r̂2 is a degenerate process, agent 2 vanishes almost surely, and (ii)

there exist open sets of endowment distributions for which one can construct equilibrium

consumption processes with the property that r̂2 is a degenerate process.

Section 5.1 develops the first result which uses the Strong Law of Large Numbers

for uncorrelated random variables with uniformly bounded second moments. Section 5.2

shows that it is possible to construct aggregate feasible consumption processes that satisfy

the Euler equations, that have summable supporting prices, that induce a degenerate

process r̂2, and that display certain monotonicity properties. In Section 5.3, we define

TC0 equilbrium, a weaker notion of equilibrium in our model economy and Theorem 2

in Section 5.4 provides conditions that let us identify IDC and TC0 equilibria. Finally,

in Section 5.5 we provide our results. In Theorem 3 we show that for an appropriate

distribution of endowments, we have equilibria without trade in which agent 2 vanishes

a.s.; we also specify conditions such that our construction leads to an IDC equilibrium

where agent 2 vanishes a.s. Finally, in Theorem 4 we provide conditions such that for

every no trade equilibrium identified in Theorem 3, there is an open set of endowments

for which there is a TC0 equilibrium in which agent 2 vanishes a.s.

For the main results in this section we shall assume that beliefs are correct so P1 =

P2 = P . However, some results hold more generally; in such cases we make the more

general statement.

5.1 THE STRONG LAW ARGUMENT

If we consider consumption processes for 1 and 2 that satisfy the Euler equations at the

common price process q then, by Proposition 1, for the analysis of survival, it suffices to

study the behaviour of an alternative process. We start with a result that puts together

some properties of the alternative process, namely, that r̂i is uniformly bounded from

above and that limT→∞Ri,T (ω) is Pi−a.s. finite. Define ¯̂ri := supt≥0 ess. supω∈Ω;Pi
r̂i,t(ω).

PROPOSITION 2: Assume A.1, A.3 and A.5. Then ¯̂ri < ∞. Also, there is a random

variable R∗
i that is nonnegative and a.s. finite with EPi

[R∗
i ] ≤ 1 such that R∗

i (ω) =

limT→∞Ri,T (ω) Pi−a.s.

By Lemma 1 requiring that Agent 2 vanish on ω is equivalent to requiring limt yt(ω) =

∞. So from Proposition 1 (ii) we conclude that

log(β1/β2) + liminf
1

T

( T∑
t=1

log r̂2,t(ω)−
T∑

t=1

log r̂1,t(ω)
)

> 0 ⇒ c2,t(ω) →t→+∞ 0.

Evidently, if r̂2 is a degenerate process, and β1 = β2, then to show that 2 vanishes a.s. it

suffices to show that lim sup 1
T

(∑T
t=1 log r̂1,t(ω)

)
< 0 a.s. A possible line of argument is

1

T

T∑
t=1

log r̂1,t(ω) → 1

T

T∑
t=1

EP1 [log r̂1,t|Ft−1](ω) <
1

T

T∑
t=1

log EP1 [r̂1,t|Ft−1](ω) = 0
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where the first result, with a.s. convergence, would follow from a suitable Strong Law

of Large Numbers, the second uses Jensen’s inequality, and the third uses the defining

property EPi
[r̂i,t|Ft−1](ω) = 1. For the inequality to be strict we need to guarantee that

there is variability in the tail of the process {EP1 [log r̂1,t|Ft−1](ω)}.

ASSUMPTION A.7: {ω : limsup 1
T

∑T
t=1 EP1 [log r̂1,t|Ft−1](ω) < 0} = Ω.

A.7 amounts to the requirement that on almost all paths, markets never become

effectively complete so that complete risk sharing remains impossible. Jensen’s inequality

and EP1 [r̂1,t|Ft−1](ω) = 1 lead to the weaker property where the set that appears in A.7

is defined with a weak inequality.

A.7 holds if the time average is uniformly below zero, a strong sufficient condition.

Also, when r̂2,t(ω) = 1, A.7 holds if rt(ω) = 1 and var (Zt|Ft−1) > ε > 0 at every date t,

i.e. the asset is a real bond and the endowment process has uniformly positive conditional

variance forever. This is because r̂2,t(ω) = 1 implies that c2,t and rt move in the same

direction, and so conditional variability in the endowment guarantees that rt ·u′1(Zt−c2,t)

is nondegenerate. In fact, in our leading example EP1 [log r̂1,t|Ft−1](ω) < 0 and A.7 holds

since, by the third property noted in Remark 2 and Jensen’s inequality and the fact that

the random variable is nondegenerate,

EP1 [log r̂1,t|Ft−1](ω) → EP1

[
log

rt · u′1(Zt)

EP1 [rt · u′1(Zt)|Ft−1]

∣∣∣∣Ft−1

]
(ω) < log 1 = 0,

and r̂2 was degenerate since rt(ω) · u′2(c2,t(ω)) was an Ft−1−measurable quantity.

With A.7 we are able to obtain the result by applying the Strong Law of Large Numbers

for uncorrelated random variables with uniformly bounded second moments. Define the

set Ai := {ω ∈ Ω : liminf r̂i,t(ω) = 0}. We have

PROPOSITION 3: Assume A.1, A.3, A.5 and A.7. Then R1,t(ω) → 0 P1−a.s. ω ∈ Ω/A1.

Furthermore, given β1 and ε > 0, there exists δ ∈ (0, 1) such that

β2 ∈ (δ · β1, β1) ⇒ P1

({
ω : log(β2/β1) +

1

T

T∑
t=1

log r̂1,t(ω) < 0

})
= P1(Ω/A1)− ε.

REMARK 4: In the case where A.7 is strengthened to require{
ω : limsup

1

T

T∑
t=1

EP1 [log r̂1,t|Ft−1](ω) ≤ ε < 0
}

= Ω,

the statement in the second part of Proposition 3 can be strengthened to:

given β1, there exists δ ∈ (0, 1) such that

β2 ∈ (δ · β1, β1) ⇒ P1

({
ω : log(β1/β2) +

1

T

T∑
t=1

log r̂1,t(ω) < 0

})
= P1(Ω/A1).
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The second part of Proposition 3 will be used to show that, at the margin, the turnpike

property fails when markets are incomplete since the less patient agent can survive.

5.2 A CONSTRUCTIVE APPROACH TO EQUILIBRIUM

In this section we propose a methodology for constructing feasible consumption pro-

cesses that satisfy r̂2,t(ω) = 1 for every t ≥ 0 P −a.s. ω in addition to satisfying the Euler

equations and having summable supporting prices.

First, in Proposition 4, we gather together the basic properties of our construction,

namely that the process r̂2 is degenerate, a related implication for r̂1, that the process

constructed is uniquely defined for each initial condition, that it is monotone increasing

and continuous in the initial condition, and that it has nice boundary behaviour with

respect to the initial condition.

PROPOSITION 4: Assume A.2, A.3, and A.5, and that P1 = P2 = P . For Z an

aggregate endowment process, consider a triple (c, t0, ω) ∈ R++×{0, 1, 2, · · ·}×Ω such that

c ∈ (0, Zt0(ω)). Then there exists a unique pair of feasible consumption processes, denoted

{Ci,t(c, t0, ω)}t≥t0 , defined only for P−a.s. ω̃ ∈ Ω(st0(ω)) and with C1,t0(c, t0, ω) = c such

that the following statements are true for t ≥ t0 + 1 P−a.s. ω̃ ∈ Ω(st0(ω)):

(i) r̂2,t(ω) = 1;

(ii) yt−1(ω) = (β2/β1) · r̂1,t(ω) · yt(ω);

(iii) if (c, t0, ω) and (c′, t0, ω) are such that c > c′ then C1,t(ω̃; c, t0, ω) > C1,t(ω̃; c′, t0, ω);

(iv) the processes {Ci,t(c, t0, ω)}t≥t0 are continuous in c;

(v) given t0, ε > 0, and T > t0, there exists c > 0 such that Zt(ω̃) − C1,t(ω̃; c, t0, ω) < ε

for all t such that T ≥ t ≥ t0 + 1.

(vi) If we also assume A.1 then, given t0, ε > 0, and T > t0, there exists A ∈ FT with

P (A) > 0 and c > 0 such that C1,t(ω̃; c, t0, ω) < ε for all t such that T ≥ t ≥ t0 + 1 and

P−a.s. ω̃ ∈ A.

We now show that the personalized Arrow-Debreu prices that support the proposed

allocation are summable. The proof consists in showing that the one period undiscounted

intertemporal rate of substitution for agent 2 is uniformly bounded by M , the number

specified in A.6, and then using A.6, which is a restriction on discount factors, and a

property of our construction.

PROPOSITION 5: Assume A.2, A.3, A.5, and A.6, and that P1 = P2 = P . Then

0 ≤ EP

[
T∑

t=t0

βt
i ·

u′i(Ci,t(·; c, t0, ω))

u′i(Ci,t(·; c, t0, ω))

∣∣∣∣∣Ft0

]
(ω̃) ≤ 1/(1− βi ·M) P − a.s. ω̃ ∈ Ω(st0(ω)).

To apply Proposition 3 to conclude that in our solution agent 2 vanishes a.s. we need

to show that P (A1) = 0 where Ai := {ω ∈ Ω : liminf r̂i,t(ω) = 0}. This is done by

showing that since the induced process y does not have zero as a limit point, neither does
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c1 have zero as a limit point which implies that zero cannot be a limit point of r̂1.

PROPOSITION 6: Assume A.2, A.3, and A.5, and P1 = P2 = P . Then, in the proposed

solution P (A1) = 0.

By combining Propositions 3 and 6 we can conclude that
∑T

t=0 logr̂1,t(ω) → −∞.

5.3 TC0 EQUILIBRIUM

We introduce a second notion of equilibrium that does not impose a uniform bound on

the value of debt; instead it imposes a transversality condition at date 0 where a system

of personalized prices is used to evaluate the limiting value of debt.

Recall that P(q; Q) is the set of Arrow price processes compatible with a no arbitrage

asset price process q and the measure Q. We shall assume that beliefs are homogeneous

and correct, P = Pi. Define

P1(q; P ) :=
{
p ∈ P(q; P ) : limT→+∞

∑T
t=0 EP

[
pt|F0

]
(ω) < ∞

}
the set of Arrow price processes that are summable with respect to the measure P .

For p ∈ P(q; P ), i’s TC0 (date zero transversality condition) budget set given (q, p) is

BCTC
i (q, p) :=

{
ci ∈ ΨP

+ : there exists θi, with θi,t ∈ Ψt,P ∀ t ≥ 0, such that

∀ t ≥ 0, ci,t(ω) + qt(ω) · θi,t(ω) ≤ zi,t(ω) + rt(ω) · θi,t−1(ω) P − a.s. ω,

lim infT→+∞ EP

[
pT · qT · θi,T |F0

]
(ω) ≥ 0

}
.

For i, ci is a TC0 maximizer given (q, p) if (i) ci ∈ BCTC
i (q, p) and (ii) there is no

other c̃i ∈ BCTC
i (q, p), with supporting portfolio θ̃i, for which

limT→+∞
∑T

t=0 βt
i EP [ui(c̃i,t)|F0](ω) > limT→+∞

∑T
t=0 βt

i EP [ui(ci,t)|F0](ω).

Also, given c, define the personalized supporting price process for agent i, denoted pc
i ,

by pc
i,t(ω) := βt

i ·
(
u′i(ct(ω))

)
/
(
u′i(c0(ω))

)
.

DEFINITION 5: An TC0 equilibrium is a tuple (c∗1, c
∗
2, θ

∗
1, θ

∗
2, q

∗) that is a market clearing

allocation such that (i) p
c∗i
i ∈ P1(q∗; P ) for i ∈ I, and (ii) c∗i , with supporting portfolio

θ∗i , is a TC0 maximizer given (q∗, p
c∗i
i ) for i ∈ I.

As in an IDC equilibrium, in a TC0 equilibrium, an agent maximizes discounted

expected utility by choosing a process for consumption, i.e. {ci,t}+∞
t=0 with the restriction

that, for all t, ci,t is Ft-measurable, that the spot market budget constraints are met,

and an additional condition is met so as to ensure that the budget sets are appropriately

bounded so that a maximizer exists. In a TC0 equilibrium this additional condition takes

the form of requiring that the personalized supporting price process for each agent be a

summable Arrow price process, and that the limiting expected value of debt evaluated

according to the agent’s personalized supporting price process be zero. Lemma 17 in the

Appendix shows that the TC0 budget set does not permit Ponzi schemes.
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5.4 IDENTIFYING EQUILIBRIA

We turn to a result that lets us identify feasible allocations as IDC and TC0 equi-

libria. We make heavy use of a tool also used by Magill and Quinzii (1994), namely,

Arrow-Debreu budget sets induced by personalized Arrow price processess when the no

arbitrage asset price process is q. The result will be used only in the case where beliefs

are homogeneous and correct; hence, in this section, we assume that P1 = P2 = P .

Define i’s Arrow-Debreu budget set with prices pi ∈ P1(q; P ) as

BCAD
i (pi) :=

{
ci ∈ ΨP

+ : limT→+∞
∑T

t=0 EP

[
pi,t · ci,t|F0

]
(ω)

≤ limT→+∞
∑T

t=0 EP

[
pi,t · zi,t|F0

]
(ω)

}
.

Summability of the personalized prices, pi ∈ P1(q; P ), together with nonnegativity of

i’s endowment process, A.2, ensures that the value on the right is well defined and finite.

THEOREM 2: Assume A.3 and that beliefs are correct, P1 = P2 = P . Consider con-

sumption processes ĉi, i ∈ I, that are feasible and an asset price process q̂ such that, for

each i ∈ I, there exists p̂i ∈ P1(q̂; P ) such that ĉi is a maximizer on the set BCAD
i (p̂i),

and let θ̂i be a portfolio process that supports ĉi at the price process q̂. Then

(i) (ĉ1, ĉ2, θ̂1, θ̂2, q̂) constitute a TC0 equilibrium;

(ii) if for i = 1, 2 limT→+∞ EP

[
p̂i,T · q̂T · θ̂i,T |Ft

]
(ω) = 0 for all t ≥ 1 and P−a.s. ω, then

(ĉ1, ĉ2, θ̂1, θ̂2, q̂) constitute an IDC equilibrium.

The theorem is proved by showing that since ĉi is a maximizer on the set BCAD
i (p̂i) and

it satisfies the sequence constraints in the set BCi(q̂) with supporting asset portfolio θ̂i, the

transversality condition limT→+∞ EP

[
p̂i,T · q̂T · θ̂i,T |F0

]
(ω) = 0 holds. So ĉi ∈ BCTC

i (q̂, p̂i).

Also, for pi ∈ P(q; P ), BCTC
i (q, pi) is contained BCAD

i (pi). So ĉi is a maximizer on the

set BCTC
i (q̂, p̂i) Theorem 2 (i) follows as a direct consequence. As for Theorem 2 (ii), one

shows easily that the transversality condition holds at every t ≥ 0, and the result follows

from Theorem 5.2 in Magill and Quinzii (1994); their result applies since, as they note,

preferences with discounted additively separable expected utility representations satisfy

the assumption of uniform impatience.17

Lemma 20 in the Appendix provides sufficient conditions for verifying that a ci is a

maximizer on BCAD
i (p̂i).

5.5 THE RESULT

We turn to our second main result which shows that the phenomenon exhibited in the

leading example, wherein an agent with correct beliefs vanished almost surely, is a robust

possibility.

Theorem 3 invokes Theorem 2 (ii) to conclude that there is an IDC equilibrium in

which agent 2 vanishes a.s. It shows that quite generally an economy has a continuum of

17Conversely, as Magill and Quinzii (1994) note, if we consider an IDC equilibrium and summable
supporting Arrow price processes then, necessarily, the transversality condition holds at every node.
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endowment distributions at each of which there is a no trade equilibrium in which agent

2 vanishes a.s. It also provides conditions, that include the special case where agent 2 has

a logarithmic Bernoulli function and an endowment at only date 0, such that there is an

IDC equilibrium in which agent 2 vanishes a.s.

The only element that is new here is a proof of the fact that under the conditions

specified in Theorem 3 (i), a transversality condition can be shown to hold at every date

and event; that result is proved in Lemma 21.

THEOREM 3: Assume A.1-3, A.5-7, β1 ≥ β2, and P1 = P2 = P . Also assume that either

one of the following two conditions holds:

(i) For some c > 0, ∀ t ≥ 1, and P − a.s. ω̃

u′2(C2,t(ω̃; c, 0, ω)) ·
(
z2,t(ω̃)− C2,t(ω̃; c, 0, ω)

)
= c̄2,t and

u′2(C2,0(ω̃; c, 0, ω)) ·
(
z2,0(ω̃)− C2,0(ω̃; c, 0, ω))

)
= −LimT→+∞

∑T
τ=1 βτ

2 · c̄2,τ ,

(ii) zc
1 = {C1,t(c, 0, ω)}t≥0 for some c ∈ (0, Z0(ω)) so that the proposed solution is sup-

ported as a no trade equilibrium.

Then the economy has an IDC equilibrium in which agent 2 vanishes almost surely.

Case (ii) guarantees that our construction is not vacuous. The condition in case (i)

holds if u2(x) = log x and z2,t(ω) = 0 for t ≥ 1. So the example in Section 3 generalizes

to arbitrary nonnegative asset payoffs and arbitrary characteristics for agent 1.

Theorem 4 shows that for every endowment distribution in some neighbourhood of

an endowment distribution that is supported as a no trade IDC equilibrium, there exists

a TC0 equilibrium. The proof uses A.4, which imposes a bound on the coefficient of

relative risk aversion, to show that for the allocation identified in Theorem 3, the value

of excess demand evaluated using the personalized Arrow-Debreu price process of each

agent is monotone in a single parameter; furthermore, the value is continuous and has the

right boundary behaviour.18 The rest of the proof consists in manipulating the allocation

by starting at date 1 and using the fact that markets are incomplete to conclude that

one can choose consumption at date 0 in a manner that is consistent with feasibility and

the Euler equations and thereby reduce the problem to that of a fixed point problem in

two dimensions which has a solution for endowments in a neighbourhood of the no trade

endowments by continuity since no trade is a solution by Theorem 3.

Define the space of endowment distributions compatible with the aggregate endowment

process Z as Z1(Z) := {(z1,0, z1,1, · · ·) ∈ Ψ+ : (Z0 − z1,0, Z1 − z1,1, · · ·) ∈ Ψ+}.

THEOREM 4: Assume A.1-7, β1 ≥ β2, and P1 = P2 = P . Let (z∗1 , z
∗
2) = ({C1,t(c

∗, 0, ω)}t≥0,

{C2,t(c
∗, 0, ω)}t≥0) for some c∗ ∈ (0, Z0(ω)). There exists N (z∗1) an open subset of Z1(Z)

such that for every (z1, z2), where z1 ∈ N (z∗1) and z2 := Z − z1, there exists a TC0

equilibrium in which agent 2 vanishes with probability one.

18Under A.4 the proof of Theorem 4 goes through even when an agent has a zero endowment at every
date and event; this shows quite clearly that in general A.4 can be weakened as we noted in Remark 1.
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REMARK 5: It follows from Remark 4 that a continuity argument can be used to provide

analogues of Theorems 3 and 4 in the case where β1 < β2 but sufficiently close; this

generalizes a property that the example in Section 3 displayed.

6. CONCLUDING REMARKS

We considered an infinite horizon economy with incomplete markets with two agents

and one good and provided two general results on the asymptotic properties of consump-

tion. Our first result is a precise statement indicating that if markets are effectively

incomplete then on any path some agent’s consumption is arbitrarily close to zero in-

finitely often. From this result we draw the conclusion that if market incompleteness is

effective and forever then either one of the two agents will eventually cease to consume,

or the equilibrium is complicated in the sense that the consumption of some agent will

be arbitrarily close to zero infinitely often. Our second result shows that, for a robust

class of economies with incomplete markets, there are equilibria in which an agent’s con-

sumption is zero eventually with probability one even though she has correct beliefs and

is marginally more patient. It follows that the strong results regarding the validity of the

MSH and the Ramsey conjecture that have appeared in the literature depend critically on

having complete markets or a Pareto optimal allocation. In addition, our result helps to

disentangle the role played by the heterogeneity of beliefs from that played by the market

structure in determining the survival prospects of an agent. It suggests that over saving

is a phenomena associated with incompleteness rather than with differences of opinions.

When utility is unbounded below, Theorem 1 (ii) implies that the continuation utility

is arbitrarily low infinitely often. This can be interpreted as showing that the implicit

punishment required to ensure that an agent continues to participate in the market is the

confiscation of her entire endowment, i.e. the maximal possible punishment.

Although we develop our results in a one good, one asset, and two agent model, we

believe the main lesson from Theorem 1 holds in a much wider class of model economies.

In particular, since Theorem 1 is based on pairwise comparisons of the agents’ marginal

rates of substitution, we conjecture that it holds with any finite number of agents, goods

and numeraire assets provided some asset has strictly positive return in every state of

nature. More precisely, if markets are effectively incomplete forever, the consumption

of at most one agent can be bounded away from zero. On the other hand, the proofs

of Theorems 3 and 4 rely heavily on the assumption that there are only two agents.

Therefore, whether in more general set-ups there exist endowment distributions such that

one agent vanishes remains an open question.

Models where the first order conditions hold with inequalities, i.e. situations where

nonnegativity or bounding constraints bind, are not covered by the model in this paper

and, therefore, our results do not apply to them. Given the prevalance of such models

in the modern literature on computational general equilibrium and macroeconomics, it

would be very interesting to study the asymptotic properties of consumption in such

models; perhaps our techniques can be adapted to such situations.
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APPENDIX

PROOF OF PROPOSITION 1

That EPi
[r̂i,t|Ft−1](ω) = 1 follows from the definition of the process r̂i.

(i) Since, by hypothesis, ci satisfies the Euler equations for i at q, we have

qt−1(ω) = βi ·
EPi

[rt · u′i(ci,t)|Ft−1](ω)

u′i(ci,t−1(ω))
⇔ r̂i,t(ω) =

βi · rt(ω) · u′i(ci,t(ω))

qt−1(ω) · u′i(ci,t−1(ω))

⇒ Ri,1+T (ω) = ΠT
t=0r̂i,1+t(ω) = βT+1

i · u′i(ci,1+T (ω))

u′i(ci,0(ω))
· ΠT

t=0

(
r1+t(ω)

qt(ω)

)
.

(ii) Under A.2 and A.3 u′i(ci,t(ω)) is uniformly positive. So, invoking A.5, we have

r̂i,t(ω) > 0. Since

r̂1,t(ω)

r̂2,t(ω)
=

β1·rt(ω)·u′1(c1,t(ω))

qt−1(ω)·u′1(c1,t−1(ω))

β2·rt(ω)·u′2(c2,t(ω))

qt−1(ω)·u′2(c2,t−1(ω))

=
β1

β2

·
u′1(c1,t(ω))

u′2(c2,t(ω))

u′1(c1,t−1(ω))

u′2(c2,t−1(ω))

=
β1

β2

· yt−1(ω)

yt(ω)
,

so that the ratio yt−1/yt, adjusted by the discount factors, equals the ratio between the

intertemporal marginal rate of substitution for agent 1 and agent 2, and

⇒ yT (ω) =

(
β1

β2

)T

ΠT
t=1

(
r̂1,t(ω)

r̂2,t(ω)

) · y0(ω) =
(

β1

β2

)T

· R2,T (ω)

R1,T (ω)
· y0(ω).

(iii) Finally, by rewriting the first property in (ii) we have

r̂2,t(ω)·yt−1(ω) =
β2

β1

·r̂1,t(ω)·yt(ω) ⇔ EP2 [r̂2,t·yt−1|Ft−1](ω) =
β2

β1

·EP2 [r̂1,t·yt|Ft−1](ω)

and the first result in (iii) follows by using the fact that EPi
[r̂i,t|Ft−1](ω) = 1. The second

result in (iii) is proved in a similar manner.

PROOF OF THEOREM 1

(i) By definition, on the set V0

limt

[
log

(
P2,t(ω)

P1,t(ω)
· yt(ω)

yt−1(ω)

)
− E

[
log
(

P2,t

P1,t

· yt

yt−1

)∣∣∣∣Ft−1

]
(ω)

]
= 0.

Equivalently, using Proposition 1 (ii),

limt

[
log

(
P2,t(ω)

P1,t(ω)
· r̂2,t(ω)

r̂1,t(ω)

)
− E

[
log

(
P2,t

P1,t

· r̂2,t

r̂1,t

) ∣∣∣∣Ft−1

]
(ω)

]
= 0.

So there exists a process {λt}t≥0 such that λt is Ft−measurable and for every ε > 0 there

exists t(ε, ω) such that t > t(ε, ω) implies
∣∣∣ P2,t(ω)

P1,t(ω)
· r̂2,t(ω)

r̂1,t(ω)
− λt−1(ω)

∣∣∣ < ε. It follows that

t > t(ε, ω) ⇒ (λt−1(ω)−ε)·P1,t(ω)·r̂1,t(ω) < P2,t(ω)·r̂2,t(ω) < (λt−1(ω)+ε)·P1,t(ω)·r̂1,t(ω).
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Since λt−1 is Ft−1−measurable, we have t > t(ε, ω) implies

(λt−1(ω)− ε) · EP1 [r̂1,t|Ft−1](ω) < EP2 [r̂2,t|Ft−1](ω) < (λt−1(ω) + ε) · EP1 [r̂1,t|Ft−1](ω).

Since EPi
[r̂i,t|Ft−1](ω) = 1 and ε > 0 is arbitrary, we have λt−1 = 1 P−a.s. ω ∈ V0. It

follows from an application of Proposition 1 (ii) that limt

(
P2,t(ω)

P1,t(ω)
· yt(ω)

yt−1(ω)

)
= 1.

(ii) We start with three results that we will need. The first is Levy’s conditional form of

the Second Borel-Cantelli Lemma which follows from a more general result due to Freed-

man (1973 Proposition 39). The second result puts bounds on the conditional probability

with which there is variability in yt/yt−1. The third, shows that on any path on which

some event occurs infinitely often, the event consisting of the first event followed by any

finite string of realizations of yt such that yt/yt−1 ≥ 1 also occurs infinitely often.

For E ∈ F an event, let 1E denote the indicator function. Recall that
{
ω : Ωt i.o.

}
={

ω :
∑∞

t=1 1Ωt(ω) = +∞
}
.

LEMMA 2: Let {Ωt}∞t=0 be a sequence of events adapted to the filtration {Ft}∞t=0. Then

∞∑
t=1

1Ωt(ω) = +∞ P − a.s. ω ∈
{
ω :

∞∑
t=1

E [1Ωt |Ft−1 ] (ω) = +∞
}
.

LEMMA 3: Assume A.1. Then ∀ t ≥ 1 P
[

yt

yt−1
≥ 1

∣∣∣∣Ft−1

]
(ω) ≥ p > 0 P − a.s. ω ∈ Ω.

Furthermore, var
[
log

(
yt

yt−1

) ∣∣∣∣Ft−1

]
(ω) ≥ ε > 0 implies that there exists γ > 0 such that

P
[
1− γ ≥ yt

yt−1

∣∣∣∣Ft−1

]
(ω) ≥ p > 0 and P

[
yt

yt−1

≥ 1 + γ
∣∣∣∣Ft−1

]
(ω) ≥ p > 0.

PROOF: By Proposition 1 (ii),
(
yt(ω)/yt−1(ω)

)
=
(
r̂2,t(ω)/r̂1,t(ω)

)
.

Since for all t ≥ 1 and P−a.s. ω ∈ Ω, EPi
[r̂i,t|Ft−1](ω) = 1, i = 1, 2, under A.1 the

first result follows.

Also, the second result follows because if for some pair (t, ω)

∀ γ > 0 P
[
1− γ < r̂2,t

r̂1,t
< 1 + γ

∣∣∣Ft−1

]
(ω) = 1 ⇒ var

[
r̂2,t

r̂1,t

∣∣∣Ft−1

]
(ω) = 0.

Define the set ΩN
1,t =

{
ω : yt′ (ω)

yt′−1(ω)
≥ 1, ∀ t′ = t + 1−N, · · · , t

}
.

LEMMA 4: Let {Ωt}∞t=0 be a sequence of events adapted to the filtration {Ft}∞t=0. Then

∀N ≥ 1
∞∑

t=1

1Ωt−N∩ΩN
1,t

(ω) = +∞ P − a.s. ω ∈ {ω : Ωt i.o.} .

PROOF: As an implication of Lemma 3 we have

ω ∈ Ωt−N ∩ ΩN−1
1,t−1 ⇒ E

[
1Ωt−N∩ΩN

1,t

∣∣∣Ft−1

]
(ω) = P

[
yt

yt−1

≥ 1
∣∣∣∣Ft−1

]
(ω) ≥ p > 0,

where we use the convention that Ω0
1,t = Ω to handle the case where N = 1, and

E
[
1Ωt−N∩ΩN

1,t

∣∣∣Ft−1

]
(ω) is non-negative otherwise.
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For ω̃ ∈ {ω : Ωt i.o.} arbitrarily chosen, there exists a sequence {tk}∞k=1 such that

ω̃ ∈ Ωtk for every k = 1, 2, · · ·. Since Ω0
1,t = Ω, ω̃ ∈ Ω(tk+1)−1 ∩ Ω1−1

1,(tk+1)−1 and therefore,

by the implication of Lemma 3,

∞∑
t=1

E
[
1Ωt−1∩Ω1

1,t

∣∣∣Ft−1

]
(ω̃) ≥

∞∑
k=1

P
[
ytk+1

ytk

≥ 1
∣∣∣∣Ftk

]
(ω̃) = +∞

and it follows by Lemma 2 that
∑∞

t=1 1Ωt−1∩Ω1
1,t

(ω) = +∞ P − a.s. ω ∈ {ω : Ωt i.o.}.
Consider ω̃ ∈ {ω : Ωt i.o.} arbitrarily chosen and suppose that the result holds for

N − 1. So there exists {tk}∞k=1 such that ω̃ ∈ Ωtk−(N−1) ∩ ΩN−1
1,tk

= Ω(tk+1)−N ∩ ΩN−1
1,(tk+1)−1

so that, by the implication of Lemma 3,

∞∑
t=1

E
[
1Ωt−N∩ΩN

1,t

∣∣∣Ft−1

]
(ω̃) ≥

∞∑
k=1

P
[
ytk+1

ytk

≥ 1
∣∣∣∣Ftk

]
(ω̃) = +∞

and it follows by Lemma 2 that
∑∞

t=1 1Ωt−N∩ΩN
1,t

(ω) = +∞ P − a.s. ω ∈ {ω : Ωt i.o.}.
That completes the induction argument and the proof.

Set y
n

:=
(
u′2(z−1/n)/u′1(1/n)

)
and yn :=

(
u′2(1/n)/u′1(z−1/n)

)
. For γ > 0 identified

in Lemma 3, let Tn(γ) satisfy y
n
· (1 + γ)Tn(γ) > yn. For the rest of the proof, the values

of ε, T , n, and the value of γ induced by ε, will be considered to be fixed.

Define {T s
t (ω)}Tn(γ)

s=1 by the rule T 1
t (ω) := t+∆ε

t(ω), T s+1
t (ω) := T s

t (ω)+∆ε
T s

t (ω)(ω). This

procedure produces a function T s
t that is strictly increasing in s for every ω. Therefore

for any (ω, t, τ) such that yt(ω)
yt−1(ω)

≥ 1+ γ and there exists t′ ≥ 0 such that T τ
t′ (ω) ≤ t, one

can define bτ
t (ω) := supt′≥0 {t′ : T τ

t′ (ω) ≤ t}; set bτ
t (ω) = −1 otherwise.

For 1 ≤ τ ≤ t and 1 ≤ N ≤ t, define the set

Ωτ
2,t =

ω :
bτ
t (ω) 6= −1, yt(ω)

yt−1(ω)
≥ 1 + γ,

ybτ
t
(ω)

ybτ
t
(ω)−1

≥ 1 + γ, and

yt′ (ω)

yt′−1(ω)
≥ 1 ∀ t′ = bτ

t (ω) + 1, · · · , t− 1

 .

Notice that if ω ∈ Ωτ
2,t then, necessarily, #

{
yt′ (ω)

yt′−1(ω)
≥ 1 + γ, t′ = bτ

t (ω) , · · · , t
}

= τ ;

this follows from the definition of the function bτ
t . It follows that{

Ω
Tn(γ)
2,t i.o.

}
∩ {ω : lim inft cj,t(ω) ≥ 1/n} ⊂

{{
ω : yt (ω) ≥ y

n
· (1 + γ)Tn(γ) > yn

}
i.o.
}
.

We will show that
{
Ω

Tn(γ)
2,t i.o.

}
P -a.s. ω ∈ V y

T,ε. It follows that the event
{
{ω : yt(ω) > yn} i.o.

}
occurs P -a.s. ω ∈ V y

T,ε ∩ {ω : lim inft cj,t(ω) ≥ 1/n} letting us conclude that, P a.s., on

the set V y
T,ε, if agent j consumes 1/n infinitely often, then agent i cannot consume 1/n

inifinitely often.

Consider 1Ω1
2,t

. Since

E
[
1Ω1

2,t

∣∣∣Ft−1

]
(ω) = P

[
yt

yt−1

≥ 1 + γ
∣∣∣∣Ft−1

]
(ω) ,
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by Lemma 3 we know that

ω ∈
{
ω : var

[
log

(
yt

yt−1

)∣∣∣∣Ft−1

]
≥ ε

}
⇒ E

[
1Ω1

2,t

∣∣∣Ft−1

]
(ω) ≥ p > 0;

also, E
[
1Ω1

2,t

∣∣∣Ft−1

]
(ω) is non-negative otherwise. It follows that on V y

T,ε,
∑∞

t=1 E
[
1Ω1

2,t

∣∣∣Ft−1

]
(ω) =

+∞ and, therefore, by Lemma 2,
∑∞

t=1 1Ω1
2,t

(ω) = +∞ P -a.s. ω ∈ V y
T,ε.

Similarly, again by Lemma 3, if ω ∈ Ωτ
2,t′ ∩ Ωt−1−t′

1,t−1 ∩
{
ω : var

[
log

(
yt

yt−1

)∣∣∣Ft−1

]
≥ ε

}
,

where we use the convention that Ω0
1,t = Ω to handle the case in which t = t′ + 1, then

E
[
1Ωτ+1

2,t

∣∣∣Ft−1

]
(ω) = P

[
yt

yt−1

≥ 1 + γ

∣∣∣∣Ft−1

]
(ω) ≥ p > 0.

Now suppose it is true that
∑∞

t=1 1Ωτ
2,t

(ω) = +∞ P -a.s. ω ∈ V y
T,ε for some τ . By

Lemma 4
∑∞

t=1 1Ωτ
t−T∩ΩT

1,t
(ω) = +∞ P -a.s. ω ∈ V y

T,ε and ω̃ ∈ V y
T,ε implies that there

exists a sequence {t′k}
∞
k=1 such that ω̃ ∈ Ωτ

2,t′
k
∩Ω

(t′k+T )−t′k
1,t′

k
+T . Furthermore, for every k there

necessarily exists tk ∈ {t′k+1, t′k+2, · · · , t′k+T} such that ω̃ ∈
{
ω : var

[
log

(
ytk

ytk−1

)∣∣∣Ftk−1

]
≥

ε
}
; this follows from the fact that T is a uniform upper bound on the number of periods

with no variability. It follows that ω̃ ∈ Ωτ
2,t′

k
∩Ω

tk−1−t′k
1,tk−1 ∩

{
ω : var

[
log

(
ytk

ytk−1

)∣∣∣Ftk−1

]
≥ ε

}
,

where we use the fact that ω̃ ∈ Ω
(t′k+T )−t′k
1,t′

k
+T implies that ω̃ ∈ Ω

tk−1−t′k
1,tk−1 also for t′k + 1 ≤ tk ≤

t′k + T . Hence

∞∑
t=1

E
[
1Ωτ+1

2,t

∣∣∣Ft−1

]
(ω̃) ≥

∞∑
k=1

E
[
1Ωτ+1

2,tk

∣∣∣Ftk−1

]
(ω̃) =

∞∑
k=1

P
[

ytk

ytk−1

≥ 1 + γ
∣∣∣∣Ftk−1

]
(ω̃) = +∞

and it follows from Lemma 2 that
∑∞

t=1 1Ωτ+1
2,t

(ω) = +∞ P -a.s. ω ∈ V y
T,ε. This completes

the induction on τ . Hence, for every τ ≥ 0,
∑∞

t=1 1Ωτ+1
2,t

(ω) = +∞ P -a.s. ω ∈ V y
T,ε; in

particular,
∑∞

t=1 1
Ω

Tn(γ)
2,t

(ω) = +∞ P -a.s. ω ∈ V y
T,ε. We have shown that

{
Ω

Tn(γ)
2,t i.o.

}
P -a.s. ω ∈ V y

T,ε as required.

PROOF OF PROPOSITION 2

The proof follows from Lemma 5 and 6. Lemma 5 shows that if asset returns are non-

negative and the one period ahead conditional probability that state s occurs is uniformly

positive, A.1, then r̂i,t(ω) is nonnegative and uniformly bounded above. Lemma 6 uses

the martingale convergence theorem to show that limT→∞Ri;0,T (ω) is Pi−a.s. finite.

LEMMA 5: Assume A.3 and r ≥ 0. Then 0 ≤ r̂i,t(ω) ≤ 1/Pi,t(ω). Hence, under A.1, A.3,

and A.5, ¯̂ri < ∞.

PROOF: Since ui is strictly increasing and r ≥ 0,

Pi,t(ω) ≤ Pi,t(ω) +
EPi

[rt·u′i(ci,t)|Ft−1,Ω/Ω(st(ω))](ω)

rt(ω)·u′i(ci,t(ω))
=

EPi
[rt·u′i(ci,t)|Ft−1](ω)

rt(ω)·u′i(ci,t(ω))
= 1

r̂i,t(ω)
.

LEMMA 6: Assume A.3 and r ≥ 0. Then there is a random variable R∗
i that is nonneg-

ative and a.s. finite with EPi
[R∗

i ] ≤ 1 such that R∗
i (ω) = limT→∞Ri,T (ω) Pi−a.s.
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PROOF: Under the stated condition, {Ri,t} is a nonnegative martingale since EPi
[r̂i,t|Ft−1] =

1. Since supt≥1 EPi
[Ri,t] = 1 < +∞, the Martingale Convergence Theorem applies.

PROOF OF PROPOSITION 3

Let us define a sequence of truncated processes parametrized by ε > 0 by setting

gε
1,t(ω) := log (max {r̂1,t(ω), ε}) and B1,ε := {ω : limsup 1

T

∑T
t=1 EP1 [g

ε
1,t|Ft−1](ω) < 0}.

Ω can be partitioned into three sets: ∪n≥1B1,1/n, A1, and Ω/(A1∪(∪n≥1B1,1/n)), where

A1 := {ω ∈ Ω : liminf r̂1,t(ω) = 0}. We first show that under A.7 the third set is null.

LEMMA 7: Assume A.7. Then Ω/A1 ⊂ ∪n≥1B1,1/n, where A1 := {ω : liminf r̂1,t(ω) = 0},
so that for all ω ∈ Ω/A1 there exists ε(ω) such that ω ∈ B1,ε(ω).

PROOF: Consider ω̃ ∈ Ω/A1. So liminf r̂1,t(ω̃) = 2 · ε(ω̃) > 0 and there exists t(ω̃) such

that t ≥ t(ω̃) ⇒ r̂1,t(ω̃) ≥ ε(ω̃). Furthermore, by A.7,

limsup
(

1

T

T∑
t=1

EP1 [log r̂1,t|Ft−1](ω̃)
)

= s(ω̃) < 0.

Since

0 = limsup
(

1

T

T∑
t=1

EP1 [log r̂1,t|Ft−1](ω̃)− 1

T

T∑
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃)
)

≤ limsup
(

1

T

T∑
t=1

EP1 [log r̂1,t|Ft−1](ω̃)
)
− limsup

(
1

T

T∑
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃)
)

we must have

limsup
(

1

T

T∑
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃)
)
≤ limsup

(
1

T

T∑
t=1

EP1 [log r̂1,t|Ft−1](ω̃)
)

= s(ω̃) < 0

⇒ limsup
1

T

T∑
t=t(ω̃)+1

EP1 [log r̂1,t|Ft−1](ω̃) < 0

⇒ limsup
1

T

T∑
t=t(ω̃)+1

EP1 [log (max {r̂1,t, ε(ω̃)})|Ft−1](ω̃) < 0.

Since limsup 1
T

∑t(ω̃)
t=1 EP1 [log (max {r̂1,t, ε(ω̃)})|Ft−1](ω̃) = 0,

limsup
1

T

T∑
t=1

EP1 [g
ε(ω̃)
1,t |Ft−1](ω̃) < 0

so that ω̃ ∈ B1,ε(ω̃) as required.

We continue with the proof of Proposition 3.

Since ε < ε′ ⇒ gε
1,t(ω) ≤ gε′

1,t(ω) ∀ t, ∀ω, it follows that ε < ε′ ⇒ B1,ε′ ⊂
B1,ε. So B1,1/n ⊂ B1,1/(n+1) ⊂ · · ·, and we set B1,0 := ∪n≥1B1,1/n. It follows that
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P1(B1,1/n/A1) increases monotonically to P1(B1,0/A1). So for all p > 0, there exists

ε(p) such that P1(B1,ε(p)/A1) ≥ P1(B1,0/A1)− p.

For fixed p and corresponding ε(p), consider the truncated process {gε(p)
1,t }+∞

t=0 defined

earlier. It is uniformly bounded below and, under A.1, A.3, and A.5, by Lemma 5, it

is also uniformly bounded above. Hence the process {EP1 [g
ε(p)
1,t |Ft−1]}+∞

t=0 is uniformly

bounded below and above.

Define

ḡ
ε(p)
1,t (ω) := g

ε(p)
1,t (ω)− EP1 [g

ε(p)
1,t |Ft−1](ω).

It follows that the process {ḡε(p)
1,t }+∞

t=0 is uniformly bounded above and below. Furthermore,

EP1 [ ḡ
ε(p)
1,t ḡ

ε(p)
1,t+k|Ft−1] = 0 for all k ≥ 1, for all t ≥ 0. Therefore, by the Strong Law of Large

Numbers for uncorrelated random variables with uniformly bounded second moments

(Chung 1974, page 103),

limT→+∞
1

T

T∑
t=1

ḡ
ε(p)
1,t (ω) = 0 P1 − a.s.

⇒ limsup
1

T

T∑
t=1

g
ε(p)
1,t (ω) ≤ limsup

1

T

T∑
t=1

EP1 [g
ε(p)
1,t |Ft−1](ω).

Since ω ∈ B1,ε(p)/A1 implies limsup 1
T

∑T
t=1 EP1 [g

ε(p)
1,t |Ft−1](ω) < 0, it follows that ∀ω ∈

B1,ε(p)/A1,
∑T

t=1 g
ε(p)
1,t (ω) → −∞ so that ∀ω ∈ B1,ε(p)/A1,

∑T
t=1 log r̂1,t(ω) =→ −∞ since∑T

t=1 log r̂1,t(ω) =
∑T

t=1 g0
1,t(ω) ≤ ∑T

t=1 g
ε(p)
1,t (ω) → −∞. The proof of the first part is

completed by noting that as p goes to zero, we approximate the set Bi,0/Ai and, by

Lemma 7, that set coincides with Ω/A1.

For the second part we set C1,δ := {ω ∈ Ω : limsup 1
T

∑T
t=1 log r̂1,t(ω) < log δ}∩(Ω/A1).

Clearly, δ′ < δ′′ implies that C1,δ′ ⊂ C1,δ′′ . It follows that ∪n≥1C1,1−1/n = Ω/A1 and hence

that P1(C1,1−1/n) increases monotonically to P1(Ω/A1) so that for all ε > 0, there exists

δ = 1− 1/n such that P1(C1,δ) ≥ P1(Ω/A1)− ε.

PROOF OF PROPOSITION 4

We give an outline of the proof. In Lemma 8 we show that one can work with the

process c1 and the process y interchangeably. Lemma 9 is the crucial step in which we

study the parameterized fixed point of a special one dimensional map. Lemma 10 takes

the fixed point found in Lemma 9 and deduces properties induced by it on consumption,

marginal utility, Euler equations, etc. A recursive application of Lemma 10 going forward

leads us to most of the properties in Proposition 4 including monotonicity and continuity

in the initial value. Lemma 11 provides the boundary behaviour properties.

Throughout we write E[X] instead of EP [X].

For Z > 0, let the function YZ : (0, Z) → (0,∞) be defined by YZ(c1) =
u′2(Z−c1)

u′1(c1)
.

LEMMA 8: Assume A.3. YZ is increasing in c1, it is onto, and continuous with a contin-

uous inverse.
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PROOF: The result is a consequence of A.3; in particular, we use the fact that ui are

strictly concave, continuously differentiable, and satisfy the Inada condition at c = 0.

Given Z and feasible consumption processes, by Lemma 8, for any (t, ω) we have

yt(ω) = YZt(ω)(c1,t(ω)). The inverse of YZ is denoted (YZ)−1(y); by Lemma 8, it is well

defined and continuous.

Proposition 4 is proved by using a recursive construction in the variable yt(ω) which,

by Lemma 8, is equivalent to using the variable c1,t(ω). However, to establish the basic

properties of the construction, it is easier to work with the variable λ := r · u′2(c2)/y.

Lemma 9 studies the existence and monotonicity properties of the fixed point in λ of a

special function.

LEMMA 9: Assume A.2, A.3, and A.5. For t = 1, 2, · · · and ω ∈ Ω, and y > 0, define

λ(t, ω, y) :=
rt(ω)·u′2(Zt(ω))

y
and consider the function ft,ω,y : [λ(t, ω, y), +∞) → [(β1/β2) · r ·

u′1(z̄), +∞) in the variable λ defined by

ft,ω,y(λ) := (β1/β2) · E
[
rt · u′1

(
Zt − (u′2)

−1

(
y · λ
rt

))∣∣∣∣∣Ft−1

]
(ω).

Then (i) ft,ω,y has a unique fixed point denoted λ∗(t, ω, y),

(ii) λ∗(t, ω, y) > maxω′∈Ω(st−1(ω))
rt(ω′)·u′2(Zt(ω′))

y
and λ∗(t, ω, y) > (β1/β2) · r · u′1(z̄),

(iii) y · λ∗(t, ω, y) > y′ · λ∗(t, ω, y′) if and only if λ∗(t, ω, y) < λ∗(t, ω, y′), in particular

y > y′ if and only if λ∗(t, ω, y) < λ∗(t, ω, y′),

(iv) λ∗(t, ω, y) is continuous in y,

(v) λ∗(t, ω, y) →y→0 ∞, and

(vi) λ∗(t, ω, y) · y →y→∞ ∞.

PROOF: Notice that even though the domain of the function ft,ω,y is Ft−measurable, the

function is defined in a manner that makes it Ft−1−measurable. This is important.

(i) Under A.5 r > 0 so λ(t, ω, y) ≥ 0. It can be verified that ft,ω,y(λ(t, ω, y)) =

(β1/β2) · E
[
rt · u′1(0)

∣∣∣Ft−1

]
(ω) = ∞, where we use the Inada condition; furthermore,

ft,ω,y is continuous and strictly decreasing. Under A.2 and A.3 (β1/β2) · r̄ · u′1(z̄) < ∞;

therefore, Limλ→∞ ft,ω,y(λ) < ∞. It follows that ft,ω,y has a unique fixed point.

(ii) As noted at the beginning of the proof, ft,ω,y is Ft−1−measurable and, therefore, the

fixed point λ∗(t, ω, y) is also Ft−1−measurable. Since ft,ω,y(λ(t, ω, y)) = ∞, we must have

λ∗(t, ω, y) > maxω′∈Ω(st−1(ω))
rt(ω′)·u′2(Zt(ω′))

y
, the highest possible value for λ(t, ω, y). The

second part follows from the fact that ft,ω,y is strictly decreasing.

(iii) Suppose that y · λ∗(t, ω, y) > y′ · λ∗(t, ω, y′). Since ft,ω,y is strictly decreasing, and

from the particular way in which y and λ enter the expression,

ft,y,ω(λ∗(t, ω, y)) < ft,y′,ω(λ∗(t, ω, y′))

so that by the fixed point property we have λ∗(t, ω, y) < λ∗(t, ω, y′). We have shown that

y · λ∗(t, ω, y) > y′ · λ∗(t, ω, y′) ⇔ λ∗(t, ω, y) < λ∗(t, ω, y′).
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(iv) Notice that by (i), λ∗(t, ω, y) exists for all y > 0, and by the monotonicity result

in (iii), the only sorts of discontinuities that are possible are of the first kind. So if

λ∗(t, ω, ·) is discontinuous at ỹ then, introducing notation for right-hand and left-hand

limits, λ∗(t, ω, ỹ−) > λ∗(t, ω, ỹ+). So, by (iii), ỹ− · λ∗(t, ω, ỹ−) < ỹ+ · λ∗(t, ω, ỹ+) and

therefore λ∗(t, ω, ỹ−) < λ∗(t, ω, ỹ+) since ỹ− = ỹ+. The contradiction that results shows

that such discontinuities are not present.

(v) Since λ(t, ω, y) →y→0 ∞, we can use (ii) to conclude that λ∗(t, ω, y) →y→0 ∞.

(vi) Notice that λ∗(t, ω, y) →y→∞ 0 requires that ft,ω,y(λ
∗(t, ω, y)) → 0 which cannot

hold under A.2, since r > 0, A.3, since u1 is strictly increasing and strictly concave, and

A.5, since z̄ < ∞. It follows that λ∗(t, ω, y) →y→∞ ε > 0 so that λ∗(t, ω, y) · y →y→∞ ∞.

The next result induces values for consumption at the fixed point identified in Lemma 9

and specifies the implications on intertemporal marginal utilities induced by those values.

LEMMA 10: Assume A.2, A.3, and A.5. Let yt−1 : Ω → R+ be an Ft−1−measurable

function. Set

c2,t(ω) := (u′2)
−1

(
yt−1 · λ∗(t, ω, yt−1(ω))

rt

)
, c1,t(ω) := Zt(ω)−c2,t(ω), yt(ω) = YZt(ω)(c1,t(ω)).

Then (i) ci,t(ω) ≥ 0 and is Ft−measurable, (ii) if yt−1(ω) > y′t−1(ω) then the induced values

satisfy yt(ω) > y′t(ω), (iii) yt(ω) is a continuous function of yt−1(ω), (iv)
rt(ω)·u′2(c2,t(ω))

yt−1(ω)
=

(β1/β2) · E[rt · u′1(c1,t)|Ft−1](ω) so rt(ω) · u′2(c2,t(ω)) is Ft−1−measurable and r̂2,t(ω) =

1 P − a.s. ω, and (v) yt(ω) = β1

β2
· 1

r̂1,t(ω)
· yt−1(ω).

PROOF: (i) As per the definition in the hypothesis λ∗(t, ω, yt−1(ω)) =
rt(ω)·u′2(c2,t(ω))

yt−1(ω)
. So

using Lemma 9 (ii) we have λ∗(t, ω, yt−1(ω)) ≥ λ(t, ω, yt−1(ω))

⇔ rt(ω) · u′2(c2,t(ω))

yt−1(ω)
≥ rt(ω) · u′2(Zt(ω))

yt−1(ω)
⇔ u′2(c2,t(ω)) ≥ u′2(Zt(ω))

so that using the fact that u2 is concave we can conclude that c2,t(ω) ≤ Zt(ω) so that

c1,t(ω) ≥ 0. The Inada condition guarantees that c2,t(ω) ≥ 0. Since the measurability

property is evident, the proof of (i) is complete.

(ii) We can invoke Lemma 9 (iii) and the fixed point property to conclude that

yt−1(ω) > y′t−1(ω) ⇔ ft,yt−1(ω),ω(λ∗(t, ω, yt−1(ω))) < ft,y′t−1(ω),ω(λ∗(t, ω, y′t−1(ω))).

From the specification of ft,y,ω and the fact that u1 is strictly concave, it is easy to see

that, necessarily, c1,t(ω) > c′1,t(ω). An application of Lemma 8 completes the proof.

(iii) Follows form Lemma 9 (iv), the fact that ui are twice continuously differentiable,

and Lemma 8.

(iv) Follows from the fixed point property since

rt(ω) · u′2(c2,t(ω))

yt−1(ω)
= λ∗(t, ω, yt−1(ω)) = ft,ω,yt−1(ω)(λ

∗(t, ω, yt−1(ω)))
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= (β1/β2) · E[rt · u′1(c1,t)|Ft−1](ω).

This shows that rt(ω) · u′2(c2,t(ω)) is Ft−1−measurable and so r̂2,t(ω) = 1 P − a.s. ω.

(v) By manipulating the fixed point condition, we obtain

u′2(c2,t(ω))

u′1(c1,t(ω))
= yt−1(ω) · β1

β2

· E[rt · u′1(c1,t)|Ft−1](ω)

rt(ω) · u′1(c1,t(ω))
⇔ yt(ω) =

β1

β2

· 1

r̂1,t(ω)
· yt−1(ω)

proving (v).

Proposition 4 is proved by recursively applying Lemma 10. For existence we assume

that we are given a triple (y, t0, ω) ∈ R++ × {0, 1, 2, · · ·} × Ω, we set yt0(ω) := y and

treat it as a parameter and apply Lemma 10 (i) to induce a unique process for {yt(ω̃)}t≥t0

and P−a.s. ω̃ ∈ Ω(st0(ω)). By Lemma 8 this is equivalent to starting with a triple

(c, t0, ω) ∈ R++ × {0, 1, 2, · · ·} × Ω with the additional condition that c ∈ (0, Zt0(ω)),

setting c1,t0(ω) := c and treating it as a parameter and generating a unique pair of

processes ci that are feasible and solve the fixed point problem at each date t ≥ t0 + 1

and P−a.s. ω̃ ∈ Ω(st0(ω)).

The notation {Ci,t(c, t0, ω)}t≥t0 , where the process is defined P−a.s. only for ω̃ ∈
Ω(st0(ω)), was introduced in the statement of Proposition 4. For monotonicity, we consider

two triples (c, t0, ω) and (c′, t0, ω) such that c > c′. By Lemma 8 the induced values satisfy

yt0(ω) > y′t0(ω) so that by an iterative application of Lemma 10 (ii) yt(ω̃) > y′t(ω̃) for all

t ≥ t0 + 1 and P−a.s. ω̃ ∈ Ω(st0(ω)). Another application of Lemma 8 establishes that

C1,t(ω̃; c, t0, ω) > C1,t(ω̃; c′, t0, ω) for all t ≥ t0 + 1 and P−a.s. ω̃ ∈ Ω(st0(ω)).

By a direct argument, for all t ≥ t0 + 1 and P−a.s. ω̃ ∈ Ω(st0(ω)), C1,t(ω̃; c, t0, ω) is

continuous in c.

Lemma 11 establishes some boundary properties of the consumption processes that

we construct and completes the proof of Proposition 4.

LEMMA 11: Assume A.1, A.2, A.3, and A.5. (i) Given t0, ε, and T , where ε > 0 and small,

and T > t0, there exists A ∈ FT with P (A) > 0 and c > 0 such that C1,t(ω̃; c, t0, ω) < ε

for all t such that T ≥ t ≥ t0 + 1 and P−a.s. ω̃ ∈ A. (ii) Given t0, ε, and T , where ε > 0

and small, and T > t0, there exists c > 0 such that Zt(ω̃) − C1,t(ω̃; c, t0, ω) < ε for all t

such that T ≥ t ≥ t0 + 1 and P−a.s. ω̃ ∈ Ω(st0(ω)).

PROOF: (i) By Lemma 9 (v), λ∗(t, ω, y) →y→0 ∞ so that, by the fixed point prop-

erty, ft,ω,y(λ
∗(t, ω, y)) →y→0 ∞. But then, under A.2, A.3, and A.5, we must have

E[c1,t|Ft̃−1](ω) →yt−1(ω)→0 0. So we have shown that for some ω̃ ∈ Ω(st−1(ω)), c1,t(ω̃) →yt−1(ω)→0

0, and, by Lemma 8, yt(ω̃) →yt−1(ω)→0 0. By recursively using the monotonicity and con-

tinuity properties, Lemma 10 (ii) and (iii), we can conclude that for any t > t0, there

is a ω̃(t) such that for all t′ where t ≥ t′ > t0, yt′(ω̃(t)) →yt0 (ω)→0 0, and, by Lemma

8, c1,t′(ω̃(t)) →yt0 (ω)→0 0. It follows that given t0, ε, and T , where ε > 0 and small, and

T > t0, there exists ω̃ ∈ Ω(st−1(ω)) and c > 0 such that C1,t(ω̃; c, t0, ω) < ε for all t such

that T ≥ t ≥ t0 + 1. Since T < ∞ and A.1 holds, the same is true for all ω̃ ∈ A where

P (A) > 0 and A ∈ FT .
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(ii) By Lemma 9 (vi), the rule defining c2,t(ω) in Lemma 10, and the concavity of u2,

we conclude that c2,t(ω) →yt−1(ω)→∞ 0; by Lemma 8, yt(ω) →yt−1(ω)→∞ ∞. By recursively

using the monotonicity and continuity properties, Lemma 10 (ii) and (iii), we can conclude

that for any t > t0, yt(ω) →yt0 (ω)→∞ ∞, and, by Lemma 8, yt0(ω) →c→Zt0 (ω) ∞. It follows

that given t0, ε, and T , where ε > 0 and small, and T > t0, there exists c > 0 such that

Zt(ω̃)− C1,t(ω̃; c, t0, ω) < ε for all t such that T ≥ t ≥ t0 + 1 and P -a.s. ω̃ ∈ Ω(st0(ω)).

PROOF OF PROPOSITION 5

The proof follows from Lemma 12 and Lemma 13. To simply the notation we use

ci,t(ω) for consumption and state and prove the results for the case where t0 = 0 and the

processes are defined on Ω. Throughout we write E[X] instead of EP [X].

LEMMA 12: Assume A.2, A.3, A.5. Then for the solution proposed

ess. supω∈Ω;P supt≥0

u′2(c2,t+1(ω))

u′2(c2,t(ω))
≤ M := max

{
r̄ · u′2(z/2)

r · u′2(z̄)
;
r̄ · u′1(z/2)

r · u′1(z̄)

}
.

PROOF: If not then there is an A with P (A) > 0, such that for every ω ∈ A there exists

a t(ω) such that

u′2(c2,t(ω)+1(ω))

u′2(c2,t(ω)(ω))
> M ⇒

u′2(c2,t(ω)+1(ω))

u′2(c2,t(ω)(ω))
>

r̄ · u′2(z/2)

r · u′2(z̄)

⇒
rt(ω)+1(ω) · u′2(c2,t(ω)+1(ω))

u′2(c2,t(ω)(ω))
>

r̄ · u′2(z/2)

u′2(z̄)
.

As shown in the proof of Lemma 10 (v),

rt+1(ω) · u′2(c2,t+1(ω))

u′2(c2,t(ω))
=

E[rt+1 · u′1(c1,t+1)|Ft](ω)

u′1(c1,t(ω))
,

so we must also have

E[rt(ω)+1 · u′1(c1,t(ω)+1)|Ft(ω)](ω)

rt(ω)+1(ω) · u′1(c1,t(ω)(ω))
> M ⇒

E[rt(ω)+1 · u′1(c1,t(ω)+1)|Ft(ω)](ω)

rt(ω)+1(ω) · u′1(c1,t(ω)(ω))
>

r̄ · u′1(z/2)

r · u′1(z̄)

so that, since c1,t(ω) ≤ z̄ and u′′1 < 0,

⇒
E[rt(ω)+1 · u′1(c1,t(ω)+1)|Ft(ω)](ω)

rt(ω)+1(ω) · u′1(z̄)
>

r̄ · u′1(z/2)

r · u′1(z̄)

⇒ E[rt(ω)+1 · u′1(c1,t(ω)+1)|Ft(ω)](ω) > r̄ · u′1(z/2)

since r ≤ rt(ω)+1. It follows that for some ω̃ ∈ Ω(st(ω)(ω)),

u′1(c1,t(ω)+1(ω̃)) > u′1(z/2) ⇔ c1,t(ω)+1(ω̃) < z/2 ≤ Zt/2

⇔ c2,t(ω)+1(ω̃) > Zt/2 ≥ z/2 ⇒ rt(ω)+1(ω̃) · u′2(c2,t(ω)+1(ω̃)) < r̄ · u′2(z/2)
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⇔
rt(ω)+1(ω̃) · u′2(c2,t(ω)+1(ω̃))

u′2(z̄)
<

r̄ · u′2(z/2)

u′2(z̄)
.

But that contradicts the fact that rt(ω) · u′2(c2,t(ω)) is always Ft−1-measurable since we

started by saying that
rt(ω)+1(ω)·u′2(c2,t(ω)+1(ω))

u′2(c2,t(ω)(ω))
>

r̄·u′2(z/2)

u′2(z̄)
.

LEMMA 13: Assume A.2, A.3, A.5, and A.6. Then

0 ≤ E
[ T∑

t=0

βt
i ·

u′i(ci,t)

u′i(ci,0)

∣∣∣∣F0

]
(ω) ≤ 1/(1− βi ·M).

PROOF: We prove the result for i = 1 since it is trivial for i = 2.

Since, by Proposition 4, in the proposed solution

yt(ω) =
1

Πt
τ=1[r̂1,τ (ω)]

· y0(ω) ⇔ u′2(c2,t(ω))

u′1(c1,t(ω))
=

1

Πt
τ=1[r̂1,τ (ω)]

· u′2(c2,0(ω))

u′1(c1,0(ω))

⇔ βt
1 ·

u′1(c1,t(ω))

u′1(c1,0(ω))
= βt

1 · Πt
τ=1[r̂1,τ (ω)] · u′2(c2,t(ω))

u′2(c2,0(ω))

⇒ 0 ≤ E
[ T∑

t=0

βt
1 ·

u′1(c1,t)

u′1(c1,0)

∣∣∣∣F0

]
(ω) = E

[ T∑
t=0

βt
1 · Πt

τ=1[r̂1,τ ] ·
u′2(c2,t)

u′2(c2,0)

∣∣∣∣F0

]
(ω)

≤
T∑

t=0

βt
1 · (M)t · E

[
Πt

τ=1[r̂1,τ ]
∣∣∣F0

]
(ω) =

T∑
t=0

βt
1 · (M)t

where we use the fact that E [r̂i,t|Ft−1](ω) = 1 together with the law of iterated expecta-

tions. The result follows by taking the limit.

PROOF OF PROPOSITION 6

The proof follows from Lemma 14-16. Throughout we write E[X] instead of EP [X].

LEMMA 14: Assume A.3 and r ≥ 0. In the proposed solution, P{ω : liminf yt(ω) →t→∞

0} = 0.

PROOF: Since yT (ω) = 1

ΠT
t=1[r̂1,t(ω)]

· y0(ω) and since, by Lemma 5, we know that R1,t(ω̃)

is a.s. bounded, we conclude that liminf yT (ω) > 0 a.s.

LEMMA 15: Assume z > 0, r ≥ 0, and A.3. In the proposed solution, P (C1) = 0 where

Ci := {ω ∈ Ω : liminf ci,t(ω) = 0}.
PROOF: Given y0, choose K > 0. For any such K let cK > 0 solve the equation

u′2(z − cK) = u′1(cK) · y0(ω̃)/K.

For any ω̃ ∈ C1 and such a K there exists a sequence {tKτ } of periods such that

c1,tKτ
≤ cK so ytKτ

(ω̃) ≤ y0(ω̃)/K. Then Lemma 14 implies that P (C1) = 0.

LEMMA 16: Assume A.2, A.3, and r ≥ 0. In the proposed solution P (A1) = 0.

PROOF: Since z̄ < ∞, if, for some ω̃, liminf r̂1,t(ω̃) = 0 then limsup E[rt·u′1(c1,t)|Ft−1](ω̃) =

∞. We shall argue that in such an event c1 must also approach zero, a zero probability

event by Lemma 15.
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So suppose ω̃ is such that limsup E[rt · u′1(c1,t)|Ft−1](ω̃) = ∞ and liminfc1,t(ω̃) = 2ε

for some ε > 0. It follows that there exists t̃ such that for t ≥ t̃, c1,t̃(ω̃) ≥ ε. Choose δ(ε)

to satisfy u′1(z − δ(ε)) <
(
u′1(ε)/u

′
2(z̄)

)
· u′2(δ(ε)). Necessarily, for some t′ ≥ t̃,

E[rt′ · u′1(c1,t′)|Ft′−1](ω̃) > r̄ · u′1(ε)

u′2(z̄)
· u′2(δ(ε)),

and in the solution proposed

rt(ω) · u′2(c2,t(ω)) =
u′2(c2,t−1(ω))

u′1(c1,t−1(ω))
· E[rt · u′1(c1,t)|Ft−1](ω)

so that for (ω̃, t′)

rt′(ω̃) · u′2(c2,t′(ω̃)) ≥ u′2(Zt′−1(ω̃)− ε)

u′1(ε)
· E[rt′ · u′1(c1,t′)|Ft′−1](ω̃)

>
u′2(z̄)

u′1(ε)
· r̄ · u′1(ε)

u′2(z̄)
· u′2(δ(ε)) = r̄ · u′2(δ(ε)).

Since rt(ω) · u′2(c2,t(ω)) is Ft−1-measurable,

rt′(ω
′) · u′2(c2,t′(ω

′)) > r̄ · u′2(δ(ε)) ω′ ∈ Ω
(
(st′−1(ω̃)

)
.

So c2,t′(ω
′) < δ(ε) for all ω′ ∈ Ω

(
(st′−1(ω̃)

)
and therefore, by feasibility, c1,t′(ω

′) >

Zt′(ω
′)− δ(ε) for all ω′ ∈ Ω

(
(st′−1(ω̃)

)
. It follows that

E[rt′ · u′1(c1,t′)|Ft′−1](ω̃) ≤ r̄ · u′1(z − δ(ε))

which, using the definition of δ(ε), is a contradiction. We have shown that liminf r̂1,t(ω̃) =

0 implies that ω̃ ∈ Ci, a set that has measure zero according to Lemma 15.

STATEMENT AND PROOF OF LEMMA 17

LEMMA 17: Assume A.1 and A.5. The TC0 budget set does not allow Ponzi schemes.

PROOF: It is easy to show that if θ is a Ponzi scheme at q and p ∈ P(q; P ), then

−pt′(ω
′) = limT→+∞ EP

[
pT · qT · θi,T

∣∣∣Ft′

]
(ω′) while limT→+∞ EP

[
pT · qT · θi,T

∣∣∣Ft′

]
(ω) = 0

for ω /∈ Ω(st(ω′)). By ruling out trivial Arrow price processes and assuming A.1, so that

dPt(ω
′) > 0, we have limT→+∞ EP

[
pT ·qT ·θi,T

∣∣∣F0

]
(ω) < 0 and the proposed Ponzi scheme

entails a plan that is not an element of the budget set BCTC
i (q, p) with p ∈ P(q; P ). It

follows that there can be no Ponzi scheme that is TC0 budget feasible.

The same proof, with Pi instead of P , can be used to see that the IDC budget set

does not allow Ponzi schemes. This follows from the fact that with the IDC budget set,

the uniform bound on debt values implies that a transversality condition holds at date 0

and therefore the argument given for TC0 budget sets applies.
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PROOF OF THEOREM 2

First we state and prove Lemma 18 and Lemma 19.

LEMMA 18: Given q and any pi ∈ P1(q; P ), if ci is a maximizer on the set BCAD
i (pi),

then limT→+∞ EP

[
pi,T · qT · θi,T

∣∣∣F0

]
(ω) = 0, where θi supports ci at the prices q.

PROOF: Since ci is a maximizer on the set BCAD
i (pi), we have ci ∈ BCAD

i (pi); further-

more, the value of the endowment is finite, limT→+∞
∑T

t=0 EP

[
pi,t · zi,t

∣∣∣F0

]
(ω) < ∞,

and the value of the endowment is exhausted so that limT→+∞
∑T

t=0 EP

[
pi,t · (ci,t −

zi,t)
∣∣∣F0

]
(ω) = 0. In addition, since θi supports ci at the prices q, we can write

limT→+∞

T∑
t=0

EP

[
pi,t · (ci,t−zi,t)

∣∣∣F0

]
(ω) = limT→+∞

T∑
t=0

EP

[
pi,t · (rt ·θi,t−1− qt ·θi,t)

∣∣∣F0

]
(ω)

= limT→+∞ EP

{
[−pi,0 · q0 · θi,0 + pi,1 · r1 · θi,0] +

T∑
t=2

[−pi,t−1 · qt−1 · θi,t−1 + pi,t · rt · θi,t−1]

−pi,T · qT · θi,T

∣∣∣F0

}
(ω)

where we use the convention that θi,−1(ω) = 0. By using the fact that pi ∈ P1(q; P ), the

set of summable Arrow prices with respect to P , we see that in fact we have

0 = limT→+∞
∑T

t=0 EP

[
pi,t · (ci,t − zi,t)

∣∣∣F0

]
(ω) = limT→+∞ EP

[
− pi,T · qT · θi,T

∣∣∣F0

]
(ω).

LEMMA 19: Given q and any pi ∈ P1(q; P ), BCTC
i (q, pi) ⊂ BCAD

i (pi).

PROOF: Consider ci ∈ BCTC
i (q, pi) and let θi denote the corresponding asset holding

process. We would like to show that

limT→+∞

T∑
t=0

EP

[
pi,t · ci,t

∣∣∣F0

]
(ω) ≤ limT→+∞

T∑
t=0

EP

[
pi,t · zi,t

∣∣∣F0

]
(ω).

Using the sequence of budget constraints in the definition of the set BCTC
i (q, pi), we have

T∑
t=0

EP

[
pi,t · (ci,t − zi,t)

∣∣∣F0

]
(ω) ≤

T∑
t=0

EP

[
pi,t · (rt · θi,t−1 − qt · θi,t)

∣∣∣F0

]
(ω).

By an argument similar to that in Lemma 18 we conclude that for all T ≥ 0 we have

T∑
t=0

EP

[
pt · (ci,t − zi,t)

∣∣∣F0

]
(ω) ≤ EP

[
− pi,T · q̂T · θi,T

∣∣∣F0

]
(ω).

Since ci ∈ BCTC
i (q, pi) implies that lim infT→+∞ EP

[
pi,T · q̂T · θi,T

∣∣∣F0

]
(ω) ≥ 0 P −a.s. ω,

and pi ∈ P1(q; P ) implies that pi is summable while (ci − zi) is uniformly bounded, we

can conclude that ci ∈ BCAD
i (pi).

PROOF OF THEOREM 2: Recall that θ̂i is the portfolio that supports ĉi at the price

process q̂. By Lemma 18 ĉi ∈ BCTC
i (q, pi) and, by Lemma 19, BCTC

i (q, pi) ⊂ BCAD
i (p̂i)
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so that ĉi is a maximizer on BCTC
i (q, pi). Since the consumption processes are aggregate

feasible and, at every t ≥ 0, θ1,t(ω) + θ2,t(ω) = 0 P -a.s. ω, which follows from the

fact that the spot market budget constraints are satisfied with equality, it follows that

(ĉ1, ĉ2, θ̂1, θ̂2, q̂) constitute a TC0 equilibrium proving Theorem 1 (i).

To complete the proof of Theorem 1 (ii), notice that we can use Theorem 5.2 in Magill

and Quinzii (1994) to conclude that since a transversality condition holds at every t for

P -a.s. ω, and preferences are uniformly impatient, there is a uniform bound on the value

of debt where we use the supporting asset portfolio. It follows that ĉi is a maximizer on

BCi(q̂) and we have an IDC equilibrium.

LEMMA 20: Assume A.2 and A.3 and that P1 = P2 = P . Consider a consump-

tion process ĉi and assume that pĉ
i satisfies limT→+∞

∑T
t=0 EP

[
pĉ

i,t

∣∣∣F0

]
(ω) < ∞. If

limT→+∞ EP

[∑T
t=0 pĉ

i,t ·
(
ĉi,t−zi,t

)∣∣∣F0

]
(ω) = 0, then ĉi is a maximizer on the set BCAD

i (pĉ
i).

PROOF: Since limT→+∞
∑T

t=0 EP

[
pĉ

i,t

∣∣∣F0

]
(ω) < ∞ and z̄ < ∞ and zi ∈ ×∞

t=0Ψ
t,P
+ ,

limT→+∞

T∑
t=0

EP

[
pĉ

i,t · zi,t

∣∣∣F0

]
(ω) < ∞.

Furthermore, since limT→+∞ EP

[∑T
t=0 pĉ

i,t·
(
ĉi,t−zi,t

)∣∣∣F0

]
(ω) = 0 we have ĉi ∈ BCAD

i (pĉ
i).

Define µi := u′i(ĉi,0(ω)). µi > 0. Clearly, ĉi is the unique solution to the system of first

order conditions βt
i · u′i(ĉi,t(ω)) = µi · pĉ

i,t(ω). Also, the Lagrangean function

limT→+∞

{ T∑
t=0

EP

[
βt

i · ui(ci,t)
∣∣∣F0

]
(ω) + µi ·

T∑
t=0

EP

[
pĉ

i,t · (ci,t − zi,t)
∣∣∣F0

]
(ω)

}

is strictly concave in ci. It follows (e.g. Luenberger (1969) Theorem 1 in Section 8.5 and

Lemma 1 in Section 8.7) that the first order conditions are sufficient to identify a global

maximizer and ĉi maximizes the Lagrangean function. Therefore ĉi solves the constrained

optimization problem.

PROOF OF THEOREM 3

Throughout we write E[X] instead of EP [X].

In the proposed solution, for all t ≥ 1

β1 ·
E[rt · u′1(c1,t)|Ft−1](ω)

u′1(c1,t−1(ω))
= β2 ·

E[rt · u′2(c2,t)|Ft−1](ω)

u′2(c2,t−1(ω))
P − a.s. ω.

Define an asset price process q and personalized price processes pi by

qt−1(ω) := βi ·
E[rt · u′i(ci,t)|Ft−1](ω)

u′i(ci,t−1(ω))
pi,t(ω) := βt

i ·
u′i(ci,t(ω))

u′i(ci,0(ω))
.

It follows that the consumption processes satisfy the Euler equations with the price process

q and that also pi are such that the no arbitrage condition holds and hence, since by
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Proposition 5 they are summable, pi ∈ P1(q; P ) for i ∈ I. Also, using the spot market

budget constraints with asset prices q and consumption process ci, we can construct the

supporting portfolio θi.

As in the proof of Lemma 18, if limT→+∞ E
[
pi,T · qT · θi,T |F0

]
(ω) = 0 P − a.s. holds,

then ci ∈ BCAD
i (pi).

An application of Lemma 20 shows that the consumption processes proposed are

maximal for each i in BCAD
i (pi). To complete the proof of Theorem 3 we shall apply

Theorem 2 and for that we need to verify that the transversality conditions also hold.

We continue the proof with Lemma 21 and 22.

LEMMA 21: If ci is an Euler process at q and θi is a supporting portfolio then

βT
i · u′i(ci,T (ω)) · qT (ω) · θi,T (ω) = βT

i · u′i(ci,T (ω)) ·
(
zi,T (ω)− ci,T (ω)

)

+
T−1∑
τ=0

βτ
i · u′i(ci,τ (ω)) ·

(
ΠT−1

s=τ r̂i,s+1(ω)

)
·
(
zi,τ (ω)− ci,τ (ω)

)
where r̂i is the process induced by ci.

PROOF: Given any process ci that is an Euler process at the price process q and the

induced process r̂i, we have

qt−1(ω) = βi ·
E[rt · u′i(ci,t)|Ft−1](ω)

u′i(ci,t−1(ω))
r̂i,t(ω) :=

rt(ω) · u′i(ci,t(ω))

E [rt · u′i(ci,t)|Ft−1](ω)
.

It follows that

r̂i,t(ω) =
βi · rt(ω) · u′i(ci,t(ω))

qt−1(ω) · u′i(ci,t−1(ω))
⇔ rt(ω)

qt−1(ω)
=

r̂i,t(ω)

βi

· u′i(ci,t−1(ω))

u′i(ci,t(ω))

⇒ ΠT−1
s=τ

rs+1(ω)

qs(ω)
= ΠT−1

s=τ

(
r̂i,s+1(ω)

βi

· u′i(ci,s(ω))

u′i(ci,s+1(ω))

)
=

1

βT−τ
i

·
(
ΠT−1

s=τ r̂i,s+1(ω)
)
·u

′
i(ci,τ (ω))

u′i(ci,T (ω))
.

Using the spot market budget constraints

ci,t(ω) + qt(ω) · θi,t(ω) ≤ zi,t(ω) + rt(ω) · θi,t−1(ω)

which, by monotonicity, hold as equalities, and iterating we obtain

qT (ω) · θi,T (ω) = zi,T (ω)− ci,T (ω) +
T−1∑
τ=0

(
ΠT−1

s=τ

rs+1(ω)

qs(ω)

)
·
(
zi,τ (ω)− ci,τ (ω)

)
.

After carrying out the substitution we can evaluate

βT
i · u′i(ci,T (ω)) · qT (ω) · θi,T (ω) = βT

i · u′i(ci,T (ω)) ·
(
zi,T (ω)− ci,T (ω)

)

+
T−1∑
τ=0

βτ
i · u′i(ci,τ (ω)) ·

(
ΠT−1

s=τ r̂i,s+1(ω)

)
·
(
zi,τ (ω)− ci,τ (ω)

)
.
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LEMMA 22: Assume that the economy is such that in the proposed solution, ∀ t ≥ 1,

u′2(c2,t(ω)) ·
(
z2,t(ω)− c2,t(ω)

)
= c̄2,t P − a.s. ω. If there exists ĉ2,0(ω) that solves

u′2(ĉ2,0(ω)) ·
(
z2,0(ω)− ĉ2,0(ω)

)
= −LimT→+∞

T∑
τ=1

βτ
2 · c̄2,τ ,

then for every t ≥ 1 LimT→+∞ E[βT
i · u′i(ĉi,T ) · q̂T · θ̂i,T |Ft](ω) = 0 P − a.s. ω and the

transversality conditions for both the agents is satisfied when we consider the proposed

solution induced by the initial value given by ĉ2,0(ω).

PROOF: Consider i = 2. Since r̂2,t(ω) = 1 ∀ t ≥ 0 P − a.s. ω, the expression obtained

in Lemma 21 takes the form

βT
2 · u′2(c2,T (ω)) · qT (ω) · θ2,T (ω) =

T∑
τ=0

βτ
2 · u′2(c2,τ (ω)) ·

(
z2,τ (ω)− c2,τ (ω)

)

=
T∑

τ=1

βτ
2 · c̄2,τ + u′2(c2,0(ω)) ·

(
z2,0(ω)− c2,0(ω)

)
.

Notice that βT
2 · u′2(c2,T ) · qT · θ2,T is a deterministic quantity. So

LimT→+∞ E[βT
2 ·u′2(c2,T )·qT ·θ2,T |Ft](ω) = LimT→+∞

T∑
τ=1

βτ
2 ·c̄2,τ+u′2(c2,0(ω))·

(
z2,0(ω)−c2,0(ω)

)

and the limit is independent of t and will be equal to zero if
(
z2,0(ω)−c2,0(ω)

)
, equivalently

c2,0(ω) or θ2,0(ω), the initial asset holding for agent 2, satisfies the condition

u′2(c2,0(ω)) ·
(
z2,0(ω)− c2,0(ω)

)
= −LimT→+∞

T∑
τ=1

βτ
2 · c̄2,τ .

Denote such a value ĉ2,0(ω) and note that βT
2 · u′2(ĉ2,T ) · q̂T · θ̂2,T = −∑∞

τ=T+1 βτ
2 · c̄2,τ a

deterministic quantity.

We turn to agent 1. Since the regardless of the value of c2,0, the proposed solution

does not waste resources, the asset holdings are the ones that support the consumption

allocation, and the asset is in zero net supply, it follows that θ1,t(ω) = −θ2,t(ω) for all

t ≥ 0 and P -a.s ω. So we have

LimT→+∞ E[βT
1 · u′1(c1,T ) · qT · θ1,T |Ft](ω) = −LimT→+∞ E[βT

1 · u′1(c1,T ) · qT · θ2,T |Ft](ω).

Since r̂2,t(ω) = 1,

r̂1,t(ω)

r̂2,t(ω)
=

yt−1(ω)

yt(ω)
⇒ r̂1,t(ω) =

u′1(c1,t(ω))

u′2(c2,t(ω))

u′1(c1,t−1(ω))

u′2(c2,t−1(ω))

⇒ u′1(c1,τ (ω))

u′2(c2,τ (ω))
= Πτ

s=1[r̂1,s(ω)]·u
′
1(c1,0(ω))

u′2(c2,0(ω))
.

It follows that

LimT→+∞ E[βT
1 · u′1(c1,T ) · qT · θ1,T |Ft](ω)
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= −LimT→+∞ E[βT
1 · ΠT

s=1[r̂1,s] ·
u′1(c1,0)

u′2(c2,0)
· u′2(c2,T ) · qT · θ2,T |Ft](ω)

= −LimT→+∞
u′1(c1,0)

u′2(c2,0)
E[ΠT

s=1[r̂1,s] · βT
1 · u′2(c2,T ) · qT · θ2,T |Ft](ω).

But with the value ĉ2,0 and the induced consumption processes we have

βT
2 · u′2(ĉ2,T ) · q̂T · θ̂2,T = −

∞∑
τ=T+1

βτ
2 · c̄2,τ

so that

LimT→+∞ E[βT
1 · u′1(ĉ1,T ) · q̂T · θ̂1,T |Ft](ω)

= −LimT→+∞
u′1(ĉ1,0)

u′2(ĉ2,0)

(
−

∞∑
τ=T+1

βτ
2 · c̄2,τ

)
· E[ΠT

s=1[r̂1,s]|Ft](ω) = 0

where we use the fact that E [r̂i,t|Ft−1](ω) = 1 together with the law of iterated expecta-

tions and the fact that LimT→∞
∑∞

τ=T+1 βτ
2 · c̄2,τ = 0.

PROOF OF THEOREM 4

The proof uses A.4, which imposes a bound on the coefficient of relative risk aversion.

It is based on showing first, Lemma 23, that for the allocation identified in Theorem 3,

the value of excess demand evaluated using the personalized Arrow-Debreu price process

of each agent is monotone in a single parameter; furthermore, the value is continuous and

has the right boundary behaviour. We then show how one can start our construction

from date 1, choose consumption at date 0 so as to be compatible with feasibility and the

date 0 Euler equation for each agent, and yet preserve the monotonicity and continuity

properties, Lemma 24. Lemma 25 provides a very simple sufficient condition for a fixed

point property to hold. Finally, in Lemma 26 we show that if we start with a no trade

equilibrium then there is a robust method for perturbing the endowment distribution that

leads to the satisfaction of the sufficient condition specified in Lemma 25.

Throughout we write E[X] instead of EP [X].

Consider a value for c0, where 0 < c0 < Z0 so that c0,2 := Z0−c0 satisfies nonnegativity,

and consider c1, where 0 < c1(ω) < Z1(ω), a nonnegative F1−measurable function. By

Proposition 4 we can induce a consumption process {Ci,t(c
1(ω), 1, ω)}t≥1 for agent i where

the process is defined P−a.s. only for ω̃ ∈ Ω(s1(ω)). By varying ω, one obtains an

aggegate feasible consumption process on the full state space.

For ω ∈ Ω(s1) define

V1,s1(c1; z1) := limT→+∞ E
[ T∑

τ=1

βτ
1 ·u′1(C1,τ (c

1(ω), 1, ω))·
(
C1,τ (c

1(ω), 1, ω)−z1,τ

)∣∣∣∣Ω(s1)
]
(ω),

V2,s1(c1; z1) := limT→+∞ E
[ T∑

τ=1

βτ
2 ·u′2(Zτ−C1,τ (c

1(ω), 1, ω))·
(
C1,τ (c

1(ω), 1, ω)−z1,τ

)∣∣∣∣Ω(s1)
]
(ω).
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LEMMA 23: Assume A.1-6. Then, for i = 1, 2 and all s1 = 1, · · · , S, Vi,s1(c1; z1) is (i)

well defined, (ii) it is continuous in c1 for every value of z1, (iii) it is continuous in z1 for

every value of c1, (iv) it is increasing in c1(ω) where ω ∈ Ω(s1), and (v) for ω ∈ Ω(s1),

(a) V1,s1(c1; z1) →c1(ω)→0 −∞,

(b) V1,s1(c1; z1) →c1(ω)→Z1(ω) V1,s1(Z1; z1) where V1,s1(Z1; z1) ∈ (0,∞),

(c) V2,s1(c1; z1) →c1(ω)→0 V2,s1(0; z1) where V2,s1(0; z1) ∈ (−∞, +∞), and

(d) V2,s1(c1; z1) →c1(ω)→Z1(ω) ∞ .

PROOF: Define

fT
1,s1(c1; z1) := E

[ T∑
τ=1

βτ
1 · u′1(C1,τ (c

1(ω), 1, ω))

β1 · u′1(c1(ω))
·
(
C1,τ (c

1(ω), 1, ω)− z1,τ

)∣∣∣∣Ω(s1)
]
(ω).

We shall use the fact that V1,s1(c1; z1) can be written as

V1,s1(c1; z1) = β1 · u′1(c1(ω)) · limT→+∞ fT
1,s1(c1; z1),

where β1 · u′1(c1(ω)) is finite since c1(ω) > 0; a similar result holds for V2,s1(c1; z1) since

c1(ω) < Z1(ω).

(i) By Proposition 5, the support price process is summable. By A.2, the individual

endowent process is uniformly bounded. It follows that

0 ≤ limT→+∞ E
[ T∑

τ=1

βτ
1 · u′1(C1,τ (c

1(ω), 1, ω))

β1 · u′1(c1(ω))
· z1,τ

∣∣∣∣Ω(s1)
]
(ω) < ∞.

Since the consumption process induced is aggregate feasible, we also have

0 < limT→+∞ E
[ T∑

τ=1

βτ
1 · u′1(C1,τ (c

1(ω), 1, ω))

β1 · u′1(c1(ω))
· C1,τ (c

1(ω), 1, ω)
∣∣∣∣Ω(s1)

]
(ω) < ∞.

It follows that the difference between the two quantities is finite. By using the fact that

V1,s1(c1; z1) = β1 ·u′1(c1(ω)) · limT→+∞ fT
1,s1(c1; z1), and the fact that β1 ·u′1(c1(ω)) is finite,

since c1(ω) > 0, we conclude that V1,s1(c1; z1) is finite. An analogous proof shows that

V2,s1(c1; z1) is finite.

(ii) We shall show that fT
1,s1(c1; z1) is a continuous function of c1 for every T , and that

fT
1,s1(c1; z1) → V1,s1(c1; z1) uniformly. It follows that V1,s1(c1; z1) is continuous in c1. An

analogous argument works for V2,s1(c1; z1).

By the continuity result in Proposition 4 (iv), for every T , fT
1,s1(c1; z1) is continuous

in c1. Furthermore

supc1(ω)∈(0,Z1(ω))

∣∣∣fT
1,s1(c1; z1)− limT→+∞ fT

1,s1(c1; z1)
∣∣∣

= supc1(ω)∈(0,Z1(ω))

∣∣∣∣∣− limt→+∞ E
[ t∑

τ=1

βT+τ
1 · u′1(C1,T+τ (·)
β1 · u′1(c1(ω))

·
(
C1,T+τ (·)− z1,T+τ

)∣∣∣∣Ω(s1)
]
(ω)

∣∣∣∣∣
= supc1(ω)∈(0,Z1(ω)) βT ·

∣∣∣∣∣− limt→+∞ E
[ t∑

τ=1

βτ
1 · u′1(C1,T+τ (·)
β1 · u′1(c1(ω))

·
(
C1,T+τ (·)−z1,T+τ

)∣∣∣∣Ω(s1)
]
(ω)

∣∣∣∣∣
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≤ βT
1 · 2z̄

1− β1M

where we use the fact that the supporting price process is summable, Proposition 5, and

the fact that the net trade process is uniformly bounded by 0 and 2z̄. It follows that

limT→+∞ supc1(ω)∈(0,Z1(ω))

∣∣∣fT
1,s1(c1; z1)− limT→+∞ fT

1,s1(c1; z1)
∣∣∣ ≤ limT→+∞

βT
1 · 2z̄

1− β1M
= 0.

Now we use the fact that V1,s1(c1; z1) = β1 ·u′1(c1(ω)) · limT→+∞ fT
1,s1(c1; z1), where β1 ·

u′1(c
1(ω)) is continuous since ui is continuously differentiable. It follows that fT

1,s1(c1; z1) →
V1,s1(c1; z1) uniformly.

(iii) Given c1, Vi,s1(c1; ·) is linear in z1; by Proposition 5, A.2, and the fact noted at the

beginning of the proof, it is bounded. It follows that it is continuous in z1.

(iv) We note two facts. First, each term in each sum is increasing in the value C1,τ (c
1(ω), 1, ω)(ω̃).

To see this, notice that by A.4, c · u′′i (c) + u′i(c) > 0 for all c > 0 so that, using concavity,

we have c · u′′i (c) + u′i(c) − Z · u′′i (c) > 0 for Z > 0. It follows that (c − Z) · u′1(c) is

increasing in c. Similarly, (Z − c) · u′′i (Z − c) + u′i(Z − c) > 0 for all 0 < c < Z so that,

using concavity, we have −(c−Z) · u′′i (Z − c) + u′i(Z − c) + (−Z + z1) · u′′i (Z − c) > 0 for

all 0 < c < Z and 0 < z1 ≤ Z. Therefore, −(c− z1) · u′′i (Z − c) + u′i(Z − c) > 0 and, for

0 < c < Z, (c− z1) · u′1(Z − c) is increasing. Evidently, Zt ≥ z1,t > 0 since the individual

endowment is always nonnegative.

Now recall that the construction in Proposition 4 has the property that C1,τ (c
1(ω), 1, ω)(ω̃)

is increasing in c1(ω). Invoking the monotonicity property of each term that we just estab-

lished, we can conclude that V1,s1 is increasing. By the same argument, V2,s1 is increasing.

(v) Since we have already established monotonicity, the limits are well defined though

they could be +∞ or −∞. Using the fact at the beginning of the proof, Proposition 5, and

A.2, we conclude that a truncation argument can be used to establish the limiting values.

Such a truncation argument allows us to use the boundary properties of the construction

established in Proposition 4 (v) and (vi).

For (a) notice that for a fixed T we can find ε > 0 such that z1,t(ω̃) > ε for all 1 ≤ t ≤ T

and P−a.s. ω̃ ∈ Ω(s1(ω)). The result follows by applying Proposition 4 (vi) using the

Inada condition for i = 1, and A.1. For (b) we use the fact at the beginning of the proof

and the fact that u′1(Z1(ω)) < ∞ to conclude that the limit is positive and finite. For

(c) we use the fact at the beginning of the proof and the fact that u′2(Z1(ω)) < ∞ to

conclude that the limit is finite without being able to assign a sign to it. For (d) we use

Proposition 4 (v) and the Inada condition for i = 2.

If the processes constructed with c0, where 0 < c0 < Z0, and {Ci,t(c
1(ω), 1, ω)}t≥1,

where 0 < c1(ω) < Z1(ω) an F1−measurable function, also satisfy (i) the Euler equation

at date 0 for both the agents, and (ii) the Arrow-Debreu budget constraint for both the

agents, then we have a TC0 equilibrium. This follows from the fact that the processes

constructed in Proposition 4 are feasible and satisfy the Euler equations at every date
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t ≥ 1. So the allocation chosen is an equilibrium if the following equations hold

β1 ·
E[r1 · u′1(c1)|F0](ω)

u′1(c
0(ω))

= β2 ·
E[r1 · u′2(Z1 − c1)|F0](ω)

u′2(Z0(ω)− c0(ω))
P − a.s. ω,

u′1(c
0(ω)) ·

(
c0(ω)− z1,0(ω)

)
+
∑
s1∈S

P (Ω(s1)) · V1,s1(c1; z1) = 0,

u′2(Z0(ω)− c0(ω)) ·
(
c0(ω)− z1,0(ω)

)
+
∑
s1∈S

P (Ω(s1)) · V2,s1(c1; z1) = 0.

Evidently, all three equations hold at the no trade equilibrium when the endowment

distribution is given by (z∗1 , z
∗
2).

Let us first consider the Euler equations at date 0.

LEMMA 24: Assume A.3 and A.5. Let Z0(ω) > 0 and Z1 : Ω → R++ be an F1−measurable

function. Then for any c1 : Ω → R++, an F1−measurable function such that c1(ω) <

Z1(ω) for all ω ∈ Ω, there is a real number f(c1), with 0 < f(c1) < Z0(ω) such that

β1 ·
u′2(Z0(ω)− f(c1))

u′1(f(c1))
= β2 ·

E[r1 · u′2(Z1 − c1)|F0](ω)

E[r1 · u′1(c1)|F0](ω)
P − a.s. ω.

Furthermore, the function f is strictly increasing in all of its components.

PROOF: The result follows easily from the intermediate value theorem. The right hand

side of the equation is always well defined and positive, while Lemma 8 guarantees that

the left hand side is continuous and has (0,∞) as its image; a solution necessarily exists.

The monotonicity property of the function f follows from the fact that asset returns

are strictly positive, and the uis are strictly increasing and strictly concave.

It follows that it suffices to consider a reduced system where the Euler equation is

considered in implicit form. So define

F1(c
1; z1) := u′1(f(c1)) ·

(
f(c1)− z1,0(ω)

)
+
∑
s1∈S

P (Ω(s1)) · V1,s1(c1; z1),

F2(c
1; z1) := u′2(Z0(ω)− f(c1)) ·

(
f(c1)− z1,0(ω)

)
+
∑
s1∈S

P (Ω(s1)) · V2,s1(c1; z1).

We have shown that a TC0 equilibrium is induced at the endowment distribution (z1, z2)

if c1∗ is such that Fi(c
1∗; z1) = 0 for i = 1, 2.

LEMMA 25: Assume A.1-6. Let the endowment distribution (z1, z2) and ĉ1 be such that

F1(ĉ
1; z1) ≥ 0 and F2(ĉ

1; z1) ≤ 0. Then there exists c1∗, an F1−measurable function such

that 0 < c1∗(ω) < Z1(ω), that satisfies Fi(c
1∗; z1) = 0 for i = 1, 2.

PROOF: The range of the function ĉ1 has at most S values that correspond to the sets

Ω(s1). Fix all but those that correspond to s1 = 1, 2, and denote those two ĉ1
a and ĉ1

b .

By Lemma 24 and Lemma 23 (iv), the first term in the expression for F1 is increasing in

each component of the function c1; it follows that it is also bounded above. By Lemma 23
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(iv), the second term in the expression for F1 is increasing in the corresponding component

of c1. So F1 is increasing in each component of the function c1 and F1 → −∞ as c1
a → 0.

By an analogous argument, F2 is increasing in each component of the function c1 and

satisfies the following boundary properties: F2 → ∞ as c1
a → Z1,a and in the vicinity of

(Z1,a, 0), F2(c
1; z1) > 0.

In what follows, c1 will always be a vector of the form (c1
a, c

1
b , · · · , ĉ1

S).

If F1(c
1; z1) ≥ 0, then, by the monotonicity and boundary properties noted earlier,

there exists a unique c̃1, where c̃1
a = c1

a and c̃1
b < c1

b , such that F1(c̃
1; z1) = 0. We introduce

the notation h1(c
1
a) to denote the value c̃1

b ; the monotonicity property of F1 guarantees

that the function h1 with domain [ĉ1
a, Z1,a], where Z1,a denotes the aggregate endowment

at date 1 in the event that corresponds to the label a, is well defined and strictly decreasing

and, by the continuity property, h1 is continuous. Furthermore, by the boundary property

of F1 we have h1(c
1
a) →c1a→Z1,a

h1 > 0.

By a related argument the symmetric result holds for any c1 at which F2(c
1; z1) ≤ 0.

Since F2(ĉ
1; z1) ≤ 0 and F2 is monotone, there exists ̂̂c1

a > ĉ1
a such that F2((̂̂c1

a, ĉ
1
b , · · · , ĉ1

S); z1) =

0. It follows that we can define a continuous function h2 with domain [̂̂c1

a, c̄
1
a], where

c̄1
a < Z1,a, that is strictly decreasing and satisfies the boundary property h2(c

1
a) →c1a→c̄1a

0.

Also, h2(̂̂c1

a) > h1(̂̂c1

a).

It is evident that there is a value of c1
a
∗
at which h1(c

1
a
∗
) = h2(c

1
a
∗
) so that Fi(c

1∗; z1) = 0

for i = 1, 2.

Lemma 25 together with A.7 provide a sufficient condition under which a TC0 equi-

librium exists in which agent 2 vanishes with probability one. We now show that the

sufficient condition holds for an open set of endowment distributions near a no trade

equilibrium at the endowment distribution (z∗1 , z
∗
2).

LEMMA 26: Assume A.1-7. There exists N (z∗1) an open subset of Z1(Z) such that for

every (z1, z2), where z1 ∈ N (z∗1) and z2 := Z − z1, there exists a TC0 equilibrium.

PROOF: Fix s̃ ∈ S and define s̃1 := (s0, s̃). Given (η1, η2) ∈ R2, define

ε(η1, η2; ω) :=
η1 · u′2(z∗2,0(ω))− η2 · u′1(z∗1,0(ω))

P (Ω(s̃1))[β1 · u′1(z∗1,1(ω)) · u′2(z∗2,0(ω))− β2 · u′2(z∗2,1(ω)) · u′1(z∗1,0(ω))]

ε′(η1, η2; ω) :=
η1

u′1(z
∗
1,0(ω))

−
P (Ω(s̃1)) · β1 · u′1(z∗1,1(ω))

u′1(z
∗
1,0(ω))

· ε(η1, η2; ω).

It is easy to check that

ηi = u′i(z
∗
i,0(ω)) · ε′(η1, η2; ω) + P (Ω(s̃1)) · βi · u′i(z∗i,1(ω)) · ε(η1, η2; ω) for i = 1, 2.

Now define a new endowment process (z̃∗1 , z̃
∗
2) by the rule

z̃∗1,0(ω) = z∗1,0(ω)− ε′(η1, η2; ω) for ω ∈ Ω(s̃1)

z̃∗1,1(ω) = z∗1,1(ω)− ε(η1, η2; ω) for ω ∈ Ω(s̃1)

45



z̃∗1,t(ω) = z∗1,t(ω) otherwise.

z̃∗2 is obtained through the condition z̃∗1+z̃∗2 = Z so that z̃∗1+z̃∗2 = z∗1+z∗2 = Z. By choosing

η1 > 0 and η2 < 0 appropriately we can induce values of ε(η1, η2; ω) and ε′(η1, η2; ω) that

are sufficiently small so that z̃∗i,t(ω) ≥ 0 for both the agents at every t and ω.

It follows that F1(z
∗
1 ; z̃

∗
1) = η1 > 0 and F2(z

∗
1 ; z̃

∗
1) = η2 < 0. So the condition in

Lemma 25 is satisfied and the economy has a TC0 equilibrium where agent 2 vanishes

with probability one since A.7 also holds. By Lemma 23 (iii) Fi(c
1; ·) is continuous in z1.

It follows that there exists N , where z̃∗1 ∈ N , an open subset of Z1(Z), such that for every

(z1, z2), where z1 ∈ N and z2 := Z − z1, there exists a TC0 equilibrium in which agent 2

dies with probability one. The proof is completed by setting N (z∗1) := N .

That completes the proof of Theorem 4.
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