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Prizes versus Wages with Envy and Pride�

Pradeep Dubeyy, John Geanakoplosz, and Ori Haimankox

November 2011

Abstract

We show that if agents are risk neutral, prizes outperform wages if and only
if there is su¢ cient pride and envy relative to the noisiness of performance. If
agents are risk averse, prizes are a necessary supplement to wages (as bonuses).
Keywords: Envy, Pride, Wages, Prizes, Bonus
JEL Classi�cation: C72, D01, D23, L14.

1 Introduction

Prizes are the simplest among contracts that reward agents based on their relative
performance: agents�outputs are ranked, and the highest output is given a predeter-
mined prize. On the other hand, wages are purely individual contracts, paid to an
agent based on his output alone and regardless of what others are doing. The mo-
tivating power of prizes versus wages has been most famously considered in Lazear
and Rosen (1981), who showed that both contracts are e¢ cient as long as agents are
risk-neutral. In a follow-up paper, Green and Stokey (1983) argued that, if agents
are risk averse and if their productivities are su¢ ciently correlated via a common
random shock, then prizes outperform wages from the principal�s point-of-view. The
reason is that the incentives for agents to work, generated by wages, are reduced on
account of the shock and the risk aversion; while the incentives generated by prizes
are invariant of the shock because it is common.
But, without correlation, can prizes still outperform wages?
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It turns out that they can, provided agents have "other-regarding" preferences
over their rewards. In a pioneering paper, Itoh (2004) characterized optimal con-
tracts in a binary framework with two possible e¤ort levels of the agents (work and
shirk) and two possible output levels (success and failure) that are independent across
agents. In particular Itoh showed that a prize contract is optimal if agents care about
their status vis-a-vis others, feeling envy (loss in utility) when their reward is lower,
and pride (gain in utility) when it is higher.1 Such concern for status seems to be
prevalent in practice. Indeed there is a large empirical literature, starting from East-
erlin (1975), who argued that happiness depends not just on absolute, but also on
relative, consumption.2

Itoh�s (2004) speci�cation of agents�utilities follows the simple functional form
proposed in Fehr and Schmidt (1999), with one important di¤erence. Fehr and
Schmidt (1999) postulate "inequity aversion", i.e., any deviation of an agent�s re-
ward from another�s results in a loss of utility: he feels "compassion" if he is ahead of
his rival, and envy if he is behind, losing utility in either case. In Itoh�s (2004) frame-
work, compassion is permitted, but not required. Itoh considers envy in conjunction
with either pride or compassion. With envy and pride, prizes outperform wages in
Itoh�s model; when compassion replaces pride, prizes can still be e¤ective, but only
when they take the form of a "team prize",i.e., a prize which is shared equally by
everyone if, and only if, all of them achieve success simultaneously (see Itoh 2004 for
details). Our focus here is on the standard prize, and on the delineation of regimes
when such prizes outperform wages or vice-versa, once we step outside the world of
binary outputs and allow for noise.
Itoh�s result is very sharp: the optimal contract consists of a prize3 provided there

is any positive degree of envy and pride (henceforth, E&P), no matter how small.
However, this does not seem to be consistent with what is observed in labor markets:
even though arguably most people are not immune to E&P, it is not often that they
work purely for prizes.
Our analysis shows that Itoh�s conclusion needs to be modi�ed if his binary frame-

work is replaced by one with a continuum of output levels.(Such a continuum is better
suited for many applications, and also permits the modeling of random unbiased noise
in output, that is independent of e¤ort.) First suppose there is no E&P. When there

1See Proposition 4, case (2a), in Itoh (2004). Note also that Itoh does not use the words "envy"
and "pride" � this terminology is ours.

2This externality, stemming from status concerns, has been formally modeled along two di¤er-
ent lines. The cardinal approach makes utility depend on the di¤erence between an individual�s
consumption and others�consumption (see, e.g., Duesenberry (1949), Pollak (1976)). The ordinal
approach makes utility depend on the individual�s rank in the distribution of consumption (see, e.g.,
Frank (1985), Direr (2001), and Hopkins and Kornienko (2004)). The model of Itoh (2004) and
the one presented in this paper are in the cardinal tradition. The ordinal approach is examined in
Dubey and Geanakoplos (2005).

3The prize in the optimal contract is given only in the case of clear victory: its recipient must
succeed and all his rivals must fail.
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is also no noise, wages induce the same incentives as prizes for risk neutral agents,
and outperform prizes for risk averse agents. However, with the introduction of noise,
wages strictly dominate prizes not just with risk aversion, but even risk neutrality:
since outputs are independent, compensating a worker on the basis of relative perfor-
mance only distorts his incentives (the shirker wins the prize with positive probability
just because of luck).
By a continuity argument, wages also dominate prizes for small E&P. In fact this

is so until E&P becomes "su¢ ciently big". The precise analysis is carried out in
Section 2, which examines the case of two risk neutral agents.We show that for any
level of noise below a certain bound, there is a threshold of E&P such that prizes
outperform wages for E&P above the threshold, but wages outperform prizes for E&P
below the threshold. Furthermore there is a second, larger bound such that when the
noise level exceeds it, no amount of E&P can restore the superiority of prizes. Thus
Itoh�s conclusion regarding the superiority of prizes in the case of risk neutral agents
remains valid, but under two conditions: the level of random noise must be su¢ ciently
low, and E&P must be su¢ ciently high. In the regime where noise is high, wages are
always better than prizes.
Now consider risk averse agents. Even when there is no noise in output, agents

with the same skill that work for a prize and exert identical e¤ort still face a 50%
uncertainty about who will get it, which is not the case with wages. Thus risk
aversion will cause wages to outperform prizes. However Itoh�s (2004) intuition, that
relative performance should not be ignored, still holds. We present robust conditions
in Section 3 under which wages, supplemented by prizes (bonuses), constitute an
improvement on wages alone. Bonuses are quite common in practice in labor markets.
In the basic verson of our model, we con�ne ourselves to just two agents, and

assume a linear (piece-rate) wage structure. This assumption only strengthens our
conclusions on the superiority of wages. Even without this assumption, we �nd in
Section 4 that, in many instances, prizes outperform non-linear wages when noise is
small. When there are more than two agents, the main message of Itoh is further
reinforced. We show in Section 5 that, no matter how large the noise and how small
the E-P, the superiority of prizes is restored when the group of competing agents is big
enough, since a shirker will very rarely be lucky enough to pass so many hard-working
rivals.
Our work, as was said, is most directly linked to Itoh (2004). But several re-

lated papers must be mentioned which also focus on incentives generated by "other-
regarding" preferences. As we note in Section 2.3, status-seeking agents are easier
to motivate than status-neutral agents. This was shown in Grund and Sliwka (2005)
in the context of tournaments (prizes), and in Neilson and Stowe (2010) for wages.
However, neither compared wages to prizes in terms of their e¢ cacy in eliciting ef-
fort. In a variation of Itoh�s theme, Rey-Biel (2008) considered (either status-seeking
or inequity-averse) agents who can observe not only their rivals� rewards but also
the underlying e¤ort levels, and thus measure their distances from each other in
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terms of net utilities. He showed that, when there is no uncertainty in production,4

globally optimal contracts must in�ict extreme inequality on any agent who unilat-
erally chooses to shirk, thus lending support to Itoh�s (2004) extreme prize contract.
In general, however, optimal labor contracts have been examined in the context of
inequity-averse, rather than status-seeking, agents, with markedly di¤erent conclu-
sions. For instance, Englmaier and Wambach (2010) (who, as Dur and Glazer (2008),
also assume that the agent may compare his compensation to the principal�s share of
the pro�t) show that team incentives5 are in general necessary6, and purely compet-
itive contracts such as prizes fare badly. And, in the special case of inequity aversion
when agents feel only envy, Bartling and von Siemens (2010) showed that the envy
can in fact have negative implications for the principal�s pro�t if unlimited liability
(negative rewards) can be imposed on the agents � indeed, if envy is reduced, the
principal can implement the same e¤ort level with less payout.

2 Pride and Envy

2.1 The Basic Model

We consider two identical agents with utility

u(A;B; e) = A+ �max(A�B; 0)� �max (B � A; 0)� ce;

where A is the money the agent gets, B is the money his rival gets, and e is the e¤ort
he exerts.7 The parameters � � 0 and � � 0 correspond to pride and envy, and c > 0
is the marginal disutility of e¤ort.
Let a �nite E � [0; 1] be the set of e¤ort levels available to each agent, with 0 2 E

and 1 2 E : (Thus, we require that it contains two special levels: 0 � �shirking�, and
1 � �working at full capacity�.) If agent i 2 f1; 2g chooses e¤ort level ei 2 E ; he
produces ei+"�i units of output, where "

�
1 and "

�
2 are random noises (i.i.d. nonatomic

random variables with mean zero), parameterized by a scalar � > 0 measuring their
noisiness8. We denote by G� the cumulative distribution function of the random

4In our case, as in much of the literature, only outputs are observable; and since there is a
random noise component to them, the e¤ort from which they arose cannot be inferred. Each agent
only needs to know the distribution of outputs (and thereby that of the piece-rate or prize rewards)
of his rivals in order to calculate his payo¤ in our game.

5I.e., contracts where the reward of an agent depends positively on the output of the other agents.
6Bartling (2011) argued that, even in the presence of correlation in production and risk-averse

agents, pure team contracts may nonetheless be optimal as they are inequality-reducing.
7Utility functions of this form were considered, e.g., in Kirchsteiger (1994), Bolle (2000), Fer-

shtman et al (2003), and Itoh (2004). Fehr and Schmidt (1999) considered this particular utility
function but took � negative, implying that people feel compassion when they are ahead. In con-
junction with envy from being behind, their formulation amounts to �inequity aversion�.

8Our model allows for negative outputs of the agents. This might make sense in certain contexts
(think of money managers who make losses). But the case of exclusively non-negative outputs can
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variable "�1 � "�2 : Clearly, since "
�
1 and "

�
2 have positive variance and are nonatomic

i.i.d. random variables, we have G�(0) = 1=2. We suppose that as noise disappears,
lim�!0G

�(t) = 0 for every t < 0; and as noise goes to in�nity, lim�!1G
�(t) = 1=2

for every t: We also assume that G� is continuous and convex on [�1; 0] (i.e., G�
possesses a density function which is nondecreasing on [�1; 0] ).
To include deterministic output in our analysis, we also allow for � = 0; in which

case both "01 and "
0
2 are �xed at zero.

If each "�i is normally distributed, with mean zero and standard deviation �; then
"�1 � "�2 is also normally distributed, with mean zero and standard deviation

p
2�;

thus, G� (x) = 1
2�
p
�

R x
�1 e

� t2

4�2 dt.
If the "�i are uniformly distributed on [��; �]; then

G� (x) =

8>><>>:
0, if x � �2�;

1
8�2
(x+ 2�)2 ; if � 2� � x � 0;

1� 1
8�2
(�x+ 2�)2 ; if 0 � x � 2�;
1; if x � 2�:

It is easy to check that all our hypotheses are satis�ed for the normal and uniform
noise terms.

2.2 The Wage and Prize Games

We will compare two types of contracts that the principal may write. The �rst is
a piece-rate wage contract: each agent is paid rq; when the piece-rate is r and his
output is q: In the second contract, a prize P is awarded to the agent with the highest
output; in case of ties, a fair coin is tossed to decide who gets the prize. There is
always one winner.
Each of these contracts induces, in an obvious manner, a non-cooperative game in

which agents�strategies are to choose e¤ort levels. Denote these games with wages,
prizes by ���;� (r), ~�

�
�;� (P ) :

The principal wishes to elicit maximal e¤ort from the agents (i.e., e1 = e2 = 1) at
minimal expected cost to himself. Let

M�
�;� = 2min

�
r j (e1 = 1; e2 = 1) is a Nash equilibrium of ���;� (r)

	
;

~M�
�;� = min

n
P j (e1 = 1; e2 = 1) is a Nash equilibrium of ~���;� (P )

o
:

ClearlyM�
�;�;

~M�
�;� is the minimal expected payment by the principal needed to elicit

maximal e¤ort via wages, prizes9.

be incorporated by putting a positive lower bound on e¤ort levels and a suitably small upper bound
on the support of the random noise.

9We have assumed a single prize for the best-performing agent. If the loser were also awarded,
incentives to exert maximal e¤ort would become smaller when � = � (otherwise, with an appropriate
upper bound on �). Thus a single prize will, in fact, be preferred by the principal.

5



Our �rst proposition establishes explicit formulae for M�
�;� and ~M�

�;�.

Proposition 1. Let

 e� � E [maxfe+ "�1 � 1� "�2 ; 0g]

for every e 2 Enf1g, and let
�e
� �  1� �  e�: (1)

(It is easy to see that 0 � �e�
1�e �

1
2
). Denote

�� �
(
maxe2Enf1g

�e�
1�e ; if � � �;

mine2Enf1g
�e�
1�e ; if � > �:

(2)

Then
M�
�;� =

2c

1 + �+ (� � �)��

; (3)

and
~M�
�;� =

c
1
2
�G� (�1)

� 1

1 + �+ �
: (4)

Proof. See the Appendix.

When there no envy or pride, i.e., when � = � = 0; then by Proposition 1
M�
0;0 = 2c and ~M�

0;0 =
c

1
2
�G�(�1)

: The following result is therefore an obvious corollary:

Theorem 1. If there is no envy or pride, then wages are never worse than prizes:
M�
0;0 � ~M�

0;0 for any �: Furthermore if there is su¢ cient noise (G
�(�1) > 0), then

wages outperform prizes: M�
0;0 <

~M�
0;0:

The intuition behind Theorem 1 is straightforward. Suppose E = f0; 1g: If agent
i works (ei = 1) in the prize game and so does his rival, i�s expected share of the
prize is exactly P=2: If he shirks (ei = 0) and his rival still works, his expected payo¤
does not fall to zero, since with noise he may, with a stroke of luck, win anyway.
His expected payo¤ is G�(�1)P . On net his incentive to work (i.e, the increase in
agent�s payo¤ when he switches from shirk to work, ignoring his disutility of e¤ort
and assuming that his rival is working) is P (1=2�G�(�1)). When the wage rate is
set equal to P=2; his incentive to work in the wage game is P=2; no matter what the
noise: But if G�(�1) > 0; then P (1=2�G�(�1)) < P=2: Hence the prize P will need
to be more than twice the optimal wage r if G�(�1) > 0; and will never be less.
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2.3 The Power of Envy and Pride

Envy and pride make it easier to motivate the agents to work, via wages or prizes.10

For wages, this is because shirking entails not only a lesser payment, but also the
envy of those who are working and getting paid more.
But the motivating power of envy and pride is even stronger with prizes than

with wages. Notice that an agent who shirks not only reduces his (expected) prize,
he increases the (expected) prize of his rival, generating still more envy.11 Indeed,
Itoh (2004) established in his binary framework (where there are only two output
levels �success or failure) that, whenever envy and pride are present (no matter to
how small a degree), an extreme type of contract is optimal: a prize should be given
to the agent who succeeds when his rival fails, and no prize should be given in any
other circumstance.
The e¢ cacy of a prize can be clearly seen in our model when there is no noise

(� = 0). Let us assume (as in Itoh (2004) and Fehr and Schmidt (1999)) that the
ratio between � and � is constant:

� = 
 � � (5)

for some �xed 
 > 0: Since the envy parameter � now also determines the pride
parameter �; we shall call � the envy-pride (E-P) parameter. From (3) and (4) we
see at once that, when � = 0, the principal needs to pay out total wages M0

�;
�� =

2c=(1 + �), but a prize of only ~M0
�;
�� = 2c=(1 + � + 
�); in order to motivate both

agents to work. Clearly both the required wage bill and the prize become smaller as
the E-P parameter � rises. When � = 0; M0

0;0 = ~M0
0;0 = 2c whereas both M

0
�;
�� and

~M0
�;
�� converge to zero as �!1: For high enough �, the principal hardly needs to

expend any money at all. But the point is, he expends less on prizes than on wages,
i.e., M0

�;
�� >
~M0
�;
��; for any � > 0:

The presence of noise, however, changes the situation in a crucial way, that Itoh�s
(2004) binary framework cannot account for. As was seen in Theorem 1, if there is no
E-P, then a modicum of unbiased noise in output leaves wages intact but harms prizes:
if G�(�1) > 0 wages outperform prizes (M�

0;0 < ~M�
0;0). By an obvious continuity

argument this will also be the case for small but positive E-P (M�
�;
�� < ~M�

�;
�� for
su¢ ciently small � > 0). Thus Itoh�s conclusion that prizes are superior to wages for
any � > 0 is not true in the context of a continuum of outputs. Our next theorem
shows that, if the noise in output is below a certain bound, a su¢ ciently high E-P is
necessary and su¢ cient for prizes to outperform wages.

10As envy and pride increase, agents are obviously more easily motivated to work (see Proposition
1). This fact was noted in Grund and Sliwka (2005) in the context of tournaments, and in Neilson
and Stowe (2010) for wages.
11Notice that this e¤ect relies on the cardinal approach to envy and pride: E-P increase as the

gap grows bigger.
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Theorem 2. Suppose that noise is not too large:

G�(�1) < min
�
1

4
;




2 (1 + 
)

�
: (6)

De�ne the noise-dependent threshold

�� =
2G�(�1)


 � 2(1 + 
)G�(�1) + (1� 
)��

: (7)

If E-P exceeds the threshold, then prizes outperform wages: ~M�
�;
�� < M�

�;
�� if � >
��: If E-P is below the threshold, then wages outperform prizes: M�

�;
�� < ~M�
�;
�� if

� < ��.

Proof. See the Appendix:

The following special case brings out the intuition behind Theorem 2. Suppose "�1
and "�2 are normally distributed with mean zero and standard deviation �; and also
suppose 
 = 1: Condition (6) on the noise is thus satis�ed whenever � � 1; since then

G�(�1) � G1(�1) � 0:24 < 1

4
:

By (3) and (4),

M�
�;� =

2c

1 + �
and ~M�

�;� =
c

1
2
�G� (�1)

� 1

1 + 2�
: (8)

As was already said, when there is no noise, i.e., � = 0; wages are strictly worse than
prizes (M0

�;� >
~M0
�;�) except when there is no E-P (� = 0). However (8) shows that

when noise is positive, i.e., 0 < � � 1; the expenditure on wages remains the same
(M�

�;� = M0
�;�); but the expenditure on a prize contract increases ( ~M

�
�;� > ~M0

�;�).
Thus noise worsens the case for prizes over wages, but the comparison of the terms
M�
�;� and ~M�

�;� in (8) immediately shows that prizes retain their superiority over

wages when � is su¢ ciently big, i.e, above the positive threshold �� = 2G�(�1)
1�4G�(�1) ;

while wages do better below the threshold. (To get a feel for the magnitude, notice
for instance that, if � = 1=2; then �� � 0:23; i.e. agents need to care one fourth as
much about the gap in payments as about their own payment in order for prizes to
dominate wages.12)

12Note that, with normally distributed noise, the principal collects money from an agent with
positive probability in a wage contract (whenever the agent produces negative output, i.e., a �loss�).
With prizes, he only hands out money. Inspite of this, the principal prefers prizes to wages when
the level of E-P is su¢ ciently high.
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Theorem 2 is in line with the results obtained by Itoh (2004) in the binary frame-
work: if, as in the binary output case, there is no continuous noise in output (or
very little of it, implying G�(�1) = G0(�1) = 0), then �� = 0; and hence prizes
outperform wages with the slightest E-P. More generally, our third Theorem states
that given any positive E-P � (however small), prizes outperform wages provided the
random noise in agents�outputs is su¢ ciently low (below some upper bound that
depends on �) .

Theorem 3. Given � > 0; there exists �0 > 0 such that whenever � � �0;
~M�
�;
�� < M�

�;
��.

Proof. See the Appendix.

Our next result emphasizes one drawback of prizes, that is not revealed in the
framework of Itoh (2004): too much noise destroys their e¢ cacy, no matter how
much E-P there may be. The reason is as follows. When wages are based on a noisy
measure of output, a worker may be overpaid or underpaid w.r.t. his e¤ort. But as
long as the noise is unbiased, and wages are linear, his expected wage is correct. In
contrast, when prizes are based on a noisy measure of relative output, the expected
payment a worker gets is biased toward P=2; diminishing the expected payment to
the hard worker and increasing the expected payment to the shirker.

Theorem 4. Suppose that noise is su¢ ciently large:

G� (�1) � max
�
1

4
;




2 (1 + 
)

�
: (9)

Then wages outperform prizes no matter what the E-P is: M�
�;
�� <

~M�
�;
�� for every

� � 0:

Proof. See the Appendix.

Remark 1 (Pride vs Envy). Assumption (5), which rigidly ties the envy and
pride parameters through the ratio 
, is conducive to the neat statement of Theorem
2, in terms of a single threshold value for E-P. But it precludes an inquiry into the
separate roles that pride and envy may play in the e¢ cacy of the prize. Now let
us drop asumption (5) and consider the simple scenario with no noise (� = 0) and
binary e¤ort levels E = f0; 1g: The incentive to work for wage rate r is

r + �r:

This the sum of the direct utility of consuming the wage r, and the envy �r su¤ered
when shirking and getting zero while the rival works and gets r: The payo¤to an agent

9



who works in the prize game, excluding disutility from work, is 1
2
(P + �P )+ 1

2
(��P ) ;

if he shirks, he gets ��P: Thus the incentive to work with prize P is thus
1

2
P +

1

2
�P +

1

2
�P:

Setting the prize fund P equal to the total wage bill 2r, we see that prizes provide
an extra incentive of �r: Thus no matter how large or small envy � is, the slightest
presence of pride (� > 0) will cause prizes to outperform wages. And indeed, formally,
using Proposition 1 for � > 0 and � = 0 we obtain

M0
�;� =

2c

1 + �
>
c
1
2

� 1

1 + �+ �
= ~M�

�;�: (10)

With noise in output (� > 0), a simple continuity argument extends the above claim,
showing that prizes outperform wages provided the noise � is su¢ ciently small. And a
more delicate analysis can show that, with any �xed (but not too high) level of noise,
su¢ ciently high pride has the e¤ect of making prizes superior to wages (provided the
envy parameter does not exceed some �xed multiple of the pride parameter). For the
details, see Section 2.4 of the working paper Dubey et al (2011) of which the current
article is a subset.

3 When Agents are not Risk Neutral: the Need
for a Bonus

The biggest objection to prizes is that they force agents to face a huge uncertainty
about who will get the prize, even if they work hard. It comes to the fore when
agents are risk averse. Indeed we will see in Remark 2 that, even when there is no
noise in output, risk aversion causes wages to outperform prizes. But Itoh�s (2004)
intuition regarding prizes still holds in some measure. We �nd (see Theorem 5) that,
with positive envy and pride, wages supplemented by prizes are in many instances an
improvement on wages alone.13 These supplementary prizes are common in practice,
in the form of bonuses.
Let the utility function of each of the two agents be given by

u(A;B; e) = U(A)� �V (maxfB � A; 0g) + �V (maxfA�B; 0g)� ce;

where, as before, A is the amount paid to the agent, B the amount paid to his rival,
� his envy parameter, � his pride parameter, e his choice of e¤ort level, and c > 0 the
13In the context of risk- and inequity-averse agents, it has already been pointed out by Englmaier

and Wambach (2010) that an independent contract is in general not optimal, and that a globally
optimal contract should include team incentives (i.e., the reward of an agent should depend positively
on the output of the other agent). Here, with status-seeking agents for whom � > 0; we show the
opposite, that prize supplements (under which the individual reward depends negatively on the
output of the other agent) are often needed.
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disutility from e¤ort.14 We assume that U and V are continuously di¤erentiable, and
that their derivatives are strictly positive everywhere15 (since agents like rewards;
and since envy/pride must increase the more one is behind/ahead of one�s rival).
Furthermore both U and V vanish at zero (since there is no envy/pride in being
ahead/behind). We do not assume that either U or V is concave.
For simplicity, we take the i.i.d. random noises "�1 and "

�
2 to be bounded, with

support on a compact interval [��; �] ; for all �. As before, G� denotes the cumulative
distribution function of "�1 � "�2 , and we assume that G

� is convex on [�1; 0].
Up until now we only considered �pure�contracts which could take the form of

either a prize P or a piece-rate wage r. Now we allow for mixed contracts (P; r) :
each agent is paid rq when his output is q; plus a prize (bonus) P if his output is
more than his rival�s (tossing a coin in case of ties). The contract (P; r) induces16 a
game ���;�(P; r) in the obvious manner.
Let ���;� denote the set of mixed contracts which elicit full e¤ort, i.e.,

���;� =
�
(P; r) 2 R2+ j (e1 = 1; e2 = 1) is a Nash equilibrium of ���;�(P; r)

	
:

The principal�s payout is P + 2r when (e1 = 1; e2 = 1) is played in ���;�(P; r): Thus
the set of optimal contracts is

e���;� = argmin�P + 2r j (P; r) 2 ���;�	 :
With risk neutral agents, there is no need to consider ���;� because pure contracts

are just as good as any mixture: there always exists (P; r) 2 e���;� such that either
P = 0 or r = 0; at least in the canonical case of E = f0; 1g; since then the (unique)
incentive constraint de�ning ���;� is linear in r and P:
If agents are not risk neutral, however, mixed contracts may well beat pure con-

tracts. We leave the exploration of the exact structure of optimal mixed contracts
for future research. But we shall delineate two scenarios in which any optimal mixed
contract must necessarily entail a positive bonus, i.e., P > 0 for every (P; r) 2 e���;�.
In the �rst scenario (Theorem 5 below) envy and pride are �xed at an arbitrary

positive level. It turns out that bonuses are needed, provided the noise is su¢ ciently
small. Moreover the optimal contract may often not be a pure prize since, with risk
aversion, pure prize tends to be inferior to pure wage (see Remark 2 below). In this
case, both the wage and the prize (bonus) components of the optimal contract (P; r)
will be positive. In the second scenario (Theorem 6 below), the noise is �xed and not
too large. Here for su¢ ciently high envy and pride, even pure prizes will beat wages,
again showing the general need for bonuses.

14We could have more generally considered u(A;B; e) = U(A)� �Venvy(maxfB � A; 0g)+
�Vpride(maxfA�B; 0g) �ce instead of supposing V = Vpride = Venvy: Similar results would obtain
but at the cost of more notation.
15U is de�ned on R; while V on R+:
16The underlying components c; U; V of the utility are held �xed, while (P; r), �; �; and � vary.

11



The intuition for Theorem 5 is roughly as follows. Suppose the two agents are
earning only wages. When there is no noise, a hard-working agent knows the wage
w = r � 1 he will earn for sure. Assuming di¤erentiable utilities, he is nearly risk
neutral for small variations in consumption: So consider reducing the piece-rate by ",
and instead awarding a prize of 2" to the highest performance. Then the expected
consumption utility of a hard-working agent stays almost the same. But as we argued
before with risk neutrality, the incentive created by envy-pride is greater for the prize
than the wage. Thus a small bonus increases incentives without increasing the total
expected payout of the principal.17

Note that this argument only works for small prizes and small noise. As the prize
gets larger, risk aversion kicks in and the prize becomes a less attractive substitute
for wages. As noise increases, the luckiest worker, who already has the highest wage
and therefore the lowest marginal utility for money, will get the prize, reducing its ex
ante consumption utility.

Theorem 5 Bonus is needed with su¢ ciently low noise, for �xed envy and pride.
To be precise, assume that: (i)18 � � �; (ii) there exist B <1 and b > 0 such that
U 0(x) � B for every x 2 R and b � V 0(x) � B for every x 2 R+: Then there exists
�0 > 0 such that P > 0 for every (P; r) 2 e���;� whenever � � �0:

Proof. See the Appendix.

Remark 2 (Optimal contracts tend to be strictly mixed.) Assume that
there are just two e¤ort levels, i.e. E = f0; 1g; and that the agents are strictly risk
averse, i.e U is strictly concave. If there is no noise (� = 0) and no envy-pride
(� = � = 0), it is obvious that the minimal prize that implements (e1 = 1; e2 = 1) as
a Nash equilibrium in the prize game ~�00;0 is ~M

0
0;0 = U�1 (2c) and the minimal wage

payout by the principal that implements (e1 = 1; e2 = 1) as a Nash equilibrium in the
wage game �00;0 is M

0
0;0 = 2U

�1 (c) < U�1 (2c). Consequently, for all su¢ ciently low
envy and pride and noise, M�

�;� <
~M�
�;�: This shows that the set of optimal contractse���;� does not contain a pure prize contract. Since it does not contain a pure wage

contract either (by Theorem 5), we conclude that any optimal contract is strictly
mixed: P > 0 and r > 0 for every (P; r) 2 e���;�:
Corollary 1 below supplements Theorem 5 and shows that for any �xed noise

(below some reasonably large upper bound) a bonus is again needed if there is enough

17Note that this intuition is somewhat de�cient, as a major di¤erence remains between the risk-
neutral and the non-risk-neutral cases even when the added prize component is in�nitesimal. The
marginal envy, or pride, may change when a non-risk-neutral agent switches from work to shirk,
distorting in a certain way the incentive to work compared to the exact risk-neutral case. This will
be seen in the proof of Theorem 5; it is for this reason that the assumption that � � � is made in
this theorem.
18Assumption (i) can be substituted by requiring that V be convex :
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envy and pride. The intuition for this result is that as envy and pride get very large,
the optimal piece-rate (assuming no prize) goes to zero. Since the noise is bounded,
the �nal consumption, being the product of the piece-rate and output, also goes to
zero. Thus consumption is practically certain, and the agents become nearly risk
neutral. Hence, as in the previous sections, even the pure prize outperforms wages:

Theorem 6 Prizes outperform wages even without risk neutrality, provided there
is su¢ cient E-P and noise is not too large. To be precise, suppose that � = 
 � � for
a �xed 
 > 0 and that condition (6) of Theorem 2 holds. Then there exists �0 > 0
such that ~M�

�;
�� < M�
�;
�� if � > �0:

Proof. See the Appendix.

The following is an obvious corollary of Theorem 6:

Corollary 1. A bonus is needed with su¢ ciently high E-P, given any �xed and
not too large noise: under the assumptions of Theorem 6, there exists �0 > 0 such
that, if � > �0; then P > 0 for every (P; r) 2 e���;
��:

4 Non-linear Wages

If we were to allow non-piece-rate contracts, based on more general wage functions,
the performance of wage contracts would obviously improve. Thus wages would
outperform prizes for su¢ ciently small levels of envy-pride or su¢ ciently big noise in
output, as implied by Theorems 2 and 4. However we will show here that prizes may
outperform even non-linear wages when noise is small.
A non-linear wage is given by a function w; de�ned for all possible outputs. These

functions are assumed to be nondecreasing, bounded from above by some constant
W > 0; and to have the property that expected wages are nonnegative even with zero
e¤ort, i.e. Ew("�i ) � 0 for i = 1; 2: This guarantees that agents do not get expected
negative wages under any level of e¤ort. Denote by �M�

�;�(w) the expected payment
by the principal under wage function w; when both agents make e¤ort 1. Also let
�M�
�;� be the in�mum of �M�

�;�(w) over all (non-linear) w which implement maximal
e¤ort by both agents in Nash equilibrium.
First suppose that there is no random noise at all (� = 0): agent i�s output

precisely equals his e¤ort ei: It is easy to see that there is an optimal w achieving
�M0
�;�. This w pays zero for all output levels below 1 (i.e. w(x) = 0 for x < 1), and

w (1) is the minimal payo¤ under which no agent i prefers ei = 0 to ei = 1 given
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that his opponent j is choosing ej = 1: As in the computation of M�
�;� in the proof

of Proposition 1, w (1) = c=(1 + �); and so

�M0
�;� =

2c

1 + �
=M0

�;�:

It now follows from (10) that
~M0
�;� <

�M0
�;� (11)

for all � > 0: Thus, when there is no noise, prizes outperform all wage contracts for
any given positive level of envy and pride. When the noise is su¢ ciently low, this
continues to hold, at least when � � � :

Theorem 7 Given � � � > 0; there exists �0 > 0 such that ~M�
�;� < �M�

�;�

whenever � � �0:

Proof. See the Appendix.

5 Multiple Agents

When there are many agents, the scope for envy and pride increases. Coming �rst (or
last) among one hundred contestants may give more pleasure (or pain) than beating
a single opponent. The principal could then take advantage of this fact to pay less,
whether he uses wages or prizes. We suppress this possibility, and assume that agents
care only about the average of others�receipts.
Multiple agents nevertheless have a bene�cial e¤ect on prizes. With two con-

testants, an agent who shirks might get lucky and beat the other agent who works.
However, with ninety-nine other agents working, the shirker is almost sure to come
behind one of them. Thus su¢ ciently many agents tend to ameliorate the drawback
of noise, helping prizes to become more e¢ cacious than wages as long as there is some
envy and pride.
Suppose that there are n identical agents. We assume that if agents 1; :::; n get

A1; :::; An and agent i is exerting e¤ort ei; then i�s utility is

ui(A1; :::; An; ei) = Ai + �(Ai �
P

j 6=iAj

n� 1 )� cei

(for simplicity, we take � = � and refer to their common value as the envy-pride (E-P)
paramater). We also assume that the random noise variables ("�k)

1
k=1 have bounded

support [��; �] and possess a continuously di¤erentiable and strictly positive density
function f� on it. It is shown in Lemmas 1 and 2 in the Appendix that, under these
assumptions, there exists N > 0 such that the cumulative distribution function G�n
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of the random variable
�
max1�j�n;j 6=i "

�
j

�
� "�i is convex on [�1; 0] provided n � N ,

and
lim
n!1

n2G�n (�1) = 0: (12)

As in Proposition 1, one can now see that

M�
�;� =

nc

1 + �

and
~M�
�;� =

c

1 + n
n�1�

� 1
1
n
�G�n (�1)

:

Furthermore, it is easy to verify the following analogue of Theorem 2:

Theorem 8 Prizes outperform wages if, and only if, E-P exceeds a noise-dependent
threshold. To be precise, suppose that

n2G�n (�1) < 1; (13)

and de�ne

��(n) =
n (n� 1)G�n (�1)
1� n2G�n (�1)

: (14)

If � > ��(n) then ~M�
�;� < M�

�;�; and if � < ��(n) then ~M�
�;� > M�

�;�:

Proof. Obvious amendments in the Proof of Theorem 2.

Due to (12), condition (13) holds for all large enough n: This means that the
scenario described in Theorem 4 in the two-agent case is precluded when there are
su¢ ciently many agents: no matter how large the noise in output is, with su¢ ciently
many agents the E-P will kick in above some threshold, making prizes superior. More-
over, as will be spelled out in Theorem 9 below, the minimal level of E-P required for
prizes to outperform wages becomes vanishingly small as the number of competitors
increases; indeed, for any �xed levels of E-P and noise, prizes do better when there
are su¢ ciently many agents. In other words, multiple agents are a substitute for
small noise as well as large E-P, the factors that drive the e¢ cacy of prizes for two �
or few �competitiors (see Theorems 2 and 3).

Theorem 9 The threshold ��(n) becomes vanishingly small as n increases: limn!1 �
�(n)

= 0: In particular, given � > 0 and � � 0; there exists n0 > 0 such that whenever
n � n0; ~M�

�;� < M�
�;�.

Proof. See the Appendix.
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Theorem 9 may have an interesting implication for organizations which employ
large peer groups in a common environment. If it is the case �and no doubt this
needs empirical veri�cation �that they are in�uenced by E-P, then prizes outperform
wages once the peer group is large enough, no matter how small the intensity of the
E-P may be and how big the noisiness in production. (The group size required for
this result will likely rise as the intensity falls or the noisiness increases.) It follows
that in large peer groups, the principal should not o¤er a pure wage contract, but at
least supplement it with a bonus. If agents happen to be risk neutral as hypothesized
in this section, then an optimal contract could well be a pure prize. But in the
more realistic scenario that agents are risk-averse, our analysis of section 3, taken in
conjunction with Theorem 9, strongly suggests that the best policy for the principal
would be to o¤er a mixed contract of wage plus bonus, once the peer group becomes
large enough. And we reiterate that this will be so regardless of the levels of E-P or
noise.

6 Appendix

Proof of Proposition 1

In the game ���;� (r) the expected utility of agent i; when he chooses e¤ort level
ei and his rival j chooses e¤ort level ej; is

rei + �rE
�
maxfei + "�i � ej � "�j ; 0g

�
� �rE

�
maxfej + "�j � ei � "�i ; 0g

�
� cei:

In order for (e1 = 1; e2 = 1) to be a Nash equilibrium of ���;� (r), it is necessary and
su¢ cient that (under the piece-rate r) e¤ort level 1 is not less attractive to an agent
than any e 2 Enf1g; given that his rival chooses e¤ort level 1: Thus, we must have

r + �rE
�
maxf1 + "�i � 1� "�j ; 0g

�
� �rE

�
maxf1 + "�j � 1� "�i ; 0g

�
� c

� re+ �rE
�
maxfe+ "�i � 1� "�j ; 0g

�
� �r

�
maxf1 + "�j � e� "�i ; 0g

�
� ce;

i.e.,
r(1� � 1� + � 1�)� c � r(e+ � (e� 1�  e�) + � e�)� ce;

for every e 2 Enf1g. (Here we use the obvious fact that�E
�
maxf1 + "�j � e� "�i ; 0g

�
+

 e� = e � 1:) Thus, in order to implement (e1 = 1; e2 = 1) as a Nash equilibrium of
���;� (r) is is necessary and su¢ cient that r satisfy

r � c (1� e)

1� e+ � (1� e��e
�) + ��e

�

=
c

1 + �+ (� � �) �
e
�

1�"
;

for every e 2 Enf1g, and (3) follows.
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Next consider the prize game ~���;� (P ). Here the expected utility of agent i; when
he chooses e¤ort level ei and his rival j chooses e¤ort level ej; is G�(ei � ej)(1 +
�)P � [1�G�(ei � ej)]�P � cei (and, if ei = ej and � = 0, replace G�(ei � ej) by
1
2
). Thus, in order to implement (e1 = 1; e2 = 1) as a Nash equilibrium of ~���;� (P ), it
is necessary and su¢ cient that P satisfy

1

2
(1 + �)P � 1

2
�P � c � G�(e� 1)(1 + �)P � [1�G�(e� 1)]�P � ce (15)

for every e 2 Enf1g: The minimal P that satis�es (15) for every ei 2 E is thus:

cmaxe2Enf1g
1�e

1
2
�G�(e�1)

1 + �+ �
:

Since G� is convex on [�1; 0] and 0 2 E , the maximum in this expression is attained
for e = 0 (i.e., (15) only needs to holds for e = 0), and this leads to (4).�

Proof of Theorem 2

Since 0 � �� � 1
2
; as remarked in the statement of Proposition 1, (6) implies

G�(�1) < 
 + (1� 
)��

2 (1 + 
)
; (16)

and thus �� is well-de�ned and non-negative. The theorem now follows immediately
by comparing (3) and (4) in Proposition 1. �

Proof of Theorem 3

Since lim�!0G
� (�1) = 0 and lim�!0�

e
� = 0 for every e 2 Enf1g, by Proposition

1
lim
�!0

~M�
�;
�� =

2c

1 + (1 + 
)�
<

2c

1 + �
= lim

�!0
M�
�;
��:

�

Proof of Theorem 4

Since 0 � �� � 1
2
; as remarked in the statement of Proposition 1, (9) implies

G�(�1) � 
 + (1� 
)��

2 (1 + 
)
: (17)
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By (17) and Proposition 1 it then follows that

~M�
�;
�� � 2 (1 + 
)

1 + (
 � 1)��

� c

1 + � (
 + 1)

=
2

1 + (
 � 1)��

� c
1
1+


+ �

� 2

1 + (
 � 1)��

� c
1

1+(
�1)�� + �

=
2c

1 + �+ � (
 � 1)��

=M�
�;
��:

�

Proof of Theorem 5

Fix 0 < � � �: Suppose to the contrary that there exists a vanishing sequence
f�kg1k=1 of positive numbers and (P �k ; r�k) 2 e��k�;� such that P �k = 0 (and, w.l.o.g.,
r� � limk!1 r

�
k exists and 0 < r� < 1): Consider (P k";�; rk";�) =

�
"; r�k � 1

2
" (1 + �)

�
:

We shall show that there exist small enough " > 0 and � > 0 such that (P k";�; r
k
";�) 2 R2+

elicits full e¤ort from both agents in a Nash equilibrium of ��k�;�(P
k
";�; r

k
";�) when k is

large (and the noise parameter �k is small). Since

P �k + 2r
�
k = 2r

�
k > 2r

�
k � "� = P k";� + 2r

k
";�;

it will follow that (P �k ; r
�
k) are not optimal when k is large, a contradiction:

Now we turn to establishing the existence of the requisite (P k";�; r
k
";�): First notice

that in order to implement (e1 = 1; e2 = 1) as a Nash equilibrium of ��k�;�(P
k
";�; r

k
";�),

it is necessary and su¢ cient for the following incentive conditions to hold:

1

2
E

��
U(P k";� + rk";�(1 + "

�k
i ))

+�V (P k";� + rk";�("
�k
i � "�kj ))

�
j "�ki > "�kj

�

+
1

2
E

��
U(rk";�(1 + "

�k
i ))

��V (P k";� + rk";�("
�k
j � "�ki ))

�
j "�ki < "�kj

�
� c

� G�k (ei � 1)

�E
��

U(P k";� + rk";�(ei + "�ki ))
+�V (P k";� + rk";�(ei + "�ki � 1� "�kj ))

�
j ei + "�ki > 1 + "�kj

�
+(1�G�k (ei � 1))

�E
��

U(rk";�(ei + "�ki ))
��V (P k";� + rk";�(1 + "

�k
j � ei � "�ki ))

�
j ei + "�ki < 1 + "�kj

�
� cei
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for every ei 2 En f1g : Denote by Ik ("; �; ei) the di¤erence between the left-hand side
and the right-hand side of the above inequality. Thus, each of the above incentive
conditions is equivalent to

Ik ("; �; ei) � 0: (18)

Observe that the derivative of Ik with respect to "; evaluated at " = 0; is given by

1

2
E

��
U 0(r�k(1 + "

�k
i ))

�
1� 1

2
(1 + �) (1 + "�ki )

�
+�V 0(r�k("

�k
i � "�kj ))

�
1� 1

2
(1 + �) ("�ki � "�kj )

� � j "�ki > "�kj

�

+
1

2
E

��
U 0(r�k(1 + "

�k
i ))

�
�1
2
(1 + �) (1 + "�ki )

�
��V 0(r�k("

�k
j � "�ki ))

�
1� 1

2
(1 + �) ("�kj � "�ki )

� � j "�ki < "�kj

�
�G�k (ei � 1)

�E
��

U 0(r�k(ei + "�ki ))
�
1� 1

2
(1 + �) (ei + "�ki )

�
+�V 0(r�k(ei � 1 + "

�k
i � "�kj ))

�
1� 1

2
(1 + �) (ei � 1 + "�ki � "�kj )

� � j ei + "�ki > 1 + "�kj

�
� (1�G�k (ei � 1))

�E
��

U 0(r�k(ei + "�ki ))
�
�1
2
(1 + �) (ei + "�ki )

�
��V 0(r�k(1� ei + "�kj � "�ki ))

�
1� 1

2
(1 + �) (1� ei + "�kj � "�ki )

� � j ei + "�ki < 1 + "�kj

�
;

for every ei 2 En f1g : Since the random noises belong to a bounded interval by our
assumption in this section, they converge to zero in probability as � ! 0. Bearing in
mind that G�(t) !�!0 0 for t < 1 and that U 0; V 0 are continuous and bounded; as
k !1 the above expression converges to:

1

2

�
U 0(r�)

�
1� 1

2
(1 + �)

�
+ �V 0(0)

�

+
1

2

�
U 0(r�)

�
�1
2
(1 + �)

�
� �V 0(0)

�
�U 0(r�ei)

�
�1
2
(1 + �) ei

�
+ �V 0(r�(1� ei))

�
1� 1

2
(1 + �) (1� ei)

�
:

As � � �; the last expression is bounded from below by

�1
2
U 0(r�)� + �V 0(r�(1� ei))

�
1� 1� ei

2
(1 + �)

�

� �1
2
B� + �b

�
1

2
(1� �)

�
:

This is positive for �� � �b
2(�b+B)

; and so @
@"
Ik ("; �

�; ei) j"=0> 0 for all large enough k:
Thus, since the incentive constraint (18) for any given ei 2 En f1g holds for (P �k ; r�k) =
(P k0;�� ; r

k
0;��); it also holds for (P

k
";�� ; r

k
";��) for all large enough k and some " = " (k) > 0:
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Since E is �nite, there are only �nitely many incentive constraints, and thus all of them
hold simultaneously for (P k";�� ; r

k
";��) for all large enough k and some " = "� (k) > 0:

Therefore (P k"�(k);�� ; r
k
"�(k);��) elicits full e¤ort from both agents in a Nash equilibrium

of ��k�;�(P
k
"�(k);�� ; r

k
"�(k);��). As was said, this contradicts the optimality of (P

�
k ; r

�
k) when

k is large: �

Proof of Theorem 6

Let e 2 Enf1g: Denote by re� the minimal piece-rate at which, in the wage game
���;
��, e¤ort level 1 is not less attractive to an agent than e¤ort level e; given that his
rival chooses e¤ort level 1: Thus re� is the smallest among all non-negative numbers
r that satisfy the inequality

EU(r(1 + "�i )) + 
�EV (maxfr (1 + "�i )� r(1 + "�j ); 0g) (19a)

��EV (maxfr
�
1 + "�j

�
� r(1 + "�i ); 0g)� c (19b)

� EU(r(e+ "�i )) + 
�EV (maxfr(e+ "�i )� r(1 + "�j ); 0g) (19c)

��EV (maxfr(1 + "�j )� r(e+ "�i ); 0g)� ce; (19d)

or

E [U(r(1 + "�i ))� U(r(e+ "�i ))] (20a)

+
�E

�
V (maxfr (1 + "�i )� r(1 + "�j ); 0g)
�V (maxfr(e+ "�i )� r(1 + "�j ); 0g)

�
(20b)

+�E

�
V (maxfr(1 + "�j )� r(e+ "�i ); 0g)
�V (maxfr(1 + "�j )� r (1 + "�i ) ; 0g)

�
(20c)

� c (1� e) : (20d)

Let
K � min

0�x�1+2�
V 0(x) > 0:

Then, for all r � 1

E [U(r(1 + "�i ))� U(r(e+ "�i ))] (21a)

+
�E

�
V (maxfr (1 + "�i )� r(1 + "�j ); 0g)
�V (maxfr(e+ "�i )� r(1 + "�j ); 0g)

�
(21b)

+�E

�
V (maxfr(1 + "�j )� r(e+ "�i ); 0g)
�V (maxfr(1 + "�j )� r (1 + "�i ) ; 0g)

�
(21c)

� �E

�
V (maxfr(1 + "�j )� r(e+ "�i ); 0g)
�V (maxfr(1 + "�j )� r (1 + "�i ) ; 0g)

�
(21d)

� �
1

2
Kr (1� e) (21e)
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Consequently, for all large enough �, substituting r = c
1
2
�K(1�e) � 1 into (19)

turns it into a valid inequality by (21), and hence re� � c
1
2
�K(1�e) : (In particular,

lim�!1 r
e
� = 0:) Substituting r = re� in (20), we can therefore use the �rst-order

(linear) approximation U 0(0) � x for U(x); and V 0(0) � x for V (x); around 0; to derive
an existence of � e� � 0 such that

U 0(0) � re� (1� e)

+
�V 0(0) � re�
�
E
�
maxf1 + "�i � 1� "�j ; 0g

�
� E

�
maxfe+ "�i � 1� "�j ; 0g

��
+�V 0(0) � re�(E

�
maxf1 + "�j � e� "�i ; 0g

�
� E

�
maxf1 + "�j � 1� "�i ; 0g

�
)

� c (1� e)� � e�

holds for every �; and lim�!1 �
e
� = 0. Using the de�nition of �

e
� in (1), this can be

rewritten as

(U 0(0) + �V 0(0) + (
 � 1)�V 0(0)
�e
�

1� e
) � re� � c� � e�

1� e
;

or

re� �
c� �e�

1�e

U 0(0) + �V 0(0) + (
 � 1)�V 0(0) �
e
�

1�e
:

The minimal piece rate that implements (e1 = 1; e2 = 1) as a Nash equilibrium in the
wage game ���;
�� should therefore be at least

c� ��
U 0(0) + �V 0(0) + (
 � 1)�V 0(0)��

;

for �� de�ned in (2) and �� � maxe2Enf1g �e�
1�e : Consequently,

M�
�;
�� �

2(c� ��)

U 0(0) + �V 0(0) + (
 � 1)�V 0(0)��

(22)

for all su¢ ciently large �:
Arguing as in the end of the proof of Proposition 1, one can show that the minimal

prize ~M�
�;
�� that implements (e1 = 1; e2 = 1) as a Nash equilibrium in the prize game

~���;
� satis�es

1

2
(U( ~M�

�;
��) + 
�V ( ~M�
�;
��))�

1

2
�V ( ~M�

�;
��)� c (23)

= G�(�1)(U( ~M�
�;
��) + 
�V ( ~M�

�;
��))� [1�G�(�1)]�V ( ~M�
�;
��): (24)

It follows that ~M�
�;
�� = F�1�

�
c

1
2
�G�(�1)

�
; where19 F� (x) � U(x) + (1 + 
)�V (x):

Since (1 + 
)�V � F� on R+;

~M�
�;
�� � V �1

�
1

(1 + 
)�
� c
1
2
�G�(�1)

�
�
eK
�

19Since U and V are strictly increasing, F� is invertible.
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for some eK > 0 and for all large enough � (and in particular lim�!1 ~M�
�;
�� = 0):We

can therefore use (23) and the linear approximation U 0(0) � x for U(x); and V 0(0) � x
for V (x); around 0; to derive the existence of a �� � 0 such that

1

2
(U 0(0) + 
�V 0(0)) � ~M�

�;
�� �
1

2
(�V 0(0)) � ~M�

�;
�� � c� ��

� G�(�1)(U 0(0) + 
�V 0(0)) � ~M�
�;
�� � [1�G�(�1)]�V 0(0) � ~M�

�;
��

holds for every �; and lim�!1 �� = 0. Thus

~M�
�;
�� �

c+ ��
(U 0(0) + (1 + 
)�V 0(0))

� 1
1
2
�G�(�1)

(25)

for all su¢ ciently large �:
It follows from (22) and (25) that

lim sup
�!1

~M�
�;
��

M�
�;
��

� 1 + (
 � 1)��

2 (1 + 
)
� 1
1
2
�G�(�1)

< 1;

where the last inequality holds by (6)20, and thus indeed ~M�
�;
�� < M�

�;
�� for all
su¢ ciently large �: �

Proof of Theorem 7

Suppose that the assertion is false for some � � � > 0. Then one can �nd two
non-negative sequences, (�k)

1
k=1 with limk!1 �k = 0; and a sequence (wk)

1
k=1 of wage

contracts, such that
�M�k
�;�(wk) � ~M�k

�;� (26)

for all k, and wk implements maximal e¤ort by both agents in Nash equilibrium
when agents�outputs are a¤ected by noises "�k1 ; "

�k
2 : From (3), (4) and the fact that

G�k (�1)! 0 as �k ! 0; we obtain

~M�k
�;� =

c
1
2
�G�k (�1)

� 1

1 + �+ �
�!k!1

2c

1 + �+ �
= ~M0

�;�: (27)

On the other hand, we claim that

lim inf
k!1

�M�k
�;�(wk) � �M0

�;�: (28)

Indeed, there is a subsequence of (wk)
1
k=1 (which w.l.o.g. is taken to be the sequence

itself) such that the limit

r � lim
k!1

Ewk (1 + "
�k
1 ) =

1

2
lim inf

k!1
�M�k
�;�(wk) (29)

20Or, more precisely, by (16), as was explained in the proof of Theorem 2.
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exists21. Since agent i prefers ei = 1 to ei = 0 given ej = 1 when there is noise "
�k
i

that a¤ects his (and independently his opponent�s) output under wage function wk,

E(wk(1 + "
�k
i )) + �E(maxfwk (1 + "

�k
i )� wk(1 + "

�k
j ); 0g)

��E(maxfwk(1 + "�kj )� wk (1 + "
�k
i ) ; 0g)� c

� E(wk ("
�k
i )) + �E(maxfwk ("

�k
i )� wk(1 + "

�k
j ); 0g)

��E(maxfwk(1 + "�kj )� wk ("
�k
i ) ; 0g):

But E(wk ("
�k
i )) � 0 and � � �; and hence it follows that

E(wk(1 + "
�k
i ))� c (30)

� ��E(wk(1 + "�kj )) + (� � �)E(maxfwk ("�ki )� wk(1 + "
�k
j ); 0g): (31)

Note that as the functions (wk)
1
k=1 are uniformly bounded and limk!1G

�k (�1) = 0;

lim
k!1

E(maxfwk ("�ki )� wk(1 + "
�k
j ); 0g) = 0:

Thus, taking the limit as k !1 of both sides of (30)�(31) yields

r � c � ��r (32)

for r de�ned in (29). Accordingly, agent i would prefer ei = 1 to ei = 0 (or any other
e¤ort level) under piece rate r when there is no noise. This shows that

lim
k!1

�M�k
�;�(wk) = 2r � �M0

�;�;

and establishes (28).
Now the combination of (26), (27), and (28) contradicts (11), which proves the

theorem. �

Proof of Theorem 9

Assume, as in Section 5, that random variables ("�k)
1
k=1 have bounded support

[��; �] and possess a continuously di¤erentiable and strictly positive density function
f� on it.

Lemma 1. There exists N > 0 such that the cumulative distribution function G�n
of the random variable

�
max1�j�n;j 6=i "

�
j

�
� "�i is convex on (�1; 0] provided n � N:

Proof. For every �2� � t � 0; G�n is given by

G�n(t) =

Z �

���t
Pr( max

1�j�n;j 6=i
"�j�"�i � t j "�i = y)f� (y) dy =

Z �

���t
F � (y + t)n�1 f� (y) dy;

(33)

21Note that r <1 since the wage functions are uniformly bounded.
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where F � denotes the cumulative distribution function of each "�j . Using (33),

@

@t
G�n(t)

=

Z �

���t
(n� 1)F � (y + t)n�2

@

@t
F � (y + t) f� (y) dy

+F � ((�� � t) + t)n�1 f� (�� � t)

=

Z �

���t
(n� 1)F � (y + t)n�2 f� (y + t) f� (y) dy;

and (for n � 3)

@

@2t
G�n(t) =

Z �

���t
(n� 1)(n� 2)F � (y + t)n�3 f� (y + t)2 f� (y) dy

+

Z �

���t
(n� 1)F � (y + t)n�2

@

@t
f� (y + t) f� (y) dy

+(n� 1)F � ((�� � t) + t)n�2 f� ((�� � t) + t) f� (�� � t)

= (n� 1)
Z �

���t
F � (y + t)n�3

�
(n� 2)f� (y + t)2 + F � (y + t)

@

@t
f� (y + t)

�
f� (y) dy:

Since miny2[��;�] f� (y) > 0; it is clear that

(n� 2)f� (y + t)2 + F � (y + t)
@

@t
f� (y + t) > 0

for every y 2 [�� � t; �] and for all su¢ ciently large n:We conclude that @
@2t
G�n(t) > 0

and thus the functionG�n is convex on [�2�; 0] for all su¢ ciently large n. SinceG�n � 0
on (�1;�2�]; G�n is in fact convex on the entire [�1; 0] : �

Lemma 2. limn!1 n
2G�n (�1) = 0:

Proof. Using (33) in the proof of Lemma 1,

G�n(�1) � F � (� � 1)n�1

if 2� � 1; and G�n(�1) = 0 otherwise. Since F � (� � 1) < 1; obviously

lim
n!1

n2G�n (�1) = 0:

�

Theorem 9 now follows immediately from (14), given (12). �
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