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Abstract

We investigate the procedure of "random sampling" where the alternatives are random

variables. When comparing any two alternatives, the decision maker samples each of the

alternatives once and ranks them according to the comparison between the two realizations.

Our main result is that when applied to three alternatives, the procedure yields a cycle with

a probability bounded above by 8
27 . Bounds are also obtained for other related procedures.
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1. Introduction

An experimenter would like to prove that people hold transitive preferences. He asks a

psychologist, who thinks otherwise, to suggest 10 triples of lotteries that in his view are

likely to lead to cycles. He requires that no two lotteries in the same triple have a common

outcome and for simplicity he also requires that each lottery has three outcomes at most.

The psychologist provides the experimenter with ten triple of lotteries Ai,Bi,Cii1,…,10.

Each of the subjects is asked to make the thirty binary choices, three for each triple. A

person is said to reveal a cycle in triple i if his choices from Ai,Bi, Bi,Ci, Ai,Ci are

either Ai, Bi, and Ci, or Bi, Ci and Ai. For each subject, the experimenter counts the number

of cycles (out of a possible ten), and reports the following results:

# of cycles 0 1 2 3 4 5 6 7 8 9 10
% of subjects 73 23 3 1 0 0 0 0 0 0 0

The experimenter claims that the data can be nicely explained by a theory according to

which the decision maker activates a transitive preference relation and there is a 3% chance

that he makes a mistake when making a choice. We show that results which can be

explained in this way are also consistent with simple procedures that are not based on the

existence of well-defined preferences.

The paper focuses on some variations of a nondeterministic procedure of preference

formation which we call Random Sampling procedure: When comparing two lotteries, the

decision maker samples once from each lottery and ranks them according to their

realizations. New samples are used for each of the three comparisons. This procedure is

related to the S-1 procedure proposed in Osborne and Rubinstein (1998) but is different

from Block and Marschak (1960)’s Random Ordering procedure: The decision maker has

in mind a set of orderings and when comparing any two alternatives, he randomly samples

one of the orderings and ranks the two alternatives according to that ordering. For a recent

discussion of how the random ordering procedure can explain data which exhibits

intransitivity, see Regenwetter, Jason, and Davis-Stober (2011).

Our main result offers a bound on the probability that the random sampling yields a cycle

and compares this bound with that of the random ordering procedure. We then discuss the

case where at each stage the decision maker recalls the samples of the previous stage. In

such a scenario the order of the comparisons might matter. We discuss the bounds on the

probability of a cycle assuming that the order of the three comparisons is determined by an

agent who wishes to reduce the probability of a cycle, either because he wants to prove that

people are rational or because he wants the agent to make a choice and a cycle makes the
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choice more difficult. We conclude with a brief discussion of the possible interpretations of

the results.
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2. Random Sampling

The main procedure we discuss in this paper is random sampling: To compare two

random variables the decision maker draws a fresh sample from each and ranks them

according to the sampled values.

Throughout the paper, all triples of random variables have finite and disjoint supports.

Denote by sA the supprt of the lottery A and by PrA  B the probability that the

realization of A is higher than the realization of B. By the disjoint supports assumption,

PrA  BPrB  A  1. Let A,B,C be the probability of a cycle being created by

the decision maker’s procedure. Applied to the random sampling procedure we have:

A,B,C  PrA  BPrB  CPrC  A  PrA  CPrC  BPrB  A.

Claim 1: The maximal probability that the procedure of random sampling yields a

cycle is 8
27 .

Proof: Consider the three random variables presented in the following table:

value A B C

4 1
3

3 2
3

2 1

1 2
3

0 1
3

In this case, PrA  B  5
9 , PrB  C  2

3 , PrC  A  2
3 and the probability of a

cycle A,B,C  20
81  4

81  8
27 .

In order to prove that this is the upper bound, let x1  x2 . . . xn be the values in the

supports of the three random variables A,B and C. Denote by Xi ∈ A,B,C the random

variable that contains xi in its support. Let i  PrXi  xi  0.

First, we assume without loss of generality that for all i, Xi ≠ Xi1; otherwise, if

Xi  Xi1  A, let A ′ be the random variable which differs from A by

PrA ′  xi  i  i1 and PrA ′  xi1  0. Then, A ′,B,C  A,B,C.

Next, assume that for some i, Xi  Xi2 ≠ Xi1 (without loss of generality Xi  A and

Xi1  B). Then we can (weakly) increase the probability of a cycle by replacing A with A,

a random variable which differs from A by either moving a probability mass   0 from xi

to xi2 or from xi2 to xi. Clearly, PrC  A  PrC  A and PrA  B is linear in .
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Since

A,B,C  PrA  BPrB  CPrC  A  1 − PrA  B PrA  CPrC  B

shifting probability mass from xi2 to xi or the other way around (according to the sign of

PrB  CPrC  A − PrA  CPrC  B) will (weakly) increase the probability of a

cycle.

Thus, without loss of generality we can assume that the sequence Xi is of the form

A,B,C, . . . ,A,B,C, . . . ending with Xn−2  A , Xn−1  B and Xn  C.

Next we show that if the three random variables A,B,C maximize  and if n  6, then

there is a triple of random variables that maximizes  with less than n values in their joint

supports. First note that:

A,B,C  PrC  APrB  CPrA  B − PrB  APrC  B  PrB  APrC  B

Changing C does not affect PrB  A. Consider the set of all C′ with a support that is a

subset of C such that PrB  C′  PrB  C. For all such C′, denote by i the probability

that C′ yields the outcome xi. This is the set of all vectors ixi∈sC such that i ≥ 0 for all

i and the following two linear equations hold:

∑
xi∈sC

i  1

∑
xi∈sC

i  ∑
ji and xj∈sB

j  PrB  C

Since n  6 and Xn  C, there are at least m ≥ 3 points in the support of C. The set C′ is

therefore non empty and is given by the intersection of R
m and the above two m − 1

dimensional hyperplanes. The two hyperplanes intersect at C, thus the set is the intersection

of R
m and a linear space of dimension m − 2  0.

Replacing C with C′ will increase the probability of a cycle if

PrB  CPrA  B − PrB  APrC  B and PrC′ A −PrC  A have the same

sign. The expression

PrC′,A  ∑
xi∈sC

i  ∑
ji and xj∈sA

j

is a linear function in (ixi∈sC. Therefore, we can (weakly) increase C′,A by moving

in some direction until we reach the boundary where i  0 for some xi in the support of C.

We can therefore narrow our attention to the sequence of variables Xii1...6 which is of

the form A,B,C,A,B,C. Denote by , b,  the probabilities that the variables A , B, and C
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obtain the highest prize in their supports. Then,

A,B,C  1 − b  b1 −   b −   b − b − b1 −    

 21 − b − 1  1 − b − b2  1

Assuming that both 1   and   0, the last expression is strictly increasing in  within

the interval 0,1. Thus, it attains its maximum at   1. We conclude that in the optimum,

one of the three variables must be degenerate and without loss of generality the sequence

Xii1...5  B,C,A,B,C. Then,

  2 − 1  −2  1  2 − 2 − 2  

This expression has a unique maximum point at   1
3 and   2

3 and a maximization

value of   8
27 . 

In Claim 1 we obtained the upper bound on the probability that the procedure of random

realizations yields one of the two possible cycles A  C  B  A or A  B  C  A. Claim

2 identifies the highest probability that the procedure yields a particular cycle.

Claim 2: The maximal probability that the procedure of random sampling yields a

particular cycle is 1
4 .

Proof: Let A to be the random variable that receives the values 4 or 1 with equal

probabilities. Let B ≡ 3 and let C ≡ 2. Then, PrA  BPrB  CPrC  A  1
4 .

Now, let A, B and C be random variables with n  6 values in their joint support. We

show that there is another triple of random variables that yields the cycle A  B  C  A

with at least as high a probability and with less than n values in their joint support.

As in the proof of Claim 1 we can easily reduce n if Xi  Xi1. If Xi  A, then Xi1  B

(and similarly if Xi  B, then Xi1  C and if Xi  C, then Xi1  A) since if Xi1  C we

can increase PrC  A without affecting PrA  B and PrB  C by shifting the

probability mass in A from xi to xi1 and shifting the probability mass in C from xi1 to xi.

Without loss of generality, let Xn  C. As in the proof of Claim 1, we can modify C to C′

such that PrB  C′  PrB  C and increase (at least weakly) PrC  A until we reach

the boundary where probability 0 is assigned to one of the outcomes in the support of C.

Thus, we can assume that there is a triple which maximizes the probability of the cycle with

n ≤ 6 points in their joint support. Let , , and  be the the probabilities that the variables
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X1  A, X2  B, and X3  C obtain the highest prize in their supports. Using the inequality

of geometrical and arithmetic averages we obtain that PrA  BPrB  CPrC  A 

1 −   1 −   1 −   1 −   1 −   1 −  ≤


1 −     1 −   1 − 

2
2 

1 −   2

4
≤ 1

4



Comments: (a) The problem we dealt with in this section is related to the so-called

"paradox of nontransitive dice" (see Gardner (1970) who credits it to the statistician

Bradley Efrom). This "paradox" involves three independent random variables: A, B and C,

where PrA  B, PrB  C and PrC  A all exceed 0.5. Savage (1994) further proved

that maxA,B,C minPrA  B, PrB  C, PrC  A   5 − 1/2.

(b) It follows from Claims 1 and 2 that for every three distributions F,G and H with a

bounded domain and which do not have an atom in the same point:

FdG GdH HdF  FdH HdG GdF ≤ 8
27 and FdG GdH HdF ≤ 1

4 .

(c) When a decision maker applies the ordering sample procedure to a set of size n, the

maximum probability that his ranking is acyclic goes to zero as the number of alternatives

increases to infinity. To see it consider n random variables which are uniform on the

interval 0,1 (and obviously could be approximated by random variables with finite and

disjoint supports). For any two of these random variables, the probability that the

realization of one is higher than of the other is 1
2 . By Moon and Moser (1962), the

probability that the realized tournament is irreducible (i.e., there are no two non-empty

disjoint sets such that every node in one set "beats" every node in the other) goes to 1 as

n → . By Moon (1966), a tournament with n nodes has a cycle of length n (and therefore

is not acycilcal) if and only if it is irreducible. Thus, the probability that the decision

maker’s comparisons of n uniform random variables yields a cycle of size n goes to 1 as

n → .

3. The Random Ordering Procedure

In the random ordering procedure (Block and Marschak (1960)) the decision maker is

characterized by , a probability measure over the six orderings of the three alternatives A,

B, and C. When comparing any pair of alternatives, the decision maker draws an ordering

that will determine his ranking of these alternatives. Thus, he might apply different
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orderings in ranking two different pairs of alternatives. In this section we show that the

bounds we obtained in the previous section are lower than the bounds on the probability of

a cycle in the random ordering procedure.

Claim 3: The maximal probability that the random ordering procedure yields a cycle

is 1
3 .

Proof: Consider  to be a probability measure on the orderings that assigns equal

probabilities to the three orderings A 1 B 1 C, B 2 C 2 A and C 3 A 3 B. Then,

PrA  B  PrB  C  PrC  A  2
3 and the probability of a cycle is 8

27  1
27  1

3 .

To see that 1
3 is indeed the bound, note that by the inequality of arithmetic and geometric

means:

A,B,C  PrA  BPrB  CPrC  A  PrA  CPrC  BPrB  A ≤

PrA  B  PrB  C  PrC  A3/27  PrA  C  PrC  B  PrB  A3/27

Since every ordering must satisfy at least one and at most two of A  B, B  C and C  A,

we obtain: 1 ≤ PrA  B  PrB  C  PrC  A ≤ 2. The function x3  3 − x3 is

convex in the interval 1,2 and obtains its maximum at x  1 and x  2. Thus

A,B,C ≤ 1
27  8

27  1
3 . 

Claim 4: The maximal probability that the procedure of random ordering yields a

particular cycle is 8
27 .

Proof : The above example attains the bound. To prove that the bound is 8
27 , note that

PrA  BPrB  CPrC  A ≤ PrA  B  PrB  C  PrC  A3/27. The

function x3 in the interval 1,2 attains the maximum at 2 and thus the inequality follows. 

Note that the above example is the only one in which the probability of a cycle is 8
27 . To

see this, count the six orderings: A 1 B 1 C, B 2 C 2 A, C 3 A 3 B, A 4 C 4 B,

and B 5 A 5 C, C 6 B 6 A. Denote by i the probability of i . Then,

PrA  BPrB  CPrC  A  1  3  41  2  52  3  6. The

maximum is attained only when 4  5  6  0 and 1  2  3  1
3 .

4. The Random Sampling Procedure with Partial Recall
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In the procedure discussed in Section 2 each comparison is done independently of the

other two comparisons. A decision maker who compares first A and B and moves to

compare B and C does not recall the previous value of B . Thus the existence of a cycle did

not depend on the order by which the comparisons were done. In contrast, in this section we

assume that the decision maker carries out the comparisons sequentially in three stages and

at each stage he remembers the realizations of the previous stage, but not those of two

stages earlier. In other words, he applies the following procedure:

Random Sampling procedure with partial recall:

When applied to the sequence of three lotteries A,B,C:

(i) Compare A and B by sampling each once.

(ii) Compare B and C by sampling C once and compare the outcome with that of the

previous-stage sampling of B.

(iii) Compare C and A by sampling A again and compare the outcome with that of the

previous-stage sampling of C.

The probability that the procedure yields a cycle is:

A,B,C  PrA1  B  C  A2  PrA2  C  B  A1 where A1 and A2 are copies of

A, i.e., they are i.i.d and distributed like A. Note that A,B,C might differ from

B,A,C but that A,B,C  A,C,B.

Claim 5: The maximal probability that the random sampling procedure with partial

recall yields a cycle is 1
4 .

Proof: Even though we use here a different procedure, the probability of a cycle is 1
4 for

the same triple of variables used at the beginning of the proof of Claim 2. To see that 1
4 is

the bound, denote by b the probability of a cycle given that the value of B is b:

b  PrA1  b  C  A2  PrA2  C  b  A1 ≤

PrA1  b  CPrb  A2  PrA2  bPrC  b  A1 

PrA  bPrb  CPrb  A  PrA  bPrC  bPrb  A 

Prb  APrA  bPrb  C  PrC  b ≤ 1
4

Since b ≤ 1
4 for every possible realization of B, A,B,C ≤ 1

4 as well. 

Imagine now that the order in which the alternatives are presented to the decision maker

is determined by a "master of ceremonies" (MC) who wants the decision maker having a
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clear ordering of the alternatives. Let VA,B,C  minA,B,C,B,C,A,C,A,B

be the probability of a cycle given that the MC chooses the order of the comparisons of the

three variables A, B and C in order to minimize the probability of the cycle. In the example

used in the above proof A,B,C  1
4 but B,C,A  0 and thus VA,B,C  0. On the

other hand, if A,B,C are uniformly distributed over 0,1 then

VA,B,C  A,B,C  1
12 (each ordering of four identical random variables has the

same probability of 1
24 and therefore

PrA1  B  C  A2  PrA2  C  B  A1  1
12 ). We succeeded to find the bound on

V for only a limited family of random variables.

Claim 6: The maximal VA,B,C for three binary random variables is 1
16 .

Proof: First note that for the following three variables VA,B,C  1
16 .

value A B C

5 1
2

4 1
2

3 1
2

2 1
2

1 1
2

0 1
2

If the three variables are such that between the two values of one of the lotteries, say A,

there are no values of another lottery, say C, then A,B,C  0. Thus, we need to

consider only the case in which the values of the three lotteries can be ordered as

A,B,C,A,B,C. Denote by ,, the probabilities of the highest value of each of the three

lotteries A,B,C respectively. Then, A,B,C  1 − ,

B,A,C  1 − 1 −  and C,A,B  1 − 1 − 1 − .

Note that by the continuity of , at a maximum point of VA,B,C it must be that two of

the terms A,B,C, B,C,A, C,A,B are equal and are weakly less than the third. If

B,A,C is minimal then

B,C,A  1 − 1 −   min1 − , 1 − 1 − 1 − . It follows that

1 −  ≤  and  ≤ 1 −  and thus, B,C,A ≤ 1 − 1 −  ≤ 1
16 . If B,C,A is

not minimal then at the maximum point of V,

1 − 1 −   1 −   1 − 1 − 1 − , hence 1 −    and   1 − .
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The maximum with respect to  of the function 1 −  (which is linear in ) given the

linear constraints   1 − 1 −  and 1 −  ≥  ≥ 1 −  must be obtained where

either   1 −  or   1 − . In the former case 1 −   1 − 1 −  ≤ 1
16

while in the latter 1 −   1 − 1 −  ≤ 1
16 . 

When the support of each of the random variables has at most three points, numerical

methods prove that the maximum of VA,B,C is roughly 0.0910 and is attained near the

triple of random variables:

value A B C

6 0.19

5 0.37

4 0.63

3 0.63

2 0.62

1 0.37

0 0.19

The probability of a cycle can be reduced even further if the MC can choose the first

couple of alternatives and only after he observes their realizations he determines which of

the two alternatives will be compared with the third one at the second stage. Using

numerical methods we conclude that for any triple of lotteries with no more than three

outcomes the MC can present the comparisons such that the probability of a cycle is not

greater than 1
32 . Moreover, if each lottery has at most two outcomes cycles can be

eliminated:

Claim 7: Let A, B, C be three binary random variables. If the decision maker follows

the Random Sampling procedure with partial recall then the MC who observes the

realizations can arrange the order of comparisons so that no cycles emerge.

Proof: Suppose that between the outcomes of one lottery, say A, there are no outcomes of

another lottery, say B. Then the MC will ask the decision maker to compare A and B and

then B and C. Assume B  A. If B  C then there is no cycle. If C  B then the fresh

realization of C is higher than both values of A and at the third stage C  A. The case that
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A  B is similar.

Suppose that the outcomes are ordered a1  b1  c1  a2  b2  c2. The MC’s

instructions could be the following:

Start by comparing A and B. Then,

1. If the realization of A is a1 continue with comparing A and C. Whatever is the

realization of C, A  C and hence no cycle.

2. If the realizations are a2 and b1 (B  A) then continue by comparing B and C.

Whatever is the realization of C, B  C, hence no cycle.

3. If the realizations are a2 and b2 then A  B. Proceed to compare B and C. If the

realization is c1 then C  B, hence no cycle. If the realization is c2 then B  C and when A

and C are compared (using c2) then A  C and there is no cycle. 

5. Conclusion

The results of this paper are relevant for two issues:

The first is related to experimental choice theory. Researchers in the field should be

aware of the fact that procedures of choice which are not based on transitive preferences

might still yield transitivity among three alternatives with fairly high probability. Low

frequency of cycles in responses of subjects to comparisons of three alternatives could be

not only an outcome of some error rate. It might be consistent with the subjects using

procedure of random choice and some manipulation by researchers who wish to show that

people are rational. For example, the hypothetical data presented in the introduction could

be explained by the assumption that the decision maker makes a mistake in each

comparison with probability of 3%. But, it can be also explained by the decision maker

following a random sampling procedure with partial recall and the experimenter

manipulating the order by which he requires the subjects to make the comparisons.

The second issue involves the money pump argument which is brought in the literature as

a normative support for the transitivity assumption (Yaari (1998)). According to this

argument intransitivity of preferences exposes a decision maker to manipulation. If a

decision maker has in mind a cycle A  C  B  A where A, B and C are three objects,

then a manipulator could promise the decision maker an object A and then seduce him into

exchanging it for B and so on in an unending chain of exchanges of A, B and C for B, C and

A, respectively. Each time, the manipulator receives some fee from the decision maker, thus

eventually bankrupting him (especially if the cycle is embedded into an automatic trading

program). The manipulator can execute the money pump without actually possessing any of
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the three objects. If, however, the individual’s preference are random, then eventually the

manipulator may need to fulfill the promise and actually buy the object. The profitability of

the money pump will depend on the size of the fee the manipulator can charge and the

probability that the decision maker’s sampling method will yield a cycle. By claims 2 and

5, decision makers who apply the procedures of random sampling and random ordering will

complete a particular cycle with probability not larger than 1
4 . This low probability may

mean that the above money pump argument will not necessarily hold since the manipulator

will need soon to supply the object he promised before collecting sufficient fees from the

decision maker to cover its cost.
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