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Abstract

We provide a new characterization of implementability of reduced
form mechanisms in terms of straightforward second-order stochastic
dominance. In addition, we present a simple proof of Matthews’ (1984)
conjecture, proved by Border (1991), on implementability.

1 Introduction

In mechanism design contexts, such as those with type-dependent outside op-

tions, it is sometimes more natural and convenient to optimize over reduced

form mechanisms—i.e., interim probability assignments and cost functions—

rather than the underlying mechanisms themselves.1 Reduced form mech-

anisms also play a useful role in the literature on the equivalence between

Bayesian and dominant strategy implementation.2 In contexts such as these,
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it is important to know when a reduced form mechanism can actually be

implemented. Maskin and Riley (1984) posed and studied this question, and

obtained a partial solution. Matthews (1984) made further progress and in

addition conjectured that an intuitive inequality constraint is necessary and

sufficient for implementability. Border (1991) finally solved the problem by

proving Matthews’ conjecture.

The purpose of the present note is twofold. First, we provide an al-

ternative characterization of implementability in terms of straightforward

second-order stochastic dominance,3 and second, we offer a simpler, more di-

rect proof of Matthews’ conjecture. Our work, like all of the work mentioned

above, focuses on the classic mechanism design setting in which there is a

single indivisible object to be allocated to one of n ex-ante symmetric agents,

each of whom has quasi-linear utility and whose private information, which

may be quite general, is drawn independently from a common distribution.4

2 Results

The underlying probability space (the “type space”) is5 (T, T , λ). The num-

ber of agents is n. Because the implementability question relates only to a

mechanism’s probability assignment function, we define a mechanism here in

these terms only.6 Thus, a mechanism consists of n functions q1, q2, ..., qn,

with qi : T n → [0, 1] for each i = 1, 2, ..., n, such that
∑n

i=1 qi(t1, t2, ..., tn) ≤ 1

for every t1, t2, ..., tn in T ; here qi(t1, t2, ..., tn) is the probability that agent

i gets the object when the reported types are t1, t2, ..., tn. A mechanism

is symmetric if qi(tπ(1), tπ(2), ..., tπ(n)) = qπ(i)(t1, t2, ..., tn) for every permu-

tation π of {1, 2, ..., n} and every agent i = 1, 2, ..., n; i.e., the “names”

(1, 2, ..., n) of the agents do not matter. A symmetric mechanism is thus

given by a function q ≡ q1 : T n → [0, 1] such that q(t1, t2, ..., tn) is invari-

3Which may be useful when optimizing; see Remark (c) below.
4For the case of asymmetric agents with finite type spaces, see Border (2007).
5There are no requirements on the probability space. All functions will be assumed

measurable, and all statements to hold almost surely.
6Thus the cost function as well as additional constraints (such as participation con-

straints), which are not important for our purposes, are left unspecified.
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ant to permutations of (t2, ..., tn) and
∑

i qi ≤ 1, where qi(t1, t2, ..., tn) :=

q(ti, t2, ..., ti−1, t1, ti+1, ..., tn) (i.e., interchange the first and the ith coordi-

nates); q(t1, t2, ..., tn) is the probability that an agent whose type is t1 gets

the object when the other agents are of types t2, ..., tn.

A reduced form is a mapping Q : T → [0, 1]. A reduced form Q is

implementable if there exists a symmetric mechanism given by q : T n → [0, 1]

such that Q(t) =
∫

T n−1 q(t, t2, ..., tn) dλ(t2) · · · dλ(tn) for all t ∈ T ; i.e., Q(t)

is the overall probability that an agent of type t gets the object. In this case

we say that Q is the reduced form of q, or that q generates Q. Our concern

is whether a given reduced form Q is implementable.7

As will be shown, an important special case consists of the type space

([0, 1],B, λ∗), with λ∗ the Lebesgue measure, and q∗(t1, t2, ..., tn) = 1 if t1 >

max{t2, ..., tn}, and q∗(t1, t2, ..., tn) = 0 otherwise. That is, the agents’ types

are each uniformly distributed on [0, 1] and the mechanism gives the object

to the agent whose type is highest. Its reduced form is easily seen to be

Q∗(t) = tn−1 for all t ∈ [0, 1] (when n = 2, the distribution of Q∗ is uniform

on [0, 1]).

Theorem 1 The following conditions on Q : T → [0, 1] are equivalent:

(i) Q is implementable; i.e., it is the reduced form of a symmetric mecha-

nism.

(ii) Q satisfies, for every8 α ∈ [0, 1],

∫

[Q>α]

Q(t) dλ(t) ≤
1

n
−

1

n
(λ[Q ≤ α])n . (1)

(iii) −Q second-order stochastically dominates −Q∗.

7The symmetry requirement here is somewhat more demanding than the one in Maskin
and Riley (1984) and Border (1991), who do not require the invariance of q(t1, t2, ..., tn)
with respect to permutations of (t2, ..., tn). Ours is however the natural symmetry re-
quirement when all agents are symmetric, and in particular it does not affect the imple-
mentability of a reduced form Q, since averaging all n! permutations of a mechanism—i.e.,
q̃i(t1, ..., tn) := (1/n!)

∑

π qπ−1(i)(tπ(1), tπ(2), ..., tπ(n))—yields a symmetric mechanism in
our sense.

8[Q < α] is short for {t ∈ T : Q(t) < α}; similarly for the other events.
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Remarks.

(a) Condition (ii) is due to Matthews (1984);9 Border (1991) shows the

equivalence of (i) and (ii); condition (iii) is new.

(b) Condition (iii) means that for every increasing and concave function

u : [0, 1] → R we have10 E [u(−Q)] ≥ E [u(−Q∗)] ; equivalently, for every

increasing and convex function v (take u(x) = −v(−x)), we have E [v(Q)] ≤

E [v(Q∗)] , or

∫

T

v(Q(t)) dλ(t) ≤

∫

T ∗

v(Q∗(t)) dλ∗(t) =

∫ 1

0

v(tn−1) dt. (2)

In terms of distributions, this amounts to Q∗ being obtained from Q

by increasing values (pointwise) and applying mean-preserving spreads (see

Hadar and Russell 1969, Hanoch and Levy 1969, Rothschild and Stiglitz

1970, and the book of Shaked and Shanthikumar 2010).

Equivalently, there exists a probability space (Ω,F ,P) and two random

variables X and Y defined on it, such that X and Q have the same dis-

tribution, Y and Q∗ have the same distribution, and11 E [Y |X] ≥ X; this

construct is known as coupling (see Strassen 1965, Theorem 9; Machina and

Pratt 1997, Theorem 3′; Shaked and Shanthikumar 2010, Theorem 4.A.5).

(c) An immediate consequence of (iii) and (2) is that, for each increasing

and convex function v, the maximum of E [v(Q)] over all implementable Q

is attained at Q∗ and equals
∫ 1

0
v(tn−1) dt.

9The fact that it suffices to consider the inequality (1) only on sets of the form [Q > α],
rather than on all measurable sets as in Matthews (1984), is immediate (see Proposition
3.2 of Border 1991).

10
E denotes expectation (with respect to the appropriate probability measure: λ for Q,

and λ∗ for Q∗).
11I.e., P [X ≤ α] = λ [Q ≤ α] and P [Y ≤ α] = λ∗ [Q∗ ≤ α] = α1/(n−1) for every α ∈

[0, 1]. The change from X to Y can be understood as increasing values pointwise (from X
to E [Y |X]) and applying mean-preserving spreads (from E [Y |X] to Y ).
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Proof of Theorem 1. 12

• (i) implies (ii). As in Matthews (1984) and Border (1991, Lemma

5.1), using symmetry and
∑

i qi ≤ 1 yields for any measurable A ⊂ T, in

particular for13 A = [Q > α],

nE
[

Q(t)1[t∈A]

]

= E

[

n
∑

i=1

Q(ti)1[ti∈A]

]

= E

[

n
∑

i=1

qi(t1, ..., tn)1[ti∈A]

]

≤ E
[

1∪i[ti∈A]

]

= 1 − (λ[T\A])n .

• (ii) implies (iii). Put p := λ[Q ≤ α]; we have14

∫

T

[Q(t) − α]+ dλ(t) =

∫

[Q>α]

Q(t) dλ(t) − α(1 − p) ≤
1

n
−

1

n
pn − α + αp

≤
1

n
− α +

n − 1

n
α

n

n−1 =

∫ 1

0

[

tn−1 − α
]

+
dt (3)

=

∫

T ∗

[Q∗(t) − α]+ dλ∗(t),

where the first inequality is (1), and the second is the classical Young’s in-

equality15 αp ≤ (1/n)pn +((n−1)/n)αn/(n−1). Hence
∫

T
[Q(t) − α]+ dλ(t) ≤

∫

T ∗
[Q∗(t) − α]+ dλ∗(t) for all α ∈ [0, 1], which is equivalent to (2) since every

increasing convex function v (with v(0) = 0, which does not affect (2)) lies

in the closed convex cone generated by the functions φα(x) := [x − α]+ for

all α ∈ [0, 1]. 16

• (iii) implies (i). Assume that −Q second-order stochastically dom-

inates −Q∗. Applying coupling (see Remark (b)) yields a probability space

12Showing that conditions (ii) and (iii) are each necessary for the implementability of
Q is quite straightforward; the difficulty lies in proving that these conditions are sufficient
(cf. “(iii) implies (i)”).

13
1W denotes the indicator of the event W.

14[x]+ := max{x, 0}.
15Which follows, for instance, from the concavity of log (after applying log to both

sides).
16While for each α the inequality in (3), which can be written as

∫

[Q>α]
Q(t) dλ(t) ≤

1/n + ((n − 1)/n)αn/(n−1) − αλ[Q ≤ α], is strictly weaker than inequality (1), our result
implies that “(3) for all α” is equivalent to “(1) for all α” (this equivalence can also be
proved quite directly). Of course, our purpose here is to provide a simple and self-contained
proof of the equivalence of (i)–(iii).
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and two random variables X and Y defined on it, such that X and Q have the

same distribution, Y and Q∗ have the same distribution, and E [Y |X] ≥ X.

Let (Xi, Yi), for i = 1, 2, ..., n, be n independent pairs of random variables,

all identically distributed and with the same distribution as the pair (X,Y ).

For each (t1, t2, ..., tn) ∈ T n define the event

A(t1, t2, ..., tn) := [X1 = Q(t1), X2 = Q(t2), ..., Xn = Q(tn)] ,

and put17

q̃(t1, t2, ..., tn) := P

[

Y1 > max
j 6=1

Yj

∣

∣

∣
A(t1, t2, ..., tn)

]

.

Then
∑

i q̃i(t1, ..., tn) =
∑

i P [Yi > maxj 6=i Yj |A(t1, ..., tn) ] ≤ 1 (these n

events are disjoint), and so q̃ : T n → [0, 1] yields a symmetric mechanism.

Moreover, integrating over (t2, ..., tn) ∈ T n−1 (recall that (Q(t2), ..., Q(tn))

and (X2, ..., Xn) have the same distribution) gives the reduced form Q̃ of q̃:

Q̃(t1) = P

[

Y1 > max
j 6=1

Yj

∣

∣

∣
X1 = Q(t1)

]

. (4)

Now P [Yj ≤ y] = λ∗[Q∗ ≤ y] = y1/(n−1) for every y ∈ [0, 1] (since Yj has

the same distribution as Q∗), which implies that P [maxj 6=1 Yj ≤ y |X1] =
∏n

j=2 P [Yj ≤ y] =
(

y1/(n−1)
)n−1

= y (we have used here the independence

over j). Thus maxj 6=1 Yj is uniformly distributed on [0, 1], and moreover in-

dependent of X1; hence (4) yields

Q̃(t1) =

∫ 1

0

P
[

Y1 > y
∣

∣

∣
X1 = Q(t1)

]

dy = E
[

Y1

∣

∣

∣
X1 = Q(t1)

]

≥ Q(t1)

(recall that E [Y1|X1] ≥ X1). It only remains to rescale: put

q(t1, ..., tn) := q̃(t1, ..., tn)
Q(t1)

Q̃(t1)

17We write P for the probability measure on the space on which all Xi and Yi are
defined.
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(where we take 0 · 0/0 as 0); then q yields a symmetric mechanism (since

q ≤ q̃), and its reduced form is precisely the given Q. ¤

Finally, consider symmetric mechanisms that are maximal, in the sense

that
∑n

i=1 qi = 1. If Q is the reduced form, then E [
∑

i qi] = nE [Q] . It follows

that an implementable reduced form Q is the reduced form of a maximal

mechanism if and only if E [Q] = 1/n; in this case we will also call Q maximal.

Clearly, for any implementable Q there is a maximal implementable Q̃ with

Q̃(t) ≥ Q(t) for all18 t. We have:

Corollary 2 The following conditions on Q : T → [0, 1] with E [Q] = 1/n

are equivalent:

(i-Max) Q is the reduced form of a maximal symmetric mechanism.

(iii-Max) Q second-order stochastically dominates Q∗.

Proof. E [Q] = 1/n implies that E [Q] = E [Q∗] (since Q∗ is maximal), and

in this case condition (iii) is equivalent to (iii-Max): indeed, for the coupled

random variables X and Y of Remark (b), when E [X] = E [Y ] the conditions

E [Y |X] ≥ X, E [Y |X] = X, and E [Y |X] ≤ X, are all equivalent.19 ¤

Thus, Q∗ is obtained from an implementable maximal Q by mean-preserving

spreads; that is, Q∗ has the same distribution as Q + Z for some “noise” Z

that is uncorrelated with Q (i.e., E [Z |Q] = 0).
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