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Abstract

We propose a model of history-dependent risk attitude (HDRA), allowing the attitude of

a decision-maker (DM) towards risk at each stage of a T -stage lottery to evolve as a function

of his history of disappointments and elations in prior stages. We establish an equivalence be-

tween the existence of an HDRA representation and two documented cognitive biases. First,

the DM’s risk attitudes are reinforced by prior experiences: he becomes more risk averse after

suffering a disappointment and less risk averse after being elated. Second, the DM displays

a primacy effect: early outcomes have the strongest effect on risk attitude. Furthermore, the

DM lowers his threshold for elation after a disappointing outcome and raises it after an elating

outcome; this makes disappointment more likely after elation and vice-versa, leading to sta-

tistically reversing risk attitudes. “Gray areas” in the elation-disappointment assignment are

connected to optimism and pessimism in determining endogenous reference points.
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Once bitten, twice shy. — Proverb

1. Introduction

Consider two people in a casino, Alice and Bob, who have the same total wealth and the same
utility function over monetary prizes. Alice has already won several games at the roulette wheel,
while Bob lost at those games. Will Alice’s and Bob’s attitudes toward further risk be the same,
or might they depend on whether they had previously won or lost? Consider now a third person,
Carol, who has just won $100 in an even-chance lottery between $100 and $x. Could Carol’s
attitude to future risk depend on whether x, the alternate outcome, corresponded to winning or
losing a thousand dollars?

There is experimental evidence that the way in which risk unfolds over time affects risk atti-
tudes; and moreover, that individuals are affected by unrealized outcomes, a phenomenon known
as counterfactual thinking.1 Thaler and Johnson (1990) suggest that individuals become more risk
averse after negative experiences and less risk averse after positive ones. Post, van den Assem,
Baltussen, and Thaler (2008) suggest that individuals are more willing to take risks after extreme
realizations. The latter two studies consider settings of pure chance—suggesting that the effects
therein are not the result of learning about oneself or one’s environment. In a more general context,
Malmendier and Nagel (2010) study how personal experiences of macroeconomic shocks affect fi-
nancial risk-taking. Controlling for wealth, income, age, and year effects, they find that for up
to three decades later, “households with higher experienced stock market returns express a higher
willingness to take financial risk, participate more in the stock market, and conditional on partic-
ipating, invest more of their liquid assets in stocks.” In the context of professional sports, Rao
(2009) shows that “a majority of the [NBA basketball] players...significantly change their behavior
in response to hit streaks by taking more difficult shots” but that “controlling for shot conditions,
players show no evidence of ability changing as a function of past outcomes.”

In this paper, we propose a model of history-dependent risk attitude (HDRA) over multi-stage
lotteries that permits risk attitudes to be shaped by prior experiences. To ease exposition, we begin
by describing our HDRA model in the simple setting of T -stage temporal lotteries (the model is
later extended to stochastic decision trees, in which intermediate actions can be taken). A real-
ization of a temporal lottery is another temporal lottery, which is one stage shorter. In the HDRA
model, the DM categorizes each realization of a temporal lottery as an elating or disappointing
outcome. At each stage, the DM’s history is the preceding sequence of elations and disappoint-

1The collection Roese and Olson (1995) offers a comprehensive overview of the counterfactual thinking literature.
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ments. Each possible history h corresponds to a preference relation over one-stage lotteries, which
comes from an admissible set of preferences. These one-stage preferences are rankable in terms of
their risk aversion. For example, an admissible collection could be a class of expected utility pref-
erences with a Bernoulli function u(x) = x1−ρh

1−ρh
, where the coefficient of relative risk aversion ρh

is history dependent. More generally, we require each of the one-stage preferences to be members
of the betweenness class (Chew (1989), Dekel (1986)), a broad class of preferences that includes
expected utility and Gul (1991)’s model of disappointment aversion.

Given the history assignment for each realization, the DM calculates the value of a T -stage
lottery recursively; that is, starting at the T -th stage and proceeding backwards, each one-stage
lottery is replaced with its appropriate, history-dependent certainty equivalent. The key assumption
of the HDRA model is that the history assignment for all sublotteries is internally consistent: if a
sublottery is considered elating (disappointing), then its value should indeed be weakly larger than
(strictly smaller than) the value of the sublottery from which it emanates. In a multistage setting,
this imposes a fixed point requirement on the assignment of histories. Internal consistency builds
on a related notion of elation and disappointment for one-stage lotteries: a DM is elated if the
prizes he receives from a lottery is at least as good as the lottery itself, while he is disappointed if
the prize he receives is worse than the lottery itself (see, for example, Chew (1989) or Gul (1991)).

We do not place further restrictions on how risk aversion should depend on the history. Nonethe-
less, we show that the HDRA model (in particular, the internal consistency requirement) predicts
two well-documented cognitive biases; and that these biases are sufficient conditions for an HDRA
representation to exist. First, in accordance with the experimental evidence cited above, the DM’s
risk attitudes are reinforced by prior experiences: he becomes less risk averse after positive expe-
riences and more risk averse after negative ones. Second, and perhaps more surprisingly, the DM
displays primacy effects: his risk attitudes are disproportionately affected by early realizations.
In particular, the earlier the DM is disappointed, the more risk averse he becomes. Sequencing
biases, especially the primacy effect, are robust and long-standing experimental phenomena (early
literature includes Anderson (1965)); and several empirical studies argue that early experiences
may shape financial or cultural attitudes (e.g. Guiso, Sapienza and Zingales (2004) or Alesina and
Fuchs-Schündeln (2007)). The primacy effect also has implications for the optimal sequencing
of information to manipulate behavior. For example, we study how a financial advisor trying to
convince a DM to invest in a risky asset should deliver mixed news.

HDRA also has predictions for the DM’s endogenous reference levels. In particular, the model
predicts statistically reversing risk attitudes. The DM increases the threshold for elation after
positive experiences and lowers it after negative experiences. This makes disappointment more
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likely after elation, and vice-versa. The psychological literature, in particular Parducci (1995)
and Smith, Diener, and Wedell (1989), provides support for the prediction that elation thresholds
increase (decrease) after positive (negative) experiences.2

For some lotteries, there may be more than one internally consistent assignment of histories
given an admissible set of preferences. The DM’s history assignment is revealed by his choice
behavior over temporal lotteries, as seen in the axiomatic foundations we provide. Because the
DM’s assignment may affect his utility from a temporal lottery, we view an optimist as a DM who
always selects the “most favorable” interpretation (when more than one assignment is possible)
and a pessimist as a DM who always selects the “least favorable” interpretation. This notion of
optimism and pessimism is distinct from previous notions which identify optimism and pessimism
with the choice of (distorted) beliefs; for example, see Bénabou and Tirole (2002), Chateauneuf,
Eichberger, and Grant (2007), or Epstein and Kopylov (2007).

Applied work suggests that changing risk aversion helps explain several empirical phenomena.
Barberis, Huang, and Santos (2001) allow risk aversion to depend on prior stock market gains and
losses à la the experimental evidence of Thaler and Johnson (1990), and show that their model
is consistent with the well-documented equity premium and excess volatility puzzles. Gordon
and St-Amour (2000) study bull and bear markets, allowing risk attitudes to vary stochastically
by introducing a state-dependent CRRA parameter in a discounted utility model. They show that
countercyclical risk aversion best explains the cyclical nature of equity prices, suggesting that
“future work should address the issue of determining the factors that underline the movements in
risk preferences” which they identified. In this work, we lay theoretical foundations for a a class
of models under which such shifts in risk attitude may arise. In particular, we find that the simple
requirement of internal consistency provides sufficient structure to make predictions on how risk
aversion changes with prior experiences.

In many theories of choice over temporal lotteries, risk aversion could depend on the passage
of time, wealth effects or habit formation in consumption; see Kreps and Porteus (1978), Chew
and Epstein (1989), Segal (1990), and Rozen (2010), among others. We study how risk attitudes
are affected by the past, independently of such effects. In the HDRA model, risk attitudes are
affected by “what might have been.” This means that our model relaxes consequentialism (see
Machina (1989)), an assumption that is maintained by all the papers above. Our type of history
dependence is conceptually distinct from models where contemporaneous and future beliefs affect

2Summarizing these works, Schwarz and Strack (1998) observe that “an extreme negative (positive) event increased
(decreased) satisfaction with subsequent modest events....Thus, the occasional experience of extreme negative events
facilitates the enjoyment of the modest events that make up the bulk of our lives, whereas the occasional experience of
extreme positive events reduces this enjoyment.”
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Figure 1: The three stage lottery P3 is seen in (a), and in (b) all the terminal one-stage lotteries in
P3 are replaced with their appropriate certainty equivalents under the history assignment. Figure
(c) corresponds to the specification in the numerical example.

contemporaneous utility (that is, dependence of utility on “what might be” in the future). This
literature includes Caplin and Leahy (2001), Epstein (2008), and Köszegi and Rabin (2009).3

1.1. Illustration

Consider the three stage lottery P3 visualized (informally) in Figure 1(a), where p,q,r, and s are
one-stage lotteries. In the first stage of P3, there is an even chance that the DM faces the lottery
s (the right branch) or faces an additional stage of risk before learning which lottery governs his
winnings (the left branch). Under the two-stage lottery P2 in the left branch, the DM faces each of
the lotteries p and r with probability 1/4, and faces lottery q with probability 1/2.

The DM evaluates P3 using the class of CRRA expected utility preferences. That is, the
DM’s Bernoulli function is given by x1−ρh

1−ρh
under history h. The set of possible histories is H =

{0,e,d,ee,ed,de,dd}. For example, 0 is the initial history (before resolution of risk), e corre-
sponds to having been elated once, and de corresponds to having first been disappointed and then
elated. By the reinforcement effect, the DM’s history-dependent coefficient of relative risk aver-
sion ρh satisfies ρe < ρd in stage one and both ρee < ρed and ρde < ρdd in stage two (the DM is
more risk averse after a disappointment than after an elation). By the primacy effect, ρed < ρde (the
DM is more risk averse the earlier he is disappointed). As we will later show, the reinforcement
and primacy effects arise endogenously as a result of our internal consistency condition.

Suppose that the DM considers the right branch disappointing (d), the left branch P2 elating
(e), and, within P2, considers r elating (ee) but p and q disappointing (ed). To verify that this is

3In Köszegi and Rabin (2009), given any fixed current belief over consumption, utility is not affected by prior
history (how that belief was formed). Their model, which presumes the DM is loss averse over changes in successive
beliefs, could be generalized to include historical differences in beliefs, which would then affect utility values but
not actual risk aversion due to their assumption of additive separability; we conjecture that one could relax additive
separability to find choices of parameters and functional forms for their model that replicate the primacy effect and the
reinforcement effect predicted by HDRA.
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an internally consistent history assignment, we must check that the conditions below are satisfied.
For any one-stage lottery ` and history h, denote by CEh(`) the certainty equivalent of ` using
the CRRA coefficient ρh. Proceeding backwards, we begin by replacing each of the one-stage
lotteries p,q,r, and s with their history-dependent certainty equivalent, as seen in Figure 1(b).
Then, conditional on the left branch P2 being elating, verifying that p,q, and r have internally
consistent assignments requires checking that

CEed(p), CEed(q) < CEe

(
P̃2
)
≤ CEee(r),

where P̃2 is the one-stage lottery seen in Figure 1(b) where p, q, and r in the two-stage lottery P2

are replaced with their respective certainty equivalents.
Second, checking that s and P2 have internally consistent assignments requires checking that

CEd(s)< CE0

(
P̃3
)
≤ CEe

(
P̃2
)
,

where P̃3 is the recursively-constructed one-stage lottery where CEd(s) and CEe(P̃2) are each
received with probability 1/2.

As a simple example, consider the following specification of P3. Suppose 0 = ρe < ρ0 < ρd =

1/2 (only these coefficients are relevant for this example). As pictured in Figure 1(c), let p,r, and
s be degenerate lotteries giving $0, $100, and $x, respectively. Let q be a lottery whose support
consists of prizes between $25 and $50. We demonstrate that for any x< 25, the history assignment
described above is the unique internally consistent assignment for this specification of P3. Indeed,
within P2, receiving 0 must be disappointing and receiving 100 must be elating. Moreover, if P2

is elating, then q, whose certainty equivalent under any history must be between 25 and 50, must
be disappointing. To see this, denote by z the relevant certainty equivalent of q. Under ρe = 0, the
consistency condition for q to be disappointing is

1
4
·0+ 1

2
· z+ 1

4
·100 > z if and only if z < 50.

Finally, to see that P2 is indeed elating, note that CE0(P̃2) must be larger than 25, which is the
certainty equivalent evaluated using a higher CRRA coefficient (1

2) and in the worst case when q

gives $25 with probability one. Therefore, for x < 25, the DM is elated when he doesn’t receive x

and subsequently views q as a disappointment.
Ceteris paribus, it can similarly be shown that for x > 50, the DM is disappointed when he

doesn’t receive x and subsequently views q as an elation. In the second stage, receiving the lowest
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prize (0) is always disappointing and receiving the highest prize (100) is always elating. Hence the
probability of being elated after a disappointment is 3/4; and similarly, the probability of being
disappointed after an elation is 3/4. This illustrates the property of statistically reversing risk
attitudes under HDRA: disappointment is more likely after elation, and vice versa.

More generally, for any given lottery q, there will be a cutoff x ≥ 25 such that for any x < x,
there is a unique internally consistent assignment under which P2 is elating and q is disappointing;
and there is a cutoff x̄ ≤ 50 such that for x > x̄, there is a unique internally consistent assignment
under which P2 is disappointing and q is elating. For x ∈ [x, x̄], both history assignments are
internally consistent. This means that both CEe(P̃2)≥CE0(P̃3)> x (where P̃2 and P̃3 correspond
to the case where P2 is elating) and x≥CE0(P̃3

′
)>CEd(P̃2

′
) (where P̃2

′
and P̃3

′
correspond to the

case where P2 is disappointing). An optimist, who always takes the “most favorable” view of risk,
would view P2 as elating as soon as possible (i.e., for all x > x); while a pessimist, who always
takes the “least favorable” view of risk, would view P2 as disappointing for as long as possible
(i.e., for all x < x̄). In particular, the optimist prefers the lottery P3 to receiving $x for sure, while
the pessimist is more risk averse and prefers the sure prospect of $x to P3.

The remainder of this paper is organized as follows. Section 2 formalizes the domain of tem-
poral lotteries. Section 3 provides a primer on the class of preferences over one-stage lotteries
satisfying the betweenness axiom. Section 4 formalizes the HDRA model and contains our main
results for temporal lotteries. Implications of HDRA are studied in Section 5. Section 6 extends
our model and results to a setting where intermediate actions are possible. Axiomatic foundations
for HDRA are provided in Section 7. Section 8 discusses directions for further research.

2. Framework: T -stage lotteries

We begin by studying the simple setting of T -stage lotteries; in Section 6 we extend the setting to
stochastic decision trees.

Let X = [w,b]⊂ R be a bounded interval of monetary prizes, where w is the worst prize and b is
the best prize. The set of all simple lotteries (i.e., having a finite number of outcomes) over X is de-
noted L (X), or simply L 1. Elements of L 1 are one-stage lotteries. We reserve lowercase letters
for one-stage lotteries; typical elements of L 1 are denoted p, q, or r. The probability of a monetary
outcome x under p is denoted p(x). A typical element p has the form 〈p(x1),x1; . . . , p(xm),xm〉.
The degenerate lottery δ x ∈L 1 gives the prize x with probability one. For α ∈ (0,1) and any two
lotteries p,q ∈L 1, the lottery α p+(1−α)q ∈L 1 denotes the convex combination of p and q,
giving prize x with probability α p(x)+(1−α)q(x).
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For T ≥ 2, the set of T -stage lotteries, L T , is defined by the inductive relation L T =L
(
L T−1).

A typical element PT of L T has the form

PT =
〈
α1,PT−1

1 ; ...;αm,PT−1
m

〉
,

where each PT−1
j ∈ L T−1 is a (T − 1)-stage lottery. If PT−1

j is the outcome of PT , then all
remaining uncertainty is resolved according to PT−1

j . To simplify notation, we use the superscript
T only when T ≥ 3. The degenerate lottery δ

T
x ∈L T gives the lottery δ

T−1
x with probability one

(i.e., x is received with probability one after T stages).
To avoid redundancy, our notation for any t-stage lottery implicitly assumes that the elements

in the support are distinct.

3. Preliminaries: recursive preferences

The primitive in our model is a preference relation � over the set of T -stage compound lotteries
(L T ) which has a recursive structure. As a preliminary step, we need to discuss the single-stage
preferences (�1 over L 1) that will be applied recursively.

3.1. Singe-stage preferences

In this paper, we confine our attention to a class of single-stage preferences that are continuous,
monotone (with respect to the relation of first-order stochastic dominance), and satisfy the follow-
ing betweenness property: for all p,q ∈L 1 and α ∈ [0,1], p�1 q implies p�1 α p+(1−α)q�1

q. The betweenness axiom is a weakened form of the vNM-independence axiom. It implies neu-
trality toward randomization among equally-good lotteries; this retains the linearity of indifference
curves in expected utility theory but relaxes the assumption that they are parallel.

Our two leading examples of single-stage preferences in this class are:

Example 1 (Expected utility). For this class, the value of a lottery p is simply E(·;u)=∑x p(x)u(x),
where u : X → R is a utility function over monetary prizes.

Example 2 (Disappointment aversion). Gul (1991) proposes a theory of disappointment aver-
sion. The disappointment aversion value of a lottery p, V (p;β ,u), is the unique v that solves

v =
∑{x|u(x)≥v} p(x)u(x)+(1+β )∑{x|u(x)<v} p(x)u(x)

1+β ∑{x|u(x)<v} p(x)
, (1)
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where β ∈ (−1,∞) and u : X → R is increasing. (The term in the denominator normalizes the
weights on the prizes so that they sum to one.)

According to Gul’s model, the support of any nondegenerate lottery is divided into two groups,
the elating outcomes (for which u(x) ≥ v) and the disappointing outcomes (for which u(x) < v),
where the threshold v = V (p;β ,u) is determined endogenously. The DM then values lotteries
by taking their “expected utility,” except that disappointing outcomes get a uniformly greater (or
smaller) weight that depends on the value of a single parameter β , the coefficient of disappointment

aversion.4 Gul’s model was first intended to explain the Allais paradox. In a dynamic setting, it
proved a useful model to address the equity premium puzzle (Ang, Bekaert and Liu, 2005), a
statistically significant negative correlation between volatility and private investment (Aizenman
and Marion, 1999), and observed asset-pricing behavior (Routledge and Zin, 2010).

More generally, Chew (1989) and Dekel (1986) show that a preference relation �1 satisfies
continuity, monotonicity, and betweenness if and only if there exists a utility representation, V ,
where each V (p) is defined implicitly as the unique v ∈ [0,1] that solves

∑
x

p(x)u(x,v) = v, (2)

where u : X × [0,1]→ [0,1] is a (local utility) function which is continuous in both arguments,
strictly increasing in the first argument, and satisfies u(w,v) = 0 and u(b,v) = 1 for all v∈ [0,1].
The local utility function u(x,v) can be interpreted as the value of the prize x relative to a reference
utility level v.5

3.2. Folding back T-stage lotteries

We now discuss how these single-stage preferences can be extended recursively to the richer do-
main of T -stage lotteries using the folding back approach proposed by Segal (1990). To illustrate,
consider a two-stage lottery P = 〈α1, p1;α2, p2;α3, p3〉. First, each lottery pi in the support of P

is replaced with its certainty equivalent; that is, the element CE(pi) ∈ X satisfying V (δCE(pi)) =

V (pi). The value of the resulting one-stage, “folded back” lottery 〈α1,CE(p1);α2,CE(p2);α3,CE(p3)〉
is calculated using the function V and assigned to be the utility of the original lottery P. The value

4When β > 0, disappointing outcomes are overweighted and the DM is called disappointment averse. When β < 0,
disappointing outcomes are underweighted and the DM is called elation seeking. When β = 0, the model reduces to
the model of expected utility.

5A prize x is a disappointing outcome of p if u(x,V (p))<V (p) (and is elating otherwise). Within the betweenness
class, u(x,V (p))<V (p) if and only if p�1 δ x (see Dekel (1986)). Therefore, the elating outcomes of p are precisely
those prizes that are preferred to p, and the disappointing outcomes are the prizes that are inferior to p.
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of the temporal lottery is thus calculated by applying V recursively. For T -stage lotteries, the
procedure is analogous. Lotteries in the last stage are replaced with their certainty equivalent, re-
sulting in a (T − 1)-stage lottery; and this procedure is repeated until a one-stage lottery results,
whose value is then calculated using V .

The “folding back” procedure does not require that the same V be used throughout. For exam-
ple, V may vary with the passage of time. More generally, the value of a T -stage lottery can be
calculated by folding back using a potentially different V at each node.

4. History-dependent risk attitude

We now describe our model of history-dependent risk attitude over T -stage lotteries. In this model,
the DM endogenously categorizes, in an internally consistent manner, each sublottery as an elating
or disappointing outcome of the sublottery from which it emanates. The value of a T -stage lot-
tery is calculated by folding back, where the DM’s valuation of a sublottery is determined by the
sequence of elating or disappointing outcomes leading to it.

A t-stage lottery Pt is a sublottery of PT if there is a sequence Pt+1,Pt+2, . . . ,PT such that for
every t ′ ∈ {t, . . . ,T −1}, Pt ′ ∈ supp Pt ′+1. By convention, PT is a sublottery of itself. There may
be more than one sequence of sublotteries within PT which leads to the t-stage sublottery Pt when
t < T −1. To unambiguously identify a particular sublottery Pt in the T -stage lottery PT , we use
the notation Pt,T to denote a lottery Pt that is part of the sequence (Pt ,Pt+1, . . . ,PT ) of sublotteries
leading to it.

We now formalize the notion of histories within T -stage lotteries. The initial history—i.e.,
prior to any resolution of risk—is empty (0). If a sublottery is degenerate—i.e., it leads to some
sublottery with probability one—then the DM is not exposed to risk at that stage and his history is
unchanged. If a sublottery is nondegenerate, each sublottery in its support may be an elating (e) or
disappointing (d) outcome. The set of all possible histories is given by

H =
T⋃

t=1

{0}×{e,d}T−t .

For each sublottery Pt,T , the history assignment a(·) assigns a history h∈H. The initial assignment
(that is, a(PT ) = 0) is always implicit; e.g., within the two-stage lottery P = 〈α, p;1−α,q〉, we
write a(p) = e rather than a(p) = 0e if p is elating. If outcome j ∈ {e,d} occurs after history h,
the updated history is h j, implicitly assuming the resulting history is in H (i.e., h is a nonterminal
history). The length of a history h is the total number of e and d outcomes in h.

9



Each history h ∈ H corresponds to a utility function Vh : L 1 → R over one-stage lotteries.
The DM applies Vh during the folding back procedure to value any sublottery Pt,T whose history
assignment is h.6 To study how risk attitudes are shaped by prior experiences, we would like the
utility functions after each history to be rankable in terms of their risk aversion. We thus define the
following comparative measure of risk aversion.7

Definition 1. We say that Vh is more risk averse than Vh′ , denoted Vh >RA Vh′ , if for any x ∈ X and
any nondegenerate p ∈L 1, Vh(p)≥Vh(δ x) implies that Vh′(p)>Vh′(δ x).

Accordingly, we assume that the collection V := {Vh}h∈H satisfies the following properties.

Definition 2. We say that the collection V is admissible if (i) each Vh represents a preference
relation over L 1 that is continuous, monotone, and satisfies betweenness; and (ii) all the elements
in V are rankable in terms of risk aversion: for any h,h′ ∈ H either Vh >RA Vh′ or Vh′ >RA Vh.8

Each utility representation in an admissible collection has an equivalent representation of the be-
tweenness form (2) in Section 3. In particular, any collection of utilities of the betweenness class
that differ in only a single parameter of risk aversion would form an admissible class. One example
of an admissible collection consists of expected CRRA utility with a history-dependent risk aver-
sion parameter: V = {E(·; x1−ρh

1−ρh
)}h∈H . Another example of an admissible collection consists of

disappointment aversion with a history-dependent disappointment aversion parameter and history-
independent utility over prizes: V = {V (·;β h,u)}h∈H , where V (·;β h,u) is given by (1) in Section
3. This is because Gul (1991, Proposition 5) shows that the DM becomes increasingly risk averse
as the disappointment aversion coefficient increases, holding the utility over prizes constant.

Our model of history-dependent risk attitude (HDRA), defined below, places restrictions on the
history assignments permitted in the folding back procedure.

6Starting backwards, the DM calculates the certainty equivalent of each one-stage sublottery P1,T , denoted
CEa(P1,T )(p) with Va(P1,T ). That is, CEa(P1,T )(p) is the value x that solves Va(P1,T )(δ x) = Va(P1,T ) (p). Next, the DM

considers each two-stage sublottery P2,T , denoting P2 = 〈α1,P
1,T
1 ; . . . ,αm,P

1,T
m 〉. The DM uses Va(P2,T ) to calculate

the certainty equivalent of the “folded back” one-stage lottery in which each pi in the support of P2,T is replaced
with its certainty equivalent calculated above; that is, 〈α1,CEa(P1,T

1 )
(P1,T

1 ); . . . ;αm,CEa(P1,T
m )

(P1,T
m ))〉. Continuing in

this manner, the T -stage lottery is reduced to a one-stage lottery (over the certainty equivalents of its continuation
sublotteries) whose value is calculated using V0, since a(PT ) = 0. In the text, we will use the notation CE(Pt,T ;a,V )

to denote the certainty equivalent of Pt,T as calculated above; that is, CE(Pt,T ;a,V ) = CEa(Pt,T )(P̃t,T ), where P̃t,T is
the folded-back version of Pt,T constructed in the folding back procedure.

7For nonexpected utility theories, there are stronger notions of comparative risk aversion; see, for example, Chew
and Mao (1995). The definition we provide is standard for expected utility and is also used by Gul (1991, Definition
4) for disappointment aversion preferences.

8For our results, it would suffice that Vh and Vh′ are rankable only when h,h′ are histories of the same length.
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Definition 3 (History-dependent risk attitude, HDRA). An HDRA utility representation over
L T consists of an admissible collection V := {Vh}h∈H of utility functions over one-stage lotteries
and a history assignment, a, satisfying for each PT ∈L T ,

1. Sequential assignment. The DM assigns histories to all sublotteries of PT sequentially:

(i) if Pt+1,T is nondegenerate and Pt,T ∈ supp Pt+1,T then a(Pt,T ) ∈ {a(Pt+1,T )}×{e,d};

(ii) if Pt+1,T is degenerate and Pt,T ∈ supp Pt+1,T then a(Pt,T ) = a(Pt+1,T ).

2. Folding back. The utility of PT is calculated by folding back using a and the family V :=
{Vh}h∈H . We denote by V (PT ;a,V ) the value of PT and denote by CE(Pt,T ;a,V ) the cer-
tainty equivalent of a sublottery Pt,T , as calculated in the folding back procedure.

3. Internal consistency. If Pt,T ∈ supp Pt+1,T is an elating (disappointing) outcome of a nonde-
generate sublottery Pt+1,T , then the certainty equivalent of Pt,T must be weakly larger than
(strictly smaller than) the certainty equivalent of Pt+1,T in PT .

We identify a DM with an HDRA representation by the pair (V ,a) satisfying the above.

Observe that the HDRA representation is ordinal in nature: the ranking over T -stage lotteries
induced by the HDRA model is invariant to increasing, potentially different transformations of
each of the utilities in the collection V . This is because the HDRA model takes into account
only the certainty equivalents of sublotteries after each history h, which may be found using any
increasing transformation of the utility Vh.

To illustrate HDRA, consider the case of expected CRRA utility, V = {E(·; x1−ρh
1−ρh

)}h∈H , over
two-stage lotteries. When T = 2, sequential history assignment is trivially satisfied. There are three
risk aversion coefficients, {ρ0,ρe,ρd}. For any one-stage lottery p∈L 1 and h∈ {0,e,d}, CEh(p)

satisfies E(p; x1−ρh
1−ρh

) = CEh(p)1−ρh

1−ρh
. If a two-stage lottery P is degenerate (i.e., P = 〈1, p〉) then

V (P;a,V )=E(p; x1−ρ0
1−ρ0

). For any nondegenerate two-stage lottery P= 〈α1, p1; . . . ;α j, p j; . . . ;αm, pm〉,
the HDRA representation assigns to each one-stage lottery p in the support of P a history a(p) ∈
{e,d}, and the value of P is given by

V (P;a,V ) =
m

∑
j=1

α j
[CEa(p j)(p j)]

1−ρ0

1−ρ0
. (3)

Moreover, the history assignment is internally consistent. If a(p j)= e then CE(p j;a,V )≥CE(P̃;a,V );
and if a(p j) = d then CE(p j;a,V ) < CE(P̃;a,V ), where P̃ in each case refers to the one stage
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lottery obtained from P when each p j is replaced with its certainty equivalent CE(p j;a,V ) under
the history assignment a.

In the HDRA model, the DM’s risk attitudes depend on the prior sequence of disappointments
and elations, but not on the “intensity” of those experiences. That is, the DM is affected only by
his general impressions of past experiences. This simplification of histories can be viewed as an
extension of the notions of elation and disappointment for one-stage preferences in the betweenness
class (see Section 3). This specification permits us to study endogenous reference dependence
under the simplest departure from history independence.

Note that in the definition of HDRA, we assumed a DM considers an outcome of a nonde-
generate lottery elating if its certainty equivalent is at least as large as the certainty equivalent of
the lottery from which it emanates. Alternatively, one could redefine HDRA so that an outcome
is disappointing if its certainty equivalent is at least as small as that of the parent lottery; or even
introduce a third assignment, neutral (n), which treats the case of equality differently than elation
or disappointment.9 How equality is treated may affect the value of a lottery; but in either case,
equality is possible only in a measure zero set of lotteries. Generically, a nonempty history consists
of a sequence of strict elations and disappointments.

4.1. The reinforcement effect and the primacy effect

In this section we show that the existence of an HDRA representation implies regularity properties
on V that are related to well-known cognitive biases; and that in turn, these properties imply the
existence of HDRA.

As discussed in the introduction, experimental evidence suggests that an individual’s risk atti-
tudes depend on how prior uncertainty resolved. In particular, the literature suggests that people’s
risk attitudes are reinforced by prior experiences: they become less risk averse after positive expe-
riences and more risk averse after negative ones. This effect is captured in the following definition.

Definition 4. The collection V displays the reinforcement effect if Vhd >RA Vhe for all h.

A body of evidence also suggests that individuals are affected by the position of items in a
sequence. One well-documented cognitive bias is the primacy effect, in which early observations
have a strong effect on later judgments. In our setting, the order in which elations and disappoint-
ments occur affect the DM’s risk attitude. The reinforcement effect suggests that after an initial
elation, a disappointment increases the DM’s risk aversion; and that after an initial disappointment,

9If a(p|P) = n, then for a generic perturbation of p to p′ in P, resulting in a perturbed lottery P′, a(p|P′) 6= n. Our
comparative statics on risk aversion would extend (see Lemma 4).
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an elation reduces the DM’s risk aversion. A primacy effect would further suggest that the shift
in attitude from the initial realization has a lasting and disproportionate effect. Future elations
or disappointments can only mitigate but not overpower the first impression, as in the following
definition.

For any t, let dt (or et) denote t repetitions of d (or e). The history hedt , for example, corre-
sponds to experiencing one elation and t successive disappointments after the history h, under the
implicit assumption that the resulting history is in H.

Definition 5. The collection V displays the weak primacy effect if Vhde >RA Vhed for all h. The
collection displays the strong primacy effect if Vhdet >RA Vhedt for all h and t ≥ 1.

The combination of the reinforcement effect and the strong primacy effect implies strong re-
strictions on the collection V ; these are formalized in the following result and seen in Figure 2.

We refer below to the lexicographic order on histories of the same length as the ordering where
h̃ precedes h if it precedes it alphabetically. Since d comes before e, this is interpreted as “the DM
is disappointed earlier in h̃ than in h.”

Proposition 1. The following statements are equivalent:

(i) V displays the reinforcement effect and the strong primacy effect;

(ii) For h, h̃ of the same length, Vh̃ >RA Vh if h̃ precedes h lexicographically.

Assuming that Vhd >RA Vh >RA Vhe for all h ∈ H, conditions (i) and (ii) are also equivalent to:

(iii) For any h,h′,h′′, we have Vhdh′′ >RA Vheh′ .

Condition (ii) of Proposition 1 says, comparing histories of the same length, that the DM’s risk
aversion is greater when he has been disappointed earlier. This implies that the DM’s risk aversion
after any continuation h̃ is no greater than if he were to be consistently disappointed thereafter,
and no less than if he were to be consistently elated thereafter. To show the lexicographic ordering
across the rows in Figure 2, note that the first row from the bottom (Vd >RA Ve) follows directly
from the reinforcement effect. The reinforcement effect also implies the left and right portions
of the second row (Ved >RA Vee and Vdd >RA Vde) while the weak primacy effect implies that
Vde >RA Ved . Alternating the use of the reinforcement and strong primacy effects, one obtains each
of the rows in Figure 2. Under the additional assumption Vhd >RA Vh >RA Vhe, which says that
an elation reduces (and a disappointment increases) the DM’s risk aversion relative to his initial
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Figure 2: Starting from the bottom, each row depicts the risk aversion rankings >RA of the Vh for
histories of length t = 1,2,3, . . . ,T −1. The reinforcement effect and the primacy effect imply the
lexicographic ordering in each row (Proposition 1). The assumption Vhd >RA Vh >RA Vhe for all
h ∈ H implies the vertical lines and consecutive row alignment.

level, one obtains the condition (iii), represented graphically in the vertical lines and consecutive
row alignment in Figure 2. In words, condition (iii) says that whatever happens afterwards, the
DM’s risk aversion is always lower after an elation than it would have been, had he instead been
disappointed at that same point in time. Along a realized path, however, condition (iii) imposes no
restriction on how current risk aversion compares to risk aversion two or more periods ahead when

the continuation path consists of both elating and disappointing outcomes: e.g., one can have both
ρh < ρhed or ρh > ρhed .

4.1.1. Necessary and sufficient conditions for HDRA

The following results link the two cognitive biases mentioned above to necessary and sufficient
conditions for the existence of an HDRA representation.

Theorem 1 (Necessary conditions for HDRA). In an HDRA representation (V ,a), the collec-
tion V must display the reinforcement effect and the weak primacy effect. Under the additional
assumption that Vhd >RA Vh >RA Vhe, the collection V also displays the strong primacy effect (and
is ordered as in Figure 2).

Theorem 2 (Sufficient conditions for HDRA). If the collection V displays the reinforcement ef-
fect and the strong primacy effect, then an HDRA representation (V ,a) exists.

Observe that on the set of two-stage lotteries, L 2, the reinforcement effect is by itself necessary
and sufficient for an HDRA representation, as there are too few stages for the primacy effect to
apply. Similarly, on L 3, the reinforcement effect and the weak primacy effect are both necessary
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and sufficient. Finally, note that to have the most concise statement of our results, the admissibility
requirement rules out the standard case of history independent single-stage preferences. However,
for the standard model, the existence of an internally consistent assignment is trivial; indeed, any
assignment is consistent because history does not affect valuations.

Theorems 1 and 2 are proved in the appendix. There we provide an algorithm for finding an
internally consistent history assignment for two-stage lotteries, which can be used recursively to
prove existence of the HDRA representation for T -stage lotteries when the one-stage preferences
satisfy betweenness. To illustrate how the algorithm works for two-stage lotteries, consider the
simple example P = 〈α1,δ b;α2, p;α3,δ w〉. It is evident that δ b should be elating, and that δ w

should be disappointing. If it is internally consistent to call p a disappointment, then the algorithm
is complete. If it is not, then certainty equivalent of p under disappointment must be larger than
that of P given the history assignment. By the reinforcement effect, CEe(p) > CEd(p). But then
viewing p as an elation would result in an internally consistent assignment of P if the certainty
equivalent of p under elation is larger than that of P given the new assignment. We show that the
latter property is implied by betweenness: if a prize is elating in a one-stage lottery, and that prize
is increased (resulting in a modified lottery), then the increased prize is also elating in the modified
lottery. The idea behind this algorithm can be generalized to any two-stage lottery, as well as more
stages.

To see why the reinforcement effect is necessary in the case T = 2, assume by contradiction
that Ve >RA Vd . Then, for any nondegenerate p ∈ L 1, CEd(p) > CEe(p). Consider the lottery
P = 〈α, p;1−α,δ x〉. For p to be an elation in P, internal consistency requires CEe(p) > x; for p

to be a disappointment in P, internal consistency requires CEd(p)< x. But then there cannot be an
internally consistent assignment for any x ∈ (CEe(p),CEd(p)). Note that this particular argument
depends only on the monotonicity of the certainty equivalents with respect to prizes.

We now sketch the argument for the necessity of the weak primacy effect in the case T = 3.
Consider a three-stage lottery of the form Q3 = 〈α,Q;1−α,δ 2

x〉 and assume by contradiction that
Ved >RA Vde. Hence, CEed(q)<CEde(q) for any nondegenerate q∈L 1. Extending the idea above,
a contradiction to internal consistency would arise if for every internally consistent assignment

within Q, the certainty equivalent of Q after elation is smaller than that after disappointment. By
betweenness and continuity, we construct Q, with q in its support, such that: (1) q must be elating
when Q is disappointing, (2) q must be disappointing when Q is elating, and (3) the probability
of q is sufficiently high so that CEd(Q̃)≈CEde(q)>CEed(q)≈CEe(Q̃′) (where Q̃ and Q̃′ are the
folded-back versions of Q given the assignments d and e, respectively) under the only possible
internally consistent assignments of Q given each of Vd and Ve. As above, no internally consistent
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assignment of Q3 would exist for x ∈ (CEe(Q̃′),CEd(Q̃)). Essentially, if it is not true that Vde >RA

Ved then an elating outcome received after a disappointment may overturn the assignment of the
initial outcome as a disappointment. The intuition for the strong primacy effect is similar but
requires a more complex construction.

5. Implications

In this section we discuss two phenomena that arise under HDRA, statistically reversing risk atti-
tudes and the possibility of “gray areas” where two DM’s, facing the same information and having
the same V , may disagree on which outcomes are elating or disappointing (the history assignment
a) based on their optimistic or pessimistic tendencies. Further implications are studied in Section
6, in a richer setting where intermediate actions may be taken while uncertainty resolves.

5.1. Statistically reversing risk attitudes

Theorem 1 says that a DM with an HDRA representation displays the reinforcement effect. We
now discuss an implication of this in our dynamic setting.

Greater risk aversion means that a one-stage lottery has a lower certainty equivalent. Thus,
using our notions of disappointment and elation, for any nondegenerate p ∈ L 1, and h,h′ such
that Vh >RA Vh′ , whenever a prize x is (1) disappointing in p under Vh, then it is disappointing in p

under Vh′ , and (2) elating in p under Vh′ , then it is elating in p under Vh. Because of this feature,
the reinforcement effect means that a DM who has been elated is not only less risk averse than
a DM who has been disappointed, but also has a higher elation threshold. In other words, the
reinforcement effect implies that after a disappointment, the DM is more risk averse and “settles
for less”; whereas after an elation, the DM is less risk averse and “raises the bar.” This leads to
statistically reversing risk attitudes: disappointment is more likely after elation, and vice versa.

A simple example of this phenomenon was discussed in Section 1.1 using CRRA preferences.
We now show that, depending on the initial realization, the DM can display different paths of
reversal even within the same lottery. The following example uses disappointment aversion with
linear utility over prizes to abstract from wealth effects.

Example 3. Consider the three-stage lottery in Figure 3. The DM first learns whether or not
he wins $100; then, his additional winnings are determined by 〈1

4 ,δ 0; 1
2 , p; 1

4 ,δ 100〉, where p is
a lottery whose support consists of prizes between $25 and $50. Suppose the DM has history-
dependent disappointment aversion preferences, where u(x) = x, β e = 0, β d = 2, and the other β h

are aligned as in Figure 2. First, note that the left sublottery (after winning $100) must be elating,
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(elation)
Lottery p

1/2

1/2 1/41/4

Win $100Win $0

1/2 1/41/4

Lottery p Win $100Win $0

1/2

Win $100 Win $0

(in addition to previously won $100)

(elation) (disappointment)

(disappointment)
Lottery p

1/2

1/2 1/41/4

Win $100Win $0

1/2 1/41/4

Lottery p Win $100Win $0

1/2

Win $100 Win $0

(in addition to previously won $100)

(a) (b)

Figure 3: Let p be any lottery whose support consists of prizes between $25 and $50. Using
disappointment aversion (with β e = 1, β d = 2, and u(x) = x), the figure shows the only internally
consistent history assignment for the given three-stage lottery: p is a disappointment after first
winning $100, and an elation otherwise.

and the right sublottery (after winning $0) must be disappointing, because the worst outcome
on the left dominates the best outcome on the right. Now consider the folded-back sublottery
〈1

4 ,0; 1
2 ,x; 1

4 ,100〉 that results if p is replaced with a prize x. Using β e = 0, any prize x smaller
than $50 is a disappointment; while using β d = 2, any prize x larger than $25 is an elation. But the
certainty equivalent of p is always between $25 and $50 by monotonicity. Thus, the only consistent
assignment of p is as a disappointment after winning $100 and as an elation otherwise.

Under the assumption that Vhd >RA Vh >RA Vhe for all h, HDRA implies condition (iii) in
Proposition 1 (visualized in Figure 2). That condition says that after an elation, the DM’s greatest
possible degree of risk aversion in the future decreases; and conversely, after a disappointment, the
DM’s lowest possible degree of risk aversion in the future increases. However, in a finite horizon
setting, this does not imply that the DM’s mood swings moderate in intensity with experience. For
example, this means that the collection of CRRA risk aversion parameters used need not satisfy
|ρed−ρe| ≥ |ρede−ρed| ≥ |ρeded−ρede| · · · . That is, the intensity of reversals in risk attitude may
well persist.

5.2. Is the glass half full or half empty?

Consider the two stage lottery 〈α, p;1−α,δ x〉 and suppose that CEe(p) > x > CEd(p). Under
this assumption, it would be consistent for the lottery p to be either an elation or a disappointment.
The moral of this example is that while the collection V and history assignment a can be pinned
down uniquely by choice behavior (as shown by the axiomatization in Section 7), one cannot fully
reconstruct the DM’s preference relation from only the information contained in V . Predicting the
DM’s behavior in such “gray areas” as above requires a theory of how the DM assigns histories (as
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Figure 4: The set of possible HDRA utilities of P(ω) are pictured on the vertical axis for each
ω ∈ (0,1) on the horizontal axis, given CRRA utilities Vh = E(·; x1−ρh

1−ρh
), where ρe = 0, ρ0 = 1/4,

ρd = 1/2. The sublottery p(ω) can be viewed as an elation or a disappointment in the range [ω,ω].

seen later, such a theory has testable predictions for his preference relation over L T ).
A dictionary definition of optimism is “An inclination to put the most favorable construction

upon actions and events or to anticipate the best possible outcome.”10 In our setting, optimism
and pessimism may be understood in terms of this multiplicity of internally consistent history
assignments, where the optimist always selects the most favorable one and the pessimist selects
the least favorable one.

Definition 6. We say that a DM is an optimist if for every PT ∈L T he selects the sequential and
internally consistent history assignment a that maximizes his HDRA utility V (PT ;a,V ). Simi-
larly, we say the DM is a pessimist if for every PT ∈L T he selects the sequential and internally
consistent assignment a that minimizes his HDRA utility V (PT ;a,V ). Given the same V , we say
that one DM is more optimistic than another if his HDRA utility is higher for every PT ∈L T .

The optimist and pessimist agree on fundamentals (that is, the collection V of utilities to apply
after each history), but they take a different perspective on what outcomes are disappointing and
elating. This approach differs from most models of optimism and pessimism, which typically view
optimism in terms of attaching higher probability to positive events. Under HDRA, probabilities
are objective and unchanging, but endogenous reference dependence allows the DM to select an
internally consistent view of the unfolding risk according to his optimistic or pessimistic tendency.
This manifests itself in the DM’s risk atittude over T -stage lotteries; indeed, note that given the
same V , whenever a pessimist prefers a lottery PT to a degenerate outcome, so does the optimist.

10“optimism.” Merriam-Webster Online Dictionary. 2010. http://www.merriam-webster.com (14 June 2010).
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To illustrate, consider Figure 4, which depicts for each ω ∈ (0,1) all possible HDRA values
of the two-stage lottery P(ω) = 〈1

3 ,δ 1; 1
3 ,δ 2; 1

3 , p(ω)〉 where p(w) = 〈ω,3;1−ω,0〉 using the
example of a CRRA collection V . An increase in ω is a first-order stochastic improvement of
the risky sublottery p(ω). While p(ω) is unambiguously elating (disappointing) for high (low)
values of ω , there is an intermediate range [ω,ω] where p(ω) can be viewed either as an elation
or as a disappointment. The certainty equivalents of the other sublotteries are independent of
their history assignment because they are degenerate. At the same time, the reinforcement effect
implies CEe(p(ω))>CEd(p(ω)). Because HDRA utility is increasing in the certainty equivalents,
viewing p(ω) as an elation gives higher utility. The optimist thus views p(ω) as an elation as soon
as possible (for all ω ≥ ω). On the other hand, the pessimist views p(ω) as a disappointment for
as long as possible (for all ω ≤ ω). More generally, a DM may have a cutoff ω∗ ∈ [ω,ω] at which
p(ω) switches from a disappointment to an elation. If one DM is more optimistic than another,
then his cutoff ω∗ must be lower.

It is easy to see that the reinforcement effect implies that a DM with an HDRA representation
may violate first-order stochastic dominance on T -stage lotteries: for example, if the probability
α of p is very high, the lottery 〈α, p;1−α,δ w〉 may be preferred to 〈α, p;1−α,δ b〉; the “thrill
of winning” outweighs the “pain of losing.” The above example suggests, however, that both the
optimist and pessimist satisfy the following regularity property related to first-order dominance,
stated for simplicity for T = 2.

Proposition 2. Let� be the preference relation represented by the DM’s HDRA utility on L 2, and
let >FOSD denote the first-order stochastic dominance relation on L 1. Fix any prizes x1, . . . ,xm−1

and probabilities α1, . . . ,αm. If the DM is an optimist or a pessimist, then11

〈α1,δ x1; . . . ;αm−1,δ xm−1;αm, p〉 � 〈α1,δ x1; . . . ;αm−1,δ xm−1 ;αm,q〉 whenever p >FOSD q. (4)

The idea behind Proposition 2 is that fixing p as either an elation or a disappointment, the
utility of P(ω) is increasing in ω; and viewing p as an elation gives strictly higher utility for each
ω . The fact that the other sublotteries are degenerate ensures that the history assignment of p

does not affect their value. Consider instead a lottery 〈α, p;1−α,q〉, where both p,q are risky
and p >FOSD q. For each Vh, the certainty equivalent of p is larger than that of q by first-order
dominance; hence it would always be consistent to label p as an elation and q as a disappointment.
However, if CEe(q)>CEd(p) then it would also be consistent to label p as a disappointment and q

11More generally, any DM whose history assignment a applies a cutoff for viewing the risky lottery as an elation
(as in the above discussion) will also satisfy Property (4).
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as an elation; and if the probability 1−α of q is sufficiently high, the optimist may achieve a higher
HDRA utility by doing so. The intuition is that by viewing a high probability, riskier prospect as
an elation (if it is consistent to do so), the optimist puts a “positive spin” on the uncertainty. (A
similar feature applies for the pessimist.)

6. HDRA with intermediate choices

We now extend the HDRA model to the setting of stochastic decision trees. Roughly speaking,
a stochastic decision tree is a lottery over choice sets of shorter stochastic decision trees. In each
choice set, the DM can choose the continuation stochastic decision tree. Formally, for any set Z, let
K(Z) be the set of finite, nonempty subsets of Z. A one-stage stochastic decision tree is simply a
one-stage lottery. The set of one-stage stochastic decision trees is D1 =L 1, with typical elements
p,q. For t = 2, ..,T , the set of finite, nonempty sets of (t−1)-stage stochastic decision trees is
given by A t−1 = K(D t−1), with typical elements At−1,Bt−1. Then the set of t-stage stochastic
decision trees is the set of lotteries over finite choice sets of (t−1)-stage stochastic decision trees.
Formally, the set of t-stage stochastic decision trees is D t = L (A t−1), with typical elements
Pt ,Qt . Our domain is thus DT = L (A T−1). (Our previous domain of T -stage lotteries can be
seen as the case in which all choice sets are degenerate.)

The realization of a t-stage stochastic decision tree is a choice set, which is categorized by
the DM as either elating or disappointing. The set of possible histories, H, is the same as before,
with the understanding that histories now refer to choice sets. The set of admissible collections
of utilities is also the same. We abuse notation and identify the stochastic decision tree PT ∈ DT

with a degenerate choice set, denoted AT :=
{

PT}. Moreover, in analogy to the discussion in
Section 4, to uniquely identify a choice set At in a stochastic decision tree PT we use the nota-
tion At,T to denote the choice set At which arises from the sequence of choices and realizations
(At ,Pt+1,At+1,Pt+2, · · · ,AT ), where Aτ ∈ supp Pτ+1 and Pτ+1 ∈ Aτ+1.

The folding back procedure may be extended to this richer domain in a way that the history
assignment of a choice set determines the one-stage utility Vh applied to value each folded back
stochastic decision tree inside it, and the value of the choice set itself is the maximal value of those
stochastic decision trees.12

12Formally, the certainty equivalent of each set of one-stage stochastic decision trees is determined by

Vh

(
δCEh(A1,T )

)
= max

p∈A1,T
Vh(p), where h = a(A1,T ).

Fold back each P2 ∈ A2, by replacing each realization (a choice set, A1,T
j ) with its certainty equivalent calculated
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The definition of HDRA is then almost the same as before.

Definition 7 (HDRA with intermediate choices). An HDRA utility representation over T -stage
lotteries consists of an admissible collection V := {Vh}h∈H of utility functions over one-stage
lotteries and a history assignment a satisfying, for each AT ∈DT ,

1. Sequential assignment. The DM assigns histories to all realizations of stochastic decision
subtrees of DT . Let a(AT ) := β 0 and, recursively, for t < T :

(i) If Pt+1,T is nondegenerate, At,T ∈ supp Pt+1,T , and Pt+1,T ∈ At+1,T then a(At,T ) ∈
a(At+1,T )×{e,d}.

(ii) If Pt+1,T is degenerate, At,T ∈ supp Pt+1,T , and Pt+1,T ∈At+1,T then a(At,T )= a(At+1,T ).

2. Folding back. The DM calculates the utility of the stochastic decision tree by folding back.
We denote by V (AT ;a,V ) the utility of AT . We denote by CE(At,T ;a,V ) and CE(Pt,T ;a,V )

the certainty equivalents of a choice set At,T and subtree Pt,T as calculated in the folding back
procedure.

3. Internal consistency. For each nondegenerate Pt+1,T , if At,T ∈ supp Pt+1,T is an elating
(disappointing) outcome in Pt+1,T , then CE(At,T ;a,V ) must be weakly larger than (strictly
smaller than) CE(Pt+1,T ;a,V ).

Observe that the DM is dynamically consistent under HDRA with intermediate actions. From
any future choice set, the DM anticipates selecting the best stochastic decision tree. That choice
leads to an internally consistent history assignment of that choice set. Thus, when reaching a
choice set, the single-stage utility she uses to value the choices therein is the one she anticipated
using, and her choice is precisely her anticipated choice.

Internal consistency is a stronger requirement than before, because it takes optimal choices
into account. However, our previous results on the restrictions that internal consistency imposes
on how history affects risk attitude extend to the model of HDRA with intermediate actions.

above, to get the folded back lottery:

P̃2 = 〈α1,CEa(A1,T
1 )

(A1,T
1 ); . . . ;αm,CEa(A1,T

m )
(A1,T

m )〉.

The certainty equivalent of a choice set A2,T of two-stage stochastic decision trees is determined by its best element:

V
(

δCEh(A2,T )

)
= max

P̃2∈A2,T
Vh(P̃2), where h = a(A2,T ).

Continuing in this manner, the T -stage stochastic decision tree is reduced to a one-stage lottery (over the certainty
equivalents of its continuation subtrees) whose value is calculated using V0.
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Theorem 3 (Extension of previous results). The conclusions of Theorems 1 and 2 (necessary
and sufficient conditions for HDRA) also hold for HDRA with intermediate actions.

One may wonder whether a DM with an HDRA representation with intermediate actions would
satisfy a version of the weak axiom of revealed preference (WARP), modified to this setting. Sup-
pose that within the stochastic decision tree AT , the DM would select a subtree Pt,T from the
choice set At,T . Now consider a stochastic decision tree BT which is identical to AT except that
the choice set At,T is replaced with a subset Bt,T containing the original choice: Pt,T ∈ Bt,T ⊂ At,T .
Would the DM still select Pt,T from Bt,T ? The answer is that if Pt,T is chosen from At,T under
an internally consistent history assignment for AT , then the same history assignment (modified so
that a(At,T ) = a(Bt,T )) would also be internally consistent for BT , and the DM’s choice from ev-
ery subset would be the same. That is, there is always an internally consistent history assignment
satisfying WARP. Moreover, it is easy to see that both optimism and pessimism are consistent with
selecting a WARP-consistent assignment: if an assignment is utility maximizing (or minimizing)
in AT , the same assignment would be utility maximizing (or minimizing) in BT .

6.1. Implications

Actions that can be taken while risk unfolds may arise naturally in various settings. Under HDRA,
the DM’s risk taking behavior may depend on his history: his risk attitudes are reinforced by prior
experiences and he displays primacy effects. For example, the reinforcement effect suggests that a
basketball player might attempt more difficult shots after a string of successful ones. Rao (2009),
for example, finds evidence to this effect within the NBA, and uses this as an explanation for
the “hot hand” fallacy, which is the belief that a winning streak indicates future success (even in
independent events).13

The biases predicted by HDRA, particularly the primacy effect, may also be exploited by agents
who can manipulate the presentation of information to affect the DM’s behavior. For example,
consider a financial advisor trying to sell the DM a risky investment. The DM has an HDRA rep-
resentation with disappointment aversion preferences, where u(x) = x and the DM’s disappoint-
ment aversion coefficients are strictly positive and ordered as in Figure 2. The risky investment,
which requires an initial payment of I, is an even chance gamble between I +U and I−D. The
DM knows that the upside, U , and downside, D, are independently and uniformly distributed on

13Unlike previous studies, such as Gilovich, Vallone and Tversky (1985), Rao controls for shot difficulty (i.e., taking
more or less difficult shots after successes or failures) and shows that risk taking behavior —but not ability—is affected
by previous outcomes.
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Figure 5: The stochastic decision tree that the DM faces when the financial advisor (a) reveals the
upside first and the downside later or (b) reveals the downside first and the upside later. For given
U,D, the choice set A(D,U) = {δ I,〈.5, I +U ; .5, I−D〉} corresponds to either investing or not.

{0,500,1000}. The financial advisor receives a commission whenever the DM invests and is in-
formed about the true values of U and D. The DM may consult with the financial advisor at no
cost to learn U and D, and may choose whether or not to invest based on the information provided.
The financial advisor is obligated to tell the truth about U and D, but can reveal this information in
any order.14

It is straightforward to check that without any information, the DM prefers not to invest. Hence
the DM chooses to consult with the advisor. Suppose the financial advisor has some good news and
some slightly worse news: the upside is high (U = 1000) but the downside is moderate (D= 500).15

How should she reveal this? Since the financial advisor knows the DM’s preferences, she can
predict his choice based on how she provides information about U and D. For U = 1000 and D =

500, the DM will invest if the disappointment aversion coefficient used to evaluate the investment
is smaller than one. The primacy effect suggests that conveying the best news first increases the
DM’s inclination to invest. This can be formalized by applying HDRA to the stochastic decision
trees in Figure 5, which describe the DM’s problem when the financial advisor reveals U or D first.
For a wide range of disappointment aversion coefficients (for example, if β h ∈ [.5,1.5] for all h

and β ed < 1 < β de), the DM is immediately disappointed when D = 500 is mentioned first, and
wouldn’t invest even upon hearing U = 1000; while the DM is immediately elated when U = 1000
is mentioned first, and invests even upon hearing D = 500. Therefore, the financial advisor should

14We assume for simplicity that the DM accepts the information the financial advisor gives in that order, without
making inferences (this is an assumption often made in the context of framing effects); relaxing this assumption is
interesting but beyond the scope of this example.

15This is the only case in which manipulation is possible. It is clear that when learning U = 0, the DM would never
invest; when learning D = 0, the DM would always invest; and that the DM would not invest if U = D and he has
strictly positive disappointment aversion coefficients.
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Figure 6: As the lottery p is varied, (a) corresponds to the objects inducing the relation �e,α , (b)
corresponds to �d,α ; and (c) corresponds to �0.

reveal the best news first to minimize the DM’s subsequent risk aversion and ensure he invests.
By contrast, if an agent were trying to maximize the DM’s risk aversion (for example, if the

agent is selling insurance), then the agent should tell the worst news first to ensure a purchase.

7. Axiomatic foundations for HDRA on two-stage lotteries

In this section, we present axioms necessary and sufficient for a preference � on the set of two-
stage lotteries, L 2, to have an HDRA representation. This simplified setting allows for the clearest
exposition of the underlying ideas; we discuss the extension to more stages in Section 7.1.

To motivate our axiomatization, note that in some two-stage lotteries, which history to assign to
each realization can be determined by a quick inspection. For example, this is true of all the lotter-
ies depicted in Figure 6. In the lottery in Figure 6(b), which has the form 〈α, p;1−α,δ b〉, receiving
the lottery p is disappointing compared to receiving the best monetary prize (b) with certainty.16

How should the DM compare the two-stage lotteries P= 〈α, p;1−α,δ b〉 and Q= 〈α,q;1−α,δ b〉,
which both have this form? Both p and q are disappointing in P and Q, respectively, and are re-
ceived with the same probability α . According to HDRA, Vd must be applied to evaluate the
certainty equivalents of p and q, while the certainty equivalent of δ b is simply b. Therefore, the
preference over P and Q should be determined by the utilities of p and q according to Vd .

We define �e,α on L 1 by p �e,α q if 〈α,δ w;1−α, p〉 � 〈α,δ w;1−α,q〉. Similarly, we
define �d,α on L 1 by p �d,α q if 〈α,δ b;1−α, p〉 � 〈α,δ b;1−α,q〉 and �0 on L 1 by p �0 q

if 〈1, p〉 � 〈1,q〉. These relations are induced from preferences over the objects in Figure 6. Our
first axiom requires that these induced relations form an admissible class (see Definition 2). We
say that two preferences � and �̂ are rankable in terms of risk aversion if either (i) p� δ x implies
p�̂δ x for all nondegenerate p ∈L 1, or (ii) p�̂δ x implies p� δ x for all nondegenerate p ∈L 1.

16Except in the knife-edge case p = δ b; however then the certainty equivalent is b regardless of how p is labeled.
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Axiom A (Admissibility). The induced relations�e,α ,�d,α , and�0 are continuous and monotone
preference relations which satisfy betweenness and are rankable in terms of risk aversion.

Our next axiom says that “no news” does not affect the DM’s attitude toward risks. If he knows
that his monetary winnings will be determined by a one-stage lottery p, he does not care whether
the uncertainty in p is resolved now or later. Hence the DM’s risk attitude is not affected by the
mere passage of time, but rather only by previous disappointments and elations.

Axiom TN (Time neutrality). For all p ∈L 1, 〈p(x1) ,δ x1; p(x2) ,δ x2; ...; p(xm) ,δ xn〉 ∼ 〈1, p〉.

Recall that the procedure of folding back a two-stage lottery involves replacing each one-stage
lottery with its certainty equivalent. In the HDRA model, p is an elation in 〈α,δ w;1− α, p〉
for each α ∈ (0,1). We say that a prize x is an α-elation certainty equivalent of p if it solves
〈α,δ w;1−α, p〉 ∼ 〈α,δ w;1−α,δ x〉 (the α-disappointment certainty equivalent is defined analo-
gously). By Axiom A, it is clear that there exists a unique α-elation certainty equivalent for each
p (and similarly for disappointment). The next axiom says these certainty equivalents depend only
on the history assignment of p, independently of the probability with which it occurs.

Axiom CE (Uniform certainty equivalence). Take any p ∈ L 1, x ∈ X , and z ∈ {w,b}. If
〈α,δ z;1−α, p〉 ∼ 〈α,δ z;1−α,δ x〉 for some α ∈ (0,1), then 〈α ′,δ z;1−α ′, p〉 ∼ 〈α ′,δ z;1−
α ′,δ x〉 for all α ′ ∈ (0,1).

We define CEe,�(p), the elation certainty equivalent of p, as the value solving 〈α,δ w;1−
α, p〉 ∼ 〈α,δ w;1−α,δCEe,�(p)〉 for all α ∈ (0,1). The disappointment certainty equivalent of p,
CEd,�(p), is analogously defined.

HDRA requires that if a one-stage lottery p is elating in a two-stage lottery P, then it must
indeed be preferred to P as a whole. HDRA assumes the certainty equivalent of a lottery p in
P is affected only by its assigned history h. This motivates the following definitions. Consider
P = 〈α1, p1; . . . ;α j, p j; . . . αm, pm〉. We say p j is elating in P if

P∼ 〈α1, p1; . . . ;α j,δCEe,�(p j); . . . αm, pm〉 � 〈1,δCEe,�(p j)〉.

Similarly, we say p j is disappointing in P if

P∼ 〈α1, p1; . . . ;α j,δCEd,�(p j); . . . αm, pm〉 � 〈1,δCEd,�(p j)〉.

25



Our final axiom says that the preference� always allows the DM to categorize a realization p j

of a two-stage lottery P according to one of the possibilities above.

Axiom CAT (Categorization). For any nondegenerate P ∈L 2 and any p ∈ supp P, p is either
elating or disappointing in P.

These axioms are equivalent to an HDRA representation on two-stage lotteries.

Theorem 4 (Representation). � on L 2 satisfies Axioms A, TN, CE, and CAT if and only if it
admits a history-dependent disappointment aversion (HDRA) representation (V ,a).

In the theorem above, the underlying single-stage preference after each history h is uniquely
determined (each Vh in V is unique up to increasing transformation), and the history assignment is
uniquely determined for each P ∈L 2, except in knife-edge (measure zero) cases that two decom-
positions would give P the same value.

7.1. Extending to three or more stages

With an appropriate modification of the axioms, Theorem 4 can be extended to represent prefer-
ences over (arbitrary) T -stage lotteries. In this section, we highlight the required changes for the
case T = 3; the more general case is similarly analyzed.

We must first generalize the sets of compound lotteries for which the history assignment of any
final stage lottery, p, is unambiguous. For example, consider a lottery of the form 〈α,δ 2

w;1−α,P〉,
where P is of the form 〈α ′,δ b;1−α ′, p〉. Here, the lottery p must have the history assignment
h = ed. We may define an induced preference �ed,(α,α ′) on L 1, and similarly for other possible
history assignments. Axiom A requires that these induced preference relations are rankable in
terms of risk aversion and each satisfy continuity, monotonicity, and betweenness. The definition of
the certainty equivalent of a sublottery is extended analogously; for example, for h= ed, CEed,�(p)

is the value solving

〈α,δ 2
w;1−α,〈α ′,δ b,1−α

′2
w ;1−α,〈α ′,δ b,1−α

′,δCEed,�(p)〉〉

for all α,α ′. Axiom CE then says that conditional on each history, the certainty equivalent of a
sublottery is independent of the probability with which it is received.

For any given single-stage lottery p, there are three compound lotteries in which the only
nondegenerate sublottery is the one where p is fully resolved. Axiom TN requires that the DM be
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indifferent among these lotteries. Formally, for all p ∈L 1,

〈p(x1) ,δ
2
x1

; p(x2) ,δ
2
x2

; ...; p(xm) ,δ
2
xm
〉 ∼

〈1,〈p(x1) ,δ x1 ; p(x2) ,δ x2; ...; p(xm) ,δ xm〉〉 ∼ 〈1,〈1, p〉〉.

Lastly, Axiom CAT requires that a sublottery can be replaced by a degenerate lottery that
gives the history-dependent certainty equivalent of this sublottery for sure, with the consistency
condition taking into account the history assignment of the sublottery. For example, if a one-stage
lottery p ∈ supp P = 〈α ′,δ b;1−α ′, p〉 is replaced by its certainty equivalent after history h = ed,
then it must be the case that

〈α,δ 2
w;1−α,P〉 ∼ 〈α,δ 2

w;1−α,〈α ′,δ b,1−α
′,δCEed,�(p)〉〉 � 〈α,δ 2

w;1−α,δ 2
CEed,�(p)〉〉

8. Conclusion and directions for future research

We propose and axiomatize a model of history dependent risk attitude, in which prior disappoint-
ments and elations endogenously affect the DM’s view of future risks. The HDRA model predicts
that the DM satisfies two documented cognitive biases: the reinforcement effect and the primacy
effect. In addition, the DM raises the threshold for elation after positive experiences but is will-
ing to “settle for less” after negative ones, making disappointment more likely after elation and
vice-versa.

To study endogenous reference dependence under the minimal departure from recursive history-
independent preferences, HDRA posits the categorization of each sublottery as either elating or
disappointing. The DM’s risk attitudes depend on the prior sequence of disappointments or ela-
tions, but not on the “intensity” of those experiences. We are also interested in extending the
HDRA model to permit such dependence. That extension raises several questions, beginning with
how to define the intensity of elation or disappointment and how internal consistency is to be un-
derstood. The testable implications of such a model depend on whether it is possible to identify the
extent to which a realization is disappointing, as that designation depends on the extent to which
other options are elating or disappointing.

Finally, this paper considers a finite-horizon model of decision-making. In an infinite-horizon
setting, our methods easily extend to prove that the reinforcement and primacy effects remain
necessary. However, our methods do not immediately extend to ensure the existence of an infinite-
horizon internally consistent history assignment. One possible way to embed our finite-horizon
HDRA preferences into an infinite-horizon economy is through the use of an overlapping genera-
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tions model. In the context of asset pricing, for example, it would be interesting to study whether
the pattern of attitudes toward risk implied by HDRA is consistent with observed movements of
asset prices.
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A. Appendix

A.1. Proofs for Section 4

Proof of Proposition 1. It is clear that (ii) implies (i), as both the reinforcement effect and
the strong primacy effect respect the lexicographic ordering. Proving that (i) implies (ii) follows
from alternating applications of the reinforcement and strong primacy effects starting from the tail
of the history. To illustrate, observe that Veed >RA Veee by the reinforcement effect with h = ee;
Vede >RA Veed by the strong primacy effect with h = e; Vedd >RA Vede by the reinforcement effect
with h = ed; Vdee >RA Vedd by the strong primacy effect with h = 0; and so on and so forth.

Now assume that Vhd >RA Vh >RA Vhe for all h. Let |h| denote the length of history h (the
number of e’s and d’s). To see that (iii) implies (i), note that the reinforcement effect is implied by
taking h′ = h′′ = 0; and that the strong primacy effect is implied by taking h′ = dt and h′′ = et . To
see that (ii) implies (iii), if h′ is not entirely consisting of d’s and h′′ is not entirely consisting of e’s
then we know Vhed|h′| >RA Vheh′ and Vhdh′′ >RA Vhde|h′′| . Using the strong primacy effect to combine
these bounds delivers the result if |h′′| > |h′|; so suppose that |h′′| > |h′| (the other argument is
symmetric). Then repeated use of the assumption that Vĥd >RA Vĥ implies Vhed|h′′| >RA Vhed|h′| , and
using the strong primacy effect again completes the proof.

Recall that CEh(p) solves Vh
(
δCEh(p)

)
=Vh (p).

Lemma 1. If
⋂t

τ=0 (CEdeτ (p),CEedτ (p)) 6= /0 for all p ∈L 1, then CEdet+1(p) ≤ CEedt+1(p) for
all p ∈L 1.

Proof. Fix p̂= 〈0.5,w;0.5,b〉 and let
⋂t

τ=0 (CEdeτ (p̂),CEedτ (p̂)) :=
(
CEh,CEh

)
. Let p be a lottery

such that supp p⊂
(
CEh,CEh

)
. Define P2 = 〈ε,δ w;ε,δ b;1−2ε, p〉, P3 = 〈ε,δ 2

w;ε,δ 2
b;1−2ε,P2〉,

and continuing inductively, Pt+1 = 〈ε,δ t+1
w ;ε,δ t+1

b ;1− 2ε,Pt〉. That is, in each stage 1, ..., t the
lottery Pt+1 gives the worst and the best outcome, both with probability ε and the continuation with
the remaining probability. At period t, the continuation lottery is the lottery p. Note the following:

(i) For all h, CEh(p)⊂
(
CEh,CEh

)
. This is by monotonicity.

(ii) Fixing h,h′, limε→0CEh (〈ε,w;ε,b;1−2ε,CEh′(p)〉) =CEh′(p).

(iii) By betweenness, for all τ , p is elating in P2 = 〈ε,δ w;ε,δ b;1−2ε, p〉 when P2 is evaluated
under hdeτ and p is disappointing in P2 when P2 is evaluated under hedτ .

Assume by contradiction that CEhedτ+1 (p)<CEhdet+1 (p). Pick ε > 0 small enough and apply
(ii) and (iii) repeatedly to show that if for τ = 1 he is used, then for τ > 1, the only consis-
tent set of continuation histories are hedτ ; and if for τ = 1 hd is used, then for τ > 1, the only
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consistent set of continuation histories are hdeτ . But, again, for ε > 0 small enough there ex-
ists δ > 0 such that the first continuation value (evaluated with he) is less than CEhedt+1 (p)+ δ

and the first continuation value (evaluated with hd) is greater than CEhdet+1 (p)− δ . Now pick

x ∈
(

CEhedt+1 (p)+δ ,CEhdet+1 (p)−δ

)
and note that for

〈
α,Pt+1;1−α,δ t+1

x

〉
an internally con-

sistent HDRA history assignment cannot exist. Since the utilities are ranked in risk aversion, the
proof is complete.

Proof of Theorem 1. We prove each statement separately.

(i) The reinforcement effect. Suppose by contradiction that Vd >RA Ve. Then for any p ∈L 1,
CEe(p)<CEd(p). Choose any x∈ (CEe(p),CEd(p)). Let Pt be the t-stage lottery which has
no uncertainty until stage t−1 and delivers p at stage t−1 with probability one. Observe that
the T -stage lottery 〈α,PT−1;1−α,δ T−1

x 〉 would have no internally consistent assignment.
To show, for example, that Ved >RA Vee, modify the above to 〈α,〈γ,PT−2;1− γ,δ T−2

x 〉;1−
α,δ T ,b〉, where x ∈ (CEee(p),CEed(p)) if by contradiction Vee >RA Ved . Analogously, one
shows Vhd >RA Vhe by constructing the appropriate initial history.

(ii) Weak primacy effect. Given Vhd >RA Vhe , shown in (i), Vhde >RA Vhed follows from the risk
aversion ranking and Lemma 1 for the case t = 0.

(iii) Strong primacy effect. By strong induction. The initial step is true by part (ii). Assume it is
true for τ ≤ t−1. Note that Vhd >RA Vh >RA Vhe and Vhdeτ >RA Vhedτ for all τ ≤ t−1 imply⋂t

τ=0 (CEdeτ (p),CEedτ (p)) 6= /0 for all p ∈L 1. Hence the strong primacy effect for τ ≤ t

follows from the risk aversion ranking and Lemma 1.

Fix any utility V : L 1→ R over one-stage lotteries. For any p ∈L 1, the assignment of prizes
to being either elating or disappointing is called an elation disappointment decomposition (EDD).
Let e(p) := {x ∈ supp p | V (δ x) > V (p)}, n(p) := {x ∈ supp p |V (δ x) =V (p)} and d (p) :=
{x ∈ supp p |V (δx)<V (p)}.

Lemma 2. Take p= 〈p(x1),x1; . . . ; p(x j),x j; . . . ; p(xm),xm〉 and p′= 〈p(x′1),x′1; . . . ; p(x j),x j; . . . ; p(xm),xm〉.

1. If x1 6∈ d(p) and x′1 > x1 then x′1 ∈ e(p′).

2. If x1 6∈ e(p) and x′1 < x1 then x′1 ∈ d(p′).
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Proof. We prove statement (1), since the proof of (2) is analogous. If x1 6∈ d(p) then δ x1 � p.
Note that p can be written as the convex combination of the lotteries δ x1 (with weight p(x1))
and p−1 = 〈 p(x2)

1−p(x1)
,x2; . . . ; p(xm)

1−p(x1)
,xm〉 (with weight 1− p(x1)). By betweenness, this implies that

δ x1 � p−1. Since x′1 > x, monotonicity implies δ x′1
� δ x1 � p−1, and thus that δ x′1

� p−1. But
then again by betweenness and the fact that p(x1) ∈ (0,1), x′1 must be strictly preferred to the
convex combination of δ x′1

(with weight p(x1)) and p−1 (with weight 1− p(x1)). But that convex
combination is p′, meaning that x′1 ∈ e(p′).

Lemma 3. Suppose that for any nondegenerate p ∈ L 1, CEe(p) > CEd(p). Then for any non-
degenerate P ∈L 2, a consistent decomposition (using only strict elation and disappointment for
nondegenerate lotteries in its support) exists.

Proof. Consider P = 〈α1, p1; . . . ;αm, pm〉. Suppose for simplicity that all pi are nondegenerate (if
pi = δ x is degenerate, then CEe(pi) =CEd(pi), so the algorithm can be run on the nondegenerate
sublotteries, with the degenerate ones labeled ex-post according to internal consistency). With-
out loss of generality, suppose that the indexing in P is such that p1 ∈ argmaxi=1,...,m CEe(pi),
pm ∈ argmini=2,...,m CEd(pi), and CEe(p2) ≥CEe(p3) ≥ ·· · ≥CEe(pm−1). A consistent decom-
position is constructed by the following algorithm (consistency means that all pi set as elations
(disappointments) have CEe(d)(pi) weakly larger (strictly smaller) than the certainty equivalent of
P calculated by folding back using this assignment). Set a1(p1) = e and a1(p j) = d for all i > 1.
Let CE1 be the certainty equivalent of P when it is folded back under a1; if CE1 is consistent
with a1, the algorithm and proof are complete. If not, consider i = 2. If CEd(p2) ≥ CE1, then
set a2(p2) = e and a2(pi) = a1(pi) for all i 6= 2 (if CEd(p2) < CE1, let a2(pi) = a1(pi) for all
i). Let CE2 be the resulting certainty equivalent of P when it is folded back under a2. If CE2 is
consistent with a2, the algorithm and proof are complete. If not, move to i = 3, and so on and so
forth, so long as i≤ m−1. Notice from Lemma 2 that if CEd(pi)≥CE i−1, then CEe(pi))>CE i.
Moreover, notice that if CEe(pi) > CE i, then for any j < i, CEe(p j) ≥CEe(pi) > CE i, so previ-
ously switched assignments remain strict elations; also, because CE i ≥ CE i−1 for all i, previous
disappointments remain disappointments. If the final step of the algorithm reaches i = m− 1,
notice that CEd(pm) is the lowest disappointment certainty equivalent, therefore the lowest value
among {CEam−1(p j)

(p j)} j=1,...,m. Hence, the final constructed decomposition am−1 is consistent
with CEm−1.
Proof of Theorem 2. By Lemma 3 and the reinforcement effect, an internally consistent (strict)
elation-disappointment decomposition exists for any nondegenerate P ∈L 2, using any initial Vh.
By induction, suppose that for any (t−1)-stage lottery an internally consistent history assignment
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exists, using any initial Vh. Consider a t-stage nondegenerate lottery Pt = 〈α1,Pt−1
1 ; . . . ;αm,Pt−1

m 〉.
Notice that the algorithm in Lemma 3 for L 2 only uses the fact that CEe(p) > CEd(p) for any
nondegenerate p ∈L 1. But the same algorithm can be used to construct an internally consistent
history assignment for Pt if for any Pt−1 ∈L t−1, CEe(Pt−1) > CEd(Pt−1). While there may be
multiple consistent decompositions of Pt−1 using each of Ve and Vd , the strong primacy effect
ensures this strict inequality regardless of the chosen decomposition. Indeed, starting with Ve, the
tree is folded back using higher certainty equivalents sublottery by sublottery, and evaluated using
a less risk averse single-stage utility, as compared to starting with the more risk averse Vd . As in
Lemma 3, the history for any degenerate sublottery can be assigned ex-post according to what is
consistent; its certainty equivalent is not affected by the assignment of e or d.

Here we study the possibility of a third assignment of neutrality (n). The set of histories
is extended in the obvious manner and an admissible class additionally requires each Vhn to be
continuous, monotone, satisfy betweenness, and be rankable in terms of risk aversion with respect
to any other element of V . For simplicity the characterization of β hn is given for h = 0; the
generalization is immediate.

Lemma 4. Suppose there is a nondegenerate r that is neutral in P= 〈α1,r; . . . ;α j,δ x j ; . . .αm,δ xm〉
in L 2. For any r′, define P(r′) = 〈α1,r′; . . . ;α j,δ x j ; . . .αm,δ xm〉. There is an open neighborhood
Nr of r such that if there is (1) nondegenerate r′ ∈ Nr strictly elating in P(r′), then Vn >RA Ve; and
(2) nondegenerate r′′ ∈ Nr disappointing in P(r′′), then Vd >RA Vn. Moreover, at least one of (1) or
(2) holds for any small enough open neighborhood.

Proof. Suppose that for some nondegenerate r,

P = 〈p1,r; p2,δ x; p3,δ y〉 ∼ 〈p1,δCEn(r); p2,δ x; p3,δ y〉,

where Vn(δCEn(r)) = Vn(r). Let 0 < γ ≤ minh∈{e,d} |CEh(r)−CEn(r)| (6= 0 by the ranking of risk
aversion). Pick rε such that

max{|CEe(rε)−CEe(r)| , |CEd(rε)−CEd(r)| , |CEn(rε)−CEn(r)|}<
γ

6
.

Suppose first that rε >1 r. Then it cannot be that 〈p1,rε ; p2,δ x; p3,δ y〉∼ 〈p1,δCEn(r); p2,δ x; p3,δ y〉.
To see this, first note that the RHS is indifferent to 〈1,δCEn(r)〉. If rε is neutral then the LHS is
indifferent to 〈1,δCEn(rε )〉, but indifference then contradicts monotonicity and CEn(rε) >CEn(r).
So by construction we know that CEn(r) 6∈ {CEe(rε),CEn(rε),CEd(rε)}.
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Suppose that rε is a strict elation. We claim CEe(rε)>CEn(r). Suppose otherwise. We know

〈p1,δCEn(r); p2,δ x; p3,δ y〉 ∼ δCEn(r) � δCEe(rε ) � 〈p1,δCEe(rε ); p2,δ x; p3,δ y〉.

But if the prize CEe(rε) is elating in the single-stage lottery, and it is improved to CEn(r), then
as shown in Lemma 2, it must remain elating, a contradiction to being neutral. The same argu-
ment says that if rε is a disappointment then CEd(rε) < CEn(r). Given the choice of rε in the
γ-neighborhood above, this implies the desired conclusion.

A.2. Proof of Theorem 3

The proof of necessity is analogous to that of Theorem 1. The proof of sufficiency is analogous to
that of Theorem 2, with two additions of note. First, since the reinforcement and strong primacy
effects imply the certainty equivalent of each stochastic decision tree in a choice set increases
when evaluated as an elation, the certainty equivalent of the choice set (the maximum of those
values) also increases when viewed as an elation (relative to being viewed as a disappointment).
Second, if the certainty equivalent of a choice set is the same when viewed as an elation and as
a disappointment, the best option in both choice sets must be a degenerate continuation. Then its
history assignment may be made ex-post according to internal consistency.

A.3. Proof of Theorem 4

Step 1: Evident elation or disappointment. For any α ∈ (0,1), define the sets

Ld,α := {〈α,δ b;1−α, p〉 | p ∈L 1},

Le,α := {〈α,δ w;1−α, p〉 | p ∈L 1}, and

L0 := {〈1, p〉 | p ∈L 1}

which consist of all the lotteries of the form in Figure 6 in the main text.
Consider the restriction of � to Le,α . This induces �e,α . Note that by Axiom CE and the

definition of CEe,�(·), for any p and α ∈ (0,1),

〈α,δ w;1−α, p〉 ∼ 〈α,δ w;1−α,δCEe,�(p)〉.

Then by definition of �e,α , p ∼e,α δCEe,�(p). But this means that CEe,�(p) is the certainty equiv-
alent of p under �e,α . Since CEe,�(p) is independent of α by Axiom CE, it must be that for each

33



α and α ′, �e,α and �e,α ′ are the same preference, denoted �e for simplicity. By Axiom A, �e is
a continuous, monotone preference relation satisfying betweenness; it is thus representable by a
Chew-Dekel utility Ve : L 1→ R.

The case of � restricted to Ld,α is analogous, so that CEd,�(p) is the certainty equivalent of
p according to a Chew-Dekel utility Vd : L 1→ R. Similarly for �0, it is represented by a Chew-
Dekel utility V0 : L 1→ R. By Axiom A, Ve, Vd , and V0 are rankable in terms of risk aversion.
Step 2: Endogenous neutrality, elation or disappointment. Consider any nondegenerate P =

〈α1, p1; · · · ;αm, pm〉. By Axiom CAT, for every j = 1,2, . . . ,m, p j is elating or disappointing in P.
Beginning with j = 1, this implies that

P∼ P(1) = 〈α1,δCEa(1),�(p1);α2, p2 · · · ;αm, pm〉 for some a(1) ∈ {e,d}.

Now, notice by Axiom CAT that p2 is elating or disappointing in P(1). Hence

P∼ P(1) ∼ P(2) = 〈α1,δCEa(1),�(p1);α2,δCEa(2),�(p2) · · · ;αm, pm〉 for some a(2) ∈ {e,d}.

By repeatedly applying categorization in this manner,

P∼ P(1) ∼ P(2) ∼ ·· · ∼ P(m−1) ∼ P(m) = 〈α1,δCEa(1),�(p1);α2,δCEa(2),�(p2) · · · ;αm,δCEa(m),�(pm)〉,

where each a( j) ∈ {e,d}. Moreover, by Axiom CAT and use of transitivity, if a( j) = e then
δCEe,�(p j) � P(m), and if a( j) = d then P(m) � δCEd,�(p j).

17 By Axiom TN, V0 also represents� re-
stricted to lotteries where resolution of risk occurs in the first stage, such as in a folded back lottery.
Hence the utility of P may be given by V0(〈α1,δCEa(1),�(p1);α2,δCEa(2),�(p2) · · · ;αm,δCEa(m),�(pm)〉).

17Notice that the construction of P(m) may have been path-dependent (potentially more than one of the relations
holds). But for any path of construction, either (i) P(m) has at least one CEd,� and one CEe,� or (ii) P(m) consists
entirely of CEe,�’s, all of which are indifferent to P(m).
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