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Abstract

Technological progress is typically a result of trial-and-error research by competing firms.

While some research paths lead to the innovation sought, others result in dead ends. Because

firms benefit from their competitors working in the wrong direction, they do not reveal their

dead-end findings. Time and resources are wasted on projects that other firms have already

found to be dead ends. Consequently, technological progress is slowed down, and the society

benefits from innovations with delay, if ever. To study this prevalent problem, we build a

tractable two-arm bandit model with two competing firms. The risky arm could potentially

lead to a dead end and the safe arm introduces further competition to make firms keep their

dead-end findings private. We characterize the equilibrium in this decentralized environment

and show that the equilibrium necessarily entails significant efficiency losses due to wasteful

dead-end replication and a flight to safety—an early abandonment of the risky project. Finally,

we design a dynamic mechanism where firms are incentivized to disclose their actions and share

their private information in a timely manner. This mechanism restores efficiency and suggests

a direction for welfare improvement.
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1 Introduction

Innovation is a risky process in which the exact path to success is unknown. Therefore,

many potential innovators go through trial-and-error experimentation that leads to high

R&D costs. Pharmaceutical companies offer a typical case in point. According to a

report by Pharmaceutical Research and Manufacturers of America (PhRMA, 2011),

developing a drug can cost more than $1 billion and take 10 to 15 years. The final cost

of a drug arises mostly from early failed attempts to develop it. All firms in competition

with each other to develop a particular drug typically follow similar paths: they try out

and then give up on similar compounds due to toxicity or inefficacy. Yet, firms do not

reveal to each other their research activities. In particular, they do not share information

about which exploratory paths they have pursued and have been proven to be fruitless.

As a result many firms waste years and millions on projects that their competitors have

already found to be dead ends.

This problem is common and severe in many industries where research progresses

mostly through trial-and-error.1 While an extensive literature on R&D and innovation

focuses on the incentives for and the impacts of successful innovations, this paper turns

to the dark side of the picture and studies the failed innovation attempts that incur

huge costs, both for firms and for society overall. Our goal is to analyze the private

and social values of dead-end research paths and to understand firms’ incentives to keep

them private, that is, to not reveal dead-end paths to their competitors. In addition, we

want to discuss a mechanism that can potentially undo this inefficiency.

Duplicative R&D efforts have attracted attention both in academic and industrial

spheres (see, Kortum, 1993; Tufts Report, 2009). Delving deeper into the details of

the modern drug research process would help us understand the problem of duplication

better. PhRMA (2011) describes the process in great detail. The research for a drug

typically starts with the scientific diagnosis of the proteins causing a disease. Often, the

aim of the sought-after drug is to inhibit some protein activity causing the physiological

harm or to stimulate some protein activity that is missing. The next step is to discover

a chemical that will bind to the target protein either to inhibit it or to help it function

as it normally should. This is where the trial-and-error procedure starts. Companies

try out about 5,000 to 10,000 chemical compounds (drug candidates) to see if they bind

to the target protein. Once the promising drug candidates are identified, preclinical

testing starts. Out of those thousands of candidates, only about 250 make it to the

1We will nevertheless mostly refer to pharmaceutical research, to simplify the exposition.
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preclinical stage, while the rest are simply recorded in the company’s private database.

The successful subset of candidates is tested on animals (as well as pregnant animals

to test the effect on pregnancy2), for toxicity and efficacy. Out of those 250 chemicals,

approximately 5 successfully move on to the clinical trials stage, in which they are tested

on human beings. For the ones that pass those clinical trials successfully, the company

files a New Drug Approval application with the Food and Drug Administration. This

whole process takes about 10 to 15 years and can cost more than $1 billion, most of which

are clearly spent on the trial-and-error efforts, according to PhRMA (2011). These are

only the accounting costs on the firms’ balance sheets. The economy endures further

cost such as delayed cures for the patients and a slowdown in the growth of the entire

sector.

Two key features distinguish the above R&D process from the ones considered by

the literature to date. First, if we think about each of the initial drug candidates as

a research line in itself, it becomes clear that this line could lead to a good outcome

or to a dead end. The existence of a positive reward of a particular research line is

highly uncertain. Second, a firm’s research activities are confidential and the dead-

end outcomes are kept private within the firm because of competitive pressures, even

though society would benefit from their revelation. Publicizing a dead-end outcome

makes the research line obsolete for everyone, while disclosing private actions provides

valuable indirect inference to the opponents. These two features make this type of R&D

competition unique and different from the previous R&D models in the literature in

which typically the existence of a positive outcome is certain, although its arrival rate

is stochastic. These two aforementioned new features will be the building blocks of our

analysis, and we will ask the following related questions: What are the implications of

the two features on firms’ innovation strategies? What is the cost of sharing information

to a company that has discovered that a particular project is a dead end? What are the

potential inefficiencies in an R&D competition setup in which firms do not disclose their

failed attempts? What could be a mechanism to improve efficiency? These questions are

central to policy debates on intellectual property rights and R&D. Part of our agenda is

to construct a tractable model that could lay the micro foundation for an endogenous

growth model with asymmetric information.

To study the aforementioned questions, we build a parsimonious two-arm bandit

2This entails a non-material cost that is difficult to measure in dollars. These tests on pregnant
animals including monkeys have been opposed by many groups, and scientists have been trying to
develop alternative, potentially more costly (in monetary terms), testing methodologies.
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model with two asymmetric firms that differ in their arrival rates of innovation. Each

firm can research at most one research line at a time and has to pay a cost c > 0 per

arrival rate and per unit of time on the research. The arrival of outcomes in both lines

follow Poisson arrival processes. Though the lines share the stochastic nature of outcome

arrivals, they differ in one crucial aspect. The safe research is commonly known to deliver

a one-time lump-sum payoff π > 0 upon an outcome arrival. The risky research is ex-

ante more profitable, yet has an additional uncertainty. In particular, an outcome in the

risky research upon arrival could be good or bad. A good outcome delivers a one-time

lump-sum payoff of Π (e.g., market value of a drug), while a bad outcome reveals that the

risky research line is a dead-end, in which case the payoff is simply 0. Certain approaches

to the cures of HIV or various cancers are potential examples for the risky research line,

and research on incremental improvements on existing drugs are examples of the safe

research line. The lump-sum payoff associated with the good outcome arises from the

publicly observable patent for that particular drug and the resulting monopoly power

for that market. We ignore consumers’ payoffs in this analysis of firm competition, the

inclusion of which would only strengthen our results on efficiency loss.

Firms share a common prior on the probability of the risky research arm being good.

Both firms start on this risky research line. If the arriving outcome is good, the firm

obtains a publicly observable payoff Π. However, if the outcome is a dead end, the firm

quits this research arm and switches to safe research. The key feature in this case is that

the rival cannot observe the firm’s switching action. Therefore firms form belief both on

the nature of the risky arm and the rival’s position. The rival may continue with its own

research without knowing that the arm is a dead end. This is the first inefficiency that

emerges in our model. We call this the dead-end inefficiency. The second inefficiency

arises due to equilibrium belief updating. At any point in time, three events can occur

in a firm: the firm (i) receives a good outcome and patents it, (ii) receives a bad

outcome and secretly quits, (iii) does not receive any outcome. Since only the first case

is observable to a competitor, when a firm does not observe any outcome from its rival,

it will update downwards its belief about the success of the research arm. As a result, a

firm could eventually quit the research line and switch to the safe research, even though

it has neither itself discovered any outcome, nor observed any patent from its rival. This

will be a second channel of inefficiency, in the case where the research arm is actually a

good arm. We call this the early-switching inefficiency.

Note that our framework features both private actions and private outcomes. Hence

the solution of the model requires keeping track of two payoff-relevant beliefs: one about
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the nature of the risky research and another about the position of the competitor. We

achieve the tractability in this environment by focusing on a pure strategy equilibrium.

We characterize a pure strategy equilibrium and show that it is unique if the game

features enough asymmetry across the firms and the research lines. We identify the

aforementioned inefficiencies in this environment and find that the asymmetric firms

generate different inefficiencies. While both firms endure dead-end inefficiency, only

the weak firm (the firm with a lower arrival rate) creates early-switching inefficiency.

Our model suggests that a seemingly negligible amount of competition on the safe arm

generates a drastic welfare loss. Next, we propose a dynamic mechanism that could

undo these inefficiencies. This mechanism involves a third party that collects monetary

installments, ex-ante, and rewards the report of failed attempts as time progresses in

an incentive-compatible way. As a result, firms are incentivized to participate in the

mechanism at any point in time, share their dead-end findings without any delay upon

their discovery, and follow the first-best decision rules. The basic idea we try to convey is

that we should also consider rewarding the failed attempts in order to improve efficiency.

Our paper thus complements and contrasts with the literature on patents for successful

innovations as a reward mechanism. Notice that while private industries currently

reward only profitable, positive outcomes, “patents for dead-end discoveries” already

exist in many academic professions that publish the impossibility results.3

We view our main objectives in this paper as follows. First, the economic problem

we consider here is a general one that applies to many industries and has significant

welfare implications. We hope that our paper would draw attention to this practical

and fundamental problem and would promote further investigations on implementable

institutional design to remedy this problem. Second, our tractable model can serve

as a workhorse for further investigations and can be enriched to consider alternative

environments. We offer more details on this in the conclusion. In what follows, we will

place our paper in the literature and elaborate our contributions in more details.

2 Related Literature

Our paper contributes to the broad literature on R&D races. The type of duplication

that arises in that literature is very different from the duplication we capture here.

For instance, Harris and Vickers (1985, 1987); Aghion et al. (2001); Acemoglu and

Akcigit (2011) consider an R&D competition model in which the technology gap between

3We thank Matthew Jackson for pointing this out to us.
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the competing firms is endogenously determined through the R&D investments of the

leader and follower. While the technology leader’s successful R&D pushes forward the

technology frontier, the follower’s successful R&D effort replicates the steps that were

previously already taken by the leader. As a result, the follower’s R&D effort is spent

on wasteful duplications. In our model, competing firms replicate each other’s dead-end

results as opposed to the successful findings, and the R&D race is efficient as long as

private information is made public.

There are related R&D race models with social learning. Chatterjee and Evans

(2004) offer a fully dynamic two-arm bandit model of R&D rivalry.4 In their model,

exactly one of the two arms contains a prize but firms do not know which one. In

contrast to our central focus here, there is no dead-end discovery in the paper. As a

result, searching is always desirable and the issue of dead-end replication does not arise.

Moreover, they assume that both actions and outcomes are perfectly observable. As

they stated, the central trade-off is that an agent wants to take a different arm from

his opponent to reduce the possibility of simultaneous discovery (which leads to a low

payoff due to Bertrand competition), while doing so increases the chance of leaving the

opponent exploiting the correct arm. In contrast, the central trade-off in our model is

very different. Simultaneous discovery is not an issue in our continuous-time context,

and it is precisely the private observations and private strategies in conjunction with

competition that drive our results. Fershtman and Rubinstein (1997) investigate a two-

stage model in which two agents simultaneously rank a finite set of boxes, exactly one

of which contains a prize, and subsequently commit to opening the boxes according

to that order.5 In this model, the central theme is that an agent wants to preempt

his opponent by opening a box before his opponent. Since players face the same set

of boxes and the search order is chosen once and for all, an equilibrium must involve

randomization over the orders of boxes. As a result of randomization, the most likely

box is not searched first. There is indeed dead-end outcome in this model, but due to its

static nature, dead-end information is irrelevant and the model does not have a learning

element at all. Moscarini and Squintani (2010) consider a one-arm bandit competitive

experimentation model with publicly observable stopping decisions and initial private

information. There is no information arrival and hence no dead-end discovery either,

4See also Bhattacharya, Chatterjee and Samuelson (1986) for a model of dynamic adoption of in-
novation with Gaussian signals where firms observe each other’s actions. This paper thus precedes the
bandit literature that deals with observable actions and private signals which we shall discuss shortly.

5In their model, agents could also choose to group several boxes together and the group size is also
a choice variable.
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but interesting social learning takes place from observing the opponent staying in the

game, and a quitting decision of the opponent also reveals his initial private signals.6

Both our motivation and our model differ from theirs. In our two-arm bandit model,

actions and the (bad) outcome are private, and it is the competitive incentive on the

safe arm and new information arrival that affect the experimentation and learning on

the risky arm.

In this paper, we study the social value of failed attempts and suggest a dynamic

mechanism to also reward the failed attempts in order to prevent wasteful duplication of

dead-end projects. Our paper thus complements the literature on patents as a reward

mechanism to successful innovations. The main purpose of a patent is to provide ex-

post monopoly power so that agents can engage in costly innovation efforts ex-ante (e.g.,

Arrow (1962); Reinganum (1982); Scotchmer (1991); Aghion and Howitt (1992)). The

main focus in this literature has been the trade-off between the length and width of

the patent protection. Acemoglu, Bimpikis, and Ozdaglar (2011) consider a model in

which firms receive private signals on the success probability of research projects and

decide which one to implement. They show that patents can prevent inefficient delays.

In an R&D race model, Acemoglu and Akcigit (2011) numerically show that the design

of intellectual property rights can be used to provide additional incentives by providing

stronger protections to the more advanced innovators. Hopenhayn and Mitchell (2011)

take a mechanism design approach and completely characterize the optimal mechanism

in a model with recurrent innovators. See also Kremer (1998), Hopenhayn, Llobet and

Mitchell (2006) and Hopenhayn and Mitchell (2011) for related investigations.

Finally, our paper contributes to the strategic bandit literature.7 Multi-agent ex-

perimentation in teams has been studied in Bolton and Harris (1999); Keller, Rady,

and Cripps (2005); Strulovici (2010), and Bonatti and Hörner (2011). Klein and Rady

(2011) also consider a negatively correlated two-arm bandit problem. Free-riding is a

common feature in these models. This leads to an inefficient level of experimentation

and often mixed strategy equilibria. In contrast, in our model, we focus on applica-

tions with a winner-takes-all competition. The only observable event is one’s rival’s

success, which lowers one’s payoff. Therefore the free-riding motive does not emerge

in our model. Our model also differs from Thomas (2011). In her model, two players

share a safe option that can be taken by at most one player at a time, and each player

6Murto and Välimäki (2011) study a related social learning model with common payoffs.
7See Bergemann and Välimäki (2008) for a survey. See also Moscarini and Smith (2001) for their

treatment of a single decision maker bandit problem and its connection with R&D models.

6



has an independent risky option. Interestingly, the congestion on the safe arm leads to

inefficient experimentation on the risky option. Similar to the previous studies, there

is no dead-end information in her model, and both actions and outcomes are publicly

observable. Rosenberg, Solan, and Vieille (2007); Hopenhayn and Squintani (2011); and

Murto and Välimäki (2011) consider bandit problems in which outcomes are not ob-

servable but actions are. In our paper, we consider a two-arm bandit problem in which

the actions are unobservable, and outcomes are only partially observable. As a result,

firms have to form beliefs both about their rivals’ actions and about the existence of a

positive risky payoff. The inefficient level of learning and experimentation is not due to

free-riding; rather it is due to uncertainty about the type of an opponent’s discovery,

if any. We need to emphasize that in free-riding bandit papers, early switching is due

to the assumption that no news is bad news, while in our model, it arises endogenously

through competition – in fact, our model does not generate early switching under perfect

information. Another contrast to most of the two-arm bandit models is that the safe

arm in our model features stochastic arrival; this plays an important role as the arrival

could reveal information about a firm’s past private observation on the risky arm, which

makes the two arms correlated through this information channel.

More importantly, the aforementioned strategic bandit models study fixed games

with specific assumptions on observability of actions and outcomes. Our paper is the

first one to take a mechanism design approach to study efficient information sharing in

a bandit environment.

The rest of the paper is structured as follows. Section 3 outlines the model. Section

4 characterize the equilibrium in a decentralized market. Section 5 provides a numerical

example. Section 6 studies the mechanism design for information sharing. Section 7

concludes and also provides a discussion of potential extensions.

3 Model

Research experimentation is an intrinsically dynamic process. Private outcomes and

private actions complicate equilibrium belief formation, especially in the presence of

stochastic arrivals on both arms. In the sequel, we attempt to offer the simplest possible

model that captures the essence of the central trade-offs in such market environments.
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3.1 Basic Environment

There are two firms in the economy that engage in research competition in continuous

time and maximize their present values with a discount rate r > 0.

Firms can compete on two alternative research lines: safe and risky. Each firm can

do research on at most one line at a time. For our purpose, we assume firms start the

game with a competition on the risky arm.8 The arrival of outcomes in both lines follow

Poisson arrival processes. The safe research is commonly known to deliver a one-time

lump-sum payoff π > 0 upon an outcome arrival. The risky research has an additional

uncertainty besides stochastic arrival. An outcome in the risky research upon arrival

could be good or bad. A good outcome delivers a one-time lump-sum payoff of Π, while

a bad outcome reveals that the risky research line is a dead end, in which case the payoff

is simply 0. Firms share a common prior µ0 ∈ (0, 1) on the risky research being good.

Assumption 1 The risky research is ex-ante more profitable than the safe research:

µ0Π > π.

The two firms differ in their R&D productivities, which are captured in our model

by heterogeneous Poisson arrival rates of a discovery. In particular, firm n ∈ {1, 2}
has an arrival rate of λn > 0 independent of the research line, and has to pay a cost

λnc > 0 per unit of time. We assume λ1 < λ2. We hence call them weak and strong

firms, respectively. We shall write Λ ≡ λ1 + λ2 as the total arrival rate of both firms.9

At time t, a firm can choose one of three options: (1) research on the risky line (2)

research on the safe line, or (3) exit the game with 0 payoff. A firm can change its actions,

but it cannot return to the research line it had left. This irreversibility assumption

simplifies the analysis of inference/belief-updating without affecting our main focus; it

comes at a cost: the calculation of continuation payoff is more involved.10

8In the online appendix, we extend the model by allowing firms to choose simultaneously at t = 0
which arm to start to with, and in particular, they could start with the safe arm and switch to the risky
arm later. This extension introduces interesting strategic considerations, though they are not directly
related to our motivation.

9The only asymmetry between firms is in terms of their arrival rates. Allowing other asymmetries
would only complicate the analysis without adding new insights. The role of asymmetry is to rule out
coordination equilibria that are not robust. Asymmetry is a realistic condition also from an empirical
point of view.

10Reversibility usually does not play any role in stopping games such as in Bonatti and Hörner (2011).
This is not the case in our model, because the players in our game have three options; players’ payoffs
depend on the arms they choose and the stochastic arrival reveals information. Different versions of
irreversibility assumptions appear elsewhere in the literature such as Rosenberg, Solan, and Vieille
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The firm’s research activity is private and unobservable to the public. However, a

successful discovery is public.11 Therefore, a firm is uncertain of which research line its

competitor is working on and whether the risky research line has been found to be a

dead end, unless it received an arrival on the risky research line or observed a patent by

the competitor.

For the purpose of formal analysis, we endow the continuous-time game with two

private stages k = 0, 1 for each firm. This is an adoption of the “public stage” idea

proposed by Murto and Välimäki (2011) into our setup with unobservable actions to

overcome the well-known modelling issue in continuous time.12

The game starts at stage 0. In the (common) stage 0, firm n takes the risky research

and chooses a stopping time Tn,0 ∈ [0,+∞] at the beginning of this stage. The inter-

pretation is that firm n intends to stay on the risky research line until Tn,0 as long as

nothing happens.

The game proceeds to stage 1 for firm n at time t = Tn,0 or when new information

arrives to firm n. New information takes one of the following three forms:

1. firm n makes a discovery on the risky research arm,

2. firm n observes a good-outcome discovery from its competitor on the risky arm,

and

3. firm n observes a discovery from its competitor on the safe arm.

In our game, once an outcome is discovered on a research line, no further positive

payoffs will be derived from it. Note that stage 1 is firm n’s private stage, because it

could be potentially triggered by a private dead-end observation.

(2007); Murto and Välimäki (2011); and Acemoglu, Bimpikis, and Ozdaglar (2011).
11For example, this could be because a patent is needed for a firm to receive the positive lump-sum

payoff. Note that in our model, a priori, the incentive for delaying a patent might emerge. Strategic
patenting will be one of the extensions to our model discussed in Section 7.

12We allow a firm to react immediately, without a lag, to new information it obtains either by making
discovery on its own, or observing potential good discoveries by its opponent. This creates a well-
known modelling issue of timing of events in continuous time. The standard approach adopted in the
exponential bandit literature is to focus on Markov strategies that depend on the beliefs over the risky
arm, which leads to well-defined outcomes and evolution of beliefs. This approach will not resolve the
difficulty in our model with three actions, as a firm’s decision not only depends on its assessment of the
risky research line, but also on the availability of its outside options in a winner-takes-all competition.
For instance, the discovery by the opponent on either research line will not stop the game immediately,
but obviously affects the continuation game. Moreover, in a multiple-arm problem with irreversibility,
we need to keep track of the arms that have been visited in the past (this is not necessary in a one-arm
problem, as switching arms ends the game).
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If firm n enters its private stage k = 1 at t = Tn,0 when its stopping time expires

without observing new information arrival, then firm n chooses either “exit” or the “safe

research line” with a stopping time Tn,1. If firm n’s private stage k = 1 is triggered by a

new information arrival, firm n chooses either “exit” or an available research line together

with a stopping time Tn,1. Note that there is a difference between the two cases. In the

latter case, even though new information arrives, firm n can still continue on the risky

arm if it has not abandoned it yet; while in the former case, firm n voluntarily gives up

the risky arm at Tn,0 conditional on no arrival of information.

The game for firm n ends if it ever exits, or at t = Tn,0 +Tn,1, or information arrives.

Note that the game only consists of at most two private stages for each firm because an

observable discovery will remove a research line from the choice set. We focus on perfect

Bayesian equilibrium in pure strategies.13

Below, we summarize the notation that appears frequently in the main text to facil-

itate the reading of the paper.14

Primitives Values

π safe return wSSn firm n’s value from competing on the safe arm

Π risky return wSS the joint value from cooperating on the safe arm

µ0 prior on the good risky arm wSn firm n’s value from monopolizing the safe arm

λn firm n’s arrival rate wRn firm n’s value from monopolizing the risky arm

Λ λ1 + λ2 wRRn the joint value from cooperating on the risky arm

c flow cost per unit of arrival

Beliefs

µtn firm n’s beliefs over the risky arm at time t

βtn firm n’s period-t belief that firm −n is on the risky arm

btn firm n’s period-t belief that firm −n is on the risky arm conditional on the arm being bad

Table 1

3.2 The Safe Arm

The core of our idea is that competition in the safe research prevents the disclosure

of socially efficient information regarding the risky research line. To understand the

13In contrast, pure strategy equilibria usually do not exist in bandit problems with free-riding.
14In choosing this notation, the superscript SS indicates there are two firms on the safe arm; the

superscript S indicates only one firm is on the safe arm. The subscript n indicates that the profit is
attributed to firm n.
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dynamics of this competition, and the effects of the existence of the safe research line,

we first shut down the risky research line and consider only the safe research with

zero outside options – our findings here will be used later to determine the equilibrium

continuation payoffs. In the sequel, we characterize the strategic behaviour in three

different market structures: monopoly, cooperation, and competition.

3.2.1 Monopoly

Write firm n’s monopolistic value from the safe arm as wSn . Assuming the firm’s strategy

is to work on the arm until a discovery is made, we can express wSn recursively using the

following continuous time Hamilton-Jacobi-Bellman (HJB) equation:

wSn = −λncdt+ e−rdt
[
λndtπ + (1− λndt)wSn

]
, (1)

where the first term on the right-hand side is the research cost; the second term is the

discounted expected instantaneous return – a lump-sum payoff π is received with an

instantaneous probability λndt; the third term is the discounted expected continuation

payoff.

The HJB equation immediately gives us

wSn =
λn

λn + r
(π − c) . (2)

This expression is intuitive. By working on the research line, firm n derives a payoff of

λn (π − c) per unit of time (flow payoff), with effective discounting λn + r. From this

expression, the firm will research on the safe arm if π > c.

Assumption 2 π > c.

It also transpires from the monotonicity of λn
λn+r

in λn that the strong firm enjoys

larger monopolistic profits.

3.2.2 Cooperation

Next, we consider the cooperative scheme in which firms maximize their joint value,

wSS. The HJB equation is

wSS = −Λcdt+ e−rdt
[
Λdtπ + (1− Λdt)wSS

]
.
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Therefore the joint value of cooperation is

wSS =
Λ

Λ + r
(π − c) ,

which is positive under Assumption 2. Comparing this with expression (2), the firms

now work as one team and hence the arrival rate is Λ = λ1 + λ2 and the the total flow

cost is Λc. Since Λ
Λ+r

is strictly increasing in Λ, all-firm cooperation is welfare improving

over any subset of firms’ cooperation, including monopoly as a special case.

3.2.3 Competition

Now consider the winner-takes-all competition between the two firms. Denote firm n’s

valuation of the safe research line under competition as wSSn . Assuming the two firms

work on the arm until a discovery is made, the HJB equation gives us the following

intuitive recursion:

wSSn = −λncdt+ e−rdt
[
λndtπ + (1− λndt− λ−ndt)wSSn

]
, (3)

where the third term is the discounted continuation payoff upon no discovery by either

firm n or −n. The HJB equation immediately gives us

wSSn =
λn

Λ + r
(π − c) . (4)

Comparing with the single-firm case (2) , the extra term λ−n in the denominator repre-

sents an extra discounting resulting from the competition. Once again, firm n’s strategy

is optimal if Assumption 2 holds. It is clear that wSSn < wSn , meaning that the competi-

tion lowers a firm’s payoff. Note that wSS = wSSn +wSS−n is the sum of firms’ value under

competition. The following proposition summarizes this result:

Proposition 1 When the research line has known return, competition is efficient.

4 Equilibrium Analysis of the Model

Now we turn to the full two-arm bandit model and analyze dynamic competition with two

research lines. We again proceed with three market structures: monopoly, cooperation,

and competition.
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4.1 Monopoly

If firm n has only the risky research line available, then its monopolistic value can be

found using the HJB equation

wRn = −λncdt+ e−rdt
[
λndtµ

0Π + (1− λndt)wRn
]
.

Note that there is no belief updating in the monopolistic problem. Hence wRn =
λn
λn+r

(µ0Π− c) . If firm n has only the safe research line available, then similarly its

monopolistic value is wSn = λn
λn+r

(π − c) .
Now when the single firm n has two research lines, it will choose when to switch to

the safe research line. Firm n’s monopolistic value is given by the HJB equation,

vn = −λncdt+ e−rdt
[
λndt

(
µ0Π + wSn

)
+ (1− λndt) vn

]
, (5)

where µ0Π+wSn on the right-hand side is the expected lump-sum payoff upon an arrival:

firm n receives µ0Π from the risky research and wSn from monopolizing the safe research

line. The HJB equation immediately gives us

vn =
λn

λn + r

(
µ0Π− c+ wSn

)
= wRn +

λn
λn + r

wSn

This expression is intuitive. Firm n’s expected monopolistic profit from the risky research

line is wRn , and it also receives the monopolistic profit wSn from the safe research line with

an arrival rate of λn and an effective discount rate of λn + r.

4.2 Cooperation: Planner’s Problem

We now consider the case in which firms behave cooperatively to maximize joint value.

Several observations are in order.

1. Firms should share all the information to avoid wasteful research efforts.

2. Let wSS and wRR be the joint value of the two firms if they work only on the safe

arm, and only the risky arm, respectively. Using an argument similar to that in

the previous section,

wRR =
Λ

Λ + r

(
µ0Π− c

)
and wSS =

Λ

Λ + r
(π − c) .
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By Assumptions 1–2, we have wRR > wSS > 0.

The planner’s strategy space is larger than the monopolist’s problem. In particular,

the problem involves the optimal allocation of joint efforts. Therefore, a more interesting

question is how to allocate the joint efforts, and in particular, whether splitting the

research lines between the two firms is more desirable. We shall show that the first best

allocation of efforts requires that both firms work on the risky arm until a discovery

is made (which is made public immediately) and then both switch to the safe arm.

Splitting the task is never optimal.

Proposition 2 Under Assumptions 1–2, the strategy that maximizes joint value is for

both firms to work on the risky arm together until a discovery is made, and then both

switch to the safe arm. The joint value is given by

V = wRR +
Λ

Λ + r
wSS, (6)

and if firm n is awarded the good discovery it makes, then its value is

Vn =
λn
Λ
wRR +

Λ

Λ + r
wSSn . (7)

Proof. See Appendix.

The interpretation of the joint value under this strategy is as follows: Recall that

wRR is the joint value of researching only on the risky research until an outcome is found.

When the firms follow a strategy of researching on the risky arm and then switching to

the safe arm upon discovery, this also adds the continuation value of the safe research on

top of wRR. A discovery on the risky arm arrives at the rate Λ and the firm’s continuation

payoff from the safe research upon arrival is simply wSS.

Remark In fact, the proof of Proposition 2 shows that the strategy is optimal even

without the restriction that both firms start with the risky arm.

4.3 Competition in a Decentralized Market

When it comes to competition, which research line a firm is working on is private infor-

mation and only the good discovery is observable. We now highlight how the ingredients

in our model affect the learning dynamics.
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First, we model two types of outcomes because such a model is more applicable to

the prevalence of trial-and-error types of research competition.15 Uncertainty about the

type of an opponent’s discovery is crucial for our learning dynamics generated by the

dead-end discoveries.

Second, the independence of the arrival rates in the binary states implies that there

will be no belief updating if research activities and dead-end findings are public. As

a result, non-trivial belief updating is entirely driven by the unobservability of dead-

end discoveries and private research actions. This is precisely the focus of our analysis.

Moreover, this independence assumption implies that efficiency is attainable under per-

fect information but not otherwise. Hence, the independence assumption isolates and

highlights the trade-off in the applications of our main interest.16

Third, arrival on the safe arm is also stochastic, which affects the learning dynamics

indirectly. Upon observing an opponent’s discovery on the safe arm, a firm can make

an inference about the opponent’s potential past observations on the risky arm, and the

extent of this inference in equilibrium turns out to depend crucially on the timing of the

safe arm discovery. The observational structure in our model is mixed. Actions are not

observable unless they lead to a good discovery, but at that point, the competition on

that arm is ended.

We shall now demonstrate how learning takes place.

4.3.1 Learning and Private Beliefs

Write µtn as firm n’s private belief that the risky research line contains a good outcome

at time t (which obviously depends on the realization of private and public histories).

Write βtn as the probability that firm n assigns to his opponent, firm −n, being on the

risky arm at time t. Denote by btn the probability that firm n assigns to his opponent

being on the risky arm at time t conditional on the fact that the risky arm is bad.

Suppose both firms start on the risky arm, and switch only upon an observation. If

firm n does not observe anything – neither from itself, nor from its opponent – from t

15The existing exponential bandit models have only a single outcome, for instance, Keller, Rady, and
Cripps (2005), Bonatti and Hörner (2011), Strulovici (2010), Murto and Välimäki (2011), and Klein
and Rady (2010).

16We discuss the relaxation of this assumption in the conclusion.
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to t+ dt, firm n will update µtn using Bayes’ rule as follows:

µt+dtn =
µtn (1− λ−ndt) (1− λndt)

µtn (1− λ−ndt) (1− λndt) + (1− µtn) [1− (1− btn)λ−ndt] (1− λndt)

=
µtn (1− λ−ndt)

µtn (1− λ−ndt) + (1− µtn) [1− (1− btn)λ−ndt]
.

Note that the final expression is independent of (1− λndt) , that is to say, firm n does

not learn from the fact that it does not observe anything from its own research. This is

because the arrival rate λn is independent of the type of the outcomes (see the discussion

above).

The interpretation for the second equality above is as follows. The numerator mea-

sures the probability that the opponent does not make a (public) discovery and the risky

arm is good. The denominator measures the probability that firm n does not observe any-

thing from its opponent – when the risky research is a dead end, the only observable dis-

covery from its opponent is on the safe arm, which occurs with probability (1− btn)λ−ndt,

and hence the probability of observing nothing from −n is 1− (1− btn)λ−ndt.

From the above Bayesian updating, we derive the law of motion for private beliefs17:

µ̇tn = −µtn
(
1− µtn

)
btnλ−n. (8)

The critical feature of the learning is that when the opponent discovers faster, i.e.,

λ−n is larger, then firm n learns faster. The intuition is as follows. As λ−n increases, the

opponent will discover an outcome on the risky research sooner. Therefore, if no good

outcome is observed from the opponent over a fixed period of time, it is more likely that

the opponent actually found a dead end. Therefore, everything else equal, the weak firm

becomes more pessimistic than the strong firm on the risky research over time with no

discovery.

If firm n knows that a bad (dead-end) outcome has arrived before t, then µtn = 0; if

n knows that the good outcome has occurred before t, then µtn = 1.

Learning with stopping strategies Suppose both firms work on the risky arm

before T > 0 until a discovery is made. How will the private beliefs evolve? First, at any

t ≤ T, if firm n has not observed anything from its opponent or from its own research,

17To see this, subtract µti from both sides of the Bayes’ formula, divide them by dt and then take the
limits.
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then

βtn =
e−λ−nt

e−λ−nt + (1− µ0)λ−nte−λ−nt
=

1

1 + (1− µ0)λ−nt
. (9)

We need to interpret this formula. e−λ−nt is the probability that the opponent firm −n
does not make any discovery by time t; (1− µ0)λ−nte

−λ−nt is the probability that the

opponent makes one dead-end discovery and that is the only discovery by time t.18 The

denominator in (9) is the total probability of no observation from the opponent, which

consists of two pieces: the probability of no arrival, e−λ−nt, and the probability of only

one private (dead-end) arrival, (1− µ0)λ−nte
−λ−nt. The opponent will stay on the risky

arm only when there is no arrival by t ≤ T. This is reflected in the numerator of (9) .

Similarly, if firm n has not observed anything from its opponent and from its own

research, then conditional on the risky research having a dead end,

btn =
e−λ−nt

e−λ−nt + λ−nte−λ−nt
=

1

1 + λ−nt
. (10)

Note that btn is conditional on the risky research having a dead end, and hence, (1− µ0)

is excluded from Bayes’ formula (9) .

Substituting equation (10) into the filtering equation (8) , we obtain

µ̇tn = −µtn
(
1− µtn

) λ−n
1 + λ−nt

. (11)

As this formula demonstrates, even though the rate of discovery λ−n is constant over time

in our model, the rate of learning from no observation, λ−n
1+λ−nt

, changes hyperbolically

in time. The following lemma provides the explicit form for the belief.

Lemma 1 Under stopping strategies described above, the belief of firm n at time t ≤ T

that the risky research has a good outcome is

µtn =
µ0

1 + (1− µ0)λ−nt
. (12)

Proof. See Appendix.

Now, consider the case in which firm n has not discovered anything on its own

18Since the arrival rate is λ−i, the probability of one and only one arrival by time t is∫ t

0

e−λ−isλ−ie
−λ−i(t−s)ds = λ−ite

−λ−it.
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research, but observes the opponent’s discovery on the safe research at t ≤ T. Given

the stopping strategy firm −n adopts, firm n could infer that the opponent has already

discovered a dead end on risky research previously and has since switched to the safe

research. Therefore, in this case, µtn = 0.

Next, consider the case in which firm n has not discovered anything through its own

research, but observes the opponent’s discovery on the safe research at t > T. Then

there is no updating µtn = µTn , and in fact, this observation is valid as long as firm −n
switches at time T, and it does not matter when firm n switches. This observation is

immediate from the following:

µtn =
µTne

−Λ(t−T )

µTne
−Λ(t−T ) + (1− µTn ) e−Λ(t−T )

= µTn .

Finally, if firm n has not discovered anything on its own research at t > T, its belief

µtn is still µTn . Note that there is a discontinuity: when firm −n makes a discovery on the

safe research at or before T, then µtn jumps down to 0, while, if the discovery is made

right after T, the belief is constant at µTn , as if nothing had occurred.

With the above discussion as a precursor, Figures 1A and 1B depict the evolution

of beliefs, btn and µtn, conditional on no arrival under the following pair of stopping

strategies: until an observation reveals the nature of the risky arm, firm 1 stays on the

risky arm until T > 0, and firm 2 sticks to the risky arm.19
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4.3.2 Equilibrium

Recall that we assume firm 1 is weaker than firm 2 in the sense that λ1 < λ2.

19The parameters come from a numerical example provided in section 5.
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Theorem 1 Under Assumptions 1–2, there is a pure strategy perfect Bayesian equilib-

rium in which both firms start on the risky research and switch silently to the safe arm

upon a dead-end discovery. In this equilibrium,

• unless an outcome is observed, the strong firm will not stop, and the weak firm

(firm 1) will switch to the safe research line at

T =
1

(1− µ0)λ2

[
µ0Π

π

r + Λ

r + Λ− λ1

(
π−c
π

) − 1

]
+

λ1
π−c
π

(r + Λ)
(
r + Λ− λ1

π−c
π

) ,
• if the first news that a firm observes from its opponent before T is a good outcome

of the risky research, then both firms switch to the safe research,

• if the first news that a firm observes from its opponent before T is an outcome on

the safe research, then both firms exit,

• if firm 2 observes a good outcome on the risky research after T, it will switch to

the safe research if it is still available.

Finally, if there is enough asymmetry across research lines and players, i.e., µ0Π
π

and λ2

λ1
are large enough, then the above describes the unique pure strategy equilibrium

outcome.

Proof. See Appendix.

In this equilibrium, the weak firm abandons the risky research too early compared to

the first best scenario in which both firms stay on the risky research until a discovery is

made. Indeed, this is the case even when λ1 approaches λ2. This equilibrium also reveals

that the two asymmetric firms generate different types of inefficiencies absent from a

discovery on the safe arm. First, the strong firm generates wasteful duplicative R&D

from the time that the weak firm discovers a failure until it discovers the failure itself or

the weak firm discovers the safe arm before T . Second, the weak firm generates wasteful

R&D only from the time that the strong firm discovers a failure until its switching time

T or the time at which the strong firm discovers the safe arm. Moreover, the weak

firm generates inefficiency from the time it switches until the strong firm discovers an

outcome in the risky arm, due to early switching. In short, the weak firm endures two

kinds of inefficiencies: early-switching and dead-end inefficiencies, while the larger firm

endures only the dead-end inefficiency.
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We also want to comment on the role of asymmetry. If firms are symmetric or payoffs

in both arms are close, we can construct an equilibrium where firms coordinate on who

switches research arms, and mixed strategy equilibria are also possible.

The following proposition provides a comparative statics analysis with respect to the

parameters of the model:

Proposition 3 The equilibrium stopping time T is increasing in µ0 and Π, and decreas-

ing in λ2 and π.

Proof. See Appendix.

These comparative statics are intuitive. As µ0 and Π become larger and π becomes

smaller, the risky arm becomes more attractive. However, when λ2 becomes larger, the

weak firm updates its belief downwards faster. The response of T with respect to λ1 is

non-monotonic as it affects both the weak firm’s payoffs in both arms simultaneously.

5 Numerical Example

In this section, we provide a numerical analysis of our model, taking pharmaceutical

research competition as an example. Due to the simplicity of the model, our purpose

is not to provide a detailed calibration of it. Our goal is rather to demonstrate the

behaviour and welfare implications of the model, and highlight its general quantitative

features for reasonable parameter values. Our model has 7 parameters: r, µ0, Π, π, c, λ1

and λ2. Table 2 summarizes the parameter values. These parameters come from a basic

calibration exercise in which we rely on reports by the Pharmaceutical Research and

Manufacturers of America (PhRMA, 2002-2011). The details of the parameter choices

are described in Appendix D.

Parameter Values (Monthly) and Equilibrium Stopping Time

r µ0 λ1 λ2 c Π π T

0.4% 17% 2.6% 6.5% $63 million $1.4 billion $87 million 36 months

Table 2

5.1 Summary Statistics

Given the above parameters, we simulate the decentralized market and planner’s problem

500, 000 times each. Table 3 summarizes the simulation results.

20



Both firms start on the risky arm with an initial belief µ0
n = 1/6. As time elapses,

firms receive outcomes according to the Poisson process described above. Note that firm

2 observes an outcome 2.5 times more frequently than the weak firm 1 (λ2/λ1). Since

firm 2 receives an outcome faster, its average experimentation time on the risky arm

is shorter by around 13.8 months as opposed to 16.1 months for firm 1. Note that this

is despite the fact that firm 1 follows a cut-off rule according to which it switches to

the safe arm at T = 36 if it does not observe an outcome either by itself or from its

competitor. The associated beliefs under this strategy were already depicted in Figures

1A and 1B.

Comparison of Decentralized and Planner′s Solutions

Moment Decentralized Planner’s

Average time to develop a risky drug 14.9 years 11 years

Average cost to develop a risky drug $499 million $382 million

Fraction of risky drugs invented by firm 1 28% 29%

Average risky experimentation by firm 1 16.1 months 10.9 months

Average risky experimentation by firm 2 13.8 months 10.9 months

Average safe experimentation by firm 1 9.1 months 10.9 months

Average safe experimentation by firm 2 11.7 months 10.9 months

Average wasteful risky research investment by firm 1 9.6 months 0

Average wasteful risky research investment by firm 2 11.4 months 0

Table 3

Figure 2A depicts the distribution for experimentation durations on the risky arm in

each trial. The first point to note is the spike at t = 35. In almost 12% of the trials, firm

1 does not observe any outcome and follows its equilibrium cut-off strategy, switching

to the safe arm at t = T . Second, compared to firm 1, firm 2’s distribution has more

mass at lower durations. This is due to the fact that firm 2 has a faster arrival rate,

which allows it to discover the true nature of the risky arm more quickly. Finally, in

the planner’s economy, information sharing increases the effective arrival rate for both

firms (λ1 + λ2) . This shifts the distribution of experimentation durations to the left and

hence reduces the average time spent on the risky arm to 10.9 months, which is 32%

and 21% lower than the average experimentation times for firms 1 and 2, respectively.
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Next, we study the time that firms spend on risky research between two consecutive

risky drug inventions. Figure 2B plots the results of the simulations. In the decentralized

economy in which firms have private information about their R&D outcomes, firms spend

on average 14.9 years on the risky arm per drug. Note that some of this time is spent

on research in a line that the competitor already knows is a dead end. The planner’s

economy avoids this problem, and firms spend 11 years -that is 26% less time- on the

risky arm per drug.

It is also important to understand the sources of inefficiencies in the economy. The

decentralized economy differs from the planner’s economy in two major dimensions.

First, when a firm discovers a dead end on the risky arm before T, it switches to the safe

arm without sharing this information with the competitor. As a result, the competitor is

wasting R&D dollars on a research line that is already known to be a dead end. This is

what we call the dead-end inefficiency. Figure 3A plots the distribution of the number

of periods spent on research in a dead end. Note that the maximum wasteful R&D

by firm 1 has an upper bound of T , due to the cut-off strategy, which mitigates the

welfare loss (however, as will be shown below, this strategy increases the second type

of inefficiency). Since firm 2 learns the true nature of the arm faster, firm 1 spends

more time on a dead-end risky arm before T. On the other hand, while firm 2 incurs

wasteful R&D spending less frequently before T, it is the only firm that can potentially

stay longer on a dead-end research line. The average dead-end replication time is 9.6

months for firm 1 and 11.4 for firm 2.

Figure 3B describes the second source of inefficiency: early switching. The planner

prefers both firms to experiment until an outcome is found on the risky arm. However,

in the decentralized economy in which firms do not observe the private information of

their competitors, they become pessimistic about the outcome on the risky arm, as time
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elapses. In equilibrium, firm 1 switches to the safe arm at time T even in situations where

firm 2 has not received any information about the risky arm by then. This generates

missing experimentations by firm 1 due to early switching, which are plotted in Figure

3B.
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Finally, we illustrate the monetary cost of the problem in Figure 4, which plots the

distribution of the total amount of R&D dollars spent between two consecutive risky

drugs. In the decentralized economy, firms spend on average $499 million on a risky drug,

a significant portion of which is wasted due to the two aforementioned inefficiencies.

Firms spend on average $382 million in the planner’s economy, which is 23% less.
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The following section discusses the sources of these inefficiencies in greater detail.
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5.2 Types of Inefficiencies: Dead End and Early Switching

In this section, we focus on two different types of inefficiencies demonstrated in our

equilibrium. We consider three regimes: the first best regime (FB) is the cooperation

setup with information sharing, the decentralization regime (D) is the decentralized

market without information sharing, and the intermediate regime (I) has full information

sharing, but artificially requires the weak firm 1 to stop at T , the stopping time in regime

D.

Let us denote the welfare associated with the regime α as Wα, where α ∈ {FB,D, I} .
Therefore, WFB − WI is the welfare loss due to early switching only (excluding the

information externality upon the discovery of bad news), and WI −WD is the welfare

loss due to the information externality – socially efficient information of a dead-end

finding is not disclosed.

From Proposition 2, we know that WFB = wRR + Λ
Λ+r

wSS. Since the intermediate

regime differs from the first-best regime only after T , we have

WFB −WI = λ1

[(
µ0Π + wSS

)
−
(
π + wR2

)] e−(Λ+r)T

Λ + r
,

where λ1

(
µ0Π + wSS

)
and λ1

(
π + wR2

)
are firm 1’s contribution to the total welfare

(measured in flow payoffs) when firm 1 works on the risky arm and the safe arm, respec-

tively; e−ΛT is the probability that a discovery has not been made on the risky research

by T.

Finally, note that the difference between regime (I) and regime (D) arises only when

the risky research is a dead end. In this case, a dead-end discovery is not observable

to the opponent, unless a subsequent discovery on the safe arm is reported before T.

Therefore, we need again to consider the probability that only one discovery is made by

the same firm n before t, which is given by Pr (one arrival before t) = λnte
−λnt. Using

this fact, we obtain20

WI −WD =
(
1− µ0

) λ1λ2

r + Λ

[
2

π

r + Λ

(
1− e−(r+Λ)T

)
− Te−(r+Λ)T

(
π − λ1c

r + λ2

)]
The following table summarizes the numerics. Note that firms do not want to share

the dead-end discovery on the risky arm because of the competition on the safe arm,

20This follows from: WI−WD =
(
1− µ0

){ ∫ T
0
λ2te

−λ2te−(r+λ1)tλ1πdt+
∫ T
0
λ1te

−λ1te−(r+λ2)tλ2πdt∫∞
T
λ1Te

−λ1T e−(r+λ2)t
[
e−λ1(t−T )λ2π +

(
1− e−λ1(t−T )

)
λ2c
]
dt

}
.
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which has a per unit of arrival rate net return π − c.

Welfare Analysis

π − c WFB−W I WI−WD WFB−WD WFB
WFB−WD

WFB

Level of
Competition

Early-switching
Inefficiency

Dead-end
Inefficiency

Total
Inefficiency

First-best
Welfare

Percentage
Inefficiency Loss

$1 $0.024 m $19.3 m $19.3 m $162.9 m 12%

$1 m $0.026 m $19.5 m $19.6 m $163.8 m 12%

$10 m $0.044 m $21.9 m $22.0 m $172.0 m 13%

$30 m $0.364 m $31.7 m $32.1 m $254.5 m 13%

Table 4

The finding is striking. We notice that even if the net return on the safe arm is only

$1, the incentive of preventing the opponent from competing for this $1 causes a total

efficiency loss of $19.3 million, which amounts to 12% of the first-best welfare level! The

logic, as we have already pointed out, is that this $1 completely changes the incentives to

share private information. Without it, the firm does not lose anything from information

sharing.

Note that the dead-end inefficiency is much larger than the early-switching ineffi-

ciency. We should not be optimistic about the early-switching inefficiency. Indeed,

early-switching delays the discovery on the risky arm by almost 4 years for the same

set of parameters as we demonstrated previously. If consumers’ welfare is taken into

account in our model, then early-switching will have a much larger implication.

6 Mechanism Design for Efficient Competition

In this section, we shall discuss a mechanism that incentivizes information sharing. The

idea is to create a centralized institution to reward dead-end discoveries. This is the

counterpart of the prevailing practice of rewarding good-end discoveries through patents

and prizes. After all, many professions publish and reward dead-end discoveries and

impossibility results. We focus on the case where outcomes are verifiable. Similar to

good outcome patenting where firms prove that their experiments lead to the solution of

a problem (e.g., drug curing a disease), we assume that firms can provide their research

results and data to prove their dead-end findings (similar to the data policy of academic

journals and proofs of impossibility results). It should be emphasized that we do not

suggest that our mechanism is practical, because, as in the theoretical mechanism design

literature, our mechanism depends on the details of the model; rather, we want to
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investigate theoretically the outreach and the limits of the simple idea of trading dead-

end discoveries.

Remark One important question to answer is why there is a need for a mechanism

designer instead of allowing firms to trade dead-end discoveries in a decentralized

market, or to sign contracts among themselves. This is the core of the classic

problem of information trading, as pointed out by Arrow (1962) in an argument for

patenting through centralized institutions. Information is different from standard

commodities. The buyer of information, once the buyer learns the information or

verifies it, obtains what he needed in the first place and has no incentive to pay

anymore. This problem discourages information trading in a decentralized market.

Therefore, a mediator is often necessary for the sale of information.

6.1 Feasible Mechanisms

The mechanism must be dynamic in nature to accommodate the stochastic arrival.

Ideally, a dynamic mechanism that enforces information disclosure should satisfy the

following properties:

• budget balance,

• a firm at any point in time should be allowed to walk away from the mechanism.

That is, we face a design problem in which firms cannot commit to their future

actions,

• a firm should not walk away from the mechanism at some point and then come

back in the future to take advantage of the information accumulated during its

leave, and

• a dead-end outcome should be made public immediately upon its discovery with

no delay.

One particular issue with this type of mechanism is that if a firm walks away (off the

equilibrium path), the other firm is left wondering what the firm has actually observed

that made it leave; there is a myriad of off-path beliefs, and each belief can potentially

support a different continuation decentralized equilibrium play. Thus, the parameters of

the mechanism will depend on the specification of off-path beliefs. Note, however, that

this issue must emerge in any dynamic mechanism design problem where agents could
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receive new information over time when agents cannot commit to their plan of actions

at time 0.

The off-path beliefs have to be realistic and robust to perturbations. Indeed, we could

think of perturbation of firm strategies in the game-theoretic tradition of trembling-hand

perfection, or alternatively, we can think of a rare, random, exogenous shock that forces

a firm to leave the mechanism. In the latter case, exiting the mechanism becomes an

on-path behaviour and beliefs follow directly from standard Bayes’ updating. These

considerations lead us to adopt the following specification of off-path beliefs.

• if a firm quits the mechanism at some point, which is off the equilibrium path,

then the other firm’s belief does not suddenly change.

We shall design a mechanism with these properties. The mechanism simply states the

following: At any time t, each firm can report a failure they discovered to a mediator;

if firm n reports a failure, then firm −n will be liable to pay ptn to firm n, and the

mechanism concludes. For example, firm n can deposit ptn in a neutral account at time t

managed by the mediator. Our goal is to find the range of ptn that satisfies the incentive

conditions.

6.2 Incentives

Henceforth we shall restrict our attention to a constant price path such that ptn = pn.

6.2.1 No-delay Condition

Suppose firm n has an unreported dead-end discovery at time t (this discovery can be

made right before t, or this discovery could have been made a while ago, which is off the

equilibrium path). If firm n reveals the failure, then besides ptn it will get a continuation

payoff wSSn = λn
Λ+r

(π − c) .
Reporting immediately at t should lead to a higher payoff than delaying it to t + h

for any h > 0. That is,∫ t+h

t

e−
(Λ+r)(τ−t)

[−λnc+ λn (π + pn) + λ−n (wssn − p−n)] dτ ≤ pn + wSSn (13)

holds for any h > 0. Since pn ≥ 0, the RHS of (13) is strictly positive. Therefore,

whenever the integrand in the LHS is negative, then (13) holds trivially. If the integrand
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is strictly positive, the LHS is strictly increasing in h. Therefore, that (13) holds for any

h is equivalent to

[−λnc+ λn (π + pn) + λ−n (wssn − p−n)]
1

Λ + r
≤ pn + wSSn .

If instead −λnc + λn (π + pn) + λ−n (wssn − p−n) > 0, then since the LHS of (13) is

increasing in h, (13) is equivalent to

[−λnc+ λn (π + pn) + λ−n (wssn − p−n)]
1

Λ + r
≤ pn + wSSn .

This can be simplified into

λn
(
π − c− wSSn

)
≤ r

(
pn + wSSn

)
+ λ−n (p−n + pn) .

The intuition for this expression is as follows. By delaying, firm n loses the interest on(
pn + wSSn

)
, and in the case of the opponent’s discovery, firm n loses the transfer pn and

has to make an additional payment p−n to the opponent. This is the RHS. Meanwhile,

the firm makes an additional gain, which is equal to the benefit from monopolizing the

safe arm: λn
(
π − c− wSSn

)
.

Substituting wSSn into the above expression and simplifying, we have

λ−nλn
Λ + r

(π − c) ≤ (λ−n + r) pn + λ−np−n. (14)

6.2.2 No Walk-away upon Discovery of a Dead End

At any time, a firm should not leave the mechanism to start a decentralized competition.

Let us denote firm n’s value of walking away after the discovery of a failure at t as vSn,t,

which is the value of monopolizing the safe arm until firm −n switches to the safe arm.

Note that for firm 1, vS1,t = vS1,0 because firm 2 will never switch before a discovery.

Therefore,

vS1,0 =

∫ ∞
0

e−(Λ+r)t
[
λ1 (π − c) + λ2w

SS
1

]
dt = wSS1 +

λ2

Λ + r
wSS1 .
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For firm 2, vS2,0 ≥ vS2,t because firm 1 will switch at a finite time T even without a

discovery. Hence

vS2,0 =

∫ T

0

e−(Λ+r)t
[
λ2 (π − c) + λ1w

SS
2

]
dt+

∫ ∞
T

e−(Λ+r)tλ2 (π − c) dt

= wSS2 +
[
1− e−(Λ+r)T

] λ1

Λ + r
wSS2 .

The value of sharing the information is wSSn + pn. Therefore it must be that wSSn + pn ≥
vSn,0. Hence, we have another lower bound: pn ≥ vSn,0 − wSSn . Therefore,

p1 ≥
λ1λ2

(Λ + r)2 (π − c) and p2 ≥
[
1− e−(Λ+r)T

] λ1λ2

(Λ + r)2 (π − c) . (15)

6.2.3 Participation Constraint

The third condition is the participation constraint before any discovery. Let V D
n be firm

n’s value in the decentralized market, n = 1, 2. Then the participation constraint is

given by

V D
n ≤

{
µ0
∫∞

0
e−(Λ+r)t

[
λn
(
Π− c+ wSSn

)
+ λ−nw

SS
n

]
dt

+ (1− µ0)
∫∞

0
e−(Λ+r)t

[
λn
(
pn − c+ wSSn

)
+ λ−n

(
wSSn − p−n

)]
dt

}
.

The left-hand side is always V D
n since when firm n walks away before any discovery,

the game will resume as if the decentralized game has started at time t = 0 due to no

updating until that point in the centralized market. This condition can be simplified to

(
1− µ0

) λnpn − λ−np−n
Λ + r

≥ V D
n −

[
λn

Λ + r

(
µ0Π− c

)
+

Λ

Λ + r
wSSn

]
.

By Proposition 2, λn
Λ+r

(µ0Π− c) + Λ
Λ+r

wSSn on the right-hand side is firm n’s payoff Vn

under full information sharing. Therefore, the condition can be rewritten as

(
1− µ0

) λnpn − λ−np−n
Λ + r

≥ V D
n − Vn.

This expression is very intuitive. The left-hand side is the expected net transfer firm n

receives from participating in the mechanism: there will be transfer only when the risky

arm has a dead end that occurs with a prior probability (1− µ0) ; on the equilibrium

path, the belief will never update because of full information sharing; firm n receives a

transfer pn at a rate λn and makes a transfer p−n at a rate λ−n, and hence, the discounted
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value of the net transfer on a dead-end arm is λnpn−λ−np−n
Λ+r

. The right-hand side is the

value firm n gives up by participating in the mechanism: it obtains a value Vn under

full information sharing enforced by the mechanism, but V D
n in a decentralized market.

λnpn − λ−np−n ≥
Λ + r

1− µ0

(
V D
n − Vn

)
.

This condition holds for n = 1, 2, and hence, we obtain an upper bound and a lower

bound for λ1p1 − λ2p2:

K ≤ λ1p1 − λ2p2 ≤ K.

where

K ≡ Λ + r

1− µ0

(
V D

1 − V1

)
and K ≡ Λ + r

1− µ0

(
V2 − V D

2

)
.

It is feasible only when K ≤ K. This condition is equivalent to

V D
1 + V D

2 ≤ V1 + V2.

The right-hand side is the first-best joint payoff under full information. The left-hand

side is the sum of values of the firms in the decentralized economy. Clearly, this condition

is always satisfied.

6.3 Efficient Mechanism

Now, we summarize the two conditions on the prices:

1. No-delay condition:

λ−nλn
Λ + r

(π − c) ≤ (λ−n + r) pn + λ−np−n, for n = 1, 2. (16)

2. No-walk-away with a dead end:

p1 ≥
λ1λ2

(Λ + r)2 (π − c) and p2 ≥
[
1− e−(Λ+r)T

] λ1λ2

(Λ + r)2 (π − c) . (17)

3. Participation constraint:

K ≤ λ1p1 − λ2p2 ≤ K. (18)

Theorem 2 Each price vector (p1, p2) that satisfies conditions (16) and (18) character-

izes a mechanism that restores efficiency: both firms work on the risky research until
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a discovery is made and then switch to the safe research; firm n reports a dead-end

discovery immediately upon its discovery and receives a payment pn from its competitor.

Proof. Note that the set of price vectors (p1, p2) that satisfy (16)-(17) is non-empty.

Indeed, we can set p1 = λ2p2+K
λ1

, which satisfies (18) . By setting p2 large enough, all other

constraints will be satisfied simultaneously. By definition, firms share their information

without delay under the mechanism with (p1, p2). The result then follows.

There is a continuum of price vectors that satisfy conditions (16)-(17) . One way to

refine this set of price vectors is to introduce a liability constraint. Instead of pushing in

this direction, we characterize the “cheapest” prices that are enough to restore efficiency.

To do this, we minimize the flow transfer λ1p1 + λ2p2 over all mechanisms.

6.4 Minimum Implementable Transfers

Formally, minimizing the flow transfer λ1p1 + λ2p2 over all mechanisms is the following

linear programming problem:

min
(p1,p2)

{λ1p1 + λ2p2} subject to



C1: λ1λ2

Λ+r
(π − c) ≤ (λ1 + r) p2 + λ1p1

C2: λ1λ2

Λ+r
(π − c) ≤ (λ2 + r) p1 + λ2p2

C3: λ1λ2

(Λ+r)2 (π − c) ≤ p1

C4:
[
1− e−(Λ+r)T

]
λ1λ2

(Λ+r)2 (π − c) ≤ p2

C5: K ≤ λ1p1 − λ2p2 ≤ K.


.

The set of binding constraints in this program is determined by primitive parameter

values of c, λn, r, π, µ0 and Π. We present numerical solutions using the previous set of

parameters. The interesting finding is that the cost of the mechanism is quite minimal

relative to the size of the recovered welfare loss.

Minimum Price Mechanism

π − c p∗1 p∗2 λ1p
∗
1 + λ2p

∗
2 welfare recovery

$ 1 $ 0.5 (50c/) $ 0.20 (20c/) $ 0.02 (2c/) $19.3 million

$ 1 million $ 0.5 million $ 0.2 million $ 0.02 million $19.6 million

$ 10 million $ 4.7 million $ 1.8 million $ 0.24 million $22 million

Table 5

In the numerical computations, the two binding constraints of the mechanism are

the no-delay condition for firm 1 (C1) and no-walk-away condition for firm 2 (C4).
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The following graph plots the prices dictated by the minimum transfer mechanism as a

function of the competition level on the safe research line.
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Figure 5

Two features stand out in the above plot. First, the price that each firm has to pay

to compensate its competitor is increasing in the level of the competition on the safe

research line. Second, the price that firm 1 receives (p1) is always higher than that of

firm 2, since sharing information on a dead-end finding means that both firms will now

compete on the safe arm. For firm 1 this entails a larger reduction in value because it

will then face a stronger competitor (firm 2).

7 Concluding Discussion and Extensions

The goal of this paper has been to uncover the potential inefficiencies in research com-

petitions due to dead-end replication. We offered a parsimonious two-arm bandit model

with two asymmetric firms. We identified two types of inefficiencies that arise in this

model and show that different firms incur different types of inefficiencies. The efficiency

loss is significant, and we have discussed a simple mechanism to improve efficiency. We

have made several simplifying assumptions to highlight the effects of dead-end discovery

and asymmetric information. In what follows, we shall discuss possible extensions of our

model and future research.

7.1 State-dependent Arrival Rate

In this paper, we have assumed that the arrival rate λn is independent of the true state.

More generally, one might allow the arrival rate to be a function of the state as well, λsn,

where s ∈ {G,B} where G stands for the good risky arm and B stands for the dead-end

risky arm. A source of exogenous learning shows up in this environment. For instance,
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if λGn 6= λBn , then firm n will learn from the fact that there is no discovery from its own

research. In particular, if λGn > λBn , then for firm n, no news from its own research is

bad news. In this case, learning from n’s own research and learning from the opponent’s

research (no discovery) reinforce each other. If, instead, λGn < λBn , then no news is good

news. Therefore, learning from n’s own research and learning from the opponent tend

to push the learning in different directions. Our model isolates the endogenous learning

through competition from the exogenous learning. It remains to analyze which force

will be stronger and how they interact over time. We believe this complication will not

change the qualitative predictions of our model.

7.2 Strategic Patenting

In our model, a firm receives a lump-sum payoff from its good discovery immediately.

We could enrich the model to study strategic patenting decisions and ask whether a firm

has an incentive to delay its patenting decision to its own benefit. In this section, we

shall argue that the equilibrium we characterize is robust to an endogenous patenting

decision. Therefore, to study strategic patenting decisions, we need to enrich the model

(for example, by allowing multiple arrivals). This is an interesting question to ask but

is orthogonal to the current focus.

Assume firm −n’s strategy is to patent its discovery immediately. Consider firm n.

If firm n has a non-patented successful discovery at a point when the other firm has

already switched, then there is no benefit from delayed patenting, and a cost due to

discounting. Now consider the case where firm n has a non-patented discovery at t when

the competing firm is still working on the risky research (note that such a discovery

may be made exactly at t or it is discovered before but delayed until t). If n patents this

discovery at t, then we can derive its payoff as Vt = Π+wSSn . Suppose the firm decides to

delay it until t+ s, for some s > 0. Since we know that the firm will not delay patenting

when the other firm has switched, we can assume without loss of generality that at t+ s

firm −n is still on the risky arm. Firm n’s expected payoff at t is therefore,

Vt,s =

∫ t+s

t

e−(r+Λ)(τ−t) [λn (π + Π) + λ−nw
SS
n − λnc

]
dτ + e−(r+Λ)s

(
Π + wSSn

)
.
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Now

∂Vt,s
∂s

= e−(r+Λ)s
[
λn (π + Π) + λ−nw

SS
n − λnc

]
− (r + Λ) e−(r+Λ)s

(
Π + wSSn

)
= e−(r+Λ)s

{
−rΠ− λ−n

[
Π− λn (π − c)

r + Λ

]}
< e−(r+Λ)s [−rΠ− λ−n (Π− π)] .

Note that under Assumption 1, Π > π and hence ∂Vt,s
∂s

< 0. Therefore, firm n, if it has

a non-patented innovation at time t, will not delay patenting by any s > 0.

Remark 1 Note that we have just shown that it is optimal for firm n to patent immedi-

ately when firm −n’s strategy is registering immediately whenever Π > π. The intuition

is that if firm n delays for dt, the cost of delay is of the order λ−nΠ, yet the benefit is

λ−nπ because firm n keeps firm −n away for dt.

7.3 Macroeconomic Applications

The increase in potentially wasteful R&D dollars has been a common concern both in

academic and policy spheres. Macro data on innovation and R&D spending in the US

exhibits a worrisome time-series pattern. The ratio of registered innovation counts to

total innovation efforts in the US has been steadily decreasing over time. The following

two figures document this stylized fact.
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In figure 6A, we plot the ratio of the total number of USPTO patents granted to US

residents over aggregate R&D investment in the US. In the early 1950s, the patent-R&D

ratio was around 1.4 and it has decreased by almost 70% to 0.4 in the early 2000s. There

could be various explanations for this decline, and Kortum (1993) argues that one of
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them is the increasing duplicative R&D efforts by competing firms. He suggests that the

increase in market size leads to a larger ex-post value of innovation, which, combined

with competition, leads to a larger R&D spending per patent. A similar and even more

drastic picture emerges in the pharmaceutical industry. Figure 6B plots the number of

drug approvals per R&D investment for this industry. The ratio declines from 1.4 in

the early 1960s to 0.1 in the early 2000s, which is a decline of more than a 90%. This

observation again hints at a severe problem of R&D duplication for drug inventions.

We provide two comparative statics as a preliminary attempt to use our model to

touch on this issue. The first one is the increase in the market value of drugs. Although

this increase in value could be caused by many different factors (increase in market size,

for instance), the end effect is an increase in the ex-post returns to innovation. In our

model, an increase in the market value of drugs leads to more experimentation on the

risky arm, which causes an increase in the cut-off value T of the weak firm 1. This

in turn also increases dead-end replications and reduces the number of drugs per R&D

investment. Figure 7A plots the average number of drugs per R&D investment as a

function of the market value.
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Another potential explanation emerging from our model is the increase in uncertainty

or the decrease in the probability of a good outcome on the risky arm.21 To understand

this better, consider the case in which µ0 = 1 and the decentralized equilibrium would

be efficient. As uncertainty increases (µ0 declines), the decentralized economy increases

the amount of dead-end replications. This increase in wasteful spending reduces the

number of drugs per R&D investment as illustrated in Figure 7B.

A more detailed analysis of the macroeconomic implications of the inefficiencies iden-

tified in this paper requires incorporating the microeconomic structure into a formal

21In reality this could be caused due to the fishing-out effect.

35



general equilibrium growth model. Akcigit and Liu (2011) take a step in this direction.

We believe that additional interesting macroeconomic questions are still awaiting future

exploration.
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Appendix

A Proof of Proposition 2

We begin with some useful observations. If the two firms start on the risky arm together,

continuing until a discovery is made, and then both switch to the safe arm, then their

joint value is given by the following HJB equation

V = −Λcdt+ e−rdt
[
Λdt

(
µ0Π + wSS

)
+ (1− Λdt)V

]
,

which implies

V =
Λ

Λ + r

(
µ0Π− c+ wSS

)
. (19)

This joint value can be also rewritten as

V =
Λ (µ0Π− c)

Λ + r
+

Λ

Λ + r

Λ (π − c)
Λ + r

= wRR +
Λ

Λ + r
wSS. (20)

Note that V consists of two parts. Firms first extract an expected payoff wRR from the

risky arm, and meanwhile derive a flow payoff ΛwSS from the safe arm with effective

discounting Λ + r.

Proof of Proposition 2. We relax the firms’ decision problem by allowing

reversibility; that is, they always have the option to restart a research line that they

previously quit. This relaxed problem makes the computation of the continuation payoff

easier. In the relaxed problem, the joint value V̂ of the two firms can be derived from

the following HJB equation,

V̂ = max


Λdt

(
µ0Π + wSS

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt,

Λdt
(
π + wRR

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt,

λ1dt
(
µ0Π + wSS

)
e−rdt + λ2dt

(
π + wRR

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt,

λ2dt
(
µ0Π + wSS

)
e−rdt + λ1dt

(
π + wRR

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt


(21)

where the four terms on the right side are the payoffs from strategies in which both firms

start with the risky arm, both firms start with the safe arm, firm 1 starts with the risky

arm and firm 2 starts with the safe arm, and firm 2 starts with the risky arm and firm

1 starts with the safe arm, respectively.
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We claim that µ0Π + wSS > π + wRR. This is because

µ0Π + wSS = µ0Π +
Λ

Λ + r
(π − c)

>
Λµ0Π + rπ + Λπ − Λc

Λ + r

= π + wRR.

Note that the inequality follows from Assumption 1. Therefore, the first term on the

right side of (21) is the largest and hence

V̂ = Λdt
(
µ0Π + wSS

)
e−rdt − Λcdt+ (1− Λdt) V̂ e−rdt.

This immediately implies that the optimal value of the relaxed problem, V̂ , is achieved

by a strategy in which both firms start on the risky arm. This strategy is feasible in the

constrained problem where firms cannot switch back to a previously abandoned research

line. Therefore, this strategy is optimal in the original problem, and the optimal value

is given by Equation (20) ,

V = wRR +
Λ

Λ + r
wSS.

This completes the proof.

B Proof of Lemma 1

We conjecture that the differential equation has a solution of the following form µt =

Ψ (t) ≡ A
1+Bt

where A and B are constants. Substituting the conjecture into (11) we get

−BA
(1 +Bt)2 = − A

(1 +Bt)

(
1− A

1 +Bt

)
λ−n

1 + λ−nt
,

which reduces to

B +Bλ−nt = (1− A)λ−n + λ−nBt.

Equating the constant terms we get B = (1− A)λ−n.Moreover, we impose the boundary

condition Ψ (0) = µ0. Then we get A = µ0 and B = (1− µ0)λ−n. This verifies our

conjecture. �
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C Proofs of Theorem 1 and Proposition 3

We proceed in four steps. In step 1, we characterize the stopping time T. In step 2, we

show that both firms’ stopping strategies are optimal. Last, step 3 proves the uniqueness.

Step 1: Characterization of the stopping time T.

Suppose at time t, firm n’s belief on the risky arm is µtn and his belief on its opponent,

firm −n, is still on the risky arm is βtn. Recall from Equation (4) that wSSn is firm n’s

expected payoff from competing with firm −n on the safe arm, wSSn = λn
Λ+r

(π − c) .
We define vS1 as the value of firm 1 when it is alone on the safe arm but anticipating

that the strong firm 2 might switch to the safe arm only after a discovery. Intuitively,

vS1 = −λ1cdt+ e−rdt
[
λ1dtπ + λ2dtw

SS
1 + (1− Λdt) vS1

]
,

which implies

vS1 =
λ1 (π − c) + λ2w

SS
1

Λ + r
= wSS1

(
1 +

λ2

Λ + r

)
.

In order for firm 1 to switch exactly at t, it must be that firm 1 is indifferent between

switching at t or waiting until the next instant (we are assuming continuity of the value

function and this will be true). The payoff from “stay on the risky research for another

dt and then switch” is
(1− rdt)λ1dt

{
µt1
(
Π + wSS1

)
+ (1− µt1)

[
bt+dt1 vS1 +

(
1− bt+dt1

)
wSS1

]}
+ (1− rdt) βt1λ2dtw

SS
1

+ (1− rdt) (1− Λdt)
[
βt1v

S
1 +

(
1− βt1

)
wSS1

]
−λ1cdt

 .

The first line is firm 1’s discounted expected return when it makes a discovery on the risky

arm during (t, t+ dt) . If the line is good, with probability µt1, it leads to an immediate

lump-sum payoff Π and a continuation payoff of competing in the safe research, wSS1 if the

line is bad, the dead-end discovery gives rise to a 0 immediate payoff, but the expected

continuation payoff depends on the position of the competitor. The second line is firm

1’s discounted expected payoff in the case where the opponent firm 2 discovers. It again

depends on the position of firm 2. If firm 2 is on the risky arm, which happens with

probability βt1, firm 1 will compete with firm 2. If firm 2 is on the safe arm, a discovery

on the safe arm indicates the risky arm is bad, and the game is over. The third line is

firm 1’s discounted expected payoff in the case of no discovery. The final line is the cost

of researching.
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The payoff from spending the next dt on the safe arm and staying there forever is

given by {
(1− rdt)λ1dtπ + (1− rdt) βt1λ2dtw

SS
1

+ (1− rdt) (1− Λdt)
[
βt1v

S
1 +

(
1− βt1

)
wSS1

]
− λ1cdt

}
.

The interpretation is similar to the previous case.

Therefore, by taking the limit, the indifference condition becomes

µt1
(
Π + wSS1

)
+
(
1− µt1

) [
bt1v

S
1 +

(
1− bt1

)
wSS1

]
= π. (22)

This condition carries the following intuition. At time t, spending an additional amount

of time dt on either arm delivers the same expected return conditional on an arrival of

an outcome. To see this, note that the RHS is simply the expected return from the safe

arm. The LHS is the expected return on the risky arm. With probability µt1, the arm is

good, in which case firm 1 receives the patent value Π and competes with firm 2 in the

safe arm and obtains wSS1 . With the remaining probability (1− µt1) the arm is bad, in

which case, firm 1 switches secretly to the safe arm and obtains a payoff depending on

whether firm 2 is already on the safe arm or not.

Therefore, the stopping time T is characterized by the following equation:

µT1 Π +
(
1− µT1

)
bT1
(
vS1 − wSS1

)
+ wSS1 = π (23)

From equations (10) and (12) , we know that for n = 1, 2,

bTn =
1

1 + λ−nT
and µTn =

µ0

1 + (1− µ0)λ−nT

Hence

T =
1

(1− µ0)λ2︸ ︷︷ ︸
learning channel

[
µ0
(
Π + wSS1

)
+
(
1− µ0

)
vS1 − π

]︸ ︷︷ ︸
Risky research premium

(
1

π − wSS1

)
︸ ︷︷ ︸

Competition Channel

=
1

(1− µ0)λ2

[
µ0Π + (1− µ0)

(
vS1 − wSS1

)
(π − wSS1 )

− 1

]

=
1

(1− µ0)λ2

[
µ0Π

π

(r + Λ)(
r + Λ− λ1

π−c
π

) − 1

]
+

λ1
π−c
π

(r + Λ)
(
r + Λ− λ1

π−c
π

)
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Remark 2 (Proposition 3) From the explicit expression for T above, it is easy to

check T is increasing in µ0 and Π, and decreasing in r, λ2 and π. The comparative static

relative to λ1 is ambiguous.

Step 2: Best responses of the stopping times in the candidate equilibrium.

In this part, we show that the two firms’ stopping times are best responses to each

other, given that both start on the risky research line. In Step 4, after we introduced the

idea of an auxiliary problem, we shall show that the initial choices of the risky research

line are mutual best responses in the candidate equilibrium.

Assume firm 2 does not stop the risky research before a discovery. Recall that T is

the unique solution of

µt1Π +
(
1− µt1

)
bt1
(
vS1 − wSS1

)
+ wSS1 = π

That is, T uniquely solves

µ0

1 + (1− µ0)λ2t
Π +

(1− µ0)

1 + (1− µ0)λ2t

(
vS1 − wSS1

)
+ wSS1 = π.

We know the LHS is monotone decreasing in t. Hence if t < T, firm 1 strictly prefers

to stay in the risky arm, and if t > T, the firm strictly prefers to quit. Therefore, it is

optimal for firm n to stop at t = T before a discovery is found.

Now assume firm 1 uses the stopping strategy characterized by T . Consider firm 2.

There are two cases to consider.

Case 2.1: At t ≥ T, firm 2’s payoff conditional on being on the risky arm in the

candidate equilibrium is given by the recursion:

V2 = −λ2cdt+ (1− rdt)
[
λ2dt

(
µT2 Π + wSS2

)
+ λ1dt

λ2

r + λ2

(
µT2 Π− c

)
+ (1− Λdt)V2

]
.

Note that since µT1 Π− c ≥ 0 (otherwise, firm 1 would have already switched to the safe

arm before T ), µT2 Π− c > 0 by (12) . Hence

V2 =
1

r + Λ

[
−λ2c+ λ2

(
µT2 Π + wSS2

)
+ λ1

λ2

(
µT2 Π− c

)
r + λ2

]
.

In order for firm 2 to stay on the risky research, we need V2 ≥ wSS2 . Plugging in param-
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eters, the sufficient condition can be simplified progressively as

−λ2c+ λ2

(
µT2 Π + wSS2

)
+ λ1

λ2

(
µT2 Π− c

)
r + λ2

≥ (r + Λ)wSS2

µT2 Π

(
1 +

λ1

r + λ2

)
+ wSS2 −

λ1c

r + λ2

≥ π

µT2 Π− π + wSS2 +
(
µT2 Π− c

) λ1

r + λ2

≥ 0 (24)

Note that at the time of the cutoff, the beliefs are such that µT2 > µT1 . A lower bound

for µT1 is described as follows. Consider the same belief updating procedure for firm 1,

but now the payoffs are in such a way that the return on the risky arm is higher and

the return on the safe arm is lower. This will give us a lower bound for µT1 since in

this environment, firm 1 will need a lower belief than the actual game to switch. To

generate this payoff structure, assume firm 1 does not face any competition in the risky

arm but faces competition with certainty on the safe arm (continuing with the same

belief updating). In that case the indifference condition in (23) reads as

µT
∗

1 Π + wSS1 = π

since bT
∗

1 = 0. Therefore we have

µT
∗

1 =
π − wSS1

Π
< µT1 < µT2 .

Therefore a sufficient condition for (24) is

µT
∗

1 Π− π + wSS2 +
(
µT
∗

1 Π− c
) λ1

r + λ2

≥ 0

Using the expression for µT
∗

1 , the sufficient condition becomes

(λ2 − λ1) (π − c)
r + Λ

+
λ1 (π − c)
r + Λ

≥ 0.

This sufficient condition always holds.

Case 2.2: We need to show that firm 2 does not want to switch at any t < T. To

this end, suppose to the contrary that firm 2 switches at t < T while firm 1 follows the

prescribed equilibrium strategy. Consider firm 2’s response to the following strategy:

Firm 1 follows the candidate equilibrium strategy prescribed for firm 2.
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If firm 2 has an incentive to switch at t < T in the candidate equilibrium, it has

an even stronger incentive to switch before t against the alternative strategy for firm

1 prescribed above. The reason is that the alternative strategy of firm 1 increases the

competition of the risky arm and reduces the competition on the safe arm. We shall

derive a contradiction as follows.

Given firm 1’s alternative strategy, firm 2’s belief goes down continuously over time

before a discovery is observed, and hence there exists T2 at which an indifference condi-

tion similar to (23) holds:

π = µT2
2 Π +

(
1− µT2

2

)
bT2

2

(
vS2 − wSS2

)
+ wSS2 . (25)

We claim that T2 > T. To see this, suppose to the contrary that T ≥ T2. Then the

following inequalities are immediate by definition:

µT2
2 ≥ µT2 ,

µT1
2 > µT1 ,(

1− µT2
)
bT2 >

(
1− µT1

)
bT1 ,

vS2 − wSS2 > vS1 − wSS1 ,

wSS2 > wSS1 .

Utilizing these inequalities, we derive from (25) that

π = µT2
2 Π +

(
1− µT2

2

)
bT2

2

(
vS2 − wSS2

)
+ wSS2

≥ µT2 Π +
(
1− µT2

)
bT2
(
vS2 − wSS2

)
+ wSS2

> µT1 Π +
(
1− µT1

)
bT1
(
vS1 − wSS1

)
+ wSS1

= π.

A contradiction.

Step 3: (Uniqueness) There are no other equilibrium stopping strategies

when λ2

λ1
and µ0Π

π
are large.

Suppose to the contrary that there are other equilibria with stopping time T1 and

T2. Since µ0Π > π, we know T1 > 0 and T2 > 0. We have two cases to consider.

Case 3.1: +∞ ≥ T1 > T2.

We define vS2 (T2, T1) as the value of firm 2 at T2 when it switches to the safe arm

but anticipating that firm 1 might switch to the safe arm only after a discovery or at
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the random time τ 1.

First note that T2 < +∞ because of belief updating. In order for firm 2 to switch

exactly at T2, it must be that firm 2 is indifferent between switching at T2 or waiting

until the next instant and then switching. The payoff from “staying on the risky research

for another dt,” is
(1− rdt)λ2dt

{
µT2

2

(
Π + wSS2

)
+
(
1− µT2

2

) [
bT2+dt

2 vS2 (T2 + dt, T1) +
(
1− bT2+dt

2

)
wSS2

]}
+ (1− rdt) βT2

2 λ1dtw
SS
2

+ (1− rdt) (1− Λdt)
[
βT2+dt

2 vS2 (T2 + dt, T1) +
(
1− βT2+dt

2

)
wSS2

]
−λ2cdt

 .

The payoff from “spend the next dt on the safe arm and stay there forever,” is given

by

{
(1− rdt)λ2dtπ + (1− rdt) βT2

2 λ1dtw
SS
2

+ (1− rdt) (1− Λdt)
[
βT2+dt

2 vS2 (T2 + dt, T1) +
(
1− βT2+dt

2

)
wSS2

]
− λ2cdt

}
.

Therefore, by taking the limit, the indifference condition becomes

µT2
2

(
Π + wSS2

)
+
(
1− µT2

2

) [
bT2

2 v
S
2 (T2, T1) +

(
1− bT2

2

)
wSS2

]
= π,

or, equivalently,

µT2
2 Π +

(
1− µT2

2

)
bT2

2

[
vS2 (T2, T1)− wSS2

]
+ wSS2 = π. (26)

Notice that vS2 (T2, T2) = wSS2 ≤ vS2 (T2, T1) for any T1 > T2. Then (26) gives us

µT2
2 Π + wSS2 ≤ π,

which is

T2 ≥
µ0Π−

(
π − wSS2

)
(π − wSS2 ) (1− µ0)λ1

. (27)

Now consider firm 1. Firm 1’s belief on the risky arm does not update after T2, and

its expected payoff is equivalent to that from staying on the risky arm until a discovery,

46



i.e.,

∫ ∞
0

e−(Λ+r)t

[
λ1

(
µT2

1 Π− c+
λ1

Λ + r
(π − c)

)
+ λ2

(
λ1

(
µT2

1 Π− c
)

λ1 + r

)]
dt

=

λ1

(
µT2

1 Π− c+ λ1

Λ+r
(π − c)

)
+ λ2

(
λ1(µT2

1 Π−c)
λ1+r

)
Λ + r

.

Since firm 1 has the option of competing on the safe arm with firm 2, it must be that

λ1

(
µT2

1 Π− c+ λ1

Λ+r
(π − c)

)
+ λ2

(
λ1(µT2

1 Π−c)
λ1+r

)
Λ + r

≥ wSS1 =
λ1 (π − c)

Λ + r
.

This condition can be simplified to

µT2
1 Π− c ≥ λ1 + r

Λ + r

λ2 + r

Λ + r
(π − c) .

Hence,

T2 ≤
1

(1− µ0)λ2

[
µ0Π

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c
− 1

]
(28)

Comparing (27) and (28) , a contradiction will be derived if

µ0Π−
(
π − wSS2

)
(π − wSS2 ) (1− µ0)λ1

>
1

(1− µ0)λ2

[
µ0Π

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c
− 1

]
,

which is equivalent to

µ0Π

[
λ2

λ1+r
Λ+r

(π − c) + c
− λ1

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c

]
> λ2 − λ1. (29)

First, since π − c > 0, we have

λ2

λ1+r
Λ+r

(π − c) + c
− λ1

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c
=

(
λ2

λ2+r
Λ+r
− λ1

)
λ1+r
Λ+r

(π − c) + (λ2 − λ1) c[
λ1+r
Λ+r

(π − c) + c
] [

λ2+r
Λ+r

λ1+r
Λ+r

(π − c) + c
]

>

(
λ2

λ2

Λ
− λ1

)
λ1

Λ

π
.
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Hence a sufficient condition for (29) is

µ0Π

π

[(
λ2
λ2

Λ
− λ1

)
λ1

Λ

]
> λ2 − λ1.

This is guaranteed if
λ2

λ1

> 2 and
µ0Π

π
>

λ2 − λ1(
λ2

λ2

Λ
− λ1

)
λ1

Λ

.

Case 3.2: +∞ > T2 ≥ T1. In this case, firm 2 does not update its belief after T1 if it

does not observe anything on the risky arm. Therefore, for firm 2 to switch at T2 ≥ T1,

it must be that firm 2 is indifferent between switching at T1 (competing with firm 1 on

the safe arm) and staying on the risky arm (monopolizing the risky arm with the option

value of the safe arm) at any t ≥ T1. Following the argument in the previous case, the

indifference condition of firm 1 is

µT1
1 Π +

(
1− µT1

1

)
bT1

1

(
vS1 (T1, T2)− wSS1

)
+ wSS1 = π.

Recall that our equilibrium indifference condition is given by

µT1 Π +
(
1− µT1

)
bT1
(
vS1 − wSS1

)
+ wSS1 = π.

Since bTn
(
1− µTn

)
= 1−µ0

1+(1−µ0)λ−nT
, the LHS of the previous equation is strictly decreasing

in T. Now suppose T ≤ T1. Then it follows from vS1 > vS1 (T1, T2) that

π = µT1 Π +
(
1− µT1

)
bT1
(
vS1 − wSS1

)
+ wSS1

≥ µT1
1 Π +

(
1− µT1

1

)
bT1

1

(
vS1 − wSS1

)
+ wSS1

> µT1
1 Π +

(
1− µT1

1

)
bT1

1

(
vS1 (T1, T2)− wSS1

)
+ wSS1

= π.

This is a contradiction. Hence T > T1, i.e., µT2 < µT1
2 .

In our equilibrium, firm 2 prefers to stay on the risky arm after T1 > T upon no

discovery and its belief is µT2 (since there is no updating between T and T1). Hence

1

Λ + r

[
λ2

(
µT2 Π− c+ wSS2

)
+ λ1

λ2

Λ + r

(
µT2 Π− c

)]
≥ wSS2 .

But at t = T1 in the supposed equilibrium with stopping times +∞ > T2 > T1, we have

for firm 2 (which is indifferent between staying on the risky arm until a discovery or
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switching at T1). Hence

wSS2 =
1

Λ + r

[
λ2

(
µT1

2 Π− c+ wSS2

)
+ λ1

λ2

Λ + r

(
µT1

2 Π− c
)]

>
1

Λ + r

[
λ2

(
µT2 Π− c+ wSS2

)
+ λ1

λ2

Λ + r

(
µT2 Π− c

)]
= wSS2 ,

where the strict inequality follows because µT2 < µT1
2 . This is a contradiction.

D Details of the Numerical Example

Our model has 7 structural parameters: r, µ0, Π, π, c, λ1 and λ2. We take the annual

interest rate to be r = 5%. According to PhRMA (2011) only one out of six drug candi-

dates survives the clinical stage; thus, we set µ0 = 1/6. The remaining five parameters

are calibrated to the relevant moments from the data.

Our strategy is to calibrate the model to the clinical trial stage of the pharmaceutical

research during the late 1990s. The analysis requires the empirical characterization

of two asymmetric firms. For this purpose, we use the population of pharmaceutical

companies in Compustat in 2000. Since the strength of the firms is determined by the

R&D spendings in our model, we rank the firms in the Compustat sample according to

their R&D investments in 2000. We form the strong firm by averaging the numbers of

the top 3% companies in Compustat. Similarly, the weak firm is formed by averaging

the second top 3% percent companies. The following table summarizes the empirical

target moments and their data sources22:

Some Key Facts on Pharmaceutical R&D and Calibration Targets

Moment Description Data Model

‡Average time to develop a drug 10-15 years 14.8 years
‡Fraction of candidate drugs that survive the clinical trial 1/6 1/6
∗Net present value of a drug $1.4 billion $1.4 billion
∗Average cost to develop a drug $480 million $496 million
§Ratio of R&D spendings 2.5 2.5
§Ratio of profits 2.5 2.9

22‡Obtained from PhRMA (2011). ∗Obtained from Grabowski, Vernon and DiMasi (2002). §Obtained
from Compustat (dnum=2834) for 2005. Ratios are defined as the strong firm’s moment divided by
the weak firm’s moment. Profits are computed as: Revenue-R&D-Cost of goods sold. Rate of return
to R&D is the ratio of profit to R&D.
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Note that our calibrated model delivers a cutoff time T = 36, which means that the weak

firm experiments in the risky research line for 36 months as long as it neither receives

an outcome from its own research effort nor observes a patent from the competitor

firm. As discussed in the main text, this is one of the key sources of inefficiency in this

competition.
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In the main text, we have assumed that the game starts on the risky arm. This

section considers a model in which both firms have no research activity before t = 0,

and simultaneously, right at t = 0, each of them has to decide which arm to take to start

the game. In particular, a firm can start on the safe arm and then switch to the risky

arm, or it could choose not to research at all.

Theorem 3 The equilibrium described in Theorem 1 in the main text is the unique pure

strategy equilibrium when firms can choose the initial starting arm freely, provided that

there is enough asymmetry across research lines and players, i.e., µ0Π
π

and λ2

λ1
are large

enough.

Proof Given the proof for Theorem 1, we need to show two additional claims. In Step 1

below, we shall show that there is no equilibrium in which either player starts with

the safe research line. In Step 2 below, we verify that the initial choices of the risky

arm are best responses to each other in the candidate equilibrium. In particular,

we need to verify that the following deviation is unprofitable for a firm: start on

the safe arm with a hope that it can make a discovery before T , which will fool

the opponent into thinking that the risky arm had already been discovered to be a

dead end; hence the opponent is misled into quitting the entire game, leaving the

risky arm to the deviating firm. This deviation is not possible in our benchmark

model as a firm cannot return to the risky arm there.

Step 1: We shall also show that there is no equilibrium in which either player starts

with the safe research line if µ0Π > π
(

1 + Λ
r+λ−n

+ λ−n
λn+r

)
. There are several cases to

consider.
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Case 1.1: Both firms start on the safe arm, with stopping times T1, T2 ∈ (0,+∞],

respectively. We claim that T1 = T2 = T ∗ ∈ (0,+∞]. Suppose for the purpose of

contradiction that Tn > T−n, then upon no observation of discovery from T−n on, firm

n’s belief will become more pessimistic over time. Consequently, if firm n does not

want to switch at T−n upon no discovery, it will not switch at any future time upon no

discovery. That is, Tn = ∞. Now, we have a situation in which firm n works on the

safe arm until a discovery and firm −n starts with the safe arm but switches at T−n.

Since firm −n’s belief on the risky arm will never get updated, the firm should instead

start with the risky arm at t = 0. A contradiction. Hence the only possibility left is

Tn = T−n > T ∗ ∈ (0,+∞].

Then, firm n’s expected payoff will be

Vn =

∫ T ∗

0

e−(Λ+r)t
[
λn
(
π + vRRn

)
+ λ−nv

RR
n − λnc

]
dt+ e−(Λ+r)T ∗vRRn , (30)

where vRRn is firm n’s expected payoff of competing with firm −n on the risky research

with 0 outside options (because the outcome on the safe arm has been discovered).

Now fix firm −n’s strategy and consider a deviation of firm n of starting with the

risky arm until a discovery by itself. Firm n’s payoff will be at least

V d
n =

∫ T ∗

0

e−(Λ+r)t
[
λn
(
µ0Π + wSSn

)
+ λ−nv

RR
n − λnc

]
dt+ e−(Λ+r)T ∗vRRn . (31)

The reason for V d
n being a lower bound is that conditional on no discovery up to time

T ∗, the continuation payoff for firm n is at least vRRn because firm n still has the option

of going to the safe arm.

Notice that

V d
n − Vn =

∫ T ∗

0

e−(Λ+r)t
[
λn
(
µ0Π + wSSn

)
+ λ−nv

RR
n − λn

(
π + vRRn

)
− λ−nvRRn

]
dt

=

∫ T ∗

0

e−(Λ+r)t
[
λn
(
µ0Π− π + wSSn − vRRn

)]
dt.

Since firms’ total payoff with competition on the risky arm without the option of the safe

arm is less than the cooperative counterpart, we have vRRn +vRR−n <
λn(µ0Π−c)

Λ+c
+ λ−n(µ0Π−c)

Λ+c
.
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Hence for at least one n = 1, 2, vRRn < λn(µ0Π−c)
Λ+c

. For this n, we have

V d
n − Vn >

∫ T ∗

0

e−(Λ+r)t

[
λn

(
µ0Π− π + wSSn −

λn (µ0Π− c)
Λ + c

)]
dt

= (µ0Π− π)λn
λ−n + r

Λ + r

∫ T ∗

0

e−(Λ+r)tdt

> 0.

Hence, for this firm n, deviation is profitable.

Case 1.2: Firm n starts on the safe arm with stopping time Tn ∈ (0,+∞]. Firm −n
starts on the risky arm, with stopping time T−n,0 ∈ (0,+∞], and T−n,1 ≥ 0 (the second

stopping time is for the stage in which firm n discovers on the safe arm).

Consider the subgame right after firm n takes the safe arm. We modify firm n’s

problem as follows:

(a) Fix firm −n’s strategy as staying on the risky arm forever until a discovery is

observed on the risky arm. Let T̃n be firm n’s one optimal stopping time in this

auxiliary problem. We claim that in this auxiliary problem we can take T̃n > 0.

Indeed, T̃n ≥ Tn. The reason is that this modification makes staying on the safe arm

for any t > 0 more attractive than in the original problem (the potential benefit

from the risky arm is reduced while the benefit from the safe arm is increased

because firm n will face less competition there).

(b) On top of (a), ask firm −n to reveal its discovery (including the dead-end finding)

until firm n leaves the safe arm.23 Hence, at any t, by which no discovery is made,

there is no belief updating. Therefore, if firm n starts with the safe arm in the

auxiliary problem (a), then it will always stay on the safe arm before a discovery.

Let V RR
n be firm n’s payoff upon switching to the risky arm in the auxiliary problem

(b). Firm n’s expected payoff at time 0 in this auxiliary problem can be written as∫ ∞
0

e−(Λ+r)t
[
λn
(
π + V RR

n − c
)

+ λ−nw
SS
n

]
dt

=
λn

Λ + r
V RR
n +

λn
Λ + r

(π − c)
(

1 +
λ−n

Λ + r

)
.

23Note that we construct this artificial problem for firm n where firm −n’s strategy is superimposed
exogenously. This should not be confused with the observability assumption in the original problem.
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Because firm −n’s strategy is exogenously fixed as in (a), V RR
n is independent of π.

Consider an alternative strategy for firm n in the auxiliary problem (b): abandon

the safe arm immediately. The expected payoff from this alternative strategy is V RR
n . A

contradiction arises if

λn
Λ + r

V RR
n +

λn
Λ + r

(π − c)
(

1 +
λ−n

Λ + r

)
< V RR

n

which is equivalent to

π − c < V RR
n

(
λ−n + r

λn

Λ + r

Λ + r + λ−n

)
.

Note that V RR
n ≥ µ0 λn(Π−c)

Λ+r
− (1− µ0) λnc

λn+r
. Hence, a sufficient condition for the above

expression is

π − c <

[
µ0λn (Π− c)

Λ + r
−
(
1− µ0

) λnc

λn + r

](
λ−n + r

λn

Λ + r

Λ + r + λ−n

)
=

[
µ0 (Π− c)−

(
1− µ0

)
c

Λ + r

λn + r

]
λ−n + r

Λ + r + λ−n

=

[
µ0Π− c−

(
1− µ0

)
c
λ−n
λn + r

]
λ−n + r

Λ + r + λ−n
.

This is

µ0Π− c > (π − c) Λ + r + λ−n
r + λ−n

+
(
1− µ0

)
c
λ−n
λn + r

µ0Π− c > π
Λ + r + λ−n
r + λ−n

− cΛ + r + λ−n
r + λ−n

+
(
1− µ0

)
c
λ−n
λn + r

µ0Π > π
Λ + r + λ−n
r + λ−n

− c Λ

r + λ−n
+
(
1− µ0

)
c
λ−n
λn + r

A sufficient condition is given by

µ0Π

π
> 1 +

Λ

λ−n
+
λ−n
λn

.

Therefore, under the above condition, working on the safe arm is not optimal.

Step 2: Best responses of the initial choices in the candidate equilibrium.

We shall utilize the idea of the auxiliary problems in Step 1. Suppose firm n has a
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profitable deviation that consists of starting on the safe arm with stopping time T̃n ∈
(0,+∞]. Now in the auxiliary problem (a) the deviation is even more desirable for the

same reason we articulated before. Now consider auxiliary problem (b) in addition. Since

there is no updating before firm n switches back to the risky arm, taking T̃n = +∞ is

also necessarily a profitable deviation. Therefore, the same condition in Step 1 will

apply.
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