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DYNAMIC LINEAR ECONOMIES WITH SOCIAL INTERACTIONS1

Onur Özgüra and Alberto Bisinb

Social interactions arguably provide a rationale for several important phe-

nomena, from smoking and other risky behavior in teens to peer effects in school

performance. We study social interactions in dynamic economies. For these

economies, we provide existence (Markov Perfect Equilibrium in pure strate-

gies), ergodicity, and welfare results. We characterize several equilibrium prop-

erties of policy functions, spatial correlations, and social multiplier effects. Most

importantly, we study formally the issue of the identification of social interac-

tions, emphasizing the restrictions imposed by dynamic equilibrium conditions

with respect to economies populated by myopic agents and economies in which

spatial correlation is induced by selection.

Keywords: Conditional covariance stationarity, conformity, ergodicity, habits,

identification, Markov perfect equilibrium, social interactions, social norms.

1. INTRODUCTION

Agents interact in markets as well as socially—that is, in the various socioeconomic

groups they belong to. Models of social interactions are designed to capture in a simple

abstract way socioeconomic environments in which markets do not mediate all of agents’

choices. In such environments agents’ choices are determined by their preferences as well

as by their interactions with others—that is, their positions in a predetermined network

of relationships, e.g., a family, a peer group, or more generally any socioeconomic group.1

Social interactions arguably provide a rationale for several important phenomena, Peer

effects, in particular, have been indicated as one of the main empirical determinants of
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iliano Amarante, Olivier Armantier, Jess Benhabib, Ken Binmore, Michele Boldrin, Yann Bramoullé,
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Takashi Kunimoto, Justin Leroux, David Levine, Bob Lucas, Debraj Ray, Manuel Santos, Tom Sar-
gent, José Scheinkman, Karl Schlag, Paolo Siconolfi, Yves Sprumont, Bruno Strulovici, Jean Tirole, and
many seminar participants. Finally, we would like to thank Ben Golub and Itai Sher who read an early
version of the paper and made detailed suggestions which greatly improved the presentation. Part of
this research was done while Özgür was visiting the Economics Department at the Université Laval.
Thanks to Yann Bramoullé and Bernard Fortin for organizing the visit. Özgür is grateful for financial
support to “La Chaire du Canada en Économie des Politiques Sociales et des Ressources Humaines” at
Université Laval, CIREQ, CIRPÉE, and FQRSC.
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1The integration of models of social interactions within economic theory is an active and interesting

area of research. See the recent Handbook of Social Economics, Benhabib, Bisin, and Jackson (2011).
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risky behavior in adolescents.2 Relatedly, peer effects have been studied in connection

with education outcomes,3 obesity,4 friendship and sex, 5 labor market referrals,6 neigh-

borhood and employment segregation, 7 criminal activity,8 and several other socioeco-

nomic phenomena.9

The large majority of the existing models of social interactions are static; or, when dy-

namic models of social interactions are studied, it is typically assumed that agents are my-

opic and their choices are subject to particular behavioral assumptions.10 In this paper,

we contribute to this literature by studying social interactions in dynamic economies. We

focus our attention on linear economies, in which each agent’s preferences are quadratic.

Dynamic linear models of course have appealing analytical properties. Hansen and Sar-

gent (2004) study this class of models systematically, exploiting the tractability of linear

control methods and matrix Riccati equations. While the class of economies we study in

this paper allows for a countable number of heterogeneous agents and an infinite horizon,

giving rise to infinite dimensional systems, some tractability is still maintained. Further-

more, in the class of economies we study agents display preferences for conformity, that

is, preferences which incorporate the desire to conform to the choices of agents in a

reference group.

More specifically, each agent’s preferences are hit by random preference shocks over

time. Each agent interacts with agents in his social reference group, in the sense that

each agent’s instantaneous preferences depend on the current choices of agents in his so-

2See e.g., Axtell et al. (2006), Cutler and Glaeser (2007), Gaviria and Raphael (2001), Krauth (2006),
Kremer and Levy (2008), Nakajima (2007), Sacerdote (2001).

3Altonji et al. (2005), Ammermueller and Pischke (2009), Bénabou (1996), Bifulco et al. (2009),
Borjas (1995), De Giorgi et al. (2009), Evans et al. (1992), Hoxby (2000a,b), Soetevent and Kooreman
(2007).

4Burke and Heiland (2007), Christakis and Fowler (2007).
5Akerlof et al. (1996), Bearman et al. (2004), Cipollone and Rosolia (2007), Conti et al. (2009),

Currarini et al. (2009), Kandel (1978), Moody (2001).
6Bayer et al. (2008), Calvo-Armengol and Jackson (2004), Conley and Topa (2002), Goldin and Katz

(2002), Granovetter (1973, 1995), Ioannides and Datcher Loury (2004), and Topa (2001).
7Bénabou (1993), Case and Katz (1991), Crane (1991), Durlauf (1996, 2004), Hoff and Sen (2005),

Katz et al. (2001), Ludwig et al. (2001), Mobius (2000), Schelling (1972).
8Calvo-Armengol et al. (2009), Glaeser, Sacerdote, and Scheinkman (1996), Kling et al. (2005), Lud-

wig et al. (2001).
9See Bisin et al. (2010), Glaeser and Scheinkman (2001), Moody (2001) for surveys.
10Exceptions include an example on female labor force participation in Glaeser and Scheinkman

(2001), Binder and Pesaran (2001) on life-cycle consumption under social Interactions, Blume (2003)
on social stigma, Brock and Durlauf (2010) and De Paula (2009) on duration models, Ioannides and
Soetevent (2007) on endogenous local and global interactions, where agents best respond to lagged
decisions, and the theoretical analysis of Bisin, Horst, and Özgür (2006).
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cial reference group, as a direct externality. Each agent’s instantaneous preferences also

depend on the agent’s own previous choice, representing the inherent costs to dynamic

behavioural changes due e.g., to habits. When agents’ reference groups overlap, each

agent’s optimal choice depends on all the other agents’s previous choices and current

preference shocks, as long as they are observable. We allow for complete and incomplete

information with respect to preference shocks. Requiring that the social and informa-

tional structure of each agent satisfy a symmetry condition, we restrict our analysis to

symmetric Markov perfect equilibria. Agents’ choices at equilibrium are determined by

linear policy (best reply) functions. More specifically, e.g., in infinite-horizon economies,

a symmetric Markov perfect equilibrium is represented by a symmetric policy function,

g, which maps an agent’s current choice at time t, linearly in each agent’s past choices,

xbt−1, in each agent’s contemporaneous idiosyncratic preference shock, θbt , and in the mean

preference shock, θ:

g (xt−1, θt) =
∑

b∈A

cb xbt−1 +
∑

b∈A

db θbt + e θ

For these economies, we provide some fundamental theoretical results: (Markov perfect)

equilibria exist (for finite economies they are unique) and they induce an ergodic stochas-

tic process over the equilibrium configuration of actions. Furthermore, a stationary er-

godic distribution exists. We also derive a recursive algorithm to compute equilibria. The

proof of the existence theorem, in particular, requires some subtle arguments. In fact,

standard variational arguments require bounding the marginal effect of any infinitesimal

change dxa on the agent’s value function. But in the class of economies we study, the

envelope theorem (as e.g., in Benveniste and Scheinkman (1979)) is not sufficient for

this purpose, as dxa affects agent a’s value function directly and indirectly, through its

effects on all agents b ∈ A\a’s choices, which in turn affect agent a’s value function.

The marginal effect of any infinitesimal change dxa is then an infinite sum of endoge-

nous terms. In our economy, however, we can exploit the linearity of policy functions to

represent a symmetric MPE by a fixed point of a recursive map which can be directly

studied.

Exploiting the linear structure of our economies we can study equilibria in some detail,

characterizing the parameters of the policy function as well as a fundamental statistical

property of equilibrium, the cross-sectional auto-correlation of actions. Based on this,
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we obtain a series of results regarding the welfare properties of equilibrium and vari-

ous comparative dynamics exercises of interest. First of all, we show that, since social

interactions are modelled in this paper as a preference externality, equilibria will not

be efficient in general. We also characterize the form of the inefficiency: at equilibrium

each agent’s policy function weights too heavily the agent’s own preference shock and

previous action and not enough the other agents’. The comparative dynamics exercises

illustrate e.g., the equilibrium effects of the strength of social interactions and of the

social and informational structure of the economy.

Finally, we exploit our characterization results of the equilibria to address generally

the issue of identification of social interactions in our context, with population data.

While the empirical literature has often interpreted a significant high correlation of

socioeconomic choices across agents, e.g., peers, as evidence of social interactions, in the

form, e.g., of preferences for conformity, it is well known at least since the work of Manski

(1993) that the empirical study of social interactions is plagued by subtle identification

problems. Intuitively, in our economy for instance, the spatial correlation of actions at

equilibrium can be due to social interactions or to the spatial correlation of preference

shocks. More formally, take two agents, e.g., agent a and agent b. A positive correlation

between xat and xbt could be due to e.g., preference for conformity. But the positive

correlation between xat and xbt could also be due to a positive correlation between θat and

θbt . In this last case, preferences for conformity and social interactions would play no role

in the correlation of actions at equilibrium. Rather, such correlation would be due to the

fact that agents have correlated preferences. Correlated preferences could generally be

due to some sort of assortative matching or positive selection, which induce agents with

correlated preferences to interact socially.

In the context of our economy, we ask whether the restrictions implied by the dynamic

equilibrium analysis help identify social interactions and distinguish them from correlated

preferences. We show that the answer is in fact affirmative, but only if the economy is

non-stationary, in a precise sense. To illustrate our results, consider for instance the

issue of peer effects in adolescents’ substance use. Suppose the econometrician observes

the behavior of a population of students in a school over time (at different grades). A

significant high correlation of socioeconomic choices across students in the school could

be due to selection in the endogenous composition of the school in terms of unobserved

(to the econometrician) correlated characteristics of the agents. Any significant variation

in students’ behavior through time (grades) must however be due to social interactions.
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A student whose choice is affected by the choices of his school peers will in fact rationally

anticipate how much longer he will interact with them. In particular, his propensity to

conform to his peers’ actions will tend to decrease over time (grades) and will be the

lowest in the final years in the school. This non-stationarity of each student’s behavior at

equilibrium is the key to the identification of social interaction in our class of economies.11

The simplicity of linear models allows us to extend our analysis in several directions

which are important in applications and empirical work. This is the case, for instance of

general (including asymmetric) neighborhood network structures for social interactions.

But our analysis extends also to general stochastic processes for preference shocks and

to the addition of global interactions. One particular form of global interactions occurs

when each agent’s preferences depend on an average of actions of all other agents in the

population, e.g. Brock and Durlauf (2001a), and Glaeser and Scheinkman (2003). This is

the case, for instance, if agents have preferences for social status. More generally, global

interactions could capture preferences to adhere to aggregate norms of behavior, such as

specific group cultures, or other externalities as well as price effects. Finally, and perhaps

most importantly, we extend our analysis to encompass a richer structure of dynamic

dependence of agents’ actions at equilibrium. In particular we study an economy in which

agents’ past behavior is aggregated through an accumulated stock variable which carries

habit persistence, which can be directly applied e.g., to the issue of teenage substance

addiction due to peer pressure at school. With respect to the addiction literature, as

e.g., Becker and Murphy (1988), we model the dynamics of addiction considering peer

effects not only in a single-person decision problem, but rather in a social equilibrium,

allowing for the intertemporal feedback channel between agents across social space and

through time.12 In this context we show that in equilibrium each agent’s choice depends

on the stock of his neighbors’ actions, on their long-term behavioral patterns rather

than just on their previous period actions. Also, in non-stationary economies, as the

final period approaches, each agent assigns higher weights to his own stock, giving rise

to an initiation-addiction behavioral pattern at equilibrium which is consistent with

observation, e.g., in Cutler and Glaeser (2007) and DeCicca et al. (2008).

11This pattern of behavior appears consistent with the peer effects study of Hoxby (2000a,b).
12See also Becker et al. (1994), Gul and Pesendorfer (2007), Gruber and Koszegi (2001); see Rozen

(2010) for theoretical foundations for intrinsic linear habit formation; see also Elster (1999) and Elster
and Skog (1999) for surveys.
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2. DYNAMIC ECONOMIES WITH SOCIAL INTERACTIONS

While we develop most of our analysis in the context of linear models, it is useful to

set up the general model first, as we do in this section, to be as clear and specific as

possible regarding the assumptions we impose on the economy we study.

Time is discrete and is denoted by t = 1, . . . , T . We allow both for infinite economies

(T =∞) and economies with an end period (T <∞). A typical economy is populated by

a countable set of agents A, a generic element of which being denoted by a.13 Each agent

lives for the duration of the economy. At the beginning of each period t, agent a’s random

preference type θat is drawn from Θ, a compact subset of a finite dimensional Euclidean

space Rn. The random variables θat are independently and identically distributed across

time and agents with probability law ν.14 We assume, with no loss of generality, that

the random variable θt := (θat )a∈A is defined, for all t, on the canonical probability space

(Θ,F ,P), where Θ := {(θa)a∈A : θa ∈ Θ}. At each period t, agent a ∈ A chooses an

action xat from the set X, a compact subset of a finite dimensional Euclidean space Rp.
Let X := {x = (xa)a∈A : xa ∈ X} be the space of individual action profiles.

Each agent a ∈ A interacts with agents in the set N(a), a nonempty subset of the

set of agents A, which abstractly represents agent a’s social reference group. The map

A : N → 2A is referred to as a neighbourhood correspondence and is assumed exogenous.

Agent a’s instantaneous preferences depend on the current choices of agents in his refer-

ence group, {xbt}b∈N(a), representing social interactions as direct preference externalities.

Agent a’s instantaneous preferences also depend on the agent’s own previous choice,

xat−1, representing inherent costs to dynamic behavioural changes due e.g., to habits. In

summary, agent a’s instantaneous preferences at time t are represented by a continuous

utility function

(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t

)
7→ u

(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t

)

Agents discount expected future utilities using the common stationary discount factor

13We study an economy populated by a countably infinite number of agents where A := Z, but our
analysis applies to economies with a finite number of agents.

14We use the i.i.d. assumption for methodological clarity. The focus throughout the paper until
Section 6 is on understanding purely endogenously generated equilibrium correlations so that they could
be cleanly compared to the alternative models of correlated preferences discussed in the identification
section (Section 6). The model, of course, is flexible to accomodate correlated shocks across agents and
time. We show how this is done in Section 7.2.
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β ∈ (0, 1).

Let xt−1 = (x0, x1, . . . , xt−1) and θt−1 = (θ1, . . . , θt−1) be the (t − 1)-period choices

and type realizations, where x0 ∈ X is the initial configuration. Before each agent’s time

t choice, xt−1 is observed by all agents and the current value of the random variable

θt realizes. Agent a ∈ A observes only the part Iaθt := {θbt : b ∈ I(a)}, where

I(a) ⊂ A is his information set. Similarly, let Iaθ
t−1 = (Iaθ1, . . . , Iaθt−1). We study

both economies with complete information, I(a) = A, and economies with incomplete

information, I(a)  A. After time t choices are made, xt = (xbt)b∈A ∈ X becomes common

knowledge and the economy moves to time t+ 1.

A strategy for an agent a is a sequence of measurable functions xa = (xat ), where for

each t, xat : Xt × (ΘI(a))t → X. Agents’ strategies along with the probability law for

types induce a stochastic process over future configuration paths. Each agent a ∈ A’s

objective is to choose xa to maximize

E

[
T∑

t=1

βt−1u
(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t

) ∣∣∣ (x0, θ1)

]
(2.1)

given the strategies of other agents and given (x0, Iaθ1) ∈ X×ΘI(a).

We require that the social and informational structure satisfies the following symmetry

restrictions:15

1. For all a, b ∈ A, N(b) = Rb−aN(a), where Rb−a is the canonical shift operator in

the direction b− a.16

2. For all a, b ∈ A, I(b) = Rb−aI(a).

We restrict our analysis to symmetric Markov perfect equilibria. Agents’ strategies are

Markovian if after any t− 1-period history (xt−1, θt), they depend only on the previous

period configuration xt−1 and the current type realizations θt.

Because of symmetry, it is enough to analyze the optimization problem relative to a

single reference agent, say agent 0 ∈ A. Assume that the optimal choice of any economic

agent b ∈ A is determined by a continuous choice function g : X×ΘI(0)×{1, . . . , T} → X

such that for all t = 1, . . . , T and after any history (xt−1, θt) ∈ Xt × Θt, his t-th period

15Heterogeneity can be incorporated into the probabilistic structure of the types θat . Also, we can
allow for heterogeneity of the network structure across agents by augmenting the strategy spaces to
incorporate network structure into individual heterogeneity. We do this in Section 7.1.

16That is, c ∈ N(a) if and only if c+ (b− a) ∈ N(b). The operations of addition and subtraction are
legitimate given that we typically let A := Zd, the d-dimensional integer lattice.
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choice is given by

xbt (g)
(
xt−1, θt

)
= gT−(t−1)(R

b xt−1, R
b I0 θt)

The value of the optimization problem of agent a is then given by17

V T
g (Ra x0, R

a I0 θ1) = max
(xat )Tt=1

E

[
T∑

t=1

βt−1u
(
xat−1, x

a
t , {xbt(g)}b∈N(a), θ

a
t

)
]

The value function associated with this dynamic choice problem can be shown to satisfy

Bellman’s Principle of Optimality by standard arguments (see e.g., Stokey and Lucas

(1989)) and, hence, can be written in the following recursive form,

V T−(t−1)
g (Ra xt−1, R

a I0 θt) = max
xat∈X

E

[
u
(
xat−1, x

a
t , {xbt(g)}b∈N(a), θ

a
t

)

+ β V T−t
g

(
Ra
(
xat ,
{
xbt(g)

}
b6=a

)
, Ra I0 θt+1

)]
(2.2)

for t = 1, . . . , T and for all (xt−1, θt) ∈ Xt × Θt.18 We are now ready to define our

equilibrium concept.

Definition 1 A symmetric Markov Perfect Equilibrium (MPE) of a dynamic economy

with social interactions is a measurable map g∗ : X×ΘI(0) × {1, . . . , T} → X such that

for all a ∈ A, for all t = 1, . . . , T , and for all (xt−1, θt) ∈ Xt ×Θt

g∗T−(t−1) (Ra xt−1, R
a I0 θt) ∈ argmax

xat∈X
E

[
u
(
xat−1, x

a
t ,
{
xbt(g

∗)
}
b∈N(a)

, θat

)

+ β V T−t
g∗

(
Ra
(
xat ,
{
xbt(g

∗)
}
b6=a

)
, Ra I0 θt+1

)]
(2.3)

Clearly, an MPE is necessarily a subgame perfect equilibrium; that is, each agent’s

continuation strategy is a best response to other agent’s continuation strategies after

any possible history. Notice also the time notation we use for the Markovian policy:

g∗T−(t−1) denotes the first-period equilibrium choice in a T − (t − 1)-period economy.

Since economies are nested, g∗T−(t−1) represents also the t-period equilibrium choice in a

T -period economy.

We conclude this section with a few remarks to justify our focus on MPEs. First of all,

17The preference shocks being serially uncorrelated, we do not need to condition on the value of past
realizations. See Section 7.2 for a treatment of persistent shocks.

18We have adopted the the convention that V 0
g (x, I0 θ) := 0 for any (x, θ) ∈ X×Θ.
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Markovian strategies are not a restriction for finite-horizon economies: we prove that the

unique symmetric subgame perfect equilibrium for any finite-horizon economy is neces-

sarily Markovian. Moreover, in an infinite horizon economy (T =∞), a symmetric MPE

is not necessarily stationary. The sequence of unique MPEs for finite horizon economies

converges however to a g∗ : X×ΘI(0) → X which turns out to be a stationary MPE of the

infinite-horizon economy whose properties we focus on. Finally, we refer to Bisin, Horst,

and Özgür (2006) for a discussion of non-Markovian equilibria in a related context.

3. DYNAMIC LINEAR ECONOMIES WITH SOCIAL INTERACTIONS AND CONFORMITY
PREFERENCES

We focus our attention on linear economies with conformity preferences. These are

environments in which each agent’s preferences incorporate the desire to conform to the

choices of agents in his reference group.19

Preferences for conformity arguably provide a rationale for several important social

phenomena. The empirical literature has for instance documented preferences for con-

formity as a motivation for smoking and other risky behaviour in teens. Similarly, the

role of conformity is also documented by Glaeser, Sacerdote, and Scheinkman (1996)

with regards to criminal activity and by a large literature with regards to peer effects

in education outcomes.20 Conformity also represents a natural environment in which to

study dynamic equilibrium. In many relevant social phenomena, in fact, the effects of

preferences for conformity are amplified by the presence of limits to the reversibility of

dynamic choices. This is of course the case for smoking, alcohol abuse and other risky

teen behaviour, which are hard to reverse because they might lead to chemical addic-

tions. In other instances, while addiction per se is not at issue, nonetheless behavioural

choices are hardly freely reversible because of various social and economic constraints,

as is the case, for instance, of engaging in criminal activity. Finally, exogenous and pre-

dictable changes in the composition of groups, as e.g., in the case of school peers at the

end of a school cycle, introduce important non-stationarities in the agents’ choice. These

non-stationarities also call for a formal analysis of dynamic social interactions.

With the objective of providing a clean and simple analysis of dynamic social in-

teractions in a conformity economy, we impose strong(er than required) but natural

19While we model preferences for conformity directly as a preference externality, we intend this as a
reduced form of models of behavior in groups which induce indirect preferences for conformity, as e.g.,
Jones (1984), Cole et al. (1992), Bernheim (1994), Peski (2007).

20See the Introduction for the relevant references.
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assumptions.21 In particular (i) we restrict the neighborhood correspondence to repre-

sent the minimal interaction structure allowing for overlapping groups, (ii) we restrict

preferences to be quadratic, and (iii) we impose enough regularity conditions on the

agents’ choice problem to render it convex. Formally,

Assumption 1 A linear conformity economy satisfies the following.

1. Let A := Z represent the countable set of agents. Each agent interacts with his

immediate neighbors, i.e., for all a ∈ A, N(a) := {a− 1, a+ 1}.
2. The contemporaneous preferences of an agent a ∈ A are represented by the utility

function

u(xat−1, x
a
t , x

a−1
t , xa+1

t , θat ) := −α1(xat−1 − xat )2 − α2(θat − xat )2(3.1)

−α3(xa−1
t − xat )2 − α3(xa+1

t − xat )2

where α1, α2, and α3, are positive constants.

3. Let X = Θ = [x, x̄] ⊂ R, where x < x̄. Let v be absolutely continuous with a positive

density22, E [θat ] =
∫
θat dν =: θ̄ ∈ (x, x̄), and V ar(θat ) =

∫ (
θat − θ̄

)2
dν <∞.23

Assumption 1-1 requires that the reference group of each agent a ∈ A be composed

of his immediate neighbors in the social space, namely the agents a− 1 and a + 1. The

utility function u defined in Assumption 1-2 describes the trade-off that agent a ∈ A
faces between matching his individual characteristics (xat−1, θ

a
t ) and the utility he receives

from conforming to the current choices of his peers (xa−1
t , xa+1

t ). The different values of

αi represent different levels of intensity of the social interaction motive relative to the

own (or intrinsic) motive. Finally, Assumption 1-2 and 1-3 jointly guarantee that the

agents’ choice problem is convex. Finally, notice that the requirements that α1, α2 > 0

anchor agents’ preferences on their own private types and past choices. It is easy to see

that, without such anchor, actions are driven only by social interactions and a large

multiplicity of equilibria arises.

21See Section 7 for possible directions in which the structure and the results we obtain are easily
generalized.

22We will call a measure µ ‘absolutely continuous’ if it is absolutely continuous with respect to the
Lebesgue measure λ, i.e., if µ(A) = 0 for every measurable set A for which λ(A) = 0.

23We need absolute continuity only when we prove inefficiency. All other results are obtained without
that assumption.
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3.1. Equilibrium

We provide here the basic theoretical results regarding our dynamic linear social in-

teraction economy with conformity. The reader only interested in the characterization

can skip this section, keeping in mind that equilibria exist (for finite economies they

are unique) and they induce an ergodic stochastic process over paths of action profiles.

Furthermore, a stationary ergodic distribution also exists for the economy. Finally, a

recursive algorithm to compute equilibria is derived. Unless otherwise mentioned specif-

ically, the proofs of all statement and other results can be found in the Supplemental

Appendix.

Theorem 1 (Existence - Complete Information) Consider an economy with conformity

preferences and complete information.

1. If the time horizon is finite (T <∞), then the economy admits a unique symmetric

MPE g∗ : X × Θ × {1, · · · , T} 7→ X such that for all t ∈ {1, . . . , T}, for all

(xt−1, θt) ∈ X×Θ

g∗T−(t−1)(xt−1, θt) =
∑

a∈A

caT−(t−1) x
a
t−1 +

∑

a∈A

daT−(t−1) θ
a
t + eT−(t−1) θ P−a.s.

where caτ , d
a
τ , eτ ≥ 0, a ∈ A, and eτ +

∑
a∈A(caτ + daτ ) = 1, 0 ≤ τ ≤ T . Moreover, the

equilibrium is also unique in the class of subgame perfect equilibria (SPE), meaning

that there does not exist any non-Markovian SPE for our economy.

2. If the time horizon is infinite (T = ∞), then the economy admits a symmetric

stationary MPE g∗ : X×Θ 7→ X such that

g∗(xt−1, θt) =
∑

a∈A

ca xat−1 +
∑

a∈A

da θat + e θ P− a.s.

where ca, da, e ≥ 0, for a ∈ A, and e+
∑

a∈A(ca + da) = 1.24

The theorems in this section can be extended with straightforward modifications to

the case of incomplete information. We state without proof, e.g., the existence theorem

for economies with incomplete information next.

24Several assumptions can be relaxed while guaranteeing existence. In particular, the symmetry of
the neighborhood structure can be substantially relaxed. See Section 7.1 for the discussion.
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Theorem 2 (Existence - Incomplete Information) Consider an economy with confor-

mity preferences and with incomplete information.

1. For T < ∞, the economy admits a unique symmetric MPE g∗ : X × ΘI(0) ×
{1, · · · , T} 7→ X such that for all t ∈ {1, . . . , T},

g∗T−(t−1)(xt−1, I0 θt) =
∑

a∈A

caT−(t−1) x
a
t−1+

∑

a∈I(0)

daT−(t−1) θ
a
t +eT−(t−1) θ P−a.s.

where caτ , d
a
τ , eτ ≥ 0 and eτ +

∑
a∈A c

a
τ +

∑
a∈I(0) d

a
τ = 1, 0 ≤ τ ≤ T .

2. For T =∞, the economy admits a symmetric MPE g∗ : X×ΘI(0) 7→ X such that

g∗(xt−1, I0 θt) =
∑

a∈A

ca xat−1 +
∑

a∈I(0)

da θat + e θ P− a.s.

where ca, da, e ≥ 0 and e+
∑

a∈ A c
a +

∑
a∈I(0) d

a = 1.

The proof of the existence theorem requires some subtle arguments. While referring

to the Appendix for details, a few comments here in this respect will be useful. Consider

the (infinite dimensional) choice problem of each agent a ∈ A. To be able to apply

standard variational arguments to this problem it is necessary to bound the marginal

effect of any infinitesimal change dxa on the agent’s value function. To this end, the

Envelope theorem (as e.g., in Benveniste and Scheinkman (1979)) is not enough, as dxa

affects agent a’s value function directly and indirectly, through its effects on all agents

b ∈ A\a’s choices, which in turn affect agent a’s value function. The marginal effect

of any infinitesimal change dxa is then an infinite sum. Furthermore, each term in the

sum contains endogenous terms from some agent b ∈ A\a’s policy function (and there is

an infinite number of them), which makes it impossible to adopt the methodology used

by Santos (1991) to prove the smoothness of the policy function in infinite dimensional

recursive choice problems.

In our economy, with quadratic utility, policy functions are necessarily linear and,

provided we show that equilibria are interior, symmetric MPE’s in pure strategies can

be represented by a policy function which is obtained as a fixed point of a recursive map

which can be directly studied.25 Extending the existence proof to general preferences

25The class of economies we study are theoretically equivalent to a class of stochastic games, with an
infinite number of agents, and uncountable state spaces. Ready-to-use results for the existence of “pure
strategy” Markov-perfect equilibria for these environments do not exist. For the state of the art in that
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would require therefore sufficient conditions on the structural parameters to control the

curvature of the policy function of each agent’s decision problem. We conjecture that

this can be done although sufficient conditions do not appear transparently from our

proof.

3.2. The parameters of the policy function

By exploiting the linearity of policy functions, our method of proof is constructive, pro-

ducing a direct and useful recursive computational characterization for the parameters

of the symmetric policy function at equilibrium. We repeatedly exploit this characteriza-

tion in the next section e.g., when performing comparative dynamics exercises. Consider

the choice problem of agent 0. For any T -period economy, agent 0’s dynamic program

yields a FOC that takes the following form (see Lemma 3)

(3.2) x0
1 =

(
1

∆T

)(
α1 x

0
0 + α2 θ

0
1 +

∑

a6=0

γbT x
b
1 + µT θ̄

)

where the coefficients ∆T and γbT , and µT are the effects on agent zero’s discounted

expected marginal utility of changes in agents 0 and b’s first period actions and the

change in the level of θ̄, respectively.

Let LT be a map induced by (3.2) s.t. (ĉ, d̂, ê) = LT (c, d, e), by matching coefficients

of the policy on both sides of (3.2), i.e., for each a ∈ A

(3.3)

ĉa = ∆−1
T

(
α11{a=0} +

∑
b6=0 γ

b
T c

a−b
)

d̂a = ∆−1
T

(
α21{a=0} +

∑
b6=0 γ

b
T d

a−b
)

ê = ∆−1
T

(
µT + e

∑
b 6=0 γ

b
T

)

Let Lc,d,e := {(c, d, e) : e ≥ 0, ca ≥ 0, da ≥ 0,∀a and e +
∑

a(c
a + da) = 1} be the

space of nonnegative coefficient sequences summing to 1. The existence of an equilibrium

policy for the first period of a T -period economy is then equivalent to the existence of a

coefficient sequence (c∗T , d
∗
T , e

∗
T ) which is the fixed point of the map LT : Lc,d,e → Lc,d,e

induced by (3.2).

The parameters of the map LT , namely ∆T ,
(
γbT
)
a6=0

, µT , depend only on the con-

literature, see Mertens and Parthasarathy (1987) and Duffie et al. (1994). See also Mertens (2002) and
Vieille (2002) for surveys.
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tinuation equilibrium coefficients (c∗s, d
∗
s, e
∗
s)
T−1
s=1 in a linear fashion (see (A.10), (A.12),

and (A.14) for their detailed expressions). For T = 1, the parameters of L1 are dictated

directly by the underlying preferences, namely ∆1 = α1 + α2 + 2α3, γ1
1 = γ−1

1 = α3,

γb1 = 0, for all b 6= −1, 0, 1, and µ1 = 0. Thus, the map L1 defined by the system in (3.3)

becomes a contraction mapping whose unique fixed point is computed as the unique root

to a second-order difference equation that satisfies transversality conditions toward both

infinities. Consequently, the equilibrium policy coefficients are computed as in the next

Theorem.

Theorem 3 (Recursive algorithm) Consider a finite-horizon T -period economy with

conformity preferences (αi > 0, i = 1, 2, 3) and complete information.

(i) The map L1 for a one-period economy, defined in (3.3), admits a unique fixed point.

We compute the (exponential) coefficient sequence in closed-form. For any a ∈ A,

(3.4) c∗a1 = r
|a|
1

(
α1

α1 + α2

)(
1− r1

1 + r1

)
and d∗a1 = r

|a|
1

(
α2

α1 + α2

)(
1− r1

1 + r1

)

where r1 =
(

∆1

2α3

)
−
√(

∆1

2α3

)2

− 1 and ∆1 = α1 + α2 + 2α3.

(ii) The coefficients (c∗s, d
∗
s, e
∗
s)
T
s=2 are computed recursively as the unique fixed points of

the contraction maps Ls : Lc,d,e → Lc,d,e, s = 2, . . . , T , defined in (3.3), whose

parameters ∆s, (γ
a
s )a6=0 , µs depend linearly only on the continuation coefficients

(c∗τ , d
∗
τ , e
∗
τ )
s−1
τ=1, as defined in (A.10), (A.12), and (A.14).

(iii) Moreover, limT→∞ (c∗T , d
∗
T , e

∗
T ) = (c∗, d∗, e∗) exists and it is the coefficient sequence

of the stationary Markovian equilibrium policy function for the infinite-horizon

economy.

Fixed point calculations take less than a few seconds on an ordinary computer, for

each period. Finally, the sequence of fixed point maps that we compute at each iteration

converges to a policy sequence, which turns out to be the infinite-horizon stationary

MPE. The convergence is very rapid, under a few minutes.

3.3. Ergodicity

With such a characterization of the parameters of the policy function at hand, we are

able to characterize very tightly the spatial (cross-sectional) and intertemporal behavior
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Figure 1.— Non-stationary Optimal Policy.

of the equilibrium process emerging from the class of dynamic models we study. Let π0

be an initial distribution on the configuration space X. Given the initial distribution

π0, a stationary MPE of the economy with conformity induces an equilibrium process

(xt ∈ X)∞t=0 (via the policy function g∗) and an associated transition function Qg∗ . This

latter generates iteratively a sequence of distributions (πt)
∞
t=1 on the configuration space

X, i.e., for t = 0, 1, . . .

πt+1 (A) = πtQg∗ (A) =

∫

X

Qg∗ (xt, A) πt (dxt+1)

We show first that, given the induced equilibrium process, the transition function Qg∗

admits an invariant distribution π, i.e., π = π Qg∗ and that the equilibrium process

starting from π is ergodic26.

Ergodicity does not necessarily imply the convergence of the equilibrium process to

a unique distribution starting from an arbitrary initial distribution π0. Conditions are

necessary to guarantee such convergence.27 We next show that, for any initial distribution

π0 and a stationary Markovian policy function g∗, the equilibrium process (xt ∈ X)∞t=0

26We call a Markov process (xt) with state space X under a probability measure P ergodic if
1
T

∑T
t=1 f(xt) →

∫
fdP P -almost surely for every bounded measurable function f : X → R. See,

e.g., Duffie et al. (1994) for a similar usage.
27The well-known Döblin conditions to that effect can be found in Doob (1953). See also Tweedie

(1975) for a similar characterization.
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converges in distribution to the invariant distribution π, independently of π0.28 This also

implies that π is the unique invariant distribution of the equilibrium process (xt ∈ X)∞t=0.

More specifically,

Theorem 4 (Ergodicity) Suppose the process
(
(θat )

∞
t=−∞

)
a∈A is i.i.d. with respect to a

and t according to ν. The equilibrium process (xt ∈ X)∞t=0 induced by a symmetric sta-

tionary Markov perfect equilibrium of an economy with conformity via the policy function

g∗(xt−1, θt) and the unique invariant measure π as the initial distribution is ergodic; π

is the joint distribution of

(3.5) xt =

(
e θ

1− C
+
∞∑

s=1

∑

b1∈A

· · ·
∑

bs∈A

cb1 · · · cbs−1 dbs θa+b1+···+bs
t+1−s

)

a∈A

where C :=
∑

a∈A c
a is the sum of coefficients in the stationary policy function that

multiply corresponding agents’ last period choices. Moreover, the sequence (πt)
∞
t=1 of dis-

tributions generated by the equilibrium process (xt ∈ X)∞t=0 converges to π in the topology

of weak convergence for probability measures, independently of any arbitrary initial dis-

tribution π0.29

4. CHARACTERIZATION OF EQUILIBRIUM

Exploiting the linear structure of our economies we can study equilibria in some detail.

Recall that the policy function in each period t = 1, . . . , T , for each agent a ∈ A, is

(4.1) xat =
∑

b∈A

cbT−(t−1) x
a+b
t−1 +

∑

b∈A

dbT−(t−1) θ
a+b
t + eT−(t−1) θ,

with eT−(t−1) +
∑

a∈A(caT−(t−1) + daT−(t−1)) = 1, when T is finite; and

(4.2) xat =
∑

b∈A

cb xa+b
t−1 +

∑

b∈A

db θa+b
t + e θ,

with e+
∑

a∈A(ca + da) = 1, in the infinite-horizon case.

First of all, we study the parameters of the policy function. The coefficients cbT−(t−1)

28Note however that Theorem 1 does not guarantee that the policy function g∗(xt−1, θt) is unique.
29A sequence of probability measures (λt) is said to converge weakly (or in the topology of weak

convergence for probability measures) to λ if, for any bounded, measurable, continuous function f :
X→ R, limt→∞

∫
f dλt =

∫
fdλ almost surely (see e.g. Kallenberg (2002), p.65).
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and dbT−(t−1) (resp. cb and db in the case of infinite-horizon economies), in particular,

may be viewed as a measure for the total impact of the action xa+b
t−1 and of the preference

shock θa+b
t of agent a + b, respectively, on the optimal current choice of agent a; where

b concisely represents the social distance between the two agents.30 Furthermore, we

study a fundamental statistical property of equilibrium, cross-sectional auto-correlation

of actions. In fact, although any agent a ∈ A interacts directly only with a small subset

of the population, at equilibrium, each agent’s optimal choice is correlated with those of

all the other agents. Let ρa,T denote the conditional correlation between the first-period

equilibrium actions of agents a-step away from each other, in the T -period economy,

given x0 ∈ X:31

ρa,T =
Cov

(
x0

1, x
a
1

∣∣∣ x0

)

V ar
(
x0

1

∣∣∣ x0

) .(4.3)

4.1. Policy Function

Consider first a finite-horizon economy. Since the policy function for this economy is

well-defined, the coefficients cbT−(t−1) and dbT−(t−1) satisfy

lim
|b|→∞

ca+b
T−(t−1) = lim

|b|→∞
da+b
T−(t−1) = 0

The impact of an agent a + b on agent a tends to zero as |b| → ∞. In this sense, linear

conformity economies display weak social interactions.

Furthermore, as we have shown in Section 3.2,

lim
T→∞

cT = c, lim
T→∞

dT = d, and lim
T→∞

eT = e

30See Akerlof (1997) for richer definitions of social distance.
31The correlation between the first-period optimal choices of agents a and b, is

Cov
(
xa1 , x

b
1

∣∣∣x0

)

√
V ar

(
xa1

∣∣∣x0

)
V ar

(
xb1

∣∣∣x0

) .

Due to the symmetry imposed on our economy, such correlations are independent of agents’ labels but
depends only on |b− a|. Consequently, we can define the conditional correlation function with distances
computed relative to any agent, in particular agent 0.
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The finite-horizon parameters converge (uniformly) to the infinite-horizon stationary

policy parameters.

Finally, equilibrium policy functions are non-stationary in the finite economy, as ra-

tional forward-looking agents change their behavior optimally through time. In the final

periods, for example, social interactions lose weight relative to individual characteristics;

see Figure 1.32

4.2. Cross-sectional Auto-correlations

Exploiting the equilibrium characterization provided by Theorems 1 and 3, and the

independence of preference shocks across agents, we can compute the covariance terms:

(4.4) Cov
(
x0

1, x
a
1

∣∣∣x0

)
= V ar(θ)

∑

a1∈A

d a1T d a1−aT .

The expression
∑

a1∈A d
a1
T d a1−aT is the discrete self-convolution of the equilibrium policy

sequence dT = (da1T )a1∈A, where a acts as the shift parameter.33 In Figure 2 we show how

the convolution behaves with respect to the distance a, for the same set of parameters

as in Figure 1. Substituting the form in (4.4) back in (4.3) for both terms, we obtain
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Figure 2.— Convolution of the Policy Coefficient Sequence.

32We plot in Figure 1 only one side of the policy coefficient sequence to get a close-up view of
the change in equilibrium behavior. The left hand side is the mirror image of that due to symmetry.
Parameter values for this figure are α1

α3
= 1, α3

α2
= 10, and β = .95

33See (D.1) for the derivation.
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(4.5) ρa,T =

∑
b∈A d

b
T d

b−a
T∑

b∈A d
b
T d

b
T

the a-step conditional cross-sectional autocorrelations for the first-period equilibrium

choices of the T -period economy. Exploiting the recursive algorithm provided by Theorem

3, we can compute these autocorrelations easily for any finite economy. We can then study

the behavior of the conditional correlation function ρa,T through time (T ) and across

social space (a). These correlations exhibit interesting dynamics: they are declining in

a, for any T , but the rate of decline cannot be ranked in T , given a; see Figure 3 for an

example with the same parametrization we used above for the policy weights in Figure

1.

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance between agents, a

A
u
to

-c
o
rr

el
a
ti

o
n

ρ
a

,T

 

 
T=1
T=2
T=3
T=4
T=5
T=

Figure 3.— Cross-sectional Auto-correlations.

In particular, given a T -period economy, consider the T -period rate of convergence of

the spatial autocorrelations, for a ≥ 034

ra,T =
ρa+1,T

ρa,T
.

We show analytically that ra,1 declines monotonically and becomes constant at the tail

in a.35 On the other hand, ra,T is typically non-monotonic in a, for longer horizons,

including for T =∞; see Figure 4. This is the case because each agent’s policy function

results from the composition of two distinct effects, the cross-sectional interaction and

the dynamic effect of actions today in the future. The first effect vanishes exponentially

34The rate is symmetrically defined with respect to agent 0, i.e., ra,T =
ρa−1,T

ρa,T
, for any a ≤ 0.

35See the proof of Proposition 1 for the argument.
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with distance at equilibrium, while the rate at which the dynamic effect vanishes is

not constant. In fact, the sum of the two effects becomes hyperbolic in distance, i.e., it

decreases very sharply when you go beyond an agent’s neighborhood and then stabilizes

with social distance. The non-monotonicity of the rate of convergence ra,T is the result

of the self-convolution of an hyperbolic sequence of policy coefficients (see Equation

(4.4) and Figure 2), which enters in the computation of the covariance. In the case of

static economies (or equivalently, of economies in their last period), the dynamic effect

is not present, the sequence of policy coefficients is therefore exponential (rather than

hyperbolic), and the rate of convergence ra,1 is monotonically decreasing.
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Figure 4.— Rate of Convergence of the Auto-correlations.

Finally, consider the T -period rate of tail convergence of the spatial autocorrelations,

rT := lim
a→∞

ra,T = lim
a→∞

(
ρa+1,T

ρa,T

)

Similarly, let the same rate for the infinite-horizon economy (T =∞) be represented by

r.

Proposition 1 (Tail Convergence Monotonicity) 36 The rate rT is monotone increas-

ing with respect to the length of the economy,

rT+1 > rT , for finite T ≥ 1.

36The proof is in Supplemental Appendix D.

ectaart.cls ver. 2006/04/11 file: OB_11.tex date: April 5, 2011



21

Moreover, the sequence of tail convergence rate for finite-horizon economies converges to

that of the infinite-horizon economy as the horizon length gets larger and the limit rate

is strictly less than 1:

lim
T→∞

rT = r < 1.

In other words, even though the autocorrelation functions might behave non-monotonically

for shorter social distances, they eventually converge (as social distance a → ∞) to an

exponential rate in the tail. Moreover, rates of tail convergence are higher the farther is

the final period of the economy (as T → ∞). This is because rational agents choose to

correlate their actions more with their neighbors in early periods and progressively less

so as they approach the end of their social interactions. Finally, as the infinite-horizon

limit is approached, the rate of tail convergence becomes stationary (as to be expected

since finite-horizon equilibria approximate the stationary infinite-horizon equilibrium).

We use this intuition to the fullest extent when discussing identification in Section 6.

In an infinite-horizon economy social interactions manifest themselves at the stationary

ergodic distribution by means of spatial autocorrelation of actions. Given x0 ∈ X, the

conditional covariance in period t of an infinite-horizon economy, between two agents

a agents away from each other is denoted by Cov
(
x0
t , x

a
t

∣∣∣ x0

)
. Let Cov (x0

∞, x
a
∞) be

the a-step unconditional covariance at the ergodic stationary distribution. Since the

stationary MPE is ergodic, it is easy to see from Lemma 2 (i) and Theorem 4 that

as t gets arbitrarily large, the conditional t-period covariance between agents 0 and a

converges to its unconditional counterpart at the limit distribution, i.e.,

Cov
(
x0
∞, x

a
∞
)

= lim
t→∞

Cov
(
x0
t , x

a
t

∣∣∣ x0

)

Moreover, the limit unconditional correlation ρb between the actions of agents a and a+b

is independent of x0 and it satisfies

ρb =
Cov (x0

∞, x
a
∞)

V ar (x0
∞)

= lim
t→∞

Cov
(
x0
t , x

a
t

∣∣∣ x0

)

V ar
(
x0
t

∣∣∣ x0

)

Finally, because of the stationarity of the policy function in (4.2), the limit covariance

between two agents a agents away from each other can be written as
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Cov
(
x0
∞, x

a
∞
)

= lim
t→∞

Cov
(
x0
t , x

a
t

∣∣∣ x0

)

=
∑

a1∈A

∑

b1∈A

ca1cb1Cov
(
xa1∞, x

a+b1
∞

)
+ V ar(θ)

∑

a1∈A

da1da1−a,(4.6)

and hence it has a simple recursive structure. In fact, since the sum of the station-

ary weights multiplying covariances on the right hand side are strictly less than one,

this system can be seen as a contraction operator. Hence, for each one-step conditional

autocorrelation sequence, there is a unique stationary unconditional autocorrelation se-

quence that we can compute using the above recursive system easily. We later exploit

this recursive structure further in Section 6.1 when we compare equilibrium stationary

distributions induced by myopic and rational agents.

In Figure 5, we report the correlation functions in both the mild and strong conformity

parameterizations as a function of social distance, b.37 Two effects are worth mentioning

here. Firstly, both correlation functions converge to zero as the distance between two

agents become arbitrarily large. Secondly, this convergence is much faster in the case of

mild interactions than in the case of strong interactions. For example, the correlation

between the equilibrium choices of agent a and agent a+ 3 (or a−3 due to symmetry) is

about 7% in the case of mild interactions whereas it is about 75% in the case of strong

interactions. The correlation between the equilibrium choices of agent a and agent a+ 6

are about 0% and 40% respectively. The strength of the desire to conform built in

individuals’ preferences determine endogenously, at equilibrium, the size of the effective

neighborhood with which an individual interacts.

5. EQUILIBRIUM PROPERTIES AND COMPARATIVE DYNAMICS

In this section we first study the welfare properties of equilibrium and then we use

the characterization of equilibria we obtained to produce several simulations illustrating

various comparative dynamics exercises of interest.

5.1. (In)efficiency

Social interactions are modelled in this paper as a preference externality, that is,

by introducing a dependence of agent a’s preferences on his/her peers’ actions. Not

surprisingly, therefore, equilibria will not be efficient in general. In this section we also

37See Section 5.2 for the parameter values for the mild and strong interaction cases.
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Figure 5.— Correlation function at the ergodic distribution for Mild and Strong
Interactions.

characterize the form the inefficiency takes when social interactions are modelled as

preferences for conformity.

A benevolent social planner, taking into account the preference externalities and at the

same time treating all agents symmetrically, would maximize the expected discounted

utility of a generic agent, say of agent a ∈ A, by choosing a symmetric choice function h

in CB(X×Θ, X), the space of bounded, continuous, and X-valued measurable functions.

The choice of h induces, in a recursive way, a sequence of choices for any agent b ∈ A,

given (x0, θ1), by

(5.1) xbt (h)
(
xt−1, θt

)
= hT−(t−1)(R

b xt−1, R
b I0 θt), for t = 1, . . . , T

Then, the planner solves38

max
{h∈CB(X×Θ,X)}

∫ T∑

t=1

βt−1

(
− α1

(
xat−1 (h)

(
xt−1, θt

)
− xat (h)

(
xt−1, θt

))2

−α2

(
θat − xat (h)

(
xt−1, θt

))2

−α3

(
xa−1
t (h)

(
xt−1, θt

)
− xat (h)

(
xt−1, θt

))2

−α3

(
xa+1
t (h)

(
xt−1, θt

)
− xat (h)

(
xt−1, θt

))2

)
T∏

t=1

P (dθt) π0 (dx0)

38With the convention that hT−(t−2)(R
a xt−2, R

a I0 θt−1) = xa0 when t = 1.
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where π0 is an absolutely continuous distribution on the initial choice profiles with a

positive density. This problem can be written recursively. For any agent a ∈ A, for all

t = 1, . . . , T , and all (xT−1, θT ) ∈ X ×ΘI(0), let the value of using the choice rule h in

the continuation be defined as

V h,T−(t−1) (Ra xT−1, R
a θT ) = −α1

(
xat−1 − hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α2

(
θat − hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
hT−(t−1)(R

a−1 xt−1, R
a−1 I0 θt)− hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
hT−(t−1)(R

a+1 xt−1, R
a+1 I0 θt)− hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

+β

∫
V h,T−t

(
Ra
{
ht(R

b xt−1, R
b I0 θt)

}
b∈A , R

a I0 θt+1

)
P (dθt+1)

which leads us to the following definition

Definition 2 (Recursive Planning Problem) Let a T -period linear economy with social

interactions and conformity preferences be given. Let π0 be an absolutely continuous

distribution on the initial choice profiles with a positive density. A symmetric Markovian

choice function g : X×ΘI(0)×{1, . . . , T} → X is said to be efficient if it is a solution,

for all a ∈ A, and for all t = 1, . . . , T , to

arg max
{h∈CB(X×Θ,X)}

∫ [
− α1

(
x0
t−1 − hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α2

(
θat − hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
hT−(t−1)(R

a−1 xt−1, R
a−1 I0 θt)− hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
hT−(t−1)(R

a+1 xt−1, R
a+1 I0 θt)− hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

+β V h,T−t
(
Ra
{
h(Rb xt−1, R

b I0 θt)
}
b∈A , R

a I0 θt+1

)]
P (dθt)P (dθt+1) πt (dxt−1)

where πt is the distribution on t-th period choice profiles induced by π0 and the planner’s

choice rule h.

As noted, preferences for conformity introduce an externality in each agent a ∈ A’s

decision problem, which depends directly on the actions of agents in neighbourhood N(a)

and, indirectly, on the actions of all agents in the economy. In equilibrium, agents do

not internalize the impact of their choices on other agents today and in the future. More

precisely,
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Theorem 5 (Inefficiency of equilibrium) A symmetric MPE of a conformity economy

is inefficient.

Furthermore, an efficient policy function will tend to weight less heavily the agent’s

own-effect and more heavily other agents’ effects, relative to the equilibrium policy. This

effect, hence the inefficiency, are neatly exhibited by comparing the equations determin-

ing policy weights in the planner (E.3) and equilibrium (A.2) scenarios. The (absolute

value of the) weights the planner’s equation associates on neighbors’ choices is twice as

large as the weights associated to neighbors in the equilibrium equation
(

α3

α1+α2+2α3

)
.

As a consequence, the relative weights that the planner assigns to neighbors’ choices are

always higher than the ones that each agent uses in equilibrium.39
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Figure 6.— Inefficiency of equilibrium.

A graphic representation of the inefficiency is obtained in Figure 6, which presents the

coefficient plot for the equilibrium policy of a one-period economy (equivalently the final

period of any finite-horizon economy): ceqbm (blue dots), and for the planner’s solution,

cplanner (red dots), respectively, for a given agent a ∈ A, and for a given set of parameter

values (α1

α2
= α2

α3
= 1, and β = .95).40

39Normalizing the relative coefficients to form a probability measure (see the argument in the proof
of Lemma 2 (iv)), we have that the measure obtained from the planner’s policy is a mean-preserving
spread of the measure obtained at equilibrium.

40We call this parametrization the mild-interaction case in Section 5.2.
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Figure 7.— Weights on past history in the stationary policy function.

5.2. Comparative Dynamics: Peer Effects

The strength of the agents’ preferences for conformity depends on the size of the pref-

erence parameter α3 relatively to α1 and α2. A policy function is represented in Figure

7, which compares a case with mild preferences for conformity (with parametrization
α1

α2
= α2

α3
= 1)41 with one with strong preferences for conformity (with parametrization

α1

α2
= 1, α2

α3
= 1

20
). On the x-axis, we plot agent a and his neighbors, while on the y-axis,

we plot the weights (cb)b∈A that the symmetric policy function g associates with the last

period actions of agents (a+ b)b∈A. While each agent’s interaction neighborhood is only

composed of two agents, in effect local interactions involve indirectly larger groups. How

large are the groups depends endogenously on the strength of the agents’ preferences for

conformity. Notice e.g., that in Figure 7, local interactions involve effectively a group

of about ten neighbors when preferences for conformity are mild and involve a group

of about thirty neighbors when preferences for conformity are strong. Furthermore, for

the same cases of mild and strong conformity, we compare in Figure 8 the case in which

neighborhoods are overlapping, N(a) = {a− 1, a+ 1}, with the case of non-overlapping

one-sided neighborhoods, N(a) = {a + 1}.42 Two effects are present here. Firstly, as in

41The discount rate is fixed at β = .95 in all the simulations unless mentioned otherwise.
42In this case, the policy function is

xat = g(Raxt−1, R
aθt) =

∑

b≥0

cb xa+b
t−1 +

∑

b≥0

db θa+b
t + e θ.
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Figure 7, an increase in the strength of the interaction parameter spreads the interaction

effects over a larger social geography. Secondly, this spread is observed most significantly

in the case of non-overlapping neighborhoods due to the uni-directional nature of the

interactions.

At the ergodic stationary distribution, when the dependence of the agents’ actions in

equilibrium are independent of the initial configuration of actions x0, such correlations

in endogenously formed groups is manifested in a phenomenon which we refer to as local

norms of behavior (see Figure 9).43 In Figure 9, we plot 100 neighboring agents on the

x-axis and their optimal choices drawn from the limit distribution at the same future

date, on the y-axis. In the top panel, clearly the optimal actions are more spread and

do not follow a significant pattern. In the bottom panel though, the optimal choices are

more concentrated and follow a clear path. This is due to the fact that, in equilibrium

agents conform to the actions of neighboring agents, leading the way to the creation

of similar local behavior. In the bottom panel of Figure 9, we observe groups of agents

(e.g., in the neighborhood of agent 20) choosing relatively low actions, and other groups

43See Appendix G for details about how we simulate the ergodic stationary distribution of actions of
the economy.
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(e.g., in the neighborhood of agent 70) choosing instead high actions. Two interesting

aspects of this phenomenon are firstly that every individual uses the same symmetric

policy function to make his choices and all heterogeneity is captured by random types

and we still have high spatial correlation and high spatial variation. Secondly, the initial

configuration of actions is irrelevant since the limit distribution of individual actions in

this economy is ergodic.
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Figure 9.— Ergodic Limit of Mild (top) and Strong (bottom) Interactions for 100
neghboring agents.

5.3. Comparative Dynamics: Information

In Figure 10, we compare the case in which agents have complete information with the

case in which they have incomplete information. In this last case, the policy function is

xat = g(Raxt−1, R
aI0 θt) =

∑

b∈A

cb xa+b
t−1 +

∑

b∈I(0)

da θa+b
t + e θ.
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In particular, we record the effect of an expansion of the information set Ra I0 θt (in-

dividuals whose types are observed by agent a) on best responses. We start with an

information structure in which each agent observes his own type only. We then increase

the number of types observed by each agent a (maintaining the symmetry of two-sided

interactions) up to the complete information limit. The red dots represent the optimal

 

 M

M M

H I H I

H I H I

M

(a) (b)

(c) (d)

Figure 10.— Effect of Information on Interactions.

weights in the policy function of an of agent a as a response to the informational struc-

ture. The lower left vertex represents (H)istory, the total sum of weights assigned to last

period’s choices. The lower right vertex represents (I)nformation, the sum of weights on

current types observed. Finally, the upper vertex represents average information, (M)ean

type, θ̄. In part (a), we have mild preferences for conformity once again. The dots are

concentrated near the middle of the triangle (equal weights on history, information, and

mean type) and they do not move much as a response to changes in the amount of

current information. Part (d) is the counterpart with strong interactions. Hence the sig-

nificant change from almost no weight on current information to almost equal weights.

Individuals use the information in the best possible way by putting more weight on it

in their policy functions. This is due to the fact that forming expectations more pre-

cisely how the neighbors will behave becomes more important for each agent, due to

the increased strength of interactions. Part (c) is mild interactions but strong own-type

effect (α1

α2
= 1

20
, α2

α3
= 20) and part (b) is strong interactions and strong own-type effect
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(α1

α2
= 1

20
, α2

α3
= 1). We do not see much change in (b), although most of the total weight

is put on information. This is mainly due to the fact that any agent a cares so much

about his current type that, he neglects the other effects. In (c), although the own-effect

is still strong, due to the strength of interactions, each agent uses the average information

to form the best expectations regarding the behavior of the other agents. As the amount

of information increases, each agent forms better expectations by transferring the policy

weight from average information to precise information on close neighbors.

6. IDENTIFICATION

We study here the identification of social interactions in the context of our linear

dynamic economy with conformity. Identification obtains when the restrictions imposed

on actions at equilibrium by preferences for conformity are distinct from those imposed

by other relevant structural models.44 Consider in particular an alternative structural

model characterized by (cross-sectionally) correlated preferences across agents. This spe-

cific alternative model is focal because correlated preferences could be generally due to

some sort of assortative matching or positive selection in social interaction, which in-

duces agents with correlated preferences to interact socially. Suppose an econometrician

observes panel data of individual actions over time displaying spatial correlation of indi-

vidual actions at each time. Such correlation can generally be due to social interactions,

as our analysis has shown. Such correlation could also ensue, however, from the spatial

correlation of preference types, which we have excluded by assumption in our analysis

to this point. But is there any structure in the spatial correlation which is implied by

preference for conformity and not by correlated preferences? An affirmative answer to

this question implies that the social interaction model is identified with respect to the

correlated preferences model.

The structural analysis of identification in linear economies with social interactions

starts with Manski (1993).45 Manski restricts his analysis to static linear models, or, more

specifically, linear economies in which the social interactions operate through the mean

44The question of identification in economics has been clearly defined by Koopmans (1949) and Koop-
mans and Reiersøl (1950). The issue of identification goes back to Pigou (1910), Schultz (1938), Frisch
(1934, 1938), Marschak (1942), Wald (1950), Hurwicz (1950). By identification we mean identification
in population (Sometimes identification in population is called identifiability ; see e.g., Chiappori and
Ekeland (2009). More recent surveys on the topic exist of course; see Rothenberg (1971), Hausman and
Taylor (1983), Hsiao (1983), Matzkin (2007), and Dufour and Hsiao (2008).

45Blume et al. (2011), Blume and Durlauf (2005), Brock and Durlauf (2007), Graham (2011), and
Manski (1993, 2000, 2007) survey the main questions pertaining to identification in this social context.
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action in a pre-specified group, (linear in means models). In this context, identification is

problematic due to the colinearity problem introduced by the mean action, the so-called

reflection problem, and due to the possible correlation of unobservables. In the context of

linear in means models, a recent literature has studied identification under the condition

that the population of agents could be partitioned into a sequence of finitely-populated

non-overlapping groups; see e.g., Graham and Hahn (2005).46

The economies we study in this paper are related to those studied by Manski (1993)

and others in that we maintain linearity, an assumption which renders identification

harder (see Blume et al. (2011)). On the other hand, we introduce several fundamental

distinguishing features: In particular, we allow for more general forms of social interac-

tions across agents and for dynamic economies. More precisely, in the class of economies

we study, the equilibrium action of agent a in an infinite horizon economy satisfies

xat = β1x
a
t−1 + β2θ

a
t +

∑

b 6=0

β3,b x
a+b
t ;

while in a linear in means economy the corresponding equation is:47

xa = βθa + γ
∑

b∈N(a)

xb.

By studying populations composed of an infinite number of overlapping neighborhoods

our analysis sheds some light on the nature of identification results which exploit an

infinite number of non-overlapping groups, as in Graham and Hahn (2005) and in the

literature discussed in footnote 46. The overlapping structure of our neighborhoods, in

fact, breaks the independence which is required when non-overlapping groups are consid-

ered.48 Furthermore, by studying dynamic models we are able to exploit the theoretical

implications deriving from the optimality of the dynamic choices of agents on time series

autocorrelations of actions, over and above the implications regarding the cross-sectional

46Also: Davezies et al. (2009) extends these results exploiting variation over the size of the popula-
tions; Graham (2008) uses excess variance across groups; Bramoullé et al. (2009) uses reference group
heterogeneity for identification. Other recent contributions include Glaeser and Scheinkman (2001), De
Paula (2009), Evans et al. (1992), Ioannides and Zabel (2008), and Zanella (2007).

47Note that, to ease the comparison we adopt here the best-reply representation of equilibrium actions;
see equation (3.2).

48We maintain however the assumption of symmetric neighborhoods, an assumption which, as is
the case for linearity, renders identification harder: See Bramoullé et al. (2009) for a study of the
identification power of observable asymmetric neighborhoods.
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(spatial) correlations. In a related context, De Paula (2009) and Brock and Durlauf (2010)

also exploit the properties of dynamic equilibrium, the discontinuity in adoption curves

in their continuous time model, to identify social interactions. Finally, Patacchini, Rain-

one, and Zenou (2011) exploits the intertemporal variation in individual choices relative

to individual and peers’ characteristics to identify social interactions in education from

contextual and correlated effects. 49

We turn to our main identification results. The first series of results regards the identi-

fication of the dynamic structure—that is, distinguishing the properties of dynamic social

interaction economies from those of myopic (hence static) economies. The second series

of results regards instead the identification of social interactions, that is, distinguishing

preference for conformity from correlated preferences.

6.1. Dynamic Rationality vs. Myopia

In this section we compare equilibrium configurations of dynamic economies with

rational agents with those of economies with myopic agents. When agents are myopic,

even economies with a dynamic structure, e.g., when agents’ actions at time t depend

on their previous actions, are effectively static. These economies have been extensively

studied in the theoretical and empirical literature on social interactions, following the

mathematical physics literature in statistical mechanics on interacting particle systems.

Suppose that myopic agents, when called to make a choice, act as if they expect never to

be called to act again.50 Given initial history xt−1 and realization θt, each myopic agent

a ∈ A chooses xat ∈ X to maximize

u(xat−1, x
a
t , x

a−1
t , xa+1

t , θat ) := −α1(xat−1−xat )2−α2(θat−xat )2−α3(xa−1
t −xat )2−α3(xa+1

t −xat )2

There exists then a unique symmetric policy function for any agent a, ga,m (m for myopic)

such that

ga,m(xt−1, θt;α) :=
∑

b∈A

cb,mxa+b
t−1 +

∑

b∈A

db,mθa+b
t

49See also Cabral (1990) for an early discussion of these issues and Young (2009); see Blume et al.
(2011) for an up to date survey.

50See e.g., Blume and Durlauf (2001), Brock and Durlauf (2001b) and Glaeser and Scheinkman (2003)
for a comprehensive survey. Liggett (1985) is the standard reference for the mathematical literature.
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where we make explicit the dependence of the policy function on the preference param-

eters α = (α1, α2, α3).51 The coefficients of the policy function ga,m are equal to the ones

of the unique MPE policy function of a one-period (T = 1) social interactions economy:

cb,m = cb1, db,m = db1, for b ∈ A. In this sense, myopic models are nested within the class

of dynamic models we study.

In the following we ask whether the spatial correlations generated by the long-run

stationary distribution of an infinite-horizon model can be distinguished from those ob-

tained as the limit distribution of a myopic model. Let ga(xt−1, θ
a
t ;α) denote agent a’s

policy function from the dynamic social interaction model, where we make once again

explicit the dependence of the policy function on α. We say that (xat )
a∈A
t≥1 is a stochastic

process induced by the dynamic economy with parameters α if it satisfies

xat = ga(xt−1, θ
a
t ;α), for any a ∈ A and any t ≥ 1

We instead say that (xat )
a∈A
t≥1 is a stochastic process induced by the myopic economy with

parameters α if it satisfies

xat = ga,m(xt−1, θt;α), for any a ∈ A and any t ≥ 1

We are now ready to introduce our definition of identification of social interactions.

Definition 3 Let (xat )
a∈A
t≥1 denote a stochastic process induced by the dynamic economy

with parameters α. We say that the dynamic economy with parameters α is identified with

respect to myopic economies if there does not exist an α̂, such that the process (xat )
a∈A
t≥1 is

also induced by a myopic economy with parameter α̂.

51In some of the literature, myopic agents are modelled not only as assuming that all agents in the
economy only interact once, but also that their neighbors are not changing their previous period actions.
In this case an agent a solves

max
xa
t∈X
−α1(xat−1 − xat )2 − α2(θat − xat )2 − α3(xa−1

t−1 − xat )2 − α3(xa+1
t−1 − xat )2.

and his policy function is

xat = β1x
a
t−1 + β2θ

0
t + β3x

−1
t−1 + β3x

1
t−1.

It can be shown, see Glaeser and Scheinkman (2003), that the ergodic stationary distribution of actions
in this economy coincides with that of myopic agents as defined in the text. As a consequence, our
identification results extend to this economy as well.

ectaart.cls ver. 2006/04/11 file: OB_11.tex date: April 5, 2011



34

The characterization of the spatial correlation of actions at equilibrium for different

time-horizons T , which we provided in Section 4.2, gives us a straightforward answer to

the identification question. Recall in fact that the coefficients of the policy function ga,m

are equal to the ones of the unique MPE policy function of a one-period (T = 1) social

interactions economy. Recall also that the covariances between agents’s choices obtained

from data generated by a typical model of infinite-horizon stationary social interactions

are fundamentally different from those generated by a myopic model. In particular, we

have shown in Section 4.2 that, for a typical choice of α,

ra,T =
ρa+1,T

ρa,T

is non-monotonic in a, for longer horizon economies; and so is ra, the ratio of the limit

economy with T = ∞); while ra,1 declines monotonically in a, for any α; see Figure 4.

Moreover, the limit unconditional covariances inherit the (non)-monotonicity features

of their one-step conditional counterparts. Finally, by continuity, the non-monotonicity

property necessarily holds for an open set of the parameter space, and is hence robust.

Summarizing, then, we have the following.52

Proposition 2 (Rationality vs. Myopia) A dynamic economy with parameter α is

identified with respect to myopic economies, for a robust subset α.

Finally, consider an econometrician fitting a static (myopic) model through data gen-

erated by the dynamic equilibrium of an economy with parameter α. From Proposi-

tion 1, r1(α) < r(α) for any possible α. As a consequence, the parameter α̂ estimated

by the econometrician imposing the static (myopic) structure on the data, will satisfy

r1(α̂) = r(α) > r1(α). From (B.1), however, r1 is monotonically decreasing in
(

∆1

2α3

)
.53

As a consequence, (
α̂3

α̂1 + α̂2 + 2α̂3

)
>

(
α3

α1 + α2 + 2α3

)
,

and the econometrician overestimates the social interaction effects.

52We present in Appendix F.1 the results of a simulation where we report ra as a function of a, at

the stationary distribution, for different levels of strength of interaction proxied by the ratio
(

2α3

∆1

)
.

53Remember that ∆1 := α1 + α2 + 2α3.
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6.2. Social Interactions vs. Selection

In our dynamic economies, spatial correlation of individual actions at each time is

induced by social interactions and preference for conformity. But spatial correlation of

actions could be induced in principle also by spatial correlation of preference types, with

no social interaction. Take two agents, e.g., agent a and agent b. A positive correlation

between xat and xbt could be due to a positive correlation between θat and θbt . In this

last case, preferences for conformity and social interactions would play no role in the

correlation of actions at equilibrium. Rather, such correlation would be due to the fact

that agents have correlated preferences. As we already noted, correlated preferences

could be generally due to some sort of assortative matching or positive selection in social

interaction, which induces agents with correlated preferences to interact socially.

In our economy, at a symmetric Markov perfect equilibrium, each agent a ∈ A acts

according to the policy function gaT−(t−1)(xt−1, θ
a
t ;α), where we make once again explicit

the dependence of the policy function on the preference parameters α = (α1, α2, α3). If

T = ∞, the policy function is stationary ga(xt−1, θ
a
t ;α). Recall that the parameter α3

represents the weight of conformity in each agent’s preferences. It follows that α3 = 0

corresponds to an economy with no social interactions. We say that (xat )
a∈A
t≥1 is a stochastic

process induced by α and (θat )
a∈A
t≥1 if it satisfies

xat = gaT−(t−1)(xt−1, θ
a
t ;α), for any a ∈ A and any t = 1, . . . , T

We are now ready to construct our definition of identification of social interactions.

Definition 4 Let (xat )
a∈A
t≥1 denote a stochastic process induced by α and (θat )

a∈A
t≥1 , where

(θat )
a∈A
t≥1 is i.i.d. across agents and serially uncorrelated, that is, where Cov(θat , θ

b
t ) =

Cov(θat , θ
a
t+1) = 0 for any a 6= b ∈ A and any t ≥ 1. We say that α is identified if there

does not exist an α̂, with α̂3 = 0, such that the process (xat )
a∈A
t≥1 is also induced by α̂ and

some stochastic process {θ̂at }a∈At≥1 . We say that social interactions are identified if some

α, with α3 > 0, is identified.

The conditions for identification of social interactions can be weakened by restricting

the stochastic process {θ̂at }a∈At≥1 . We say that α is (resp. social interactions are) identified

relative to a set of preference shocks if {θ̂at }a∈At≥1 in Definition 4 is required to belong to a

set of preference shocks which satisfies some specific restriction.
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Finally, the conditions for idenfication of social interactions can be strengthened by

limiting the observable properties of the process (xat )
a∈A
t≥1 .

We first consider the case of an infinite horizon economy: policy functions are sta-

tionary and an ergodic distribution exists. In this context, we study first the possibility

of obtaining identification by observing the properties of the stationary distribution of

actions rather than the whole panel (xat )
a∈A
t≥1 . We then pass on to identification tout court,

that is exploiting the whole dynamic restrictions imposed by the model on (xat )
a∈A
t≥1 , not

just the restrictions on the stationary distribution. We shall see that results are negative

in both cases, that is, identification is not obtained in general. Secondarily, we study

identification relative to a series of relevant restrictions on the stochastic process for

preference shocks {θ̂at }a∈At≥1 . These restrictions are meant to capture natural properties of

the selection mechanism which induces agents to display spatially correlated preferences.

6.2.1. Infinite horizon (stationary) economies

Consider first the stationary distribution of actions as identified by its implied spatial

correlation function ρb.

Proposition 3 Social interactions are not identified by the properties of the spa-

tial correlation function ρb of the stationary distribution of actions in infinite horizon

economies.

The proof is simple and instructive hence is given below.

Proof: We have shown in Section 3.3 that the stationary distribution of our dynamic

economy with social interactions, that is, α3 > 0, and i.i.d. preference shock process

{θat }a∈At≥1 , is given by the ergodic measure π in (3.5), i.e. π is the joint distribution of

xt =

(
e (α) θ

1− C (α)
+
∞∑

s=1

∑

b1

· · ·
∑

bs

c (α)b1 · · · c (α)bs−1

(
d (α)bs θa+b1+···+bs

t+1−s

))

a∈A

Consider now an alternative specification of our economy with no interactions between

agents (α̂3 = 0) and no habits (α̂1 = 0) but simply a preference shock process {θ̂at }a∈At≥1

and own type effects with α̂2 > 0. For this economy, equilibrium choice of agent a at
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time t is given by xat = θ̂at . As long as the process {θ̂at }a∈At≥1 is the one where

θ̂at :=
e (α) θ

1− C (α)
+
∞∑

s=1

∑

b1

· · ·
∑

bs

c (α)b1 · · · c (α)bs−1

(
d (α)bs θa+b1+···+bs

t+1−s

)

the probability distributions that the two specifications (with and without interactions))

generate on the observables of interest, {xat }a∈At≥1 , are identical. Hence, one cannot identify

from the stationary distribution of choices which specification generates the data. Q.E.D.

More generally, we investigate if the dynamic equilibrium restrictions of our model are

sufficient to identify social interactions.

Proposition 4 Social interactions are not identified in infinite horizon economies.54

An intuition about this result can be obtained by loosely reducing the identification

of social interactions in infinite horizon economies to the well known problem of distin-

guishing a VAR from an MA(∞) process. Stacking in a vector xt (resp. θt) the actions

xat over the index a ∈ A (resp. the preference shocks θat ), policy functions can be loosely

written as a VAR:

xt = Φxt−1 + δt, with δt = Γθt + eθ

where E (δtδt−τ ) = 0 for all τ > 0. Under standard stationarity assumptions, the VAR

has an MA(∞) representation

xt = (IA − ΦL)−1δt = δt + Ψ1δt−1 + Ψ2δt−2 + . . .

for a sequence Ψ1,Ψ2 . . . such that (IA − ΦL) (IA + Ψ1L + Ψ2L
2 + . . .) = IA. The argu-

ment in the proof of Proposition 4 therefore amounts to picking

xt = θ̂t = δt + Ψ1δt−1 + Ψ2δt−2 + ....

54The proof is similar to the proof of Proposition 3 with the extra requirement that observational-
equivalence should also hold for processes with an initial condition and for their intertemporal transi-
tions. We put the proof in the Supplemental Appendix F.2 for interested readers.
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6.2.2. Finite-horizon (non-stationary) economies

Consider now the case of a finite horizon economy. In this case the unique policy func-

tion and the distribution of actions are non-stationary, as we have shown, and hence

identification might obtain in those environments where correlated effects satisfy a weak

stationary law through time. Consider then a restriction to the class of admissible pref-

erence shock processes {θ̂at }a∈At≥1 which satisfy the following conditional covariance sta-

tionarity restriction:

Definition 5 (Conditional Covariance Stationarity) A process {θ̂at }a∈At≥1 is said to be

conditional covariance stationary if Cov
(
θ̂at , θ̂

b
t

∣∣∣ θ̂t−1, · · · , θ̂1

)
= Z(a, b, θ̂t−1, . . . , θ̂t−n) ∈

R, for a, b ∈ A, t = n+ 1, . . . , T .55

This condition defines a large class of stochastic processes for which the covariance

between the preference shocks of any two agents a and b, depends on at most a finite

memory (represented by n) of past realizations of the process, and possibly the relative

positions of agents a and b in the social group. It is a relatively weak and natural condition

in that it allows for the tailoring of the intertemporal dependence of agents’ types to

their relative positions in the network; what it excludes is events in the distant past from

having a significant effect on the joint determination of agents’ types today.56 Conditional

covariance stationarity of preference shocks is in fact sufficient for identification of social

interactions.

Proposition 5 Social interactions are identified relative to processes satisfying the

conditional covariance stationarity restriction with n ≤ T − 2.

While the spatial autocorrelations between agents’ choices have limited memory across

55The original definition is due to Mandelbrot (1967) who provides the conditional spectral analysis
of sporadically varying random functions in the mathematical theory of information transmission with

noise. In his environment, he requires E
[
θ̂t θ̂t+n

∣∣∣ 1 ≤ t < t+ n ≤ T
]

to be independent of t. Ours is

a slightly weaker condition since it uses fixed finite memory. For more recent usage of conditional
covariance restrictions see the Times Series literature studying persistence of conditional variances,
especially Bollerslev and Engle (1993), Bollerslev et al. (1994), and Engle and Bollerslev (1986).

56All existing social interaction models we can think of have stochastic structures that are special
cases of this class. More specifically, they typically assume either time-independent or finite memory
Markov structures to model exogenous effects; see e.g., Brock and Durlauf (2001b), Conley and Topa
(2003), De Paula (2009), Glaeser and Scheinkman (2001), Nakajima (2007), Topa (2001), and Young
(2009).
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periods in the absence of interaction effects, they vary in presence of social interactions.57

The condition n ≤ T − 2 guarantees that the economy lasts longer than the memory

of the spatial auto-correlation process, so that the non-stationarity of the equilibrium

process can manifest itself in the dynamics of spatial auto-correlations. This is at the

heart of the proof, whose details follow.

Proof: Consider a finite-horizon, T -period economy with T ≥ 2 and n ≤ T − 2. In

the absence of interactions (α̂3 = 0), agent a’s final period optimal choice is58

xaT = c1 (α̂)xaT−1 + d1 (α̂) θ̂aT(6.1)

Thanks to the linearity of the policy functions across periods with α̂3 = 0, any path of

shock realizations (θ̂1, . . . , θ̂T−1), given x0, generates a path of configurations (x0, x1, . . . , xT−1).

Thus, conditioning on all imaginable choice paths spans all imaginable preference shock

paths, given that the observables are generated by the above-mentioned policy functions.

The a-step covariance between equilibrium choices of agent 0 and a in case of interactions

is then given by

Cov
(
x0
T , x

a
T

∣∣∣xT−1, . . . , x0

)
= Cov

(
x0
T , x

a
T

∣∣∣xT−1

)
, ∀ (x0, . . . , xT−1)

= Cov

(∑

b1∈A

db11 θb1T ,
∑

b2∈A

db21 θa+b2
T

)

= V ar(θ)
∑

b1∈A

db11 db1−a1(6.2)

thus the covariance term is independent of the conditioned upon path. So, in order

the specification with no interactions to be observationally indistinguishable from the

interactions case, the a-step conditional covariances, computed using (6.1) should satisfy,

for all (x0, θ̂1, . . . , θ̂T−1)

Cov
(
x0
T , x

a
T

∣∣∣xT−1

)
= d1(α̂)2Cov

(
θ̂0
T , θ̂

a
T | θ̂T−1, . . . , θ̂1, x0

)

= d1(α̂)2 Z(0, a, θ̂T−1, . . . , θ̂T−n)

= d1(α̂)2 Z̄(0, a)(6.3)

57More specifically, they can be ordered with respect to their spatial rate of tail convergence; see
Proposition 1.

58In the absence of interactions, agents solve (dynamic) individual maximization problems. Elemen-
tary dynamic programming techniques, as in Stokey and Lucas (1989), yield the policy functions we use
here.
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The function Z̄ is implicitly defined to capture the fact that to match the covariance term

in (6.2), the covariance in (6.3) can depend only on the relative positions of agents and

on nothing else. This is not an assumption but an observational-equivalence restriction.

The same observational-equivalence idea should hold for all a ∈ A, in period T − 1.

Similar calculations in period T − 1 yield

Cov
(
x0
T−1 , x

a
T−1

∣∣∣xT−2

)
= V ar(θ)

∑

b1∈A

db12 db1−a2

= d2(α̂)2 Z(0, a, θ̂T−2, . . . , θ̂T−1−n), ∀(θ̂T−2, . . . , θ̂T−1−n)

= d2(α̂)2 Z̄(0, a)(6.4)

where the first equality is as in (6.2); second is the restriction imposed by observable

indistinguishability combined with conditional covariance stationarity; finally third is by

conditional covariance stationarity across periods using (6.3). Putting the equilibrium

restrictions in periods T − 1 and T together, using (6.3) and (6.4), we can write

Cov
(
x0
T−1 , x

a+1
T−1

∣∣∣xT−2

)

Cov
(
x0
T−1 , x

a
T−1

∣∣∣xT−2

) =
Z̄(0, a+ 1)

Z̄(0, a)
=

Cov
(
x0
T , x

a+1
T

∣∣∣xT−1

)

Cov
(
x0
T , x

a
T

∣∣∣xT−1

)

Since the choice of a is arbitrary, we can look at the same expression as a becomes

progressively larger. So, as a→∞, the expression should give

(6.5) lim
a→∞

Cov
(
x0
T−1 , x

a+1
T−1

∣∣∣xT−2

)

Cov
(
x0
T−1 , x

a
T−1

∣∣∣xT−2

) = r2 = r1 = lim
a→∞

Cov
(
x0
T , x

a+1
T

∣∣∣xT−1

)

Cov
(
x0
T , x

a
T

∣∣∣xT−1

)

which is a contradiction to Proposition 1. Therefore, there does not exist a conditional

covariance stationary preference shock process {θ̂at }a∈At≥1 that generates an equilibrium

choice process {xat }a∈At≥1 under the no interactions specification (α̂3 = 0) that is observa-

tionally equivalent to the process generated by the local interactions (α3 6= 0) process.

This concludes the proof. Q.E.D.

7. EXTENSIONS

The class of social interaction economies we studied in this paper has been restricted

along several dimensions to better provide a stark theoretical analysis. Some of these

restrictions, however, turn out to be important in applications and empirical work. In
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this section, therefore, we illustrate how our analysis can be extended to study more

general neighborhood network structures for social interactions, more general stochastic

processes for preference shocks, the addition of global interactions, that is, interactions

at the population level, and the effects of stock variables which carry habit effects.

7.1. General Neighborhood Network Structures

Throughout the paper, we studied symmetric neighborhood structures. This is gen-

eralized easily. Consider an arbitrary neighborhood network structure (not necessarily

translation invariant), N : A→ 2A. Suppose also that a generic agent a’s preferences are

represented by the utility function ua defined as

ua
(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t

)
:= −αa,1 (xat−1 − xat )2 − αa,2 (θat − xat )2

−
∑

b∈N(a)

αa,b (xbt − xat )2

Notice that we allow for the preferences of any two agents a and b to be arbitrarily

different in their parametrization, provided either αa,1 > 0 or αa,2 > 0 and
∑

b∈N(a) αa,b <

∞ so that peer effects are bounded. Under this specification, best-responses are well

defined, interior, and well-behaved. An MPE exists and the policy function of an arbitrary

agent a ∈ A at equilibrium has the following form

gaT−(t−1) (xt−1, θt) =
∑

b∈A

ca,bT−(t−1) x
b
t +
∑

b∈A

da,bT−(t−1) θ
b
t + eaT−(t−1) θ̄

where, as before, all coefficients are non-negative and
∑

b∈A

(
ca,bt + da,bt

)
+ eat = 1. For

uniqueness of equilibrium, it is sufficient that the relative composition of the peer effects

within the determinants of individual choice be uniformly bounded, i.e., that there exists

a positive constant K such that for each individual a ∈ A
∑

b∈N(a) αa,b

αa,1 + αa,2 +
∑

b∈N(a) αa,b
< K.

Under this condition,59 best responses induce a contraction operator and we obtain a

59A related condition is referred to, in the literature, as the Moderate Social Influence condition; see
e.g. Glaeser and Scheinkman (2003), Horst and Scheinkman (2006), and Ballester, Calvó-Armengol, and
Zenou (2006) for restrictions in a similar spirit.
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unique equilibrium for any finite-horizon economy.

Ergodicity (relative to a given MPE) and welfare results extend straightforwardly,

as do identification results. Notably, our positive identification result for non-stationary

economies, Proposition 5, also extends: since preference parameters of any agent a are

stationary, in a finite-horizon economy, correlations of equilibrium actions between agents

vary only due to interactions for preference processes that satisfy a Conditional Covari-

ance Stationarity restriction.

7.2. General Stochastic Processes for Preference Shocks

The agents in our model make their decisions based on past behavior and current

shocks. Our analysis however extends straightforwardly to economies where shocks are

persistent across time as long as the economy is one of complete information.60 We give

here, as an illustration, an example of Markov dependence, where at any given period

the probability of next period shocks depends on current realizations.

Consider any T -period economy with T ≤ ∞. Recall from Section 2 that preference

shocks θt := (θat )a∈A are defined on the canonical probability space (Θ,F ,P), where

Θ := {(θa)a∈A : θa ∈ Θ}. Let Q : Θ×F → R+ be a transition function such that

(i) for any period t and any θ ∈ Θ, Q(θ, A) = Pr{θt+1 ∈ A | θt = θ}, for all A ∈ F .

(ii) for each A ∈ F , Q(·, A) is F -measurable.

Any agent a ∈ A solves the problem in (2.1) with persistent shocks where the expectation

operator acts on the distribution induced by Q and other agents’ strategies. We can write

the problem recursively. The policy function of an arbitrary agent a ∈ A at equilibrium,

in this economy, is

gaT−(t−1) (xt−1, θt) =
∑

b∈A

cbT−(t−1) x
a+b
t−1 +

∑

b∈A

da+b
T−(t−1) θ

a
t + eT−(t−1) (θt, a)

for some positive coefficients (cbT−(t−1))b∈A, (dbT−(t−1))b∈A, and some constant eT−(t−1) (θt, a)

that depends only on the current type profile and on the agent’s name, a.

Once again, existence, ergodicity (relative to a given MPE), and welfare results extend

straightforwardly, as well as our identification results.

60The mathematical issues arising in dynamic models with incomplete information are both well-
known and outside the scope of the present paper. See Mailath and Samuelson (2006) for an extensive
survey.
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7.3. Global Interactions

Introducing global determinants of individual behavior into our framework is also

relatively straightforward.61 In particular, consider an economy in which the preferences

of each agent a ∈ A depend also on the average action of the agents in the economy. Let

the average action given a choice profile x be defined as

p(x) := lim
n→∞

1

2n+ 1

n∑

a=−n

xa,

when the limit exists. Let Xe denote the set of all configurations such that the associated

average action exists:

Xe :=

{
x ∈ X : ∃ p(x) := lim

n→∞

1

2n+ 1

n∑

a=−n

xa

}

The preferences of the agent a ∈ A in period t are described by the instantaneous utility

function u : Xe ×Θ→ R of the conformity class

ua
(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t , p(xt)

)
:=

−α1 (xat−1 − xat )2 − α2 (θat − xat )2 −
∑

b∈N(a)

α3,b (xbt − xat )2 − α4 (p(xt)− xat )
2

Given x ∈ Xe, the initial configuration of actions, a symmetric stationary MPE of a

dynamic economy with local and global interactions is a map g : X×Θ×X → X and

a map F : X → X such that, for each a ∈ A:

g (Ra xt−1, R
a θt, pt) = arg max

xat∈X
E
[
u
(
xat−1, x

a
t ,
{
g
(
Rb xt−1, R

b θt, pt
)}

b∈N(a)
, θat , pt

)

+ βVg

(
Ra
(
xat ,
{
g
(
Rb xt−1, R

b θt, pt
)}

b6=a

)
, Ra θt+1, pt+1

) ∣∣∣ (xt−1, θt)
]

with

pt+1 = F (pt) , p1 = p(x) and pt = p (xt) almost surely.62

61With respect to the analysis of MPE with local and global interactions in finite economies (as e.g.,
in Blume and Durlauf (2001) and in Glaeser and Scheinkman (2003)), a few technical subtleties arise in
our economy due to the infinite number of agents. The techniques we use are extensions of the ones we
used in a previous paper, Bisin, Horst, and Özgür (2006). We refer the reader to this paper for details.
Some of the needed mathematical analysis is developed in Föllmer and Horst (2001) and Horst and
Scheinkman (2006).
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At a symmetric MPE, any agent rationally anticipates that all others play according to

the policy function g and also anticipates the sequence of average actions {p(xt)}t∈N to

be determined recursively via the map F .

For this economy, we can show that the endogenous sequence of average actions

{p(xt)}t∈N exists almost surely if the initial configuration x belongs to Xe, and that

it follows a deterministic recursive relation.63 As a consequence, our main results extend

and the policy function of an arbitrary agent a ∈ A at equilibrium is

ga(xt−1, θt) =
∑

b∈A

cb x
a+b
t−1 +

∑

b∈A

db θ
a+b
t + e θ̄ +B∗(p(x))

for some positive coefficients (cb)b∈A, (db)b∈A, e, and some constant B∗(p(x)) that depends

only on the initial average action, p(x).

7.4. Social Accumulation of Habits

In this section, we generalize the class of the economies we have studied to encompass

a richer structure of dynamic dependence of agents’ actions at equilibrium. Consider an

economy where preferences of agent a ∈ A are represented by a utility function

u
(
Sat , x

a
t , {xbt}b∈N(a), θ

a
t

)
:= −α1 (Sat − xat )2 − α2 (θat − xat )2 −

∑

b∈N(a)

α3,b (xbt − xat )2

where Sat represents an accumulated stock variable,

Sat+1 = (1− δ)Sat + xat

For instance, Sat captures what the addiction literature calls a “reinforcement effect”

on agent a’s substance consumption. In this economy the policy function at equilibrium

is

gaT−(t−1) (St, θt) =
∑

b∈A

ca,bT−(t−1) S
b
t +

∑

b∈A

da,bT−(t−1) θ
b
t + eaT−(t−1) θ̄

Note that in equilibrium each agent’s choice depends on the stock of his neighbors’

actions, that is, on their long-term behavioral patterns rather than just their previous

63Linearity is crucial for these results. Only in this case, in fact, can the dynamics of average actions
{p(xt)}t∈N be described recursively. In models with more general local interactions, the average action
typically is not a sufficient statistic for the aggregate behavior of the configuration x; hence a recursive
relation typically fails to hold. In such more general cases, the analysis must be pursued in terms of
empirical fields. Interested reader should consult Föllmer and Horst (2001).
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period actions. Also, as the final period approaches, agent a assigns uniformly higher

weights to his own stock.

8. CONCLUSION

Social interactions provide a rationale for several important phenomena at the inter-

section of economics and sociology. The theoretical and empirical study of economies

with social interactions, however, has been hindered by several obstacles. Theoretically,

the analysis of equilibria in these economies induces generally intractable mathematical

problems: equilibria are represented formally by a fixed point in configuration of actions,

typically an infinite dimensional object; and embedding equilibria in a full dynamic econ-

omy adds a second infinite dimensional element to the analysis. Computationally, these

economies are also generally plagued by a curse of dimensionality associated to their large

state space. Finally, in applications and empirical work, social interactions are typically

identified, even with population data, only under heroic assumptions.

In this paper we have attempted to show how some of these obstacles to the study

of economies with social interactions can be overcome. Admittedly, we have restricted

our analysis to linear economies, but in this context we have been able i) to obtain sev-

eral desirable theoretical properties, like existence, uniqueness, ergodicity; ii) to develop

simple recursive methods to rapidly compute equilibria; and iii) to characterize several

general properties of dynamic equilibria. Furthermore, while linearity in principle renders

the identification problem in static economies with social interaction almost insurmount-

able, we have been able to exploit the properties of dynamic equilibria in non-stationary

economies to produce a positive identification result.

In conclusion, we believe that the class of dynamic linear economies with social inter-

actions we have studied in this paper can be fruitfully and easily employed in applied

and empirical work.
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Föllmer, H. and U. Horst (2001), “Convergence of Locally and Globally Interacting Markov

Chains,” Stochastic Processes and Their Applications, 96, 99–121.

Frisch, R. (1934), Statistical Confluence Analysis by Means of Complete Regression Systems, Publ.

No. 5, Universitetets Økonomiske Institutt, Oslo.

(1938), Statistical Versus Theoretical Relations in Economic Macrodynamics, mimeographed

document for League of Nations conference.

Gaviria, A., and Raphael, S. (2001), “School-based Peer Effects and Juvenile Behavior, ” Review

of Economics and Statistics, 83(2), 257-268.

Glaeser, E., B. Sacerdote, and J. Scheinkman (2003), “The Social Multiplier,” Journal of the

European Economic Association , 1, 345-353.

(1996), “Crime and Social Interactions,”Quarterly Journal of Economics, CXI, 507-548.

Glaeser, E. and J. Scheinkman (2003), “Non-Market Interactions,” in Advances in Economics and

Econometrics: Theory and Applications, Eight World Congress, Vol. I, (M. Dewatripont, L.P. Hansen,

and S. Turnovsky, eds.), Cambridge University Press, 339-369.

(2001), “Measuring Social Interactions,” in S. Durlauf and P. Young (Eds.), Social Dynamics,

Brookings Institution Press and MIT Press, Cambridge, MA.

Goldin, C. and Katz, L. F. (2002), “The Power of the Pill: Oral Contraceptives and Women’s Career

and Marriage Decisions,” Journal of Political Economy, 110, 4, 730-770.

Graham, B. S., and Hahn, J. (2005), “Identification and Estimation of the Linear-in-Means Model

of Social Interactions,” Economics Letters , 88,1,1-6.

Graham, B. S. (2008), “Identifying Social Interactions through Excess Variance Contrasts,” Econo-

metrica, 76, 643-660.

(2011), “Econometric Methods for the Analysis of Assignment Problems in the Presence of

Complimentarity and Social Spillovers,” in In Jess Benhabib, Matthew O. Jackson and Alberto Bisin

editors: Handbook of Social Economics, Vol. 1B, The Netherlands: North-Holland.

Granovetter, M. (1973), “The Strength of Weak Ties,” American Journal of Sociology, 78(6), 1360-

1380.

(1995), Getting a Job: A Study in Contacts and Careers, University of Chicago Press.

Gruber, J. and Koszegi, B. (2001), “Is addiction “rational”? Theory and evidence,” Quarterly

Journal of Economics, 116, 4, 1261-1303.

Gul, F. and Pesendorfer, W. (2007), “Harmful Addiction,” Review of Economic Studies, 74, 147-

172.

Hansen, L. and Sargent, T. (2004), Recursive Models of Dynamic Linear Economies, University of

Chicago, mimeo.

Hausman, J. A. and Taylor, W. E. (1983), “Identification in Linear Simultaneous Equations Models

with Covariance Restrictions: An Instrumental Variables Interpretation,” Econometrica, 51 (5), 1527-

1549.

Hoff, K. and Sen, A. (2005), “Homeownership, Community Interactions, and Seggregation,” Amer-

ican Economic Review, 95, 1167-1189.

Horst, U. and Scheinkman, J. (2006), “Equilibria in Systems of Social Interactions,” Journal of

ectaart.cls ver. 2006/04/11 file: OB_11.tex date: April 5, 2011



50

Economic Theory, 130, 44-77.

Hoxby, C. M. (2000a), “The Effects Of Class Size On Student Achievement: New Evidence From

Population Variation,” The Quarterly Journal of Economics, 115, 4, 1239-1285.

(2000b), “Peer Effects in the Classroom: Learning from Gender and Race Variation,” NBER

Working Paper 7867.

Hsiao, C. (1983), “Identification,” In Handbook of Econometrics, vol. 1, ed. Z. Griliches and M.D.

Intriligator. Amsterdam: North-Holland.

Hurwicz, L. (1950), “Generalization of the Concept of Identification,” Statistical Inference in Dynamic

Economic Models, Cowles Commission Monograph 10, New York: John Wiley and Sons.

Ioannides, Y. M. and L. Datcher Loury (2004), “Job Information Networks, Neighborhood Effects,

and Inequality,” Journal of Economic Literature, 42, 1056-93.

Ioannides, Y. M. and Soetevent, A. R. (2007), “Social Networking and Individual Outcomes

Beyond the Mean Field Case,” Journal of Economic Behavior and Organization, 64, 369-390.

Ioannides, Y. M. and Zabel, J. (2008), “Interactions, Neighborhood Selection, and Housing De-

mand,” Journal of Urban Economics, 63, 229-252.

Jones, S. R. G. (1984), The Economics of Conformism, Oxford: Basil Blackwell.

Kallenberg, O. (2002), Foundations of Modern Probability, second edition. Springer-Verlag, Berlin.

Kandel, D. B. (1978), “Homophily, Selection, and Socialization in Adolescent Friendships,” American

Journal of Sociology, 84, 427-436.

Katz, L., Kling, A. and Liebman, J. (2001), “Moving to Opportunity in Boston: Early Results of

a Randomized Mobility Experiment,” Quarterly Journal of Economics, CXVI, 607-654.

Kling, J., Ludwig, J. and Katz, L. (2005), “Neighborhood Effects on Crime for Female and Male

Youth: Evidence from a Randomized Housing Voucher Experiment,” Quarterly Journal of Economics,

120(1), 87-130.

Koopmans, T. C. (1949), “Identification Problems in Economic Model Construction,” Econometrica,

17, 125-144.

Koopmans, T. C. and Reiersøl, O. (1950), “The Identification of Structural Characteristics,” Annals

of Mathematical Statistics, 21, 165-181.

Krauth, B. V. (2006), “Simulation-based estimation of peer effects,” Journal of Econometrics, 133,

243-271.

Kremer, M. and Levy, D. (2008), “Peer Effects and Alcohol Use among College Students,” The

Journal of Economic Perspectives, 22,3, 189-206.

Liggett, T.M. (1985) Interacting Particle Systems, Springer Verlag, Berlin.

Ludwig, J., Hirschfeld, P. and Duncan, G. (2001), “ Urban Poverty and Juvenile Crime: Evidence

from a Randomized Housing-Mobility Experiment,” Quarterly Journal of Economics, CXVI (2):

665-679.

Mailath, G. J. and Samuelson, L. (2006), Repeated Games and Reputations: Long-run Relation-

ships, Oxford University Press, New York.

Mandelbrot, B. (1967), “Some Noises with 1/f Spectrum, a Bridge between Direct Current and

White Noise,” IEEE Transactions on Information Theory, vol. IT-13, 2, 289-298.

ectaart.cls ver. 2006/04/11 file: OB_11.tex date: April 5, 2011



51

Manski, C. (1993), “Identification of Endogenous Social Effects: The Reflection Problem,” Review of

Economic Studies, 60, 531-42.

(2000), “Economic Analysis of Social Interactions,” Journal of Economic Perspectives, 14,

115-136.

(2007), Identification for Prediction and Decision , Harvard University Press, Cambridge, MA.

Marschak, J. (1942), “Economic Interdependence and Statistical Analysis,” Studies in Mathematical

Economics and Econometrics, University of Chicago Press, 135-150.

Matzkin, R. (2007), “Nonparametric Identification,” In Handbook of Econometrics, vol. 6, ed. J. Heck-

man and E. Leamer. Amsterdam: North-Holland.

Mertens, J.-F. (2002), “Stochastic Games,” In R.J. Aumann and S. Hart, eds., Handbook of Game

Theory, Vol. 3 (North-Holland,Amsterdam), Chapter 47, 1809-1832.

Mertens, J.-F. and Parthasarathy, T. (1987), “Equilibria for Discounted Stochastic Games,”

Research paper 8750, CORE, Université Catholique de Louvain.
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Onur Özgüra and Alberto Bisinb

This supplement contains proofs of the results in the main text and the details about

the simulations we used to generated the Figures. All notation is as defined in the main

text unless explicitly noted otherwise. To ease cross-referencing, equation and result

numbering continues in sequence with that established in the main paper.

APPENDIX A: THE EXISTENCE PROOF

We prove here Theorem 1. The proof is constructive and works in three steps, by induc-

tion on the length of the economy.1

Step 1: Existence, uniqueness and the Markov property for T = 1. In this

symmetric environment, it is enough to analyze the optimization problem of a single

agent, say of agent 0 ∈ A. We will allow for arbitrary initial histories so that one can

interpret the current step either as a one-period economy or the last period of a finite-

horizon economy. We will show that, agents will use only the information contained in

the previous period choices x0 and current type realizations θ1. Let any t-length history

(xt−1, θt) = (x−(t−1), θ−(t−2), . . . , x−1, θ0, x0, θ1) of previous choices and preference shock

realizations be given. Agent 0 solves

max
x0

1∈X

{
−α1

(
x0

0 − x0
1

)2 − α2

(
θ0

1 − x0
1

)2 − α3

(
x−1

1 − x0
1

)2 − α3

(
x1

1 − x0
1

)2
}

(A.1)

The first order condition

2
[
α1

(
x0

0 − x0
1

)
+ α2

(
θ0

1 − x0
1

)
+ α3

(
x−1

1 − x0
1

)
+ α3

(
x1

1 − x0
1

)]
= 0

implies that

(A.2) x0
1 = ∆−1

1

(
α1 x

0
0 + α2 θ

0
1 + α3 x

−1
1 + α3 x

1
1

)
aUniversité de Montréal, Department of Economics, CIREQ, CIRANO; onur.ozgur@umontreal.ca
bNew York University, Department of Economics, NBER, CIREQ; alberto.bisin@nyu.edu
1We laid out the problem in its recursive form for clarity in Section 2. Our method of proof attacks

the sequence problem directly.
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2

where ∆1 := α1 + α2 + 2α3 > 0. This choice is feasible (in X) since it is a convex

combination of elements of X, a convex set by assumption. The objective function

(A.1) is strictly concave in x0
1, thus x0

1 in (A.2) is the unique optimizer. The form in

(A.2) suggests that showing the existence of a symmetric equilibrium in the contin-

uation given history (xt−1, θt) is equivalent to finding the fixed point of an operator

L1 : B ((X×Θ)t, X)→ B ((X×Θ)t, X) that acts on the class of bounded measurable

functions x1 : (X×Θ)t → X according to

(L1x1)
(
xt−1, θt

)
= ∆−1

1

(
α1 x

0
0 + α2 θ

0
1 + α3 x1

(
R−1 xt−1, R−1 θt

)
+ α3 x1

(
Rxt−1, R θt

))
Clearly, L1 is a self-map. We show next that it is a contraction. Endow B ((X×Θ)t, X)

with the sup norm which makes (B ((X×Θ)t, X) , || · ||∞) a Banach space. Pick x1, x̂1 ∈
B ((X×Θ)t, X). We have for all (xt−1, θt)∣∣∣ (L1x1)

(
xt−1, θt

)
− (L1x̂1)

(
xt−1, θt

) ∣∣∣
= ∆−1

1

∣∣∣α1 x
0
0 + α2 θ

0
1 + α3 x1

(
R−1 xt−1, R−1 θt

)
+ α3 x1

(
Rxt−1, R θt

)
−α1 x

0
0 − α2 θ

0
1 − α3 x̂1

(
R−1xt−1, R−1θt

)
− α3 x̂1

(
Rxt−1, R θt

) ∣∣∣
= ∆−1

1

∣∣∣α3

(
x1

(
R−1 xt−1, R−1 θt

)
− x̂1

(
R−1 xt−1, R−1 θt

))
+α3

(
x1

(
Rxt−1, R θt

)
− x̂1

(
Rxt−1, R θt

)) ∣∣∣
≤
(
α3

∆1

) ∣∣∣x1

(
R−1 xt−1, R−1 θt

)
− x̂1

(
R−1 xt−1, R−1 θt

) ∣∣∣
+

(
α3

∆1

) ∣∣∣x1

(
Rxt−1, R θt

)
− x̂1

(
Rxt−1, R θt

) ∣∣∣
≤
(

2α3

∆1

)
‖x1 − x̂1‖∞

The coefficient 2α3 ∆−1
1 < 1 since αi > 0, for i = 1, 2, 3. Hence L1 is a contraction on

B ((X×Θ)t, X). Thus, by Banach Fixed Point Theorem (see e.g., Aliprantis and Border

(2006), p.95) L1 has a unique fixed point x∗1 in B ((X×Θ)t, X). Next, we argue that

this equilibrium strategy must be Markovian and should take the convex combination

form as in the statement of Theorem 1.

Lemma 1 (Markov Property and the Convex Combination Form) Unique symmet-

ric equilibrium strategy x∗1 is Markovian: For any t-length history (xt−1, θt), it depends
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3

solely on last period equilibrium choices and current preference shock realizations, i.e.

x∗1(xt−1, θt) = g1(x0, θ1), for some g1 : X × Θ → X. Moreover, the Markovian policy

function g1 has the convex combination form as in the statement of the theorem.

Proof: Let

(A.3)

G :=



g : X×Θ→ X s.t. g(x, θ) =
∑

a∈A c
a xa +

∑
a∈A d

a θa + e θ

with

(i) ca, da, e ≥ 0 and e+
∑

a∈A(ca + da) = 1

(ii) (1
2
)ca+1 + (1

2
)ca−1 ≥ ca, ∀a 6= 0

(iii) cb ≤ ca, ∀a, b ∈ A with |b| > |a|.
(iv) ca = c−a, ∀a ∈ A

and properties (ii), (iii), and (iv) also holding for the d = (da)a∈A sequence.


be the class of functions that are convex combinations (i) of one-period before history,

current types and average type, having the (ii) ‘convexity’, (iii) ‘monotonicity’, and (iv)

‘symmetry’ properties. Property (ii) states that the rate of ‘spatial’ (cross-sectional)

convergence of the policy weights is non-increasing in both directions, relative to the

origin. Monotonicity property, (iii), has a very natural interpretation: agent b’s effect on

agent 0’s marginal utility is smaller than agent a’s effect on it, if a is closer to 0 than b

is. Finally, (iv) says that the policy weights are symmetric around 0. Let g ∈ G be such

that after any history (xt−1, θt) = (x−(t−1), θ−(t−2), . . . , x−1, θ0, x0, θ1)

x1(xt−1, θt) = g(x0, θ1)

and let (c, d, e) be the coefficient sequence associated with g. Applying L1 to x1 (hence

to g), we get

(L1x1)
(
xt−1, θt

)
= ∆−1

1

(
α1 x

0
0 + α2 θ

0
1 + α3 g

(
R−1x0, R

−1θ1

)
+ α3 g (Rx0, R θ1)

)
= ∆−1

1

[
α1 x

0
0 + α2 θ

0
1 + α3

(∑
a∈A

ca xa−1
0 +

∑
a∈A

da θa−1
1 + e θ

)

+ α3

(∑
a∈A

ca xa+1
0 +

∑
a∈A

da θa+1
1 + e θ

)]
(A.4)
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Rearranging terms gives

= ∆−1
1

(
x0

0(α1 + α3 c
−1 + α3 c

1︸ ︷︷ ︸
∆1ĉ0

) + θ0
1(α2 + α3 d

−1 + α3 d
1︸ ︷︷ ︸

∆1d̂0

) + 2α3 e θ̄

+
∑
a6=0

(α3 c
a−1 + α3 c

a+1︸ ︷︷ ︸
∆1ĉa

)xa0 +
∑
a6=0

(α3 d
a−1 + α3 d

a+1︸ ︷︷ ︸
∆1d̂a

θa1

)
(A.5)

The function after the last equality sign is linear in x0, θ1 and θ̄. So, L1x1 preserves the

same linear form. By definition of the new coefficient sequence (ĉ, d̂, ê) in (A.5), each

element of the sequence is nonnegative since each element of the original one was so.

New coefficients sum up to 1 since convex combination form of g makes the sum of the

coefficients inside the two parentheses on the right hand side of (A.4) equal to 1. Thus,

the total sum of coefficients on the right hand side of (A.4) is ∆−1
1 (α1 + α2 + 2α3) = 1,

which proves property (i). The final form in (A.5) is just a regrouping of elements in

(A.4). Let (ĉa)a∈A be the new coefficient sequence associated with L1xT as defined in

equation (A.5). Pick a 6= 0 in A,

ĉa+1 + ĉa−1 ≥
(
α3

∆1

)(
ca + ca+2

)
+

(
α3

∆1

)(
ca−2 + ca

)
≥

(
α3

∆1

)(
2ca+1 + 2ca−1

)
= 2

(
α3

∆1

)(
ca+1 + ca−1

)
= 2ĉa

By definition of ĉ in (A.5), first inequality is strict if |a| = 1, is an equality otherwise;

second inequality is by property (ii) on c; last equality is once again by definition of ĉ

in (A.5). Therefore, for any a 6= 0 in A, ĉa+1 + ĉa−1 ≥ 2ĉa, which is property (ii). Pick

any a, b ∈ A with |a| < |b|.

ĉa =

(
α3

∆1

)
ca−1 +

(
α3

∆1

)
ca+1 =

(
α3

∆1

)
c|a|−1 +

(
α3

∆1

)
c|a|+1

≥
(
α3

∆1

)
c|b|−1 +

(
α3

∆1

)
c|b|+1 =

(
α3

∆1

)
cb−1 +

(
α3

∆1

)
cb+1

= ĉb

First equality is from (A.5); second by property (iv) of G in (A.3); the inequality is
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property (iii) of G in (A.3); next equality is due to property (iv) of G again; and finally

the last equality is by (A.5). Hence, property (iii) in (A.3) holds for the new sequence.

We next show that ĉ satisfies (iv) in (A.3).

ĉa =

(
α3

∆1

)
ca−1 +

(
α3

∆1

)
ca+1

=

(
α3

∆1

)
c−a−1 +

(
α3

∆1

)
c−a+1

= ĉ−a

where first equality is by (A.5); the second is due to (iv) of G in (A.3); finally the last

is again by (A.5).

Thus, the restriction of L1 to the subspace (call it BG) of bounded measurable func-

tions that agree with an element of G after any history, maps elements of BG into itself.

Moreover, endowed with the sup norm, BG is a closed subset of B ((X×Θ)t, X) since

it is defined by equality and inequality constraints, hence a complete metric space in its

own right. Since L1 is a contraction on this latter as we just showed, it is so on BG too

and the unique fixed point x∗1 in B ((X×Θ)t, X) must lie in BG. Since the choice of t

was arbitrary, the unique symmetric equilibrium in a one-period (continuation) economy,

after any length history must be Markovian and should assume the convex combination

form stated in the theorem. This concludes the proof of Lemma 1. Q.E.D.

This proves Step 1, namely that the statement of the Theorem is true for 1-period

economies. Next, we prove that this result generalizes to any finite-horizon economy.

Step 2: Induction, T-1 implies T. Let T ≥ 2. Assume that the statement of Theorem

1 is true up to T − 1-period. The T -period economy can be separated into a first period

and a T−1-period continuation economy. By hypothesis, there exists a unique symmetric

MPE, g : X × Θ × {1, · · · , T − 1} 7→ X, for the T − 1-period continuation economy.

Agent 0 believes that all other agents, including his own reincarnations, will use that

unique symmetric equilibrium map from period 2 on, i.e., for any agent b ∈ A,

xbt
(
xt−1, θt

)
= gT−(t−1)(R

b xt−1, R
b I0 θt), for all t = 2, . . . , T

Given any t-length history (xt−1, θt), the current strategies of all other agents (xb1)b 6=0,

and the fact that (xbt)
b∈A
t≥2 are induced by g, agent 0 solves

ectaart.cls ver. 2006/04/11 file: OB_Supplement.tex date: April 5, 2011
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max
x0

1∈X

{
− α1

(
x0

0 − x0
1

)2 − α2

(
θ0

1 − x0
1

)2 − α3

(
x−1

1 − x0
1

)2 − α3

(
x1

1 − x0
1

)2
(A.6)

+E

[
T∑
τ=2

βτ−1
(
−α1

(
x0
τ−1 − x0

τ

)2 − α2

(
θ0
τ − x0

τ

)2

−α3

(
x−1
τ − x0

τ

)2 − α3

(
x1
τ − x0

τ

)2
) ∣∣∣∣∣ (xt−1, θt

) ] }
The form of the optimal choices on the equilibrium path can be characterized as in the

following Lemma.

Lemma 2 (Convexity and Monotonicity) Given a T -period economy, equilibrium choices

satisfy the following properties:

(i) For any period t ≥ 2, xat can be written as 2

xat =
∑
b1∈A

· · ·
∑
bt−1∈A

cb1T−(t−1) · · · c
bt−1

T−1 x
a+b1+···+bt−1

1

+
t−1∑
s=1

∑
b1∈A

· · ·
∑

bs−1∈A

cb1T−(t−1) · · · c
bs−1

T−(t−(s−1))

(∑
bs∈A

dbsT−(t−s)θ
a+b1+···+bs
t−(s−1) + eT−(t−s) θ

)
(ii) For any a, b ∈ A, any t ≥ 2,

|a| ≤ |b| =⇒ ∂x0
t

∂xa1
≤ ∂x0

t

∂xb1

(iii) ∂
∂xa1

(
2x0

t − x1
t − x−1

t

)
≤ 0

(iv) ∂
∂x0

1
x0
t ≤

(
α1

α1+α2

)
∂
∂x0

1
x0
t−1

Proof: (i) This part is simply by iterated application of the policy maps, i.e.,

xat = gT−(t−1)(R
a xt−1, R

a θt)

=
∑
b1∈A

cb1T−(t−1) x
a+b1
t−1 +

∑
b1∈A

db1T−(t−1) θ
a+b1
t + eT−(t−1) θ

=
∑
b1∈A

cb1T−(t−1) gT−t(R
a+b1 xt−2, R

a+b1 θt−1)︸ ︷︷ ︸
x
a+b1
t−1

+
∑
b1∈A

db1T−(t−1) θ
a+b1
t + eT−(t−1) θ

2We use in expression (A.7) the convention that in the sum after the plus sign, for s = 1, the
summand becomes

∑
bs∈A d

bs
T−(t−s)θ

a+b1+···+bs
t−(s−1) + eT−(t−s) θ.
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=
∑
b1∈A

cb1T−(t−1)

(∑
b2∈A

cb2T−(t−2) x
a+b1+b2
t−2 +

∑
b2∈A

db2T−(t−2) θ
a+b1+b2
t−1 + eT−(t−2) θ

)
+
∑
b1∈A

db1T−(t−1) θ
a+b1
t + eT−(t−1) θ

...

=
∑
b1∈A

· · ·
∑
bt−1∈A

cb1T−(t−1) · · · c
bt−1

T−1 x
a+b1+···+bt−1

1

+
t−1∑
s=1

∑
b1∈A

· · ·
∑

bs−1∈A

cb1T−(t−1) · · · c
bs−1

T−(t−s)+1

(∑
bs∈A

d
bτ+1

T−(t−s)θ
a+b1+···+bτ
t−(s−1) + eT−(t−s) θ

)

(ii) For t = 2, ∂
∂xa1

x0
2 = ca1 ≥ cb1 = ∂

∂xb1
x0

2 by (A.3) (iii). Suppose the claim is true for

t ≤ k and let t = k + 1. Assume w.l.o.g that a < b. Let s := max{s ∈ A : s ≤ a+b
2
}

and s̄ : min = {s ∈ A : s ≥ a+b
2
}. This implies that ∂

∂xa1
xsk − ∂

∂xb1
xsk ≥ 0 (≤ 0) for s ≤ s

(s ≥ s). Due to the assumed symmetry,
[

∂
∂xa1

xs−sk − ∂
∂xb1

xs−sk

]
=
[

∂

∂x
a−s+s
1

x0
k − ∂

∂x
b−s+s
1

x0
k

]
and

[
∂

∂xa−s̄−s1

x0
k − ∂

∂xb−s̄−s1

x0
k

]
=
[

∂
∂xa1

xs̄k − ∂
∂xb1

xs̄k

]
. This implies that for any s > 0[

∂

∂xa−s+τ1

x0
k −

∂

∂xb−s+τ1

x0
k

]
= −

[
∂

∂xa−s̄−τ1

x0
k −

∂

∂xb−s̄−τ1

x0
k

]
Thus, we can use this to separate A into {s ∈ A : s ≤ s} {s ∈ A : s ≥ s̄} and rearrange

the sum

∂

∂xa1
x0
t −

∂

∂xb1
x0
t =

∑
s∈A

csT−k

[
∂

∂xa1
xsk −

∂

∂xb1
xsk

]
=

∑
s∈A

csT−k

[
∂

∂xa−s1

x0
k −

∂

∂xb−s1

x0
k

]

=
∑
τ≥0

(
cs−sT−k − c

s̄+s
T−k
) [ ∂ x0

k

∂xa−s+s1

− ∂ x0
k

∂xb−s+s1

]
≥ 0

The term in the brackets is nonnegative by hypothesis. Since a < b, s ≥ 0 which implies

that csT−k ≥ cs̄T−k. But this implies that cs−sT−k ≥ cs̄+sT−k for any s ≥ 0 which means that

the argument in the parenthesis is nonnegative too. So, the claim is true. The analysis

for the case a > b is a straightforward modification of the same argument.
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(iii) Using the t-th period equilibrium policy

∂

∂xa1

(
2x0

t − x1
t − x−1

t

)
=

∂

∂xa1

[
2
∑
b∈A

cbT−(t−1) x
b
t−1 +

∑
b∈A

dbT−(t−1) θ
b
t + eT−(t−1) θ

−
∑
b∈A

cb−1
T−(t−1) x

b
t−1 +

∑
b∈A

db−1
T−(t−1) θ

b
t + eT−(t−1) θ

−
∑
b∈A

cb+1
T−(t−1) x

b
t−1 +

∑
b∈A

db+1
T−(t−1) θ

b
t + eT−(t−1) θ

]

=
∑
b∈A

(
2cbT−(t−1) − cb−1

T−(t−1) − c
b+1
T−(t−1)

) ∂

∂xa1
xbt−1 ≤ 0(A.7)

The weights in the last parenthesis are negative by property (ii) in (A.3). By iteratively

applying the policy functions from period t backwards, at each iteration the weights on

one-period before choices would all be positive and one preserves the convex combination

form. This process ends after t− 1 iteration, the end result being a convex combination

of (xb1)b∈A, θt and θ̄. Thus, the weight on xa1 is positive, which makes the last term in the

last line positive. Therefore the claim is true.

(iv) Let t ≥ 2.

∂

∂x0
1

x0
t =

∑
a∈A

caT−(t−1)

∂xat−1

∂x0
1

=
∑
a∈A

caT−(t−1)

∂x0
t−1

∂xa1

≤
∑
a∈A

caT−(t−1)

∂x0
t−1

∂x0
1

= CT−(t−1)

∂x0
t−1

∂x0
1

First and second equalities and the first inequality are by the definition of the policy

mapping and (i) of Lemma 2; CT−(t−1) is the sum of coefficients on the past history

in the period t policy. Since gT−(t−1) satisfies (A.11), coefficients should match and we

should have

0 = caT−(t−1) ∆T−(t−1) − α1 I{a=0} −
∑
b6=0

γbT−(t−1) c
a−b
T−(t−1)

summing over a, 0 = CT−(t−1)∆T−(t−1) − α1 −
∑
b6=0

γbT−(t−1)CT−(t−1)

But ∆T−(t−1) = α1 + α2 +
∑

b6=0 γ
b
T−(t−1) + µT−(t−1) by definition. So,

(A.8) CT−(t−1) =
α1

∆T−(t−1) −
∑

b 6=0 γ
b
T−(t−1)

=
α1

α1 + α2 + µT−(t−1)

≤ α1

α1 + α2
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Thus,

∂

∂x0
1

x0
t ≤ CT−(t−1)

∂

∂x0
1

x0
t−1 ≤

(
α1

α1 + α2

)
∂

∂x0
1

x0
t−1

which concludes the proof of Lemma 2. Q.E.D.

Thanks to the linearity of the optimal future choices as shown in Lemma 2, agent 0’s

problem (A.6) is differentiable with respect to x0
1 and the unconstrained (x0

1 ∈ R) first

order condition is

0 = α1

(
x0

0 − x0
1

)
+ α2

(
θ0

1 − x0
1

)
+ α3

(
x−1

1 − x0
1

)
+ α3

(
x1

1 − x0
1

)
(A.9)

+ E

[
T∑
τ=2

βτ−1

(
−α1

(
x0
τ−1 − x0

τ

) ∂

∂x0
1

(
x0
τ−1 − x0

τ

)
+ α2

(
θ0
τ − x0

τ

) ∂

∂x0
1

x0
τ

− α3

(
x−1
τ − x0

τ

) ∂

∂x0
t

(
x−1
τ − x0

τ

)
− α3

(
x1
τ − x0

τ

) ∂

∂x0
1

(
x1
τ − x0

τ

)) ∣∣∣∣∣ (xt−1, θt
) ]

Agent 0’s problem (A.6) is strictly concave in his choice x0
1 since the second partial of

the objective function with respect to x0
1, −∆T by definition, is negative, or

∆T := α1 + α2 + 2α3 +
T∑
τ=2

βτ−t

(
α1

(
∂

∂x0
1

(
x0
τ−1 − x0

τ

))2

+ α2

(
∂

∂x0
1

x0
τ

)2

(A.10)

+α3

(
∂

∂x0
1

(
x−1
τ − x0

τ

))2

+ α3

(
∂

∂x0
1

(
x1
τ − x0

τ

))2
)
> 0

Consequently, the FOC characterizes the unique maximizer of the unconstrained prob-

lem (x0
1 ∈ R). The following Lemma shows that equation (A.9) has a much simpler

representation.

Lemma 3 (Interiority) Equation (A.9) can be written alternatively as

0 = −x0
1 ∆T + α1 x

0
0 + α2 θ

0
1 +

∑
a6=0

γaT x
a
1 + µT θ̄(A.11)

where ∆T := α1 + α2 +
∑

a6=0 γ
a
T + µT and the coefficients α1, α2, (γaT )a6=0, and µT are

non-negative.

Proof: The coefficient of xa1 in (A.11), γaT , is the total effect of a change in xa1 (a 6= 0)

on the expected discounted marginal utility of agent 0 (the right hand side of (A.9)),
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i.e.,

γaT := α3 I{a∈{−1,1}}

−
T∑
τ=2

βτ−1

(
α1

∂

∂xa1

(
x0
τ−1 − x0

τ

) ∂

∂x0
1

(
x0
τ−1 − x0

τ

)
+ α2

∂

∂xa1
x0
τ

∂

∂x0
1

x0
τ(A.12)

+α3
∂

∂xa1

(
x−1
τ − x0

τ

) ∂

∂x0
1

(
x−1
τ − x0

τ

)
+ α3

∂

∂xa1

(
x1
τ − x0

τ

) ∂

∂x0
1

(
x1
τ − x0

τ

))
For any τ ≥ 2, the last two term in the summand for each period in equation (A.12)

can be written as

∂

∂x0
1

(
x1
τ − x0

τ

) [
α3

∂

∂xa1

(
x−1
τ − x0

τ

)
+ α3

∂

∂xa1

(
x1
τ − x0

τ

)]
=

∂

∂x0
1

(
x1
τ − x0

τ

) [
α3

∂x0
τ

∂xa+1
1

+ α3
∂x0

τ

∂xa−1
1

− 2α3
∂x0

τ

∂xa1

]
≤ 0(A.13)

The equality is due to the symmetry of the policy function across agents; Lemma 2

(ii) and (iii) imply that the terms in the parentheses are non-positive and the terms in

the brackets are non-negative, respectively. Similarly, the first terms in the summand in

(A.12) can be written as

α1
∂

∂xa1

(
x0
τ − x0

τ−1

) ∂

∂x0
1

(
x0
τ − x0

τ−1

)
+ α2

∂

∂xa1
x0
τ

∂

∂x0
1

x0
τ

≤ α1
∂

∂xa1
x0
τ

∂

∂x0
1

(
x0
τ − x0

τ−1

)
+ α2

∂

∂xa1
x0
τ

∂

∂x0
1

x0
τ

=
∂x0

τ

∂xa1

[
(α1 + α2)

∂

∂x0
1

x0
τ − α1

∂

∂x0
1

x0
τ−1

]
≤ 0

which is nonpositive since for any τ ≥ 2

∂

∂x0
1

x0
τ ≤

α1

(α1 + α2)

∂

∂x0
1

x0
τ−1

due to Lemma 2 (iv). Thus, we established the non-positiveness of each term of the

summand for any period τ ≥ 2 in (A.12). Since, the latter is basically a finite weighted

some of such terms with a negative sign in front, for any a ∈ A, γaT ≥ 0. Finally we
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account for the coefficients multiplying θ̄ in equation (A.9) and show that

µT =
∂

∂θ̄
E

[
T∑
τ=2

βτ−1

(
−α1

(
x0
τ−1 − x0

τ

) ∂

∂x0
1

(
x0
τ−1 − x0

τ

)
+ α2

(
θ0
τ − x0

τ

) ∂

∂x0
1

x0
τ

−α3

(
x−1
τ − x0

τ

) ∂

∂x0
1

(
x−1
τ − x0

τ

)
− α3

(
x1
τ − x0

τ

) ∂

∂x0
1

(
x1
τ − x0

τ

)) ∣∣∣∣∣ (xt−1, θt
) ]

(A.14)

≥ 0

Expectation washes out all individual θaτ ’s and we have only θ̄ apart from (xa1)a∈A in

each period’s expression in (A.14). By symmetry of the form in Lemma (2) (i) across

agents, the weight on θ̄ in x0
t , is equal to the weight on θ̄ in x1

t and on x−1
t . Thus,

∂
∂θ̄
E[(x0

t − x1
t )] = ∂

∂θ̄
E[
(
x0
t − x−1

t

)
] = 0. This makes the second line of (A.14) equal

to zero. By Lemma (2)-(i), the weight on θ̄ in E[x0
t ], 1 − Πt

s=2CT−(t−1) (residual of

the sum of the effects of {xb1}) is bigger than that in E[x0
t−1], 1 − Πt−1

s=2CT−(t−1); hence

the term ∂
∂θ̄
E[
(
x0
t−1 − x0

t

)
] ≤ 0. By Lemma (2)-(i), ∂

∂θ̄
E[x0

t ] ≥ 0. By Lemma (2)-(iv),
∂
∂x0

1

(
x0
t − x0

t−1

)
≤ 0. All these together imply that the expression in (A.14) is non-

negative. Each E[xbτ ] in (A.9) can be written as a convex combination of (xa1)a∈A, θ̄, x
0
0, θ

0
1,

with the help of Lemma 2-(i). Since at each iteration, convex combination structure is

preserved, it is so at the end too. Then, the sum of coefficients in each of the differences

involving those variables in the parentheses is zero. This in turn implies that the total

sum of coefficients in (A.9) is zero. Thus, the alternative formulation in (A.11) is true.

This concludes the proof of Lemma 3. Q.E.D.

By isolating the choice x0
1 on the left hand side, we can write the maximizer of the

unconstrained problem as a convex combination of x0
0, θ

0
1, (xa1)a6=0 and θ̄

x0
1 = ∆−1

T

(
α1 x

0
0 + α2 θ

0
1 +

∑
a6=0

γaT x
a
1 + µT θ̄

)
(A.15)

Each of these are elements of X, a convex set. Thus, the optimal choice of the uncon-

strained problem is in the feasible set of the constrained problem, hence it is its unique

maximizer. The form in (A.15) implies that showing the existence of a symmetric equi-

librium policy for the first period of a T -period economy is equivalent to finding the

fixed point of an operator LT : B ((X×Θ)t, X) → B ((X×Θ)t, X) that acts on the
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class of bounded measurable functions x1 : (X×Θ)t → X according to

(A.16) (LT x1)
(
xt−1, θt

)
= ∆−1

T

(
α1 x

0
0 + α2 θ

0
1 +

∑
a6=0

γaT x1

(
Ra xt−1, Ra θt

)
+ µT θ̄

)

Clearly LT is a self-map. Using straightforward modifications of the arguments in the

proof of Step 1, one obtains for x1, x̂1 ∈ B ((X×Θ)t, X) that

∣∣∣ (LT x1)
(
xt−1, θt

)
− (LT x̂1)

(
xt−1, θt

) ∣∣∣ ≤∑
a6=0

(
γaT
∆T

)
‖x1 − x̂1‖∞

The coefficient
∑

a6=0

(
γaT
∆T

)
< 1 since αi > 0, i = 1, 2, 3. Thus, LT is a contraction

on the Banach space of bounded measurable functions (B((X×Θ)t, X), || · ||∞), hence

has a unique fixed point x∗1. Once again, by the same token as in Lemma 1, perfect

equilibria are necessarily Markovian thus we can focus attention on Markovian strategies.

As in the proof of Lemma 1, it suffices to show that LT (BG) ⊂ BG. To that effect, let

x1 ∈ BG be such that there exists a g ∈ G for which after any history (xt−1, θt), one

has x1(xt−1, θt) = g(x0, θ1); let (c, d, e) be the coefficient sequence associated with g.

Applying LT to x1, we get

(LT x1)
(
xt−1, θt

)
= ∆−1

T

(
[α1 +

∑
a6=0

γaT c
−a

︸ ︷︷ ︸
∆T ĉ0

]x0
0 + [α2 +

∑
a1 6=0

γaT d
−a

︸ ︷︷ ︸
∆T d̂0

] θ0
1

+
∑
b6=0

{
[
∑
a6=0

γaT c
b−a

︸ ︷︷ ︸
∆T ĉb

]xb0 + [
∑
a6=0

γaT d
b−a

︸ ︷︷ ︸
∆T d̂b

] θb1

}
+ [µT + e

∑
a6=0

γaT︸ ︷︷ ︸
∆T ê

] θ̄

)
(A.17)

The expression above is linear in x0, θ1 and θ̄. So, LT x1 is linear. By definition of the

new coefficient sequence (ĉ, d̂, ê), each element of the new sequence is nonnegative since

each element of the original one was so and the new elements are positive weighted sums

of the original ones. The total sum of the coefficients on the right hand side of (A.17) is

∆−1
T (α1 +α2 +

∑
a6=0 γ

a
T +µT ) = 1 since (A.16) (which is equivalent to (A.17)) is a convex

combination of elements and of functions that are convex combinations of elements of

the convex set X. This proves property (i). The proof of the properties (ii), (iii), and

(iv) follows identical arguments as in Lemma 1. Thus, the unique fixed point x∗1 should

lie in the set BG with an associated equilibrium Markovian policy function g∗∗T .
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Therefore, when the symmetric continuation equilibrium policies are Markovian, i.e.,

g : X × Θ × {1, · · · , T − 1} 7→ X, after any history (xt−1, θt), the unique symmetric

equilibrium policy in the first period, g∗∗T is Markovian too. Since the choice of t was ar-

bitrary, this must be true for any length history. Now, construct the policy function g∗ as

g∗T (x0, θ1) = g∗∗T (x0, θ1) for any initial (x0, θ1); and g∗T−(t−1)(xt−1, θt) = gT−(t−1)(xt−1, θt),

for all t ∈ {2, · · · , T} and all (xt−1, θt). But then, the function g∗ is by construction the

unique MPE of the T -period economy. This completes the induction step for any given

T ≥ 2. Therefore, the claim in Theorem 1 is true for any finite horizon economy.

Step 3: Convergence and stationarity. This step proves that the sequence of finite

horizon symmetric Markovian equilibria tends to a stationary symmetric Markov Perfect

equilibrium. To do that, we treat finite-horizon economies as finite truncations of the

infinite-horizon economy. Let G∞ :=
∏∞

t=1G be the infinite-horizon Markovian strategy

set. For a fixed discount factor β ∈ (0, 1), let Lβ := {βT ∈ [0, 1]∞ | βT,t = βt−1, for 1 ≤
t ≤ T, and βT,t = 0, for t > T, where T ∈ {1, 2, . . .} ∪ {∞}} be the space of exponen-

tially declining sequences (at the rate β) that are equal to zero after the T -th element.

Endow Lβ with the sup norm.

Lemma 4 (Compactness) Lβ and G endowed with the supnorm are compact metric

spaces.

Proof: Let (βTn)n be a sequence lying in Lβ that converges to x = (xt) ∈ [0, 1]∞.

This implies that βTn,t → xt, for all t ≥ 1, which in turn means that xt ∈ {0, βt} by

the construction of Lβ. Moreover, if xt = 0 for some t, xt+τ = 0 for all τ ≥ 1 since the

terms βTn are geometric (finite or infinite) sequences. There are two possibilities: either

x = (1, β, . . . , βT , 0, 0, . . .) or x = βt for all t ≥ 1. Both lie in Lβ which means that the

limit of any convergent sequence in Lβ lies in Lβ. This establishes that Lβ is closed.

Given any ε > 0, choose N ≥ 1, a natural number, s.t. βN < ε. It is easy to see that

any element in Lβ lies in the ε-neighborhood (with respect to the sup metric) of one of

the elements in the finite set {β1, β2, . . . , βN} ⊂ Lβ. This establishes that Lβ is totally

bounded. Therefore, Lβ is compact. We next show that G endowed with the sup norm

is compact.

LetH :=
{
x = (xa)a∈A | xa ≤

(
1
2a

)
, for all a ∈ A

}
. Defined by inequality constraints,

this set is closed under the sup norm. We will show that it is also totally bounded. For
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a given ε > 0, one can find an N ≥ 1 s.t. 1
2N

< ε. Pick a sequence x̄ ∈ H. For any a ∈ A
s.t. |a| ≥ N , [0, (2N)−1] ⊂ B∞(xa, ε), the ε-ball around xa with respect to the sup norm.

For |a| ≤ N , let Y (a) := {0, ε, 2ε, . . . , kaε, (2a)−1}, where ka is the greatest integer s.t.

kaε ≤ (2a)−1. The setx ∈ H | xa = x̄a, for |a| ≥ N, and (x−(N−1), . . . , x0, . . . , xN−1) ∈
∏
|a|≤N

Y (a), for |a| ≤ N


is a finite set of elements ofH. Moreover, it is dense inH by construction. This establishes

that H is totally bounded. Thus, H is compact under the sup norm.

Each g ∈ G is associated with coefficients ((ca, da)a, e). Clearly, for any sequence of

policies inG, gn → g in sup norm if and only if the associated coefficients ((can, d
a
n)a, en)→

((ca, da)a, e) in sup norm. We know from (A.3) that c satisfies properties (i), (ii) and

(iii). Thus, for any a ∈ A, c0 > c1 > . . . > c|a|, ca = c−a and
∑
|b|≤|a| c

b < 1. Combining

all these, we have 2|a|ca <
∑
|b|≤|a| c

b < 1 which in turn implies that ca < 1
2|a| , for

all a ∈ A. Same bounds hold for the d sequence. But then, the space of associated

coefficient sequences, call it LG, can be seen as a closed subset of H, a compact metric.

Consequently, LG is compact, thus sequentially compact. Pick a sequence (gn) ∈ G and

let (cn, dn, en) be the associated coefficient sequence lying in LG. Since LG is sequentially

compact, there exists a subsequence (cmn , dmn , emn) → (c, d, e) ∈ LG. The latter, being

an admissible coefficient sequence, is associated with the policy g(x, θ) :=
∑

a c
axa +∑

a d
aθa + eθ̄. Thus, the respective policy subsequence gmn → g ∈ G. This establishes

that G is sequentially compact hence compact. This concludes the proof of Lemma 4.

Q.E.D.

Given g ∈ G∞, let xa(g) be agent a’s strategy induced by g, i.e., xa(g)(xt−1, θt) =

gt(R
a xt−1, R

a θt), for all a ∈ A and all (xt−1, θt). Define the objective function U for

agent 0 in the class of truncated economies as U : G∞ × Lβ ×G∞ as

U(g0 ; βT , g) := E

[
∞∑
t=1

βT,t u
(
x0
t−1(g0), x0

t (g
0), {xbt(g)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

where u represents the conformity preferences and N(0) = {−1, 1} as in Assumption 1.

Let the feasibility correspondence Γ : Lβ×G∞ → G∞ be defined for T <∞ as Γ(βT , g) =

{g0 ∈ G∞ | g0
t (x, θ) = θ̄, ∀t > T, ∀(x, θ) ∈ X×Θ}, and for T =∞ as Γ(β∞, g) = G∞. It
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is easy to see, thanks to the monotonicity of Γ in T (through βT ) and the compactness

of G that Γ is a compact-valued and continuous correspondence. Moreover, as the next

Lemma shows, the parameterized objective function U is continuous in g0, the choice

variable.

Lemma 5 (Continuity) For any given (βT , g) ∈ Lβ ×G∞, U(·; βT , g) is continuous on

Γ(βT , g) with respect to the product topology.

Proof: Since G endowed with the sup norm is a compact metric space due to Lemma

4, the metric d(g, g′) :=
∑∞

t=1 2−t||gt − g′t||∞ induces the product topology on G∞ (see

e.g., Aliprantis and Border (2006, p. 90)), where || · ||∞ is the supnorm as before. Let

(βT , g) ∈ Lβ × G∞ and ε > 0 be given. Set ε′ := ( 1−β
1−βT+1 ) ε. The period utility u is

uniformly continuous since X is compact. Thus, one can choose a δ′ > 0 such that for

any t, |x0
t − y0

t | < δ′ implies

∣∣u (x0
t−1, x

0
t , {xbt(g)}b∈N(0), θ

0
t

)
− u

(
y0
t−1, y

0
t , {xbt(g)}b∈N(0), θ

0
t

)∣∣ < ε′.

Set δ = 2−T δ′. Pick g0, g′0 ∈ Γ(βT , g) such that d(g0, g′0) < δ. This implies that for all

t ≤ T , ||g0
t − g′0t ||∞ < 2T δ = δ′ hence |x0

t (g
0)−x0

t (g
′0)| < δ. Uniform continuity of u then

implies that the period utility levels are uniformly bounded above by ε′ for all periods

t ≤ T . The claim therefore follows from

|U(g0 ; βT , g)− U(g′0 ; βT , g)| <
1− βT+1

1− β
ε′ = ε

Q.E.D.

For every T -period symmetric Markovian equilibrium policy sequence g∗T , define

g∗∗T ∈ G∞ as

∀t,∀(x, θ) ∈ X×Θ, g∗∗Tt (x, θ) :=

{
g∗TT−(t−1)(x, θ), if t ≤ T

θ̄, if t > T

G∞ endowed with the product topology is compact since each G endowed with the

supnorm is compact from Lemma 4. Since product topology is metrizable, say with

metric d,3 (G∞, d) is a compact metric space hence the sequence (g∗∗T )T has a convergent

3See Footnote 4 for an example of metrization of product topology.
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subsequence (g∗∗Tn)Tn in G∞ that converges say to g∗ ∈ G∞. Let M : Lβ × G∞ → G∞

be the correspondence of maximizers of U given the value of the parameters. Also, let

E : Lβ → G∞ be the symmetric equilibrium correspondence for the sequence of finite

economies. Since g∗Tn is a symmetric Markovian equilibrium for any Tn, for all gTn ∈ G∞

we have

U(g∗Tn ; βTn , g
∗
Tn) = E

[
∞∑
t=1

βTn,tu
(
x0
t−1(g∗Tn), x0

t (g
∗Tn), {xbt(g∗Tn)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

= E

[
Tn+1∑
t=1

βt−1u
(
x0
t−1(g∗Tn), x0

t (g
∗Tn), {xbt(g∗Tn)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

≥ E

[
Tn+1∑
t=1

βt−1u
(
x0
t−1(gTn), x0

t (g
Tn), {xbt(g∗Tn)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

= E

[
∞∑
t=1

βTn,tu
(
x0
t−1(gTn), x0

t (g
Tn), {xbt(g∗Tn)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]
= U(gTn ; βTn , g

∗
Tn)

Thus, g∗Tn ∈ M(βTn , g
∗
Tn

) for all Tn. Since U is continuous in the choice dimension due

to Lemma 5 and that the feasibility correspondence Γ is continuous, by the Maximum

Theorem (see Berge (1963), p. 115), the correspondence of maximizers, M , is upper

hemi-continuous. This implies that if (βTn , g
∗
Tn

)→ (β∞, g
∗), then g∗ ∈ M(β∞, g

∗) hence

g∗ is a symmetric MPE of the infinite-horizon economy. This implies immediately that

the equilibrium correspondence E is upper hemi-continuous too.

Uniqueness of finite-horizon symmetric MPEs imply that E is single-valued hence

continuous for T < ∞. Define F(βT ) := E(βT ), for T < ∞ and let F(β∞) = g∗.

This way, F is continuous on the space Lβ, which is compact under the supnorm by

Lemma 4. Consequently, F is uniformly continuous. This means, for a given ε > 0, we

can pick δ > 0 small enough so that ||βT − βT ′||∞ < δ implies d (F(βT ),F(βT ′)) <
ε
2
.

We know from the previous approximation that for βT → β∞ there is a subsequence

g∗Tn → g∗. Since (βT )T is convergent, it is Cauchy. So, choose T (δ) large enough such

that ∀T, T ′ ≥ T (δ), ||βT − βT ′|| < δ and ∀Tn ≥ T (δ), ||g∗Tn − g∗||∞ < ε
2
. Pick, then, any

element Tn of the subsequence and any other element, T ′ such that Tn, T
′ ≥ T (δ). We

have
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d
(
g∗T

′
, g∗
)

= d (F(βT ′),F(β∞))

≤ d (F(βT ′),F(βTn)) + d (F(βTn),F(β∞))

<
ε

2
+ d

(
g∗Tn , g∗

)
< ε

The first inequality is the triangle inequality; the second is due to the uniform continuity

of F and the third is by the fact that g∗Tn → g∗ uniformly. This proves that the whole

sequence g∗T → g∗ uniformly. The implication of this latter is that, as the finite-horizon

economies approach the infinite-horizon economy, every two consecutive period, we make

choices approximately with respect to the same MPE policy, hence g∗ is stationary. This

concludes Step 3 which in turn establishes the proof of the statement of Theorem 1.

�

APPENDIX B: PROOF OF THE RECURSIVE COMPUTATION THEOREM

Here we prove Theorem 3. Consider a finite-horizon T -period economy with conformity

preferences (αi > 0, i = 1, 2, 3) and complete information. For part (i), we simply assume

that T = 1 and show that one can fit an exponentially declining sequence into equation

A.2. Since that equation has a unique solution as argued in the existence proof, that

solution must have exponentially declining coefficients. Matching the coefficients of the

policy function using equation A.2, one gets for a 6= 0

d a+1
1 =

(
α3

∆1

)
d a+2

1 +

(
α3

∆1

)
d a1

Dividing both sides by da1 and multiplying them by
(

∆1

α3

)
, one gets

(
∆1

α3

)(
da+1
T

da1

)
︸ ︷︷ ︸

r1

=

(
da+2

1

da+1
1

)
︸ ︷︷ ︸

r1

(
da+1

1

da1

)
︸ ︷︷ ︸

r1

+1

which induces a quadratic equation

r2
1 −

(
∆1

α3

)
r1 + 1 = 0
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whose determinant
(

∆1

α3

)2

− 4 > 0 since ∆1 = α1 + α2 + 2α3 > 2α3 (remember that

αi > 0 for i = 1, 2, 3). The equation has two positive roots, one bigger and one smaller

than 1. The bigger root cannot work since it is explosive as |a| → ∞. We pick the smaller

root

(B.1) 0 < r1 =

(
∆1

2α3

)
−

√(
∆1

2α3

)2

− 1 < 1

which is decreasing in
(

∆1

2α3

)
spanning the interval (0, 1) for different values of the former

in the interval (1,∞). Finally, the sum of coefficients can be written

(B.2)
∑
a∈A

da1 =
∑
a∈A

d0
1 r
|a|
1 = d0

1 + 2 d0
1

r1

1− r1

=
α2

α1 + α2

The first equality is due to the exponentiality of the sequence; the third uses the same

argument as in (A.8) with µ1 = 0, for the coefficient sequence (da1)a∈A. Solving for d0
1

from above, we obtain

d0
1 =

(
α2

α1 + α2

)(
1− r1

1 + r1

)
and finally thanks to exponentiality

da1 = r
|a|
1

(
α2

α1 + α2

)(
1− r1

1 + r1

)
, for a ∈ A

The argument for the sequence (ca1)a∈A is identical with one change: The sum of coeffi-

cients
∑

a c
a
1 =

(
α1

α1+α2

)
. This proves part (i) of the theorem.

For part (ii), observe that the parameters of the maps Ls, namely ∆s, (γ
a
s ) , µs are

functions only of the continuation policy coefficients (c∗τ , d
∗
τ , e
∗
τ )
s−1
τ=1 as defined in (A.10),

(A.12), and (A.14), simply because these are “forward-looking” expressions. We saw

in the induction step (Step 2) of the existence proof that Ls defined in this fashion

becomes a contraction and has a unique fixed point, which is the coefficient sequence of

the first-period policy of an s-period continuation. This establishes part (ii).

For part (iii), observe that each g ∈ G is associated with coefficients ((ca, da)a, e).

Clearly, for any sequence of policies in G, gn → g in sup norm if and only if the associated

coefficients ((can, d
a
n)a, en)→ ((ca, da)a, e) in sup norm. In Step 3 of the existence proof,

we establish the convergence of the finite-horizon equilibrium policies to the stationary
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infinite-horizon MPE policy as the horizon expands. But this implies that the associated

unique coefficient sequence also should converge, then, to the coefficient sequence of the

infinite-horizon stationary MPE policy. This establishes part (iii) of Theorem 3. �

APPENDIX C: PROOF OF ERGODICITY

This section proves Theorem 4. Suppose that the process
(
(θat )

∞
t=−∞

)
a∈A is i.i.d. with

respect to a and t according to ν. Let π be the initial measure on the configuration space

X which is the distribution of

(C.1) x0 =

(
e θ

1− C
+
∞∑
s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

1−s
))

a∈A

Given that (xt ∈ X)∞t=0 is an equilibrium process generated by the stationary MPE g∗

in Theorem 1, given x0, one obtains on the equilibrium path

xa1 =
∑
b1∈A

cb1 xa+b1
0 +

∑
b1∈A

db1 θa+b1
1 + e θ

=
∑
b1∈A

cb1

(
e θ

1− C
+
∞∑
s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

1−s
))

+
∑
b1∈A

db1 θa+b1
1 + e θ

=
e θ

1− C
+
∞∑
s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

2−s
)

which has the same form as in (C.1). Since the process
(
(θat )

∞
t=−∞

)
a∈A is i.i.d., xa0 and

xa1 are distributed identically when the initial measure is π. Since the choice of a was

arbitrary, π is a stationary distribution of the Markov process (xt)
∞
t=0. Moreover, from

Lemma 2 for a stationary policy function, on any path (θ1, θ2, . . .) of the stochastic

process

xat =
∑
b1

· · ·
∑
bt

cb1 · · · cbt xa+b1+···+bt
0

+
t∑

s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

t−(s−1) + e θ
)
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= Ct
∑
b1

· · ·
∑
bt

(
cb1 · · · cbt

Ct

)
xa+b1+···+bt

0

+
t∑

s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

t+1−s + e θ
)

(C.2)

Thus, independent of the initial conditions, xat converges pointwise to xa ∈ X where

xa := lim
t→∞

xat = lim
t→∞

[
Ct
∑
b1

· · ·
∑
bt

(
cb1 · · · cbt

Ct

)
xa+b1+···+bt

0(C.3)

+
t∑

s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

t+1−s + e θ
) ]

The first term of the previous expression Ct → 0 since C < 1 due to αi > 0, for

all i. The first term in the parentheses in the summand is a convex combination of

uniformly bounded terms. Hence, the first part of the above expression goes to 0 as

t→∞. Moreover, since the equilibrium is symmetric, the convergence is uniform across

agents: xt → x = (xa) uniformly. Since the exogenous shock process is i.i.d, the law for

the part after the plus sign in (C.3) is identical to the law for

t∑
s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

1−s + e θ
)

which is the ‘t-translated-into-the-past’ version of the former. Thus, for any given initial

value x0, and a path (. . . , θ−1, θ0), the pointwise limit of xat can be written as

(C.4) xa =
e θ

1− C
+
∞∑
s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

1−s
)

Let P∞(·) :=
∏∞

t=0 P(·) and θ := (. . . , θ−1, θ0, ). Pick any f ∈ C(X,R), the set of

bounded, continuous, and measurable, real-valued functions from X into R. Let π0 be

an arbitrary initial distribution for x0. We have
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lim
t→∞

∫
f(xt)πt (dxt) = lim

t→∞

∫
f

((
Ct
∑
b1

· · ·
∑
bt

(
cb1 · · · cbt

Ct

)
xa+b1+···+bt

0

+
t∑

s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

1−s + e θ
))

a∈A

P∞(dθ)π0(dx0)

=

∫
f

( e θ

1− C
+
∞∑
s=1

∑
b1

· · ·
∑
bs

cb1 · · · cbs−1
(
dbs θa+b1+···+bs

1−s
))

a∈A

P∞(dθ)π0(dx0)

=

∫
f (x) π (dx)

The first equality is from (C.2); the second is due to Lebesgue Dominated Conver-

gence theorem (see e.g. Aliprantis and Border (2006), p. 415); third is due to the

continuity of f and the pointwise limit of xt in (C.4). Thus, for any f ∈ C(X,R),

limt→∞
∫
fdπt =

∫
fdπ, meaning that the sequence of equilibrium distributions πt gen-

erated by the exogenous law P and the stationary MPE policy g∗ converges weakly to the

invariant distribution π. The choice of π0 was arbitrary. Hence, for any initial distribu-

tion, the induced equilibrium process converges weakly to the same invariant distribution

π. Therefore, π is the unique invariant distribution of the equilibrium process. Here is

why: Suppose that π̂ is another invariant distribution. This implies that the induced

process starting with π0 = π̂ should satisfy πt = π̂, for all t = 1, 2, . . .. From the above

convergence argument πt → π weakly. Hence π̂ = π.

Finally, to show ergodicity, pick an f ∈ B(X,R), the set of bounded, measurable,

real-valued functions from X into R. The process starting with π is stationary, hence

πt = π for all t = 0, 1, . . .. Since the process xt is stationary, so is the process (f (xt)).

We can then use Birkhoff’s Ergodic Theorem (see e.g. Aliprantis and Border (2006), p.

659) on the process (f (xt)) to obtain

lim
T→∞

1

T

T∑
t=1

f(xt) =

∫
f(xt)π(dxt)

almost surely. Since the choice of f was arbitrary, the last expression holds for all f ∈
B(X,R). Thus the equilibrium process (xt ∈ X)∞t=0 starting from initial distribution π

is ergodic. This concludes the proof of Theorem 4. �
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APPENDIX D: TAIL CONVERGENCE MONOTONICITY

We prove here Proposition 1. The proof is by induction on T . For T = 1, we know from

Theorem 3 (i) that the policy coefficient sequence (da1)a∈A is exponentially declining on

both sides of the origin, at the rate r1. From the form of the policy function in Theorem

1, the conditional covariance between agents 0 and a+ 1, with a ≥ 0 w.l.o.g., given x0 is

Cov
(
x0

1, x
a+1
1

∣∣∣x0

)
= Cov

(∑
b1∈A

db11 θb11 ,
∑
b2∈A

db21 θa+1+b2
1

)

=
∑
b1∈A

db11 Cov

(
θb11 ,

∑
b2∈A

db21 θa+1+b2
1

)
= V ar(θ)

∑
b1∈A

db11 d
b1−(a+1)
1(D.1)

We will focus on the summation term in the last expression in (D.1). Write it as

∑
b1∈A

db11 d
b1−(a+1)
1 =

∑
b1<0

db11 d
b1−(a+1)
1 + d0

1 d
−a−1
1 +

∑
b1>0

db11 d
b1−(a+1)
1

=
∑
b1<0

db11 d
b1−(a+1)
1 + d0

1 d
−a−1
1 +

∑
b1≥0

db1+1
1 d

b1−(a)
1

=
∑
b1<0

db11

(
r1 d

b1−a
1

)
+ (d0

1)2(r1)a+1 +
∑
b1≥0

(
r1 d

b1
1

)
db1−a1

= r1

∑
b1∈A

db11 db1−a1 + (d0
1)2(r1)a+1

= r1 V ar(θ)
−1Cov

(
x0

1, x
a
1

∣∣∣x0

)
+ (d 0

1 )2 ra+1
1

The first equality is a partitioning, the second a simple change of variable, and the third

is due to the symmetry and the exponentiality of the da1 sequence. Substituting the final

expression back in (D.1) yields, for all a ≥ 0

(D.2) Cov
(
x0

1, x
a+1
1

∣∣∣x0

)
= r1Cov

(
x0

1, x
a
1

∣∣∣x0

)
+ ra+1

1 V ar(θ) (d 0
1 )2

which implies that the rate of decay of the covariances is greater than r1, for any a ≥ 0.

Since the second term on the right hand side of (D.2) decays at the rate r1, this implies
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that the ratio

(D.3)
ra+1

1 V ar(θ) (d 0
1 )2

Cov
(
x0

1, x
a
1

∣∣∣x0

)
decreases monotonically, and being non-negative, it converges. Actually it converges to

zero. Here is why: Since the ratio is less than 1, suppose that it converges to k ∈ (0, 1).

This means from (D.2) that the limit rate of decay of the covariances is r1 + k, greater

than the rate for the term in the numerator in (D.3). Thus, the ratio in (D.3) should

converge to zero at the limit, a contradiction to k ∈ (0, 1). So, the limit of (D.3) is zero,

which in turn implies from (D.2), after dividing both sides by Cov
(
x0

1, x
a
1

∣∣∣x0

)
, that

lim
a→∞

Cov
(
x0

1, x
a+1
1

∣∣∣x0

)
Cov

(
x0

1, x
a
1

∣∣∣x0

) = r1(D.4)

The argument is symmetric for a ≤ 0; hence the sequence
{
Cov

(
x0

1, x
a
1

∣∣∣x0

)}
a∈A

de-

clines exponentially on both tails at the same rate r1 and the statement is true for

T = 1.

Now assume that the statement in Proposition 1 is true for economies up to T − 1

period. We will show that it should also hold for T -period economies. We will base the

main induction arguments on the following Lemma.

Lemma 6 The sequence
{
γbT
}
b∈A in Lemma 3 and the equilibrium coefficient sequence

(cT , dT ) for the first-period policy of a T -period economy have the following properties:

The rate at which they decline at the tail satisfies, for T ≥ 2

lim
a→∞

(
γa+1
T

γaT

)
= lim

a→−∞

(
γa−1
T

γaT

)
= rT−1,

and

lim
a→∞

(
d a+1
T

d aT

)
= lim

a→−∞

(
d a−1
T

d aT

)
= rT > rT−1.

Proof: Let u(t) := u
(
x0
t−1, x

0
t , {xbt}b∈{−1,1}, θ

0
t

)
where u represents the conformity

preferences in Assumption 1. Let u0(t) := ∂
∂x0

1
u(t). From equation (A.12), γaT can be
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written as

γaT := α3 I{a∈{−1,1}}

+
T∑
τ=2

βτ−1

[(
∂x0

τ−1

∂xa1

)
∂

∂x0
τ−1

u0(τ) +

(
∂x0

τ

∂xa1

)
∂

∂x0
τ

u0(τ)

+

(
∂x−1

τ

∂xa1

)
∂

∂x−1
τ

u0(τ) +

(
∂x1

τ

∂xa1

)
∂

∂x1
τ

u0(τ)

]
We will present the argument for the second term inside the summand and the method

of proof will apply to the remaining terms straightforwardly. Assume w.l.o.g. that a ≥ 0.(
∂x0

τ

∂xa1

)
∂

∂x0
τ

u0(τ) =
∑
s∈A

(
∂xs2
∂xa1

)(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u0(τ)

=
∑
s∈A

ca−s2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u0(τ)

and the corresponding term for γa+1
T is

∑
s∈A

ca+1−s
2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u0(τ)

as a→∞ the tail convergence rate for the continuation kicks in and

lim
a→∞

∑
s∈A

ca+1−s
2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u(τ) = lim
a→∞

∑
s∈A

rT−1 c
a−s
2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u(τ)

= rT−1 lim
a→∞

∑
s∈A

ca−s2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u(τ)

thus

lim
a→∞

(
∂x0

τ

∂xa+1
t

)
∂

∂x0
τ

u(τ) = rT−1 lim
a→∞

(
∂x0

τ

∂xb1

)
∂

∂x0
τ

u(τ)

Hence at the tail, the second term of the sum inside the brackets of D.5 decays at the

rate rT−1. The same one-step transition argument applies to each terms of the sum,

in equation (D.5). Moreover, since (D.5) is a discounted sum, the entire expression is

summable and it implies that

lim
a→∞

(
γa+1
T

γaT

)
= rT−1

ectaart.cls ver. 2006/04/11 file: OB_Supplement.tex date: April 5, 2011



25

inheriting the rate of tail convergence of the continuation economy, as is argued in the

Lemma. The method of proof for a ≤ 0 is identical thanks to the symmetry of the

environment.

For the second part of Lemma 6, let D(rT−1) be the space of sequences that satisfies

the properties in (A.3) and that converges at the tail at a rate rT ≥ rT−1. This is a

closed subset of the space of sequences that satisfy only the properties in (A.3), hence

a complete metric space itself. Consequently, the unique coefficient sequence dT that is

the fixed point of the map in (A.15) should lie in D(rT−1). Let D′(rT−1) ⊂ D(rT−1) be

the space of sequences in D(rT−1) whose convergence at the tail is strictly greater than

rT−1. We will show below that the map in (A.15) maps elements of D(rT−1) into the set

D′(rT−1), which will imply that the unique solution of the map (A.15) converges at a

rate rT > rT−1 at the tail.

Pick agent 2a+ 1 and assume w.l.o.g. that a ≥ 0. Let dT ∈ D′(rT−1). From (A.15) by

matching coefficients

d̂ 2a+1
T = ∆−1

T

[∑
b 6=0

γbT d
2a+1−b
T

]

= ∆−1
T

[∑
b>a

γbT d
2a+1−b
T + γaT d

a+1
T +

∑
b<a,b 6=0

γbT d
2a+1−b
T

]

= ∆−1
T

[∑
b≥a

γb+1
T d 2a−b

T + γaT d
a+1
T +

∑
b<a,b 6=0

γbT d
2a+1−b
T

]

= ∆−1
T

[∑
b≥a

γbT d
2a−b
T

(
γb+1
T

γbT

)
+ γaT d

a+1
T +

∑
b<a,b 6=0

γbT d
2a−b
T

(
d2a+1−b
T

d2a−b
T

)]
(D.5)

The second equality is a partioning of the sum taking agent a as the ‘middle’; the first

sum after the third equality is a simple shift and change of the dummy variable b; the

first term after the first equality sign is by multiplying and dividing each term in the

summand by γbT ; finally the last term after the fourth equality sign is by multiplying and

dividing each term in the summand by d2a−b
T . Since all elements involved are non-zero,

the algebraic manipulation above is feasible. We can add to and substract from equation

ectaart.cls ver. 2006/04/11 file: OB_Supplement.tex date: April 5, 2011



26

(D.5) the term ∆−1
T

∑
b<a,b 6=0 γ

b
T d

2a−b
T rT−1 and rearrange the order of the terms to obtain

d̂ 2a+1
T = ∆−1

T


∑
b≥a

γbT d
2a−b
T

(
γb+1
T

γbT

)
+
∑

b<a,b 6=0

γbT d
2a−b
T rT−1︸ ︷︷ ︸

A

+ γaT d
a+1
T︸ ︷︷ ︸
B

+
∑

b<a,b 6=0

γbT d
2a−b
T

{(
d2a+1−b
T

d2a−b
T

)
− rT−1

}
︸ ︷︷ ︸

C

(D.6)

The analogous expression for d̂2a
T is given, after a similar partitioning with agent a as

the middle agent, by

d̂ 2a
T = ∆−1

T

[∑
b 6=0

γbT d
2a−b
T

]

= ∆−1
T


∑
b≥a

γbT d
2a−1−b
T

(
γb+1
T

γbT

)
+
∑

b<a,b 6=0

γbT d
2a−1−b
T rT−1︸ ︷︷ ︸

A′

+ γaT d
a
T︸ ︷︷ ︸

B′

+
∑

b<a,b 6=0

γbT d
2a−1−b
T

{(
d2a−b
T

d2a−1−b
T

)
− rT−1

}
︸ ︷︷ ︸

C′

(D.7)

We showed above in the first part of the proof of Lemma 6 that as b → ∞, the ratio(
γb+1
T /γbT

)
→ rT−1. Consequently, the following limits hold

lim
a→∞

∆−1
T A = rT−1 lim

a→∞
d̂ 2a
T(D.8)

lim
a→∞

∆−1
T A′ = rT−1 lim

a→∞
d̂ 2a−1
T(D.9)

lim
a→∞

∆−1
T C = (rT − rT−1) lim

a→∞
d̂ 2a
T(D.10)

lim
a→∞

∆−1
T C ′ = (rT − rT−1) lim

a→∞
d̂ 2a−1
T(D.11)
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The expressions in (D.8) and (D.10) put together imply that as a gets large the ratio(
d̂ 2a+1
T

d̂ 2a
T

)
≈ rT +

γaT d
a+1
T

d̂ 2a
T

≥ rT(D.12)

and the expressions in (D.9) and (D.11) put together imply that(
d̂ 2a
T

d̂ 2a−1
T

)
≈ rT +

γaT d
a
T

d̂ 2a−1
T

≥ rT(D.13)

The last two expressions imply that the ratios
γaT d

a+1
T

d̂ 2a
T

and
γaT d

a
T

d̂ 2a−1
T

converge. This is because

as a gets arbitrarily large, the numerator converges at the rate rT−1 rT and the denom-

inator at a rate greater than equal to r2
T . Since both ratios are strictly less than one,

one of the following two possibilities must hold: either (i) they converge to a positive

constant less than one (the case where rT = rT−1) or (ii) they converge to zero (the case

where rT > rT−1). The first case is not possible. Suppose it is. Then, rT = rT−1. This

implies from (D.6) along with (D.8) and (D.10) that

rT = lim
a→∞

(
d̂ 2a+1
T

d̂ 2a
T

)
= rT + lim

a→∞

(
γaT d

a+1
T

d̂ 2a
T

)
> rT(D.14)

a contradiction. Therefore the second case (ii) must be true. The argument for a ≤ 0

is symmetric. This means that any sequence dT ∈ D(rT−1) is mapped to a sequence

d̂T ∈ D′(rT−1), meaning that it converges at the rate rT > rT−1 at the tail. So our claim

in the beginning is true and the unique sequence dT that satisfies properties in (A.3)

and the equation (A.15) converges at the tail at a rate rT > rT−1. This concludes the

proof of Lemma 6. Q.E.D.

For the rest of the proof of Proposition 1, assume that the statement in Proposition

1 is true for economies up to T − 1 period. We will show that it should also hold for

T -period economies. Consider first the covariance between agents 0 and 2a + 1, with

a ≥ 0 w.l.o.g.

Cov
(
x0

1, x
2a+1
1

∣∣∣x0

)
= V ar(θ)

∑
b∈A

db1 d
b−(2a+1)
1

= V ar(θ)

[∑
b≤a

dbT d
b−(2a+1)
T + da+1

T d−aT +
∑
b≥a+2

dbT d
b−(2a+1)
T

]
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= V ar(θ)

[∑
b≤a

dbT d
b−(2a+1)
T + da+1

T d−aT +
∑
b≥a+1

db+1
T d

b+1−(2a+1)
T

]

= V ar(θ)

[∑
b≤a

dbT d
b−(2a)
T

(
d
b−(2a+1)
T

d
b−(2a)
T

)
+
∑
b≥a+1

dbT d
b−(2a)
T

(
db+1
T

dbT

)
+ da+1

T d−aT

]
where the algebraic manipulation is the same as in the proof of Lemma 6. The analogous

expression for agent 2a, taking agent a as the agent in the middle, is

Cov
(
x0

1, x
2a
1

∣∣∣x0

)
= V ar(θ)

[∑
b≤a

dbT d
b−(2a−1)
T

(
db−2a
T

d
b−(2a−1)
T

)
+
∑
b≥a+1

dbT d
b−(2a−1)
T

(
db+1
T

dbT

)
+ daT d

−a
T

]

We know from Lemma 6 that as a→∞, the ratio (da+1
T /daT )→ rT > rT−1. This implies,

from the expressions above for the covariance terms, that for large a,

(D.15)
Cov

(
x0

1, x
2a+1
1

∣∣∣x0

)
Cov

(
x0

1, x
2a
1

∣∣∣x0

) ≈ rT +
da+1
T d−aT

Cov
(
x0

1, x
2a
1

∣∣∣x0

) ≥ rT > rT−1

and

(D.16)
Cov

(
x0

1, x
2a
1

∣∣∣x0

)
Cov

(
x0

1, x
2a−1
1

∣∣∣x0

) ≈ rT +
daT d

−a
T

Cov
(
x0

1, x
2a−1
1

∣∣∣x0

) ≥ rT > rT−1

and straightforward modifications of the argument used in the proof of Lemma 6 im-

plies that the ratios da+1
T d−aT Cov

(
x0

1, x
2a
1

∣∣∣x0

)−1

and daT d
−a
T Cov

(
x0

1, x
2a−1
1

∣∣∣x0

)−1

both

converge to zero and one obtains

(D.17) lim
a→∞

Cov
(
x0

1, x
2a+1
1

∣∣∣x0

)
Cov

(
x0

1, x
2a
1

∣∣∣x0

) = rT > rT−1

(D.18) lim
a→∞

Cov
(
x0

1, x
2a
1

∣∣∣x0

)
Cov

(
x0

1, x
2a−1
1

∣∣∣x0

) = rT > rT−1

thus the statement of Proposition 1 is true for any finite T -period economy. Clearly,
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rT ≤ 1 for any T ≥ 1 since the non-negative d sequences sum up to less than 1. Hence,

what we have is a monotone increasing sequence bounded from above by 1. Hence, the

limit r∞ = limT→∞ rT exists and is less than or equal to 1. Moreover, we know from

Theorem 3 that the sequence of finite-horizon MPE coefficients converges to that of the

infinite-horizon MPE coefficient sequence d, thus r∞ is the tail convergence rate of the

infinite-horizon MPE coefficient sequence d. Therefore r∞ < 1 since otherwise that would

contradict the summability of the sequence d. This establishes the proof of Proposition

1. �

APPENDIX E: PROOF OF INEFFICIENCY

We give here the proof of Theorem 5 for economies with complete information. The

extension of the line of proof to the incomplete information economies is straightforward.

Finite-Horizon: Take any finite horizon economy (T < ∞). We will use continuity

arguments so endow the underlying space X ×Θ with the product topology. Product

topology is metrizable, say by metric d4. In the final period of this finite horizon economy,

with absolutely continuous distribution πT−1 on the space of choice profiles xT−1
5 with

a positive density, the planner maximizes ex-ante (before the realization of θT ) the

expected utility of a given agent, say of agent 0 ∈ A, by choosing a symmetric policy

function h ∈ CB(X×Θ, X), the space of bounded, continuous, andX-valued measurable

functions. 6

The space X × Θ is compact with respect to the product topology since X and Θ

are compact. Since the utility function is continuous and strictly concave in all argu-

ments, the maximizer exists and it is unique. The necessary condition for optimality is

summarized in the following lemma.

4Let | · | be the usual Euclidean norm. For any (x, θ), (x′, θ′) ∈ X×Θ, let

d ((x, θ) , (x′, θ′)) :=
∑
a∈A

2−a (|xa − x′a|+ |θa − θ′a|)

Since X = Θ = [x, x̄] is a compact interval, this is a well-defined metric that metrizes the product
topology on X×Θ. See also Aliprantis and Border (2006), p. 90.

5Starting with an initial π0 which is absolutely continuous, the MPE policy function and the ab-
solutely continuous preference shocks induce a sequence (πt) of absolutely continuous distributions on
t-period equilibrium choice profiles.

6Since the planner’s choice rule is symmetric, the choice of agent 0 rather than another agent is
inconsequential.
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Lemma 7 For any (xT−1, θT ) ∈ X×Θ,

0 = α1

(
x0
T−1 − h(xT−1, θT )

)
+ α2

(
θ0
T − h(xT−1, θT )

)
+ α3

(
h(R−1 xT−1, R

−1 θT )− h(xT−1, θT )
)

+ α3 (h(RxT−1, R θT )− h(xT−1, θT ))

− α3 (h(xT−1, θT )− h(RxT−1, R θT ))− α3

(
h(xT−1, θT )− h(R−1 xT−1, R

−1 θT )
)

Proof: The proof uses an extension of the usual calculus of variation techniques to our

symmetric strategic environment. We prove it for the class of bounded, continuous, and

measurable, real-valued functions on X ×Θ. Then, we use the restriction of the result

to a subset of it, the space of bounded, continuous, and measurable, X-valued functions.

Suppose that the function h provides the maximum for the planner’s problem. For any

other admissible function h′, define k = h′ − h. Consider now the expected utility from

a one-parameter deviation from the optimal policy h, i.e.,

J(a) :=

∫
u
(
x0
T−1, (h+ ak)(xT−1, θT ), (h+ ak)(R−1 xT−1, R

−1 θT ),

(h+ ak)(RxT−1, R θT ), θ0
T

)
P (dθT ) πT−1 (dxT−1)

where a is an arbitrary real number and u represents the conformity preferences in

Assumption 1.. Since h maximizes the planner’s problem, the function J must assume

its maximum at a = 0. Leibnitz’s rule for differentiation under an integral along with

the chain rule for differentiation gives us

J ′(a) :=

∫ (
u2 k + u3 k ◦R−1 + u4 k ◦R

)
dP dπT−1

where ui is the partial derivative of u with respect to the i-th argument. For J to assume

its maximum at a = 0, it must satisfy

J ′(0) :=

∫ [
u2

(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
k(xT−1, θT )

+ u3

(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
k(R−1xT−1, R

−1θT )

+ u4

(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
k(RxT−1, RθT )

]
×P (dθT ) πT−1 (dxT−1) = 0

for any arbitrary admissible deviation k. Suppose that the statement of the lemma is
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not true. This implies that there is an element (x̄, θ̄) ∈ X×Θ such that

0 6= u2

(
x̄0, h(x̄, θ̄), h(R−1 x̄, R−1 θ̄), h(R x̄,R θ̄), θ̄0

)
+ u3

(
x̄1, h(R x̄,R θ̄), h(x̄, θ̄), h(R2 x̄, R2 θ̄), θ̄1

)
+ u4

(
x̄−1, h(R−1 x̄, R−1 θ̄), h(R−2 x̄, R−2 θ̄), h(x̄, θ̄), θ̄−1

)
(E.1)

Assume w.l.o.g. that the above expression takes a positive value (the proof for the

case with a negative value is identical). Since the utility function, its partials, and the

deviation functions are all continuous with respect to the product topology, and that

the measures π and P have positive densities, there exists a (π × P)-positive measure

neigborhood A ⊂ X×Θ around (x̄, θ̄) such that the above expression stays positive for

all (xT−1, θT ) ∈ A.7 Assume that a1 = (x̄, θ̄), a2 = (R x̄,R θ̄), and a3 = (R−1 x̄, R−1 θ̄)

are distinct points. Otherwise, since the underlying space X is a real interval and the

maps R and R−1 are right and left shift maps, one can always pick a point in A that

has that property.

Now choose ε > 0 small enough so that the ε-balls Bε (a1), Bε (a2), and Bε (a3) are

disjoint. R and R−1 being both continuous are homeomorphisms. So, one can find ε >

δ1 > 0 and ε > δ2 > 0 such that R (Bδ1 (a1)) ⊂ Bε (a2) and R−1 (Bδ2 (a1)) ⊂ Bε (a3).

Let δ = min{δ1, δ2} and A1 := Bδ (a1). We next define a particular deviation k. Let the

function k be defined as

(E.2) k(x, θ) = k(Rx,R θ) = k(R−1 x,R−1 θ) =

{
γ [δ − d((x, θ), a1)] , if (x, θ) ∈ A1

0, otherwise.

where γ > 0 is a scalable constant. This is possible because A1, R(A1) and R−1(A1)

are disjoint sets. Constructed this way, k is a bounded, continuous, and measurable

function8. Substitute k into equation (E.1). By construction, the only set on which k

is positive is the set A1 which is itself a subset of A, the set of elements of X ×Θ for

which the expression (E.1) is positive. Hence, evaluated with the constructed deviation

function k, J ′(0) > 0, a contradiction to the fact that the policy function h was optimal.

7Endowed with the product topology, the space X ×Θ is metrizable by the metric d. See footnote
4. Product topology and the associated metric allows us to choose positive measure proper subsets of
X for choices of near-by agents and the whole sets X and Θ for far-away agents, staying at the same
time in the close vicinity of the point (x̄, θ̄).

8We endow the range space, the real line, with the Borel σ-field hence any continuous function into
the real line is automatically measurable.
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Therefore the statement of the lemma must be true. This concludes the proof. Q.E.D.

This implies that

h(xT−1, θT ) = (α1 + α2 + 4α3)−1
(
α1x

0
T−1 + α2θ

0
T−1(E.3)

+2α3 h(R−1 xT−1, R
−1 θT ) + 2α3 h(RxT−1, R θT )

)
As in the proof of existence, the operator induced by (E.3) is a contraction on the

Banach space of bounded, continuous, measurable functions with the supnorm, whose

unique fixed is in G, defined in (A.3). Therefore, one can fit the following solution

h(xT−1, θT ) =
∑
a

caP x
a
T−1 +

∑
a

daP θ
a
T

substituting, we get∑
a

caP x
a
T−1 +

∑
a

daP θ
a
T = (α1 + α2 + 4α3)−1

[
α1 x

0
T−1 + α2 θ

0
T

+2α3

(∑
a

caP x
a−1
T−1 +

∑
a

daP θ
a−1
T

)
+ 2α3

(∑
a

caP x
a+1
T−1 +

∑
a

daP θ
a+1
T

)]
By matching coefficients, we get for all a ∈ A

caP = (α1 + α2 + 4α3)−1

[
2α3 c

a−1
P + 2α3 c

a+1
P + α11{a=0}

]

daP = (α1 + α2 + 4α3)−1

[
2α3 d

a−1
P + 2α3 d

a+1
P + α21{a=0}

]
The same method as in the proof of Theorem 3 yields for any a ∈ A,

caP = r
|a|
P

(
α1

α1 + α2

)(
1− rP
1 + rP

)
and daP = r

|a|
P

(
α2

α1 + α2

)(
1− rP
1 + rP

)
(E.4)

rP =

(
∆P

2α3

)
−

√(
∆P

2α3

)2

− 1 with ∆P = α1 + α2 + 4α3.(E.5)

We next compare the equilibrium policy sequence in Theorem 3 with the planner’s

optimal choice coefficient sequence. Notice that(
∆P

2α3

)
=
α1 + α2 + 4α3

2α3

= 2 +
α1 + α2

2α3

< 2 +
α1 + α2

α3

=

(
∆1

α3

)
which implies that rP > r1 since rP is decreasing in ∆P by (E.5). Thus, the planner’s

optimal policy coefficient sequence converges to zero slower than the equilibrium policy
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coefficient sequence. Moreover, the equilibrium policy cannot satisfy the FOC of the

planner’s problem. Therefore, the equilibrium is inefficient for finite-horizon economies.

Infinite-Horizon: The argument here is very similar to the one in the finite horizon

case. We know from Theorem 1 that the equilibrium has the following structure

g(xT−1, θT ) =
∑
a

ca xaT−1 +
∑
a

da θaT + e θ̄

We argue that this solution cannot satisfy the planner’s problem’s optimality condition.

For a given function h ∈ G (see (A.3)), define H : X×Θ→ X as

(E.6) H(xT−1, θT ) :=
(
h (Ra xT−1, R

a θT )
)
a∈A

Let V h be the continuation value of using the function h in the future, defined recursively

as

V h (xT−1, θT ) = u
(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
+β

∫
V h (H (xT−1, θT ) , θT+1) P (dθT+1)(E.7)

where u is as in Assumption 1. Since the policy h ∈ G is linear and the utility function is

continuously differentiable and strictly concave with respect to all arguments, elementary

dynamic programming techniques (see e.g. Stokey and Lucas (1989)) guarantee that the

value function V h exists, it is bounded, continuous, strictly concave and continuously

differentiable. Denote by V h
a the partial derivative of V h with respect to agent a’s initial

choice. Given an initial absolutely continuous distribution πT−1 on the space of previous

period’s choice profiles with positive density, the planner maximizes agent 0’s expected

discounted utility. So, the planner’s problem is

max
{h∈G}

∫ [
u
(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
+ β

∫
V h (H (xT−1, θT ) , θT+1)

]
P (dθT )P (dθT+1) πT−1 (dxT−1)

Once again, the solution exists and it is unique thanks to the compactness (with respect

to the product topology) of the underlying space X ×Θ and the continuity and strict

concavity of the utility and value functions. A straightforward modification of the first
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order condition argument in the finite case yields, for any (xT−1, θT ) ∈ X×Θ

0 = u2(x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T )

+ u3(x1
T−1, h(RxT−1, R θT ), h(xT−1, θT ), h(R2 xT−1, R

2 θT ), θ1
T )

+ u4(x−1
T−1, h(R−1 xT−1, R

−1 θT ), h(R−2 xT−1, R
−2 θT ), h(xT−1, θT ), θ−1

T )

+ β
∑
a

∫
V h
a

(
H
(
R−a xT−1, R

−a θT
)
, θT+1

)
P (dθT+1)

But the FOC for equilibrium is

0 =

∫
u2(x0

T−1, h(xT−1, θT ), h(R−1 xT−1, R
−1 θT ), h(RxT−1, R θT ), θ0

T )

+ β

∫
V h
a (H (xT−1, θT ) , θT+1)P (dθT+1)

For the equilibrium policy to be efficient, it needs to satisfy both FOCs for any (xT−1, θT ) ∈
X×Θ. For the quadratic specification, this entails

0 = 2α3 (h (xT−1, θT )− h (RxT−1, R θT )) + 2α3

(
h(xT−1, θT )− h(R−1 xT−1, R

−1 θT )
)

+ β
∑
a6=0

∫
V h
a

(
H
(
R−a xT−1, R

−a θT
)
, θT+1

)
P (dθT+1)

Substituting the equilibrium policy function g for h and recollecting terms

2α3

[∑
a

ca
(
2xaT−1 − xa−1

T−1 − x
a+1
T−1

)
+
∑
a

da
(
2θaT−1 − θa−1

T−1 − θ
a+1
T−1

)]
+β
∑
a6=0

∫
V h
a

(
H
(
R−a xT−1, R

−a θT
)
, θT+1

)
P (dθT+1) = 0(E.8)

The next lemma says that there exists a positive measure subset of the underlying space

on which the expression in (E.8) is non-zero.

Lemma 8 Let
(
x̂, θ̂
)
∈ X×Θ be the point where x̂a = x̄ and θ̂a = x̄, for all a ∈ A9. The

expression in (E.8) is negative on a positive measure subset E ⊂ X ×Θ, that includes(
x̂, θ̂
)

.

9Recall from Assumption 1 that x̄ is the upper boundary of the feasible action and type sets X and
Θ.
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Proof: Using (E.7) iteratively, one can write for any (xT , θT+1) ∈ X×Θ

V h
a (xT , θT+1) =

∫ T+N∑
t=T+1

βt−T−1

[
2α1

(
x0
t − x0

t−1

) ∂

∂xaT

(
x0
t−1 − x0

t

)
+ 2α2

(
θ0
t − x0

t

) ∂

∂xaT
x0
t

+2α3

(
x−1
t − x0

t

) ∂

∂xaT

(
x−1
t − x0

t

)
+ 2α3

(
x1
t − x0

t

) ∂

∂xaT

(
x1
t − x0

t

)
+βN+1 V h

a (xt+N , θt+N+1)

]
N∏
i=1

P (dθT+1+i)(E.9)

where xt is written as, using iterations of the policy function g and Lemma 2 (i) with

xT instead of x1

xat =
∑
b1∈A

· · ·
∑

bt−T∈A

cb1 · · · cbt−T xa+b1+···+bt−T
T

+
t−T∑
s=1

∑
b1∈A

· · ·
∑

bs−1∈A

cb1 · · · cbs−1

(∑
bs∈A

dbsθa+b1+···+bs
t−(s−1) + e θ

)
(E.10)

At the point
(
x̂, θ̂
)

, xaT = x̄ for all a ∈ A. So, the first part after the equality sign in

(E.10) is the same for all agents. Since the preference shocks are i.i.d., the second part

will be the same for all agents in expectations, which eliminates the terms in the second

line after the equality sign in (E.9). Thanks to Lemma 2 (i), ∂
∂xaT

x0
t > 0 for any a ∈ A,

and for all t = T + 1, . . . , T + N . But then, the second term in (E.9) after the first

bracket is negative in expectations. This is because using (E.10) E[x0
t | (xT , θT+1)] =

Ct−T x̄ + (1 − Ct−T ) θ̄ > θ̄, where C =
∑

a c
a. The first term after the bracket sign too

is negative in expectations. Here is why: The term

E[
(
x0
t − x0

t−1

)
| (xT , θT+1)] = Ct−T x̄+ (1− Ct−T ) θ̄ − Ct−1−T x̄− (1− Ct−1−T ) θ̄

= Ct−1−T (1− C)
(
θ̄ − x̄

)
< 0

for any t = T + 1, . . . , T +N . So, one can write

E [ 2α1

(
x0
t − x0

t−1

) ∂

∂xaT

(
x0
t−1 − x0

t

)
| (xT , θT+1)] < E [ 2α1

(
x0
t − x0

t−1

) ∂

∂xaT
x0
t−1 | (xT , θT+1)]

< 0

which shows that the summand in (E.9) is negative in expectations in every period. In

turn, the whole sum, then, until the last line of (E.9), is negative in expectations for

any arbitrary N . The choice of a was arbitrary and that V h
a is continuous on X × Θ
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for any a ∈ A. The latter is compact with respect to the product topology. Hence, V h
a

is bounded. So, one can choose an N large enough to make the βN+1 V h
a (xt+N , θt+N+1)

term arbitrarily small. This implies that the whole expression in (E.9) is negative, which

in turn means that V h
a

(
x̂, θ̂
)
< 0 for any a ∈ A.

At the point
(
x̂, θ̂
)

, the first line of (E.8) is zero and the second line is negative, as

we just showed, which makes the whole expression in (E.8) negative. Since the first line

in (E.8) is continuous and so are Va for any a ∈ A, the whole expression in (E.8) is

continuous. Hence, as in the proof of Lemma 7, there exists a (π × P)-positive measure

neigborhood E ⊂ X×Θ around (x̄, θ̄) such that the above expression stays negative for

all (xT−1, θT ) ∈ E. This concludes the proof. Q.E.D.

The statement of Lemma 8 leads to a contradiction since it means that the planner’s

optimal rule and the equilibrium policy function g does not agree on E. Therefore, g is

inefficient. This concludes the proof. �

APPENDIX F: IDENTIFICATION

F.1. Rationality vs. Myopia

We prove here Proposition 2. We showed in the proof of Proposition 1 (Tail Con-

vergence Monotonicity) that, for T = 1, the ratio
(
ρa+1,T

ρa,T

)
is necessarily monotonically

decreasing in a for any underlying preference parameter vector α, converging eventually,

at the tail, to the rate r1 given in Theorem 3 (i). Moreover, as we showed in Section 4.2,

the cross-sectional covariances at the stationary distribution can be written recursively

given the weights of the policy function. For the myopic policy function, they take the

form

(F.1) Cov
(
x0, xa

)
=
∑
a1∈A

∑
b1∈A

ca1
1 c

b1
1 Cov

(
xa1 , xa+b1

)
+ V ar(θ)

∑
a1∈A

da1
1 d

a1−a
1 ,

Since the c1 and d1 sequences are exponential at the rate r1 from Theorem 3 (i), by

straightforward modifications of the arguments in the first part of the proof of Propo-

sition 1, the ratio of consecutive covariances for the myopic,
(
Cov(x0,xa+1)
Cov(x0,xa)

)
converges

monotonically as a gets large.

However, the above ratio for the stationary policy function is non-monotonic for a set

of parameter values. See the table below where we plot the above ratio for any parameter
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vector ᾱ where ᾱ1 = ᾱ2 = ᾱ3.

ra :=
(
ρa+1

ρa

)
r1 . . . r5 . . . r9 . . . r∞

.4757 . . . .3543 . . . .3571 . . . .3680

The values dip first then come back up which proves non-monotonicity of
(
ρa+1

ρa

)
in

a for the chosen parameter vector ᾱ. Moreover, the map in (3.2) that generates the

policy weights as fixed points is continuous in the parameters (α1, α2, α3) of the utility

function. Thus, there is an open-neighborhood around ᾱ such that for each element α̂

of that neighborhood, the same non-monotonicity property obtains. This concludes the

proof. �

We conjecture that this non-monotonicity property should hold for the entire admissi-

ble parameter space. As an illustration we present in Figure 1, the ratio
(
ρa+1,T

ρa,T

)
(y-axis)

as a function of a (x-axis), at the stationary distribution, for different levels of strength

of interaction proxied by the ratio
(

2α3

∆1

)
.10 Clearly, for a large set of parameters, non-

monotonicity obtains at the stationary distribution. The limit auto-correlation function

for the myopic model, on the contrary, inherits the behavior of its one-step transition

counterpart: it converges at a monotonically decreasing rate.

F.2. Lack of Identification in Infinite Horizon Economies

We prove here Proposition 4. In the case of complete information, the policy function

is:

xat =
∑
b∈A

cb (α)xa+b
t−1 +

∑
b∈A

db (α) θa+b
t + e θ̄

10More precisely, we set
(
α1

α2

)
= 1,

(
2α3

∆1

)
∈ {0.1, 0.2, 0.75, 0.9} and β = .95. Note that the results

are independent of particular values of αi as long as the ratio
(

2α3

∆1

)
is the same.
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Figure 1.— The ratio ra as a function of a for different values of
(

2α3

∆1

)
at the station-

ary distribution. Namely, all parameter vectors α such that
(

2α3

∆1

)
= 0.9, 0.75, 0.2, 0.1,

respectively for the Top-Left, Top-Right, Bottom-Left, and Bottom-Right panels.

As we saw in Lemma 2, one can obtain by iteration the reduced form11

xat =
∑
b1

· · ·
∑
bt

c (α)b1 · · · c (α)bt xa+b1+···+bt
0

+
t∑

s=1

∑
b1

· · ·
∑
bs−1

c (α)b1 · · · c (α)bs−1

(∑
bs

d (α)bs θa+b1+···+bs
t−(s−1) + e (α) θ

)

Consider now the alternative specification with no interactions between agents (α̂3 = 0)

and no habits (α̂1 = 0), a preference shock process {θ̂at }a∈At≥1 and own type effects with

α̂2 > 0. For this economy, equilibrium choice of agent a at time t is given by

xat = θ̂at

Defining the new preference shock process {θ̂at }a∈At≥1 as

11In Lemma 2, the iteration stops once it reaches period 1. But, since a stationary MPE exists by
Theorem 1, we iterate here once more on the form in Lemma 2 using the stationary policy function and
write equilibrium choices as a function of the initial conditions x0.
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θ̂at : =
∑
b1

· · ·
∑
bt

c (α)b1 · · · c (α)bt xa+b1+···+bt
0

+
t∑

s=1

∑
b1

· · ·
∑
bs

c (α)b1 · · · c (α)bs−1

(
d (α)bs θa+b1+···+bs

t−(s−1) + e (α) θ
)

would imply that for an arbitrary initial distribution π0 for x0, the joint probability

distributions that the two specifications (with and without interactions)) generate on

the process {xat }a∈At≥1 , are identical. Moreover, if one allows for infinite histories, one can

define the preference shock process {θ̂at }a∈At≥1 as before

θ̂at :=
e (α) θ

1− C (α)
+
∞∑
s=1

∑
b1

· · ·
∑
bs

(c (α))b1 · · · (c (α))bs−1

(
(d (α))bs θa+b1+···+bs

t−(s−1)

)
and obtain observational equivalence once again. Hence, we conclude that identification

is not possible. This concludes the proof. �

APPENDIX G: DETAILS ABOUT THE SIMULATIONS

We build an artificial economy that consists of a large number of agents ( |A| =

1300, 2500, and 5000, depending on the treatment) distributed on the one-dimensional

integer lattice. At both ends “buffer” agents that act randomly are added to smooth

boundary effects. Depending on the treatment, we start the economy with the following

initial configuration of choices: (i) the highest action for all agents; (ii) the lowest action

for all agents, (iii) the action equal to the mean shock for all agents.

The core engine behind the simulations is a Matlab code, g.m, which computes the

equilibrium policy weights recursively as outlined in Section 3.2 of the paper. The code

is posted on Özgür’s webpage, http://www.sceco.umontreal.ca/onurozgur/, at the Uni-

versité de Montréal; the code contains also detailed explanations. The correlation com-

putations use another code, cor.m, also available on Özgür’s webpage.

Both codes use as input parameters values of the preference parameters αi, i = 1, 2, 3,

the discount factor β, the horizon for the economy T , the number of agents |A|, and the

longest distance between agents for which the equilibrium correlation is computed M .

For the limit distributions results, once g.m computes the policy weights, we let the

computer draw (θat )
|A|
a=1 from the interval [−D,D] according to the uniform distribution

(this is for simplicity since all results in the paper are distribution-free).
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