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Abstract

This paper develops a model of career concerns. The worker’s skill is revealed through

output, and wage is based on expected output, and so on assessed ability. Specifically, work

increases the probability that a skilled worker achieves a one-time breakthrough. Effort

levels at different times are strategic substitutes. Effort (and, if marginal cost is convex,

wage) is single-peaked with seniority. The agent works too little, too late. Both delay and

underprovision of effort worsen if effort is observable. If the firm commits to wages but faces

competition, the optimal contract features piecewise constant wages as well as severance

pay.
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1 Introduction

This paper investigates the incentives and compensation of employees, how they evolve over time,

how they depend on the work performance measurement as well as on the other provisions on

the labor contract.

Our model borrows some key ingredients from Holmström (1999).1 In a competitive market,

a worker’s perceived talent (reputation) is a key component to the wage. Because of lack of

commitment, this wage is paid upfront, unconditionally. Establishing a reputation through

success is then a powerful motive that generates incentives to work hard. For those jobs (e.g.,

production line workers, fund managers, traders) for which success is about average performance,

and output can be measured almost continuously, although with noise, the model of Holmström

provides a useful framework.

Here, we are interested in other types of jobs. In some occupations, those requiring solutions

to specific issues (the right drug, the theorem, the hit song, the consultant’s client problem)

output measures are based on very rare events only.2 Hence, information is coarse: either a

solution is found and the project is successful, or it is not.

Because they are so rare, such successes are defining moments in a young professional’s career

(e.g., receiving a R01 grant by the NIH, signing a record deal, and, more to the point, attaining

partnership in professional services firms, or tenure in academia). As a first approximation, one

breakthrough provides all the necessary evidence about the worker’s ability.

Finally, a hallmark of these positions is the use of a probationary period (a “tenure clock”).

Promotion policies in professional service firms are typically based on an “up-or-out-system”

(law, accounting and consulting firms, etc.). Employees are expected to obtain promotion to

partner in a certain time frame; if not, they are meant to quit, if not dismissed forthright. While

alternative theories have been put forth (e.g., tournament models), agency theory provides an

appealing framework to analyze such systems (see Fama, 1980, or Fama and Jensen, 1983).

Hence, our environment departs from Holmström’s in three key respects: (a) output is lumpy,

1See Gilson and Mnookin (1989) for a vivid account of associate career patterns in law firms, and the relevance

of Holmström’s model as a possible explanation.
2For example, one publication in the life sciences is often sufficient to apply for a PI grant; in addition, over 60%

of inventors awarded a patent by the USPTO were awarded only one over the period 1963–1999. See Trajtenberg

et al. (2006).
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(b) it is very informative, and (c) there is a deadline.

The sectors we have in mind include professional services such as law and consulting firms,

pharmaceutical companies, biotechnology research labs, and academia. Of course, our model is

not a literal description of any particular market: there are examples (a pharmaceutical researcher

being awarded a share of a patent or a postdoc paying for his salary through the NIH grant)

in which the agent also receives an immediate monetary gain from a breakthrough. Similarly,

it reasonably takes more than one “star” report to establish a consultant’s reputation. But it

is easier to contract on employment duration for instance, a publicly observable and objectively

measurable variable, than it is on explicit output-contingent wages. Yet the model will speak to

those markets as well, as long as the agent is also motivated by continuation wages, and that

successes are rare and very informative.

More formally, there are no explicit output-contingent contracts. The firm, or market, must

pay the worker, or agent, a competitive wage, given his expected output, which in turn is based

on his assessed ability. Information about ability is symmetric at the start. Skill and output

are binary and complements: only a skilled agent can achieve a high output –a breakthrough.

The time at which this output arrives follows an exponential distribution, whose instantaneous

intensity increases with the worker’s effort. If the agent ever succeeds, and so proves himself,

he is promoted and gets a constant compensation. While in some respects more stylized than

Holmström’s, this specification implies that effort increases not only expected output, but also

the speed of learning, unlike in the Gaussian set-up.

We first examine the worker’s incentives taking the wage function as given. As we show,

career concerns provide insufficient incentives for effort: inefficiently low overall effort is being

exerted. Furthermore, whatever effort is provided is done so too late: a social planner constrained

to the same total amount of effort would apply it earlier. This backloading of effort contrasts

with the inefficient frontloading that arises in Holmström’s model.

We then turn to equilibrium analysis: at any point in time, wage is required to equal the

expected value of output. Fundamental to the dynamics of incentives and wages is the strate-

gic substitutability between current and future effort, via the worker’s compensation: if career

concerns are effective in providing incentives for high effort at some point in the worker’s ca-

reer, wages at that time will reflect this increased productivity; in turn, this depresses incentives

to exert high effort earlier in the worker’s career, as higher future wages makes staying on the
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current job relatively more attractive.

Substitutability shapes the pattern of effort and compensation: because career concerns can-

not work at the end of the worker’s tenure, effort is single-peaked, with mid-career incentives

depressing early incentives. (However, this does not rule out, as special cases, monotone effort

paths.) When marginal cost is convex, wages are single-peaked as well. This stands in contrast

with Holmström’s model, in which effort and wages stochastically decrease over time. Because

compensation does not only reflect effort, but also ability, and prolonged failure necessarily in-

creases pessimism regarding this ability, wage dynamics can be slightly more complicated when

the marginal cost is not convex, with an initial phase of decreasing wages preceding a single-

peaked pattern.

As mentioned, substitutability does not arise in Holmström’s model. It does not arise in

Dewatripont, Jewitt and Tirole (1999a,b)’s analysis either, which is not surprising, as it cannot

be picked up by a two-period model (career concerns cannot arise in the last period). Their

analysis focuses instead on the strategic complementarity between expected effort and current

effort, which generates, among others, equilibrium multiplicity. The same complementarity exists

in our model. Nevertheless, we prove that, under mild conditions, the equilibrium is unique.

Although our model is at least consistent with wages that are not decreasing over time, it

leaves open the question why non-decreasing compensation is such a prevalent phenomenon in

practice, as are signing bonuses, rigid wages, or severance pay. To investigate the sensitivity

of our findings to labor market arrangements, we then consider three variations of the baseline

model. We consider what happens when firms have stronger commitment power: while workers

cannot commit not to leave their employer if a competing firm offers a better contract at any

point, firms can nevertheless commit to contracts that specify an entire wage path. In that case,

the optimal contract is strikingly simple: it is either a one-step or (if the horizon is long enough)

two-step wage, followed by a lump-sum “severance” payment at the end of tenure, if the worker

never succeeded. Effort is constant over each step.

Second, we examine how the quality of monitoring affects our conclusions: what if effort is

observable, if not contractible, after all? In any of the Markov equilibria, effort provision is even

lower than under non-observability, and it is further delayed; as a result, effort increases over

time (which pushes wages up over time). While this means that, in line with earlier findings in

this literature, imperfect observability helps generate incentives, it also points to the fact that
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empirical patterns might be better explained by models with better monitoring.

Finally, we endogenize the deadline, by letting workers leave whenever they consider it best,

though employers rationally anticipate this. In that case, effort is not only single-peaked, it must

be decreasing at the deadline, and so must the wage. The worker quits too late, relative to what

would be optimal, but if he could commit to a deadline, he might choose a longer, or a shorter

one than without commitment, depending on the circumstances.

The most closely related papers are Holmström, as mentioned, as well as Dewatripont, Jewitt

and Tirole (1999a,b). Our model shares with the latter paper some features that are absent from

Holmström’s. In particular, effort and talent are complements. We shall discuss the relationship

between the three models at length in the paper.

Jovanovic (1979) and Murphy (1986) provide models of career concerns that are less closely

related. Our paper shares with Gibbons and Murphy (1989) the interplay of implicit incentives

(career concerns) and explicit incentives (termination penalty). It shares with Prendergast and

Stole (1996) the existence of a finite horizon, and thus, of complex dynamics related to seniority.

See also Bar-Isaac for reputational incentives in a model in which survival depends on reputation.

The binary set-up is reminiscent of Bergemann and Hege (2005), Mailath and Samuelson (2005),

and Board and Meyer-ter-Vehn (2011). A theory of up-or-out contracts, based on asymmetric

learning and promotion incentives, is investigated in Ghosh and Waldman (2010), while Chevalier

and Ellison (1999) provide evidence of the sensitivity of termination to performance. Ferrer

(2011) studies how lawyers’ career concerns impacts litigation. Finally, Johnson (2011) and

Kolstad (2010) examine the effect of individual and market learning on physicians’ incentives

and career paths.

2 The model

2.1 Set-up

We shall consider the incentives of a single agent (or worker) to exert effort (or work). Time is

continuous, and the horizon finite: t ∈ [0, T ], T > 0. Most results carry over to the case T = ∞,

as shall be discussed, and the case of endogenous deadlines T will be studied in detail in Section
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5.3.

The game (or project) can end before t = T , in case the agent’s effort is successful. Specifically,

we assume that there is a binary state of the world ω = 0, 1. If the state is ω = 0, the agent

is bound to fail, no matter how much effort he exerts. If the state is ω = 1, a success (or

breakthrough) arrives at a time that is exponentially distributed, with an intensity that increases

in the instantaneous level of effort exerted by the agent. The state can be interpreted as the

agent’s ability, and we will refer to the agent as a high- (resp., low-) ability, or skill, agent in case

the state is 1 (resp. 0). The prior probability of state 1 is p0 ∈ (0, 1). Until a success occurs, the

agent is “locked in” the game. We shall discuss alternative termination rules in Section 5.

Effort is a (measurable) function from time to the interval [0, ū], where ū ∈ R̄ represents

an upper bound (possibly infinite) to the instantaneous effort that the agent can exert. If the

agent exerts effort ut over the time interval [t, t + dt), the probability of a success over that time

interval is (λ+ ut)dt, where λ ≥ 0 can be interpreted as the luck of a talented agent. Formally,

the instantaneous arrival rate of a breakthrough at time t is given by ω · (λ+ut). That is, unlike

in Holmström’s model, but as in the model of Dewatripont, Jewitt and Tirole, work and talent

are complements.

As long as the game has not ended the agent receives a flow wage wt. For now, let us think

of this wage as an exogenous (integrable, non-negative) function of time only that accrues to the

agent as long as the game has not ended, though equilibrium constraints will later be imposed on

this function, as this wage will reflect the market’s expectations of the agent’s effort and ability,

given that the market values a success. This value is normalized to one.

In addition to receiving this wage, the agent incurs a cost of effort: exerting effort level ut

over the time interval [t, t+ dt) entails a flow cost c (ut)dt. We shall consider two cases: in

the convex case, we assume that ū = ∞, c is increasing, thrice differentiable and convex, with

c (0) = 0, limu→0 c
′ (u) = 0, limu→∞ c′ (u) = ∞, c′′ > 0 and c′′′ ≥ 0.3 In the linear case, ū < ∞

and c (u) = α · u , where α > 0. Plainly, the linear case is not a special case of what is called

the convex one, but it yields similar results, while allowing for simple illustrations and sharper

characterizations.

Achieving a success is desirable on two accounts: first, a known high-ability agent can expect

3The assumption that c′ is convex is only required for three results: Lemma 2.1, equilibrium uniqueness and

single-peakedness of equilibrium wage in Section 4 (Theorem 4.2).
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a flow outside wage of v ≥ 0, so that this outside option v is a (flow) opportunity cost for him that

is incurred as long as no success has been achieved.4 The outside option of the low-ability agent

is normalized to 0. Second, we allow for a fixed penalty of k ≥ 0 for reaching the deadline (i.e.,

for not achieving a success by time T ). This might represent diminished career opportunities

to workers with such poor records. Alternatively, this penalty might be an adjustment cost, or

the difference between the wage he could have hoped for had he succeeded, and the wage he

will receive until retirement. In the linear cost case, we assume k > α, for the penalty plays

essentially no role otherwise. There is no discounting. At the beginning of the appendix, we

explain how to derive the objective function from its discounted version as discounting vanishes.

Thus, the worker chooses u : [0, T ] → [0, ū], measurable, to maximize his expected sum of

rewards, net of the outside wage v:

Eu

[∫ T∧τ

0

[wt − vχω=1 − c (ut)] dt− χτ≥Tk

]

,

where Eu is the expectation conditional on the worker’s strategy u, v is the outside option of

the high-skill agent and τ is the time at which a success occurs –a random variable that is

exponentially distributed, with instantaneous intensity at time t equal to 0 if the state is 0, and

to λ+ ut if the state is 1, and χA is the indicator of event A.

Of course, at time t effort is only exerted, and the wage collected, conditional on the event

that no success has been achieved. We shall omit to say so explicitly, as those histories are

the only nontrivial ones. Given his past effort choices, the agent can compute his belief pt that

he is of high ability by using Bayes’ rule. It is standard to show that, in this continuous-time

environment, Bayes’ rule reduces to the ordinary differential equation (O.D.E.)

ṗt = −pt (1− pt) (λ+ ut) , p0 = p0. (1)

By the law of iterated expectations, we can then rewrite our objective as

∫ T

0

e−
∫
t

0
ps(λ+us)ds [wt − ptv − c (ut)] dt− ke−

∫
T

0
pt(λ+ut)dt.

4A natural case is the one in which v equals the flow value of success given that the agent has established that

ω = 1. This would be his payoff in the Markov equilibrium of the complete information game. Since successes

arrive at rate λ and are worth 1, v = λ in that case.
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The exponential term captures the possibility that time t is never reached. Using integration by

parts,

e−
∫
t

0
ps(λ+us)ds =

1− p0
1− pt

. (2)

Alternatively, observe that

P [τ ≥ t] =
P [ω = 0 ∩ τ ≥ t]

P [ω = 0|τ ≥ t]
=

P [ω = 0]

P [ω = 0|τ ≥ t]
=

1− p0
1− pt

.

Hence, the problem simplifies to the maximization of

∫ T

0

1− p0
1− pt

[wt − c (ut)− v] dt− 1− p0
1− pT

k, 5 (3)

given w, over all measurable u : [0, T ] → [0, ū], given (1). Before solving this program, we start

by analyzing the simpler problem faced by a social planner.

2.2 The social planner

What is the expected value of a breakthrough? Recall that the value of a realized breakthrough

is normalized to one. But a breakthrough only arrives with instantaneous probability pt (λ+ ut),

as it occurs at rate λ+ ut only if ω = 1. Therefore, the planner maximizes

∫ T

0

1− p0
1− pt

[pt (λ+ ut)− v − c (ut)] dt− k
1− p0
1− pT

, (4)

over all measurable u : [0, T ] → [0, ū], given (1). As for most of the optimization programs

considered in this paper, we apply Pontryagin’s maximum principle to get a characterization.

The proof of the next lemma and of all formal results can be found in appendix. A strategy u is

extremal if it only takes extreme values: ut ∈ {0, ū}, for all t.

5Note that we have replaced ptv by the simpler v in the bracketed term inside the integrand. This is because

∫ T

0

pt
1− pt

vdt =

∫ T

0

v

1− pt
dt− vT,

and we can ignore the constant vT , at least until Section 5.3, where the deadline is endogenized.
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Lemma 2.1 At any optimum:

1. Effort u is monotone (in t); it is non-increasing if and only if the deadline exceeds some

finite length;

2. In addition, in the case of linear cost, the optimal strategy is extremal and maximum effort

precedes zero effort if and only if v > αλ;

3. If effort is non-increasing, so is the marginal product p (λ+ u); if it is non-decreasing, then

the marginal product is single-peaked in the convex cost case, and piecewise decreasing with

at most one upward jump in the linear cost case.

Monotonicity of effort can be roughly understood as follows, in the linear cost case. There are

two reasons effort can be valuable: because it helps reduce the time over which the waiting cost

v is incurred, and because it helps avoid paying the penalty k. The latter encourages late effort,

the former early effort, provided the belief is high. But, in the absence of discounting, it makes

little sense to work early if one plans on stopping doing so before working eventually again: it is

then better to postpone exerting this effort to this later stage where no effort is planned. Hence,

if effort is exerted eventually, it is exerted only at the end. Conversely, if the penalty does not

motivate late effort, effort is only exerted at the beginning.

Because the belief p is decreasing over time, note that the marginal product is decreasing

whenever effort is decreasing, but the converse need not hold (as the product p (λ+ u) might

vary in either direction). The interval over which the marginal product is non-decreasing can be

empty, or the entire horizon. Conversely, it is straightforward to construct examples in which

effort is increasing, and the marginal product is first increasing, then decreasing. Note that, for

the critical deadline mentioned in the first part of the lemma, effort is constant.

With linear cost, whether effort is non-increasing or non-decreasing depends only on the sign

of v−αλ. This does not contradict the first part of the lemma: for long enough deadlines, effort

is constant (and 0) if v ≤ αλ, and first maximal then zero if v > αλ. Note that neither the

initial belief (p0), nor the terminal cost (k) affect whether maximum effort is exerted first or last.

Of course, they affect the total amount of effort, but given this amount, they do not affect its

timing. The role of the sign αλ − v in the ordering of these intervals can be seen as follows:

consider exerting some bit of effort now or at the next instant (thus, keeping the total amount
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of planned effort fixed); by waiting, a loss vdt is incurred; on the other hand, with probability

λdt, the marginal cost of this effort, α, will be saved. Therefore, if

v > αλ,

it is better to work early than late, if at all. From now on, we shall focus on the case v > αλ.

Assumption 2.2 In the linear cost case, the parameters α, v and λ are such that

v > αλ.

Under this assumption, effort can be efficient even far from the deadline. An example of such

a path is given by the left panel in Figure 1. The right panel gives the corresponding path for

the value of output (i.e., pt(λ+ ūt)).
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Figure 1: Effort and expected value at the social optimum

Whether effort is still exerted at the deadline depends on how pessimistic the social planner

is at that point. By standard arguments (see appendix), full effort is exerted at the deadline if

and only if

pT (1 + k) ≥ α. (5)

This states that the expected marginal social gains from effort (success and penalty avoidance)

should exceed the marginal cost. If the social planner becomes too pessimistic, he “gives up”
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before the end. Note that the flow loss v no longer plays a role at that time, as the terminal

(lump-sum) penalty overshadows any such flow cost.

It is straightforward to solve for the switching time, or switching belief in the linear case.

This belief decreases in α and increases in v and k: the higher the cost of failing, or the lower

the cost of effort, the longer effort is exerted. More generally, we have:

Lemma 2.3

1. Both in the convex and linear cost case, the final belief decreases with the deadline;

2. Total effort exerted increases with the deadline

(a) in the linear case, if and only if λ (1 + k) < v;

(b) in the convex case, if

max
u

[(λ+ u)(1 + k)− c(u)] < v.

Hence, total effort need not increase with the deadline; the sufficient condition given in the

convex case (which implies λ (1 + k) < v) is not necessary; weaker, but less concise conditions

can be given for the convex case, as well as examples in which total effort decreases with the

deadline.

3 The agent’s problem: The role of wages

Before solving for an equilibrium in which wages are determined by the market, consider the

worker’s optimal effort path given an exogenous (integrable) wage path w : [0, T ] → R+. The

agent’s problem differs from the social planner’s in two respects: the agent fails to take into

account the expected value of a success (in particular, at the deadline), a value that increases

in the effort; instead, he takes into account the exogenous wages, which are less likely to be

pocketed if more effort is exerted.

Recall that the worker’s problem is given by (1) and (3). Let us start with a “technical”

result.
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Lemma 3.1 A solution to (1) and (3) exists. In the convex cost case, the trajectory p is unique;

for linear cost, if p1 and p2 are optimal trajectories, and p1,t 6= p2,t over some interval [a, b] ∈
[0, T ], then wt = v − αλ (a.e.) on [a, b].

That is, there is a unique solution (in terms of trajectories and hence control) in the convex

case, and multiplicity in case of linear cost is confined to time intervals over which the wage is

equal to a specific value. While this last case might appear non-generic, we shall see that it plays

an important role in the equilibrium analysis nonetheless.

Transversality implies that, at the deadline, the agent exerts an effort level that solves

pTk = c′ (uT ) .
6

This is similar to the social planner’s trade-off at the deadline, except that the worker does

not take into account the lump-sum value of success (compare with (5)), and his effort level is

consequently smaller.

3.1 Level of effort

What determines the instantaneous level of effort? It follows from Pontryagin’s theorem that

the amount of effort put in at time t solves

c′ (ut) = −
∫ T

t

(1− pt)
ps

1− ps
[ws − c (us)− v] ds+ (1− pt)

pT
1− pT

k. (6)

The left-hand side is the instantaneous marginal cost of effort. The marginal benefit (right-hand

side) can be understood as follows. Conditioning throughout on reaching time t, the expected

flow utility over some interval ds at time s ∈ (t, T ) is

P [τ ≥ s] (ws − c (us)− v) ds.

From (2), recall that

P [τ ≥ s] =
1− pt
1− ps

=(1− pt)

(

1 +
ps

1− ps

)

;

6In the linear case, this must be understood as: the agent chooses u = ū if and only if pTk ≥ α, and chooses

u = 0 otherwise.
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that is, effort at time t affects the probability that time s is reached only through the likelihood

ratio ps/ (1− ps). From (1),
d

dt

pt
1− pt

= − pt
1 − pt

(λ+ ut) ,

and so a slight increase in ut decreases the likelihood ratio at time s precisely by −ps/ (1− ps).

Combining, such an increase changes expected revenue from time s by an amount

− (1− pt)
ps

1− ps
[ws − c (us)− v] ds,

and integrating over s (including s = T ) yields the result.

The trade-off captured by equation (6) illustrates a key feature of career concerns in this

model: information is very coarse. Either a success is observed or not. The coarse signal

structure only allows the agent to affect the probability that the relationship terminates. This

is a key difference between this model and Holmström’s model in which signals and posterior

beliefs are one-to-one. Although the log-likelihood ratio is linear in effort, as is the principal’s

posterior belief in Holmström’s model, here there is no scope for the wage to adjust linearly in

the output, so as to provide incentives that would be independent of the wage level itself. As we

will see in Section 4, future compensation does affect incentives to put in effort in equilibrium.7

As is intuitive, increasing the wedge between the future rewards from success and failure

(v − ws) encourages high effort, ceteris paribus. Higher wages in the future depress incentives

to exert effort today, as they reduce the premium from success v − ws. However, higher wages

far in the future have a smaller effect on current-period incentives, as is clear from equation (6),

for two reasons. The game is less likely to last until then, and conditional on reach far enough

times, the agent’s effort is less likely to be productive (as the probability of a high type then is

very low).8

Similarly, a higher penalty for termination or a lower cost of effort provide stronger incentives.

7The reason why future compensation does not affect incentives in Holmström’s model is that effort and talent

affect output independently, effort affects the posterior belief linearly, and the wage is itself linear in belief.
8Note also that, although learning is valuable, the value of information cannot be read off this first-order

condition directly: the maximum principle is an “envelope theorem,” and as such does not explicitly reflect how

future behavior adjusts to current information.
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3.2 Timing of effort

Differentiating eqn. (6) yields an arbitrage equation that determines how effort is allocated

over time. (See the proof of Proposition 3.3.) Effort dynamics are governed by the following

differential equation:

pt · c (ut+dt)
︸ ︷︷ ︸

cost saved

+ pt (v − wt)
︸ ︷︷ ︸

wage premium

+ c′′ (ut) u̇t
︸ ︷︷ ︸

cost smoothing

= pt (λ+ ut)
︸ ︷︷ ︸

Pr. of success at t

· c′ (ut) (7)

By shifting an effort increment du from the time interval [t, t + dt) to [t+ dt, t+ 2dt) (back-

loading) the agent saves the marginal cost of this effort increment c′ (ut)du with instantaneous

probability pt (λ+ ut)dt –the probability with which this additional effort will not have to be

carried out. By exerting this additional effort early instead (frontloading), the agent increases

by ptdu the probability that the entire cost of tomorrow’s effort c (ut+dt)dt will be saved. He

also increases at the same rate the probability that he gets the “premium” (v − wt)dt an instant

earlier. Finally, if effort is increasing at time t, exerting the effort increment earlier improves the

workload balance, which is worth c′′ (u)dudt. This yields eqn. (7).9

With linear cost, cost-smoothing is irrelevant, and since this is the only term that is not

proportional to the belief pt, the condition simplifies: frontloading effort is preferred if the wage

premium exceeds the value of luck in cost units:

v − wt ≥ αλ. (8)

That the belief is irrelevant to the timing of effort (absent the cost-smoothing motive) is intuitive:

if the state is 0, the cost of the effort increment will be incurred either way, so that the comparison

can be conditioned on the event that the state is 1.

3.3 Comparison with the social planner

Note that eqn. (8) reduces to the corresponding condition for the social planner when wt = 0.

Unlike the agent, the social planner internalizes future wages, which simply represent the value

9Note that all these terms are “second order” terms. Indeed, to the first order, it does not matter whether

effort is slightly higher over [t, t+ dt) or [t+ dt, t+ 2dt). Similarly, while doing such a comparison, we can ignore

the impact of the change on later revenues, as it is the same under both scenarios.
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of possible success at these times. Hence, his arbitrage condition coincides with the agent’s if the

latter were to ignore the wages altogether. The same holds for the case of a convex cost function.

To see this formally, note that the flow revenue term from eqn. (4) can be re-arranged as

∫ T

0

1− p0
1− pt

pt (λ+ ut) dt = −(1 − p0)

∫ T

0

ṗt
(1− pt)2

dt = (1− p0) ln
1− pT
1− p0

,

and so this term only appears through the terminal belief, and hence the transversality condition.

Note, however, that the transversality conditions do not coincide even if we set ws = 0. As

mentioned, the agent fails to take into account the value of a success at the last instant, so that

his incentives then, and hence his strategy for the entire horizon, fails to coincide with the social

planner’s. The agent works too little, too late.

The next proposition formalizes this discussion. Given the wage path w, denote by p∗ the

(belief) trajectory given the solution to the agent’s problem, and pFB the corresponding trajectory

for the social planner.

Proposition 3.2 For convex cost functions, given the deadline T , if w > 0,

1. The agent’s aggregate effort is lower than the social planner’s, i.e. p∗T > pFB
T . Furthermore,

instantaneous effort at any time t is always lower than the social planner’s, given the current

belief p∗t .

2. Suppose that the social planner’s aggregate effort is constrained so that pT = p∗T . Then the

planner’s optimal trajectory p lies below the agent’s belief trajectory, i.e. for all t ∈ (0, T ),

p∗t > pt.

Note that the first part states that both aggregate effort is too low, but also instantaneous

effort, given the agent’s belief. Nevertheless, as a function of calendar time, effort might be

higher for the agent at some dates, because the agent might be more optimistic than the social

planner at that point. The next example (Figure 2) will illustrate this phenomenon in the case

of equilibrium wages.

The second part of this proposition implies that, for the fixed aggregate effort chosen by the

agent, this effort is exerted too late relative to what would be optimal: the prospect of collecting

future wages encourages procrastination.
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The same result holds in the linear case, up to the strictness of the inequalities: of course, if

the agent’s optimum effort is maximum throughout, he is working just as much as in the social

planner’s solution.

3.4 Effort dynamics

What do we learn from eqn. (8) regarding the dynamics of effort in the linear case? First,

note that, unless w = v − αλ holds identically over some interval, effort is extremal. Second,

suppose that w is increasing. Then the left-hand side decreases over time, and the agent prefers

frontloading up to some critical time, after which backloading becomes optimal (the critical time

might be 0 or T ). This does not quite imply that his effort is non-increasing; rather, if he puts

in low effort, he must do so in some intermediate time interval. If he starts with high effort,

his marginal product p (λ+ u) must decrease, at least over some initial phase. This would be

inconsistent with increasing wages in equilibrium.

Similarly, if wages decrease over time, the agent first backloads, then frontloads effort. That

is, if he ever puts in high effort, he will do so in some intermediate phase.

The same observations can be made by considering (7) for the convex case, though effort will

not be extremal. We summarize this discussion with the following proposition.

Proposition 3.3

1. If w is decreasing, u is a quasi-concave function of time; if w is increasing, it is quasi-

convex; if w is constant, u is monotone.

2. With linear cost and strictly monotone wages, the optimal strategy is extremal.

To conclude, even when wages are monotone, the worker’s incentives need not be so over

time. While the equilibrium wage path of the next section fails to be monotone, the trade-off

laid out in (7) remains decisive.

4 Equilibrium

Suppose now that the wage is set by a principal (or market) without any commitment power.

The principal does not observe the agent’s past effort, but only that the worker has not succeeded
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so far. Non-commitment motivates the assumption that wage equals expected marginal product,

i.e.

wt = Et[pt(λ+ ut)],

where pt and ut are the agent’s belief and effort, respectively, at time t, given his private history

of past effort (of course, it is assumed that he has had no successes so far), and the expectation

reflects the principal’s beliefs regarding the agent’s history (in case the agent mixes).10 However,

given Lemma 3.1, the agent will not use a chattering control (i.e., a distribution over measurable

functions (ut)), but rather a single function (unless the cost is linear and w = v − αλ over some

interval, but even then the multiplicity is limited to the distribution of effort over this interval).11

Therefore, we may write

wt = p̂t(λt + ût), (9)

where p̂t and ût denote the belief and anticipated effort at time t, as viewed from the principal.

In equilibrium, expected effort must coincide with actual effort.

Definition 4.1 An equilibrium is a measurable function u and a wage path w such that:

1. u is a best-reply to w given the agent’s private belief p, which he updates according to (1);

2. the wage equals the marginal product, i.e. (9) holds for all t;

3. beliefs are correct, that, is, for every t,

ût = ut,

and therefore, also, p̂t = pt at all t ∈ [0, T ].

10A lot is buried in this assumption. In discrete time, if T < ∞, and under assumptions that guarantee

uniqueness of the equilibrium (see below), non-commitment implies that wage is equal to marginal product in

equilibrium, by a backward induction argument, assuming that the agent and the principal share the same prior.

Alternatively, this is the outcome if a sequence of short-run principals (at least two at every instant), whose

information is symmetric and no worse than the agent’s, compete through prices for the agent’s services. We

shall follow the literature by directly assuming that wage is equal to marginal product.
11If there are such time intervals (as equilibrium existence will require for many parameter values), the multi-

plicity of best-replies over this interval is of no importance: the expected effort at any time during this interval,

as well as the aggregate effort over this interval will be uniquely determined, and the agent is indifferent over all

effort levels over this time interval; the multiplicity does not affect wages, effort or belief before or after such an

interval.
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Note that, if the agent deviates, the market will typically hold incorrect beliefs.

To understand the structure of equilibria, consider the following example, illustrated in Figure

2. Suppose that the principal expects the agent to put in the efficient amount of effort, which

in this example decreases over time. Accordingly, the wage paid by the firm decreases over time

as well. The agent’s best-reply, then, is quasi-concave in general: effort first increases, and then

decreases (see left panel). This means that the agent puts in little effort at the start, as the agent

has no incentive “to kill the golden goose” by exerting effort too early. Once wages come down,

effort becomes more attractive, so that the agent increases his effort level, before fading out

as pessimism sets in. The principal’s expectation does not bear out, then: the actual marginal

product is single-peaked (in fact, it would decrease at the beginning if effort was sufficiently flat).
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Figure 2: Agent’s best-reply and beliefs to the efficient wage scheme

Note that eventually the agent exerts more (instantaneous) effort than would be socially

optimal at that time. (See right panel). This is due to the fact that the agent is quite sanguine

about the project at that time, having worked less than the social planner recommends. As it

turns out, effort is always too low given the actual belief of the agent, but not necessarily given

calendar time.

As this example makes clear, effort, let alone wages, should not be expected to be monotone

in general. It turns out, however, that equilibrium cannot be more complicated than this example
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suggests.

Theorem 4.2 An equilibrium exists. It is unique in the linear case if α < k, and in the convex

case if

c′′ (0) ≥ 1

λ

(v

λ
− k
) p0

1− p0
.

In every equilibrium, (on path) effort is single-peaked, and the wage is non-decreasing in at most

one interval. In the convex case, the wage is single-peaked.

Wages are not single-peaked in general for the linear case, and single-peakedness in the convex

case relies on our assumption that the marginal cost is convex (as does the uniqueness proof).

Figure 3 illustrates that this is not quite true otherwise (note that the cost is convex, but not

the marginal cost). The mode of the wage lies to the left of the mode of effort: if the wage is

increasing over time, it must be that effort is increasing, but not conversely.
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Figure 3: Effort and wages with convex costs

As stated in the theorem, there are simple sufficient conditions that guarantee equilibrium

uniqueness (in addition to convexity of c′), which boil down to assuming that the penalty k is

large enough. It does not imply that there are multiple equilibria otherwise: we have been unable

to construct any example of multiple equilibria.

A more precise description can be given in the case of linear cost.
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Proposition 4.3 With linear cost, any equilibrium path consists of at most four phases, for

some 0 ≤ t1 ≤ t2 ≤ t3 ≤ T :

1. during [0, t1], no effort is exerted;

2. during (t1, t2], effort is interior, i.e. ut ∈ (0, ū);

3. during (t2, t3], effort is maximal;

4. during (t3, T ], no effort is exerted.

Any of these intervals might be empty.12

Proposition 4.3 describes the overall structure of the equilibrium. As stated, any of the

intervals might be empty, and it is easy to compute instances of each of the different possibilities.13

Nevertheless, there is a certain ordering to this structure, depending on the deadline. If the

deadline is very short, effort is first zero, then maximum. For deadlines of intermediate lengths,

an intermediate phase kicks in, in which effort is interior. Finally, for long deadlines, a final phase

appears, in which no effort is exerted. When a phase with interior effort exists, effort grows, so

as to keep the wage constant at v−αλ, which guarantees that the agent is indifferent between all

effort levels. It is continuous at t1 (i.e., limt↓t1 u (t) = 0), but jumps up at time t2 (assuming the

third interval is non-empty). See Figure 4 for an example of effort (left panel) and corresponding

wage dynamics (right panel). (The parameters are the same as those used in Figure 1 above.)

Note that we have not specified the equilibrium strategy of the worker, because we have

not derived his behavior following his own (unobservable) deviations. Yet it is not difficult to

describe the worker’s optimal behavior off-path, as it is the solution of the optimization problem

studied before, for the belief that results from the agent’s history, given the wage path.

The linear cost case provides a simple way to understand what drives incentives. Given the

deadline, on-path equilibrium effort is a function of the (equilibrium) belief and the time t ≤ T .

12Here and elsewhere, the choices at the extremities of the intervals are irrelevant, and our specification is

arbitrary in this respect.
13In particular, if k < α, the agent never works at the deadline; if 1+α < v/λ, and no effort is exerted at some

point, it is then exerted until the end; if, contrary to our maintained assumption, v/λ < α, the characterization

simplifies to at most two intervals, with zero effort being followed by maximum effort.
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Figure 4: Effort and wages in the non-observable case

We can then define the boundaries, or frontiers, pk : [0, T ] → [0, 1] that divide the state space

into regions according to equilibrium effort: p3 is the boundary below which all effort stops;

p2 > p3 is the boundary at which maximum effort starts (that is, maximum effort is exerted

between those two curves); and p1 > p2 is the boundary below which interior effort starts. By

Proposition 4.3, the boundaries are each crossed at most once on the equilibrium path. It turns

out that p1 is independent of t: if interior effort is on the equilibrium path, it begins at a belief

that is independent of the specific path. As for p2 and p3, their structure hinges on the specific

parameters. As the following figures illustrate, there are two distinct circumstances in which

high effort is exerted: either effort is exerted because the belief is “right,” given the remaining

time, or because there is very little time left. See Figure 6 and compare with Figure 5. These

figures use as parameters ū = 1/2, α = 1/5, v = λ = 1, x0 = −4, T = 5 and, depending on the

figure, k ∈ {.3, .4, .6}.

Proposition 4.4 For all t≤ T,

1. The no effort frontier p3 (t) is decreasing in k and v. It is increasing in α and λ.

2. The full effort frontier p2 (t) is decreasing in α, λ and ū. It is increasing in k and v.

21



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time t

B
el

ie
fs

p
t

Parameters: α = 1/5, λ = 1, v = 1, p0 = 0.99, T = 5, k = 3/5, ū = 1/2
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Figure 5: High k (k = .6) and medium k (k = .4)
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This result holds regardless of whether the full effort region is connected. It confirms the intu-

ition that (in terms of beliefs) the agent works longer when the prize and the penalty are higher,

and works less when the marginal cost of effort and the luck component are more significant.

One might wonder whether the penalty k is really hurting the worker. After all, it endows

him with some commitment to work. In the linear cost case, simple algebra shows that increasing

k increases the amount of work performed; furthermore, if parameters are such that working at

some point is optimal, then the optimal (i.e. payoff-maximizing) termination penalty is strictly

positive.

4.1 Discussion

The key driver behind the structure of equilibrium, as described in Theorem 4.2, is the strategic

substitutability between effort at different dates. If more effort is expected “tomorrow,” wages

tomorrow will be higher in equilibrium, which depresses incentives, and hence effort “today.”

There is substitutability between effort at different dates for the social planner as well, as higher

planned effort tomorrow makes effort today less useful, but wages provide an additional channel.

This substitutability appears to be new to the literature on career concerns. As we have men-

tioned, in the model of Holmström, the optimal choices of effort today and tomorrow are entirely

independent, and because the variance of posterior beliefs is deterministic with Gaussian signals,

the optimal choice of effort is deterministic as well. Dewatripont, Jewitt and Tirole emphasize

the complementarity between expected effort and incentives for effort (at the same date): if the

agent is expected to work hard, failure to achieve a high signal will be particularly detrimental

to tomorrow’s reputation, which provides a boost to incentives today. Substitutability between

effort today and tomorrow does not appear in their model, because it is primarily focused on two

periods, and at least three are required for this effect to appear. With two periods only, there

are no incentives to exert effort in the second (and final) period anyhow.14

Conversely, complementarity between expected and actual effort at a given time is not dis-

cernible in our model, in which time is continuous. But this complementarity appears in discrete

14It is worth noting that this substitutability does not require the multiplicative structure that we have assumed.

If instead, we had posited that instantaneous success probability is given by λχω=1+ut, effort would be similarly

single-peaked, as is readily verified.
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time versions of our model, and three-period examples can be constructed that illustrate this

point.

As a result of this novel effect, dynamics display original features. In Holmström’s model,

wage is a supermartingale; in Dewatripont, Jewitt and Tirole, it is necessarily monotone. Here

instead, effort can be first increasing, then decreasing, and wages can be decreasing first, in-

creasing then, and decreasing again. These dynamics are not driven by the deadline.15 They

are not driven either by the fact that, with two types, the variance of the public belief need not

be monotone.16 The same pattern emerges in examples with an infinite horizon, and a prior

p0 < 1/2 that guarantees that this variance only decreases over time, see Figure 7. As equation

(6) makes clear, the provision of effort is tied to the capital gain that the agent obtains if he

breaks through. Viewed as an integral, this capital gain is too low early on, it decreases over

time, and then declines again, for a completely different reason. Indeed, this wedge depends on

two components: the wage gap, and the impact of effort on the (expected) arrival rate of a suc-

cess. Therefore, high initial wages would depress the first component, and hence kill incentives

to exert effort early on. The latter component declines over time, so that eventually effort fades

out again.

Similarly, one might wonder whether the possibility of non-increasing wages in this model is

driven by the fact that the effort and wage paths under consideration are truly conditional paths,

inasmuch as they assume that the agent has not succeeded so far. Yet it is not hard to provide

numerical examples which illustrate that the same phenomenon arises for the unconditional flow

payoff (v in case of a past success), though the increasing cumulative probability that a success

has occurred by a given time, leading to higher payoffs (at least if wt < v) dampens the downward

tendency.

We have assumed throughout –as is usually done in the literature–that the agent does not

know his own skill level. The analysis of the case in which the agent is informed of his own

type is straightforward, as there is no scope for signalling here. Of course, the agent who knows

that he is of low ability has no incentives to exert any effort, so we might concentrate on the

15This is unlike for the social planner, for which we have seen that effort is non-increasing with an infinite

horizon, while it is monotone (and possibly increasing) with a finite horizon.
16Recall that, in Holmström’s model, this variance decreases (deterministically) over time, which plays an

important role in his results.
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high-skilled agent. Because of the market’s declining belief, the same dynamics arise, and this

agent’s effort is single-peaked (in particular, it is not monotone in general). One difference with

the unknown type case is that effort by the high-skilled agent need not converge to zero, though

the expected effort from the market’s point of view does so.
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Figure 7: The same pattern in the case of T = ∞, p0 < 1/2

Dynamics of the complexity just described are rarely observed in practice: while it is difficult

to ascertain effort patterns, wages do typically go up over time. See Abowd, Kramarz and

Margolis (1999), Murphy (1986) and Topel (1991) among others, and Hart and Holmström

(1987) and Lazear and Gibbs (2007) for surveys. Lazear (1981) obtains a positive impact of

wages on seniority by (among others) assuming that the worker’s outside option is increasing

over time, and also derives the optimal deadline, or retirement age (Lazear, 1979). Other features

of actual labor contracts are signing bonuses, rigid wages, and severance pay.

Our model provides a benchmark to examine what labor market arrangements are likely to

explain this. In the next section, we shall consider three such possibilities: what if the principal

has more commitment power than is typically assumed in career concerns model? How about if

he has even less, so that there is no commitment to a specific deadline? Finally, how about if

the monitoring is better than has been assumed?
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Before considering such alternative arrangements, we conclude this section by arguing that

our findings are robust to some of our specific modeling assumptions.

4.2 Robustness

Undoubtedly, our model has very stylized features: in particular, all uncertainty is resolved

after only one breakthrough, there is no learning-by-doing, and the quality of the project cannot

change over time. We argue here that none of these features is critical to our main findings.

4.2.1 Multiple breakthroughs

Suppose that one breakthrough does not resolve all uncertainty. More specifically, assume that

there are three states of the world, ω = 0, 1, 2, and two consecutive projects. The first one can

be completed if and only if the state is not 0 ; assume (instantaneous) arrival rates of λ1 + ut

and λ2 + ut, respectively, conditional on ω = 1 or ω = 2; if the first project is completed, an

observable event, the agent tackles the second one, which in turn can only be completed if ω = 2;

assume again an arrival rate of λ2 + ut if ω = 2. Suppose that the horizon is infinite for both

projects.

Such an extension can be solved by “backward induction.” Once the first project is completed,

the continuation game reduces to the game of Section 4. The value function of this problem then

serves as continuation payoff to the first stage. While this value function cannot be solved in

closed-form, it is easy to derive the solution numerically. The following example illustrates the

structure of the solution. The parameters are v = 1, α = 1/2,P[ω > 0] = 0.85,P[ω = 2 | ω >

0] = 0.75, λ2 = 1, λ1 = 0.6, c(u) = u2/8.

See Figure 8. The left panel shows effort and wages during the first stage. As is clear, the

same pattern as in our model emerges: effort is single-peaked, and as a result, wages can be first

decreasing, then single-peaked.

The right panel shows how efforts and beliefs evolve before and after the first success. The

green curves represent the equilibrium belief that ω = 2, before and after the success (the light

green curve is the belief as long as no success has occurred, and the dark green one the belief

right after a success has occurred); the blue curves are equilibrium effort (the light blue curve is

effort as long as no success has occurred, the dark blue one is the effort right after a success).
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Note that effort at the start of the second project is also single-peaked as a function of the time

at which this project is started (the later it is started, the more pessimistic the agent at that

stage, though his belief has obviously jumped up given the success).
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Figure 8: Efforts and beliefs with two breakthroughs

4.2.2 Learning-by-doing

Memorylessness is a very stark, if convenient property of the exponential distribution. This means

that past effort plays no role in the probability of instantaneous breakthrough, conditional on the

state. Surely, in many applications, agents learn from the past not only about their skill levels,

but about the best way to achieve a breakthrough. While considering such learning-by-doing

formally is beyond the scope of this paper, it is simple easy enough to gain some intuition from

numerical simulations.

We model human capital accumulation as in Doraszelski (2003). The evolution of human

capital is given by

żt = ut − δzt,

while its productivity is

ht = ut + ρzφt .

That is, the probability of success over the interval [t, t + dt) is (λ+ ht)dt, given human capital

ht and effort ut. Here δ, ρ and φ are positive constants that measure how fast human capital
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depreciates, its importance relative to instantaneous effort, and the returns to scale from human

capital. Not surprisingly, the main new feature is a spike of effort at the beginning, whose
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Figure 9: Two possible configurations with learning-by-doing

purpose is to build human capital. This spike might lead to decreasing initial effort, before it

becomes single-peaked (Figure 9 illustrates), though this need not be the case. Beyond this new

twist, features from the baseline model appear quite robust.

4.2.3 Changing state

Suppose finally that, unbeknownst to the agent and the principal, the state of the world is reset

at random times, exponentially distributed at rate ρ > 0; whenever it is reset, the state is reset

to 1 with probability p∗ ∈ (0, 1).17 In our environment, this is “equivalent” to the stationary

version developed by Holmström in the Gaussian case, though we do not restrict attention to

steady states. Specifically, suppose that with instantaneous probability ρ > 0 the ability is reset,

in which case it is high with probability p∗. Such an event remains unobserved by all parties. As

before, a breakthrough ends the game, and the environment remains the same as before, with

17This specification bears a close similarity to Board and Meyer-ter-Vehn (2011), though it also differs in some

key respects.
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linear cost (and v > αλ, as before) and an infinite horizon. (Thus, the baseline model with linear

cost and T = ∞ is a special case in which ρ = 0.)

By Bayes’ rule, the (agent’s) belief p obeys

ṗt = ρ (p∗ − pt)− pt (1− pt) (λ+ ut) , p0 = p0,

and this is the same as the principal’s belief in equilibrium. The equilibrium is unique, and

effort and belief converges to some limiting value p(u), which is independent of the prior, and

decreasing in the eventual effort level u, as follows. (The proof of the following is available upon

request.)

Proposition 4.5 There exists αλ < v < v̄ and 0 < p < p̄ < p∗ such that, if

1. v > v̄, effort is eventually maximum, and p tends to a limit below p;

2. v ∈ (v, v̄), effort is eventually interior, with p tending to a limit in (p, p̄);

3. v < v, effort is eventually zero, and p tends to a limit above p̄;

The higher the value, the more effort is exerted, the lower is the asymptotic belief. This eventual

belief is non-decreasing in p∗ and ρ, not surprisingly, and non-increasing in ū. Finally, it is

decreasing in λ when effort is extremal, but increasing otherwise. As is easy to check, asymptotic

effort (or stationary effort if p0 = p∗) is decreasing in α, the marginal cost of effort, and in λ, the

“luck” component of the arrival of breakthroughs. Comparative statics of effort with respect to

p∗ and ρ are ambiguous.

Note that, if the prior belief is below the limiting value, effort, and hence wage can be

increasing over time. (It is easy to construct examples in which wage is increasing throughout,

see right panel of Figure 10, but it need not be so, see left panel.) It would be interesting to

consider the case in which the game does not end with a success, but rather continues with a

value reset at the prior of 1 (which immediately starts declining towards p∗), but we have not

pursued this here.

5 Alternative labor market arrangements

Throughout the new two subsections, attention is restricted to the case of linear cost.
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Figure 10: Changing states: two possible configurations

5.1 Commitment by the principal

The assumption that the flow wage must equal the worker’s marginal product is sometimes

motivated by the presence of competition for the agent, rather than lack of commitment by the

principal. Our model does not substantiate such a claim: if the principal can commit to a wage

path, the outcome looks substantially different, even if there is competition for the agent.

Suppose that the agent cannot be forced to stay with the principal (so that he can leave at

any time), but the principal can commit to a wage path that is conditioned to the absence of

a breakthrough. Other principals, who are symmetrically informed (that is, they observe the

wages paid by the principals who have employed the agent in the past), compete by making

similar offers of wage paths (at all times). The same deadline T applies to all of them, i.e. the

tenure clock is not reset (the deadline could be the worker’s retirement age, for instance, so that

switching principals does not extend the work horizon).

Clearly, stronger forms of commitment can be thought of. If the principal could commit to

an arbitrary, breakthrough-contingent wage scheme, the moral hazard problem would be solved

entirely: under competition, the principal would could do no better than offer the value of a

breakthrough, 1, to the agent, in case of a success, and nothing otherwise.

If the principal could at least commit to a time-contingent wage scheme that also involved
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payments after a breakthrough (even if such payments were not contingent on its realization),

the moral hazard would also be mitigated, if not solved. Whatever is promised at time t in case

of no breakthrough so far should also be promised in case of a breakthrough, so as to eliminate

all disincentives that wages exert on effort.

Here, wages can only be paid in the continued absence of a breakthrough. Think of the agent

moving on once a breakthrough occurs, with the principal being unable to retain him in this

event.

Because of competition, we write the principal’s problem as of maximizing the agent’s welfare

subject to constraints. Formally, we solve the following optimization problem P.18 The principal

chooses u : [0, T ] → [0, ū] and w : [0, T ] → R+, integrable, to maximize W (0, p0), where, for any

t ∈ [0, T ],

W (t, pt) := max
w,u

∫ T

t

1− pt
1− ps

(ws − v − αus) ds− k
1− pt
1− pT

,

such that, given w, the agent’s effort is optimal,

u = argmax
u

∫ T

t

1− pt
1− ps

(ws − v − αus) ds− k
1− pt
1− pT

,

and the principal offers as much to the agent at later times than the competition could offer at

best, given the equilibrium belief,

∀τ ≥ t :

∫ T

τ

1− pτ
1− ps

(ws − v − αus) ds− k
1− pτ
1− pT

≥ W (τ , pτ ) ; (10)

finally, the firm’s profit must be non-negative,

0 ≤
∫ T

t

1− pt
1− ps

(ps(λ+ us)− ws)ds.

Note that competing principals are subject to the same constraints as the principal under con-

sideration: because the agent might ultimately leave them as well, they can offer no better than

18To be clear, we are not claiming that this optimization problem yields the equilibrium of a formal game, in

which the agent could deviate in his effort scheme, leave the firm, and competing firms would have to form beliefs

about the agent’s past effort choices, etc. Given the well-known modeling difficulties that continuous time raises,

we view this merely as a convenient shortcut. Among the assumptions that it encapsulates, note that there is no

updating based on an off-path action (e.g., switching principals) by the agent.
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W (τ , pτ) at time τ , given belief pτ . This leads to an “infinite regress” of constraints, with the

value function appearing in the constraints themselves. To be clear, W (τ , pτ ) is not, in general,

the continuation payoff that results from the solution to the optimization problem, but the value

of the optimization problem if it were to start at time τ . Because of the constraints, the solution

is not time-consistent, and dynamic programming is of little help. Fortunately, this problem can

be solved, as shown in appendix –at least as long as ū and v are large enough. Formally, we

assume that

ū ≥
( v

αλ
− 1
)

v − λ, and v ≥ λ(1 + k).19 (11)

Before describing its solution, let us provide some intuition. Recall the first-order condition

(6) that determines the agent’s effort. Clearly, the lower the future total wage bill, the stronger

the agent’s incentives to exert effort, which is inefficiently low in general. Therefore, considering

two times t < t′, to provide strong incentives at time t′, it is best to frontload any promised

payment to the agent to times before t′, as such payments will no longer matter at that time.

Ideally, the principal would pay what he owes the agent upfront, as a “signing bonus.” This,

however, is not possible given the constraint (10), as an agent left with no future payments

would leave the principal right after cashing in the signing bonus.

But from the perspective of incentives at time t, backloading promised payments is better.

To see this, note that the coefficient of the wage ws, s > t, in (6) is (up to the factor (1− pt))

the likelihood ratio ps/ (1− ps), as explained before (6). Alternatively, note that

(1− pt)
ps

1− ps
= P [ω = 1|τ ≥ s]P [ω = 1] = P [ω = 1 ∩ τ ≥ s] ;

that is, effort at time t is affected by wage at time s > t inasmuch as time s is reached and the

state is 1: otherwise effort plays no role anyhow.

In terms of the principal’s profit –or the agent’s payoff–, the coefficient placed on the wage

at time s (see 3) is

P [τ ≥ s] ,

i.e., whether this wage is paid (or collected). Because players grow more pessimistic over time,

the former coefficient decreases faster than the latter one: backloading payments is good for

incentives at time t. Of course, to provide incentives with later payments, those payments must

19We do not know whether these assumptions are necessary for the result.
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be increased, as a breakthrough might occur until then, which would void them; but it also

decreases the probability that these payments must be paid in the same proportion. So what

matters is not the probability that time s is reached as much as the fact that later payments

depress incentives less, as reaching those later times is indicative of state 0, which is less relevant

(indeed, irrelevant with linear cost, see the discussion after (8)) for incentives.

To sum up: from the perspective of time t incentives, backloading payments is useful; from

the point of view of time t′ > t , it is detrimental, but frontloading is constrained by (10). Note

that, as T → ∞, the planner’s solution tends to the agent’s best response to a wage of wt ≡ 0.

Hence, the firm could approach the planner’s payoff by promising the agent a lump sum payment

arbitrarily far in the future (and flow wages equal to marginal product thereafter). This would

“count” almost as wt = 0 in the agent’s incentives, and induce the efficient effort level. The lump

sum payment would then be essentially equal to p0/(1− p0).

Note finally that, given the focus on linear cost, there is no benefit in giving the agent any

“slack” in his incentive constraint at time t; otherwise, by frontloading slightly future payments,

incentives at time t would not be affected, while incentives at later times would be enhanced.

The following result, then, should come as no surprise.

Theorem 5.1 The following is a solution to the optimization problem P, for some t ∈ [0, T ].

Maximum effort is exerted up to time t, and zero effort is exerted afterwards. The wage is equal

to v−αλ up to time t, so that the agent is indifferent between all levels of effort up to then, and

it is 0 for all times s ∈ (t, T ); a lump-sum is paid at time T .20

It is possible that high effort is exerted throughout. In fact, this is what happens if T is short

enough. If, and only if, the deadline is long enough is there a phase in which no effort is exerted.

The lump-sum at time T can be interpreted as severance pay. As time proceeds, the agent

produces revenue that exceeds the flow wage collected: the liability recorded by the principal

grows over time, shielding it from the threat of competition, as this liability will eventually be

settled via this severance pay.

20The wage path that solves the problem is not unique in general.
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5.2 Observable effort

5.2.1 Set-up

To what extent are dynamics driven by the assumption that effort is non-observable? Consider

the case in which effort is observable, while still non-contractible. That is, the principal cannot

commit, and as a result must pay upfront the value of the agent’s expected ouput, but the actual

effort is observed as soon as it is exerted. Therefore, the belief of the principal coincides with

the agent’s at all times, on and off the equilibrium path, and the payment flow is given by

wt = pt(λ+ ût),

where pt is the common belief, and ût is the effort level that the market expects the agent to

exert in the next instant. The agent then maximizes

∫ T

0

1− p0
1− pt

[pt(λ+ ût)− αut − v] dt− k
1− p0
1− pT

.

In contrast to (3), the revenue is no longer a function of time only, as chosen effort affects future

beliefs, hence future wages.

At the very least, then, we must describe wages, and behavior, as a function of time t and

current belief p. In fact, we shall restrict attention to equilibria in Markov strategies

u : [0, 1]× [0, T ] → [0, ū] ,

such that u is upper semicontinuous in (p, t), and such that the value function

V (p, t) = sup
u

{∫ T

t

1− pt
1− ps

[ps (λ+ u (ps, s))− αu(ps, s)− v] ds− k
1− pt
1− pT

}

,

with pt = p, is piecewise differentiable.21 We shall prove that such equilibria (Markov equilibria)

exist.

21That is, there exists a finite partition of [0, 1] × [0, T ] into closed subsets Si with non-empty interior, such

that V is differentiable on the interior of Si, and the intersection of any pair Si, Sj is either empty or a smooth

1-dimensional manifold.

34



5.2.2 Equilibrium structure

We first argue that if the agent ever exerts low effort, he has always done so before.

Lemma 5.2 Fix a Markov equilibrium. If u = 0 on some open set Ω ⊂ [0, 1]× [0, T ], then also

u (p′, t′) = 0 if the equilibrium trajectory that starts at (p′, t′) intersects Ω.

This lemma implies that every equilibrium has a relatively simple structure: if the agent is

ever willing to exert high effort, he keeps being willing to do so at any later time, at least on the

equilibrium path. In any equilibrium involving extremal effort levels only, there are at most two

phases: first, the worker exerts no effort, and then full effort. This is precisely the opposite of the

optimal policy for the social planner (under our assumption v > αλ), in which high effort comes

first (see lemma 2.1). The agent can only be trusted by the market to put in high effort if he

is “back to the wall,” so that maximum effort will remain optimal at any later time, no matter

what he does until then; if the market paid the worker for high effort, yet he was supposed to let

up his effort later on, then the worker would gain by deviating to low effort, pocketing the high

wage in the process; because the observable deviation to no effort would make everyone more

optimistic, it would only increase his incentives to exert high effort later and thus increase his

wage at later times.

This, of course, relies heavily on the Markovian assumption. As the next theorem states,

there are multiple Markov equilibria.

Theorem 5.3 Given T , there exists continuous, non-increasing p, p̄ : [0, T ] → [0, 1], with p
t
≤ p̄t

and p
T
= p̄T , such that:

1. All Markov equilibria involve maximum effort above p̄:

pt > p̄t ⇒ u (p, t) = ū;

2. All Markov equilibria involve no effort below p:

pt ≤ p
t
⇒ u (p, t) = 0;

3. These bounds are tight: there exists a Markov equilibrium σ (resp. σ̄) in which effort is

either 0 or ū if and only if p is below or above p (resp. p̄).
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The proof of Theorem 5.3, in appendix, provides an explicit description of these boundaries.

Given Lemma 5.2, these boundaries are crossed at most once, from below, along any equilibrium

trajectory. Note that these boundaries for the belief might be as high as one, in which case effort

is never exerted at the corresponding time: indeed, there exists t∗ (independent of T ) such that

effort is zero at all times t < T − t∗ (if T > t∗). The threshold p is decreasing in the cost of

effort α, and increasing in the outside option v and penalty k. Considering the equilibrium with

maximum effort, the agent works more, the more desirable success is.

These results are illustrated in Figure 11 for the same parameters as in Figure 4 in the

unobservable case.
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Figure 11: Effort and wages in the observable case

It is worth noting that, while σ and σ̄ provide upper and lower bounds on the equilibrium

effort exerted in an equilibrium (in the sense of (1.)–(2.)), these equilibria are not the only

ones. There exist other Markov equilibria involving only extremal effort levels, whose switching

boundary lies between p and p̄, as well as equilibria in which interior effort levels are exerted at

some states. In particular, the proof builds an equilibrium in which the agent exerts an amount

of effort in (0, ū) at all times t for all values of p in [p
t
, p̄t]. This effort is equal to ū once the

curve p is reached, decreases continuously along the equilibrium trajectory from that point on,

until the upper boundary is reached (which, unless a breakthrough occurs, necessarily happens
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before time T , as p
T
= p̄T ), at which point the effort level jumps up to ū.22

In the extremal equilibria, wages are decreasing over time, except for an upward jump at the

point at which effort jumps up to ū. In the interior-effort equilibrium described in the proof (in

which effort is interior everywhere between p and p̄), wages decrease continuously over time.

Equilibrium multiplicity can be understood as follows. Because the principal only expects

high effort if the belief is high and the deadline is close, such states (belief and times) are desirable

for the agent, as the higher wage more than outweighs the effort cost. Yet low effort is the best

way to reach those states, as effort depresses beliefs: hence, if the principal expects the agent to

shirk until a high boundary is reached (in (p, t)-space), the agent has strong incentives to shirk to

reach this boundary; if the principal expected the agent to shirk until an even higher boundary,

this would only reinforce this incentive –up to some point.

This intuition foreshadows already what is stated in the next subsection: observability further

depresses incentives and reduces effort, relative to non-observability. But as explained, it is also

more in consonance with increasing wages: as effort is non-decreasing over time, the only force

that pushes down wages is growing pessimism, not declining work.

For the purpose of comparative statics, we focus on the equilibrium that involves the largest

region of effort.

Proposition 5.4 The boundary of the maximal effort equilibrium p (t) is non-increasing in k

and v and non-decreasing in α and λ.

The effect of the maximum effort level ū is ambiguous. Finally, one might wonder whether

increasing the termination penalty k can increase welfare, for some parameters, as it might help

resolve the commitment problem. Unlike in the non-observable case, this turns out never to occur,

at least in the maximum-effort equilibrium: increasing the penalty decreases welfare, though it

unambiguously increases total effort. The proof is in Appendix D. Similarly, increasing v, the

value of succeeding, increases effort (in the maximum-effort equilibrium), though it decreases the

worker’s payoff.

22It is not possible to strengthen (4) further to the statement that, once maximum effort is exerted, it is

exerted throughout: there is considerable leeway in specifying equilibrium strategies between p̄ and p, and nothing

precludes maximum effort to be followed by interior effort. (Of course, if p̄ is crossed, effort remains maximal.)
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5.2.3 Comparison with the non-observable case

Along the equilibrium path, the dynamics of effort look very different when one compares the

social planner, the agent when effort is unobservable, and the agent when effort is observable.

Yet it turns out that effort can easily be ranked across those cases. To do so, the key is to

describe effort in terms of the state (p, t), i.e., the public belief and calendar time.

For the observable case, it is enough to focus on the region (i.e., subset of the (p, t)-space)

defined by the frontier p, as this characterizes the maximum effort equilibrium, and it will turn

out that even in this equilibrium, the agent works less than under non-observability.

Proposition 5.5 The maximal effort region for the observable case is contained in the full

effort region(s) for the non-observable case.

Proposition 5.5 confirms the intuition that observability of effort reduces the incentives to

work. In particular, the highest effort equilibrium in the observable case involves unambiguously

lower effort levels than the (unique) equilibrium in the unobservable case. Recall also from

Proposition 3.2.(1) that the (interior or full) effort region in the non-observable case is in turn

contained in the full effort region for the social planner.

How about non-Markov equilibria? Defining such equilibria formally in our continuous-time

environment is problematic, but it is clear that threatening the agent with reversion to the

Markov equilibrium σ̄ provides incentives for high effort that extend beyond the high-effort

region defined by σ –in fact, beyond the high-effort region in the unobservable case. The social

planner’s solution, however, remains out of reach, since the punishment is restricted to beliefs

below p.

5.3 Endogenous deadlines

The last two subsections have shown how more commitment power or better monitoring dras-

tically affect the effort and wage pattern. We argue here that endogenizing the deadline does

not.

By an endogenous deadline, we mean that the worker decides when to quit optimally. We

assume (for now) that he has no commitment power. The principal anticipates the quitting deci-
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sion, and takes this into account while determining the agent’s equilibrium effort, and therefore,

the wage he should be paid.

More specifically, in each interval [t, t+dt) such that the agent has not quit yet, the principal

pays a wage wtdt, the agent then decides how much effort to exert over this time interval, and

at the end of it, whether to stay or leave, which is an observable choice.

This raises the issue of the principal’s beliefs if the agent were to deviate and stay beyond

what the equilibrium specifies. For simplicity, we adopt passive beliefs. That is, if the agent is

supposed to drop out at some time but fails to do so, the principal does not revise his belief

regarding the past effort choices, ascribing the failure to quit to a mistake, and anticipates

equilibrium play in the continuation (which means, as it turns out, that he anticipates the agent

quitting at the next opportunity).23

We have argued above that endogenous deadlines do not affect the possible effort and wage

patterns. In fact, we show in appendix that, with convex cost, effort is always decreasing at

the equilibrium deadline. This implies, in particular, that the wage is decreasing at that stage.

Furthermore, it is simple to construct examples in which effort is not decreasing throughout.

Hence, effort is single-peaked, and wages are first decreasing, and then single-peaked (both

might be decreasing throughout).

Furthermore, we show in appendix that the deadline is always too long relative to the deadline

chosen by the social planner. Of course, effort (and hence the worker’s marginal product) are

decreasing throughout in the first-best solution.

How about if the worker could commit to the deadline (but still not to effort levels)? The

optimal deadline with commitment can be either shorter or longer than without commitment.

In either case, however, the deadline is set so as to increase aggregate effort, and so increase

wages. But sometimes this means increasing the deadline –so as to increase the duration over

which higher effort levels are sustained, even if that means quitting at a point where staying in

is unprofitable– or decreasing the deadline –so as to make high effort levels credible. Figure 12

23In the linear cost case, this means that we fix the off-equilibrium beliefs to specify ût = ū if pt > p∗, where p∗

is the lowest belief at which it would be optimal for the agent to exert maximum effort if he anticipated quitting

at the end of the interval [t, t + dt) (see appendix for p∗ in closed-form), and ût = 0 otherwise. In other words,

the market does not react to a failure to quit, anticipates the agent quitting immediately afterwards and expects

instantaneous effort to be determined as if p = pT were the terminal belief.
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below illustrates the two possibilities.
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Figure 12: Setting the deadline with commitment can push it higher or lower than without (the

curves stop at the respective deadlines).

Finally, having the worker quit when it is best for him to do so (without commitment to the

deadline) reinforces our comparison between observable and non-observable effort. As we show,

the deadline chosen is shorter, and the total effort exerted is lower, when effort is observed by

the principal (in the linear cost case).

These results are summarized in the following proposition. Exact characterizations are pro-

vided in the proof (See Appendix D.3).

Proposition 5.6 With convex cost,

1. Effort is always decreasing at the optimal deadline without commitment;

2. The belief of the planner at the deadline is lower than the agent’s at the optimal deadline

without commitment;

3. The deadline with commitment can be shorter or longer than without;

Furthermore, with linear cost, total effort is lower, and the deadline chosen shorter, when

effort is observable than when it is not.
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One might also wonder how optimal deadlines affect the structure of the optimal contract

with commitment but competition developed in Section 5.1. A complete analysis (for the linear

cost case) is provided in appendix D.3.3. By an optimal deadline, we mean the deadline that

society would like to impose to maximize social welfare, and would apply to all competing firms

simultaneously. In the absence of such external enforcement, it is not hard to see that, if the

deadline were part of the contract, firms might as well offer contracts with an infinite deadline.

With external enforcement, however, the deadline can be finite (depending on parameters). For

all parameters, it is such that the second phase –in which effort and wages are zero– is non-empty:

the value of extending the deadline beyond the point at which the worker would start shirking is

always optimal. This is unlike what the social planner would impose in terms of effort: it would

be optimal to choose a deadline and an effort path that specifies full effort until the deadline.

We conclude this section by comparing the performance of a deadline with a finishing line.

A deadline T is a time at which the game stops. A finishing line, instead, is a value of the belief,

x̂, at which the game stops, and the penalty k is incurred. Given some finishing line, what is

the optimal strategy of the worker? As a consequence, what is the optimal finishing line, and is

setting a finishing line preferable to a deadline? A finishing line makes more sense when effort is

observable than not, and so we assume it is. Attention is restricted to Markov strategies, which,

given the absence of deadline, reduce to measurable functions u(·) of the (public) belief only.

As usual, equilibrium requires that the expected effort that determines the wage coincides with

optimal effort.

Proposition 5.7

1. Given the finishing line x̂, the optimal strategy involves first full effort, then interior and

decreasing effort, then zero effort;24

2. The optimal finishing line involves the same belief as the optimal deadline without commit-

ment and unobservable effort.

24Of course, depending on the finishing line, the project might stop before effort drops from maximum effort.
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6 Concluding remarks

Rather than summarize our findings, let us point out what we view as the most promising

extensions of this agenda.

We have discussed when the worker would choose to quit, not when the firm would like to

lay off the worker. To examine this issue, it is necessary to introduce some friction in the model:

as the firm is paying a fair wage at all times in the current model, it has nothing to lose nor to

gain by firing the worker. Yet this is an important question, in light of the rigid tenure policies

adopted by many professional service firms. Why not keep the employee past the probationary

period, adjusting the wage for the diminished incentives and lower assessed ability?25 Firms have

a cost of hiring (or firing) workers –possibly due to the delay in filling a vacancy– but derive

a surplus from the worker in excess of the competitive wage they have to pay. Studying the

efficiency properties and the characteristics of the resulting labor market (composition of the

working force, duration of unemployment) seems to be an interesting undertaking.

Despite the richness of the model and the absence of closed-form solutions, this model appears

rather tractable, as the characterization, comparative statics and extensions illustrate. It is

then natural to apply this framework to the analysis of partnerships.26 After all, in law or

consulting firms, projects are often assigned to a team of employees that combine partners with

junior associates. This raises several issues. The team must achieve several possibly conflicting

objectives: incentivizing both the partner and the associate, and eliciting information about

the associate’s ability. How should profits be shared in the team to do so? When should the

project be terminated, or the junior associate replaced? Is it indeed optimal to combine workers

whose assessed ability differs, as opposed to workers about whom information is symmetric? A

related issue is yardstick competition: in our model, there is no distinction between the skill of

the worker and the feasibility of the project that he tackles. In practice, the market learns both

about the worker and the project’s feasibility, and this learning occurs also through the progress

of other agents’ work on similar issue. Clearly then, yardstick competition affects the agent’s

25See Gilson and Mnookin (1989) for a discussion of this puzzle for the case of law firms.
26There is a growing literature on reputation in teams, which is certainly relevant for professional service firms,

in which associates routinely engage in joint projects with partners. See Bar-Isaac (2007), Jeon (1996), Landers,

Rebitzer and Taylor (1996), Levin and Tadelis (2005), Morrison and Wilhelm (2004), and Tirole (1996).
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incentives. Finally, and relatedly, workers of different perceived skills might choose different

types of projects; more challenging projects, or tougher environments, might foster learning of

very high skilled workers, but be redhibitory for workers with lower perceived skills. Examining

how the market allocates employees and firms and how this allocation differs from the efficient

match is an interesting open issue.
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Appendix

Throughout this appendix, we shall use the log-likelihood ratio

xt := ln
1− pt
pt

of state ω = 0 vs. ω = 1. We set x0 := ln(1 − p0)/p0. Note that x increases over time and, given u, follows the

O.D.E.

ẋt = λ+ ut,

with x0 = x0. We shall also refer to xt as the “belief,” hoping that this will create no confusion.

We start by explaining how the objective function can be derived as the limit of a discounted version of our

problem. Suppose that V is the value of a success and VL = V − k is the value of failure. Given the discount rate

r, the agent’s payoff is given by

(
1 + e−x0

)
V0 =

∫ T

0

e−rt
(
1 + e−xt

)
(

ẋt
1 + ext

V + wt − c (ut)

)

dt+ e−rT
(
1 + e−xT

)
VL,

where V0 is his ex ante payoff.

Integrating by parts we obtain

(
1 + e−x0

)
V0 =

∫ T

0

e−rte−xtẋtV dt+

∫ T

0

e−rt
(
1 + e−xt

)
(wt − c (ut)) dt+ e−rT

(
1 + e−xT

)
(V − k)

= −e−rte−xtV
∣
∣
T

0
+

∫ T

0

e−rt
((
1 + e−xt

)
(wt − c (ut))− e−xtrV

)
dt+ e−rT

(
1 + e−xT

)
(V − k)

= e−x0V − e−rT e−xTV +

∫ T

0

e−rt
(
1 + e−xt

)
(

wt − c (ut)−
rV

1 + ext

)

dt+ e−rT
(
1 + e−xT

)
(V − k) ,

so that as r → 0 (and defining v as rV → v) we obtain

(
1 + e−x0

)
(V0 − V ) =

∫ T

0

(
1 + e−xt

)
(

wt − c (ut)−
v

1 + ext

)

dt− k
(
1 + e−xT

)
.

Similarly, one can show the social planner’s payoff is given by

(
1 + e−x0

)
(V0 − V )− e−x0 + k = −

∫ T

0

(
1 + e−xt

)
(

c (ut) +
v

1 + ext

)

dt− (1 + k) e−xT .
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A Proofs for Section 2

Proof of Lemma 2.1. In both the linear and convex cases, existence and uniqueness of a solution follow as

special case of Lemma 3.1, when w = 0 identically (the transversality condition must be adjusted). To see that

the social planner’s problem is equivalent to this, note that (whether the cost is convex or linear), the “revenue”

term of the social planner’s objective satisfies

∫ T

0

(1 + e−xt)
λ+ ut
1 + ext

dt =

∫ T

0

ẋte
−xtdt = e−x0 − e−xT ,

and so this revenue only affects the necessary conditions through the transversality condition at T .

Let us start with the linear case. The social planner maximizes

∫ T

0

(1 + e−xt)

(
λ+ ut
1 + ext

− αut − v

)

dt− ke−xT , s.t. ẋt = λ+ ut.

We note that the maximization problem cannot be abnormal, since there is no restriction on the terminal value

of the state variable. See Note 5, Ch. 2, Seierstad and Sydsæter (1987). The same holds for all later optimization

problems.

It will be understood from now on that statements about derivatives only hold almost everywhere.

Let γt be the costate variable. The Hamiltonian for this problem is

H (x, u, γ, t) = e−xt(λ+ ut)− (1 + e−xt)(v + αut) + γt (λ+ ut) .

Define φt := ∂H/∂ut = (1 − α)e−xt − α+ γt. Note that given xt and γt, the value of φt does not depend on ut.

Pontryagin’s principle applies, and yields

ut = ū (ut = 0) ⇔ φt :=
∂H

∂ut
= (1− α)e−xt − α+ γt > (<)0,

as well as

γ̇t = e−xt(λ− v + (1− α)ut), γT = ke−xT .

Differentiating φt with respect to time, and using the last equation gives

φ̇t = e−xt(αλ− v), φT = (1 + k − α)e−xT − α.

Note that φ is either increasing or decreasing depending on the sign of αλ−v. Therefore, the planner’s solution is

either maximum effort–no effort, or no effort–maximum effort, depending on the sign of this expression. Finally,

the marginal product p (λ+ u) is decreasing if effort maximum–zero. If effort is zero–maximum, the marginal

product is decreasing, jumps up, and then decreases again.

Consider now the convex case. Applying Pontryagin’s theorem (and replacing the revenue term by its ex-

pression in terms of xt and x
0, as explained above) yields as necessary conditions

γ̇t = −e−x(c(u) + v), γt = (1 + e−xt)c′(ut),
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where γt is the co-state variable, as before. Differentiate the second expression with respect to time, and use the

first one to obtain

u̇ =
(λ+ u) c′ (u)− c (u)− v

c′′ (u) (1 + ex)
, (12)

in addition to ẋ = λ+ u (time subscripts will often be dropped for brevity). Let

φ (u) := (λ+ u) c′ (u)− c (u)− v.

Note that φ (0) = −v < 0, and φ′ (u) = (λ+ u) c′′ (u) > 0, and so φ is strictly increasing and convex. Let u∗ ≥ 0

be the unique solution to

φ (u∗) = 0,

and so φ is negative on [0, u∗] and positive on [u∗,∞). Accordingly, u < u∗ =⇒ u̇ < 0, u = u∗ =⇒ u̇ = 0 and

u > u∗ =⇒ u̇ > 0. Given the transversality condition

(1 + exT ) c′ (uT ) = 1 + k,

we can then define xT
(
x0
)
by

xT (x
0) =

1

λ+ u∗

[

ln

(
1 + k

c′ (u∗)
− 1

)

− x0
]

,

and so effort is decreasing throughout if xT > xT (x
0), increasing throughout if xT < xT (x

0), and equal to u∗

throughout otherwise. The conclusion then follows from the proof of Lemma 2.3, which establishes that the belief

xT at the deadline is increasing in T .

We now turn to the marginal product p (λ+ u). In terms of x, the marginal product is given by

w (x) :=
λ+ u (x)

1 + ex
, and so

w′ (x) =
u′ (x)

1 + ex
− w (x)

ex

(1 + ex)
,

so that w′ (x) = 0 is equivalent to

u′ (x) = w (x) ex.

Notice that u′ (x) ≤ 0 implies w′ (x) < 0. Conversely, if u′ (x) > 0, consider the second derivative of w (x). We

have

w′′ (x) = − ex

1 + ex
w′ (x) +

1

1 + ex
(u′′ (x)− w (x) ex − u′ (x) ex) ,

so that when w′ (x) = 0 we have

w′′ (x) =
u′′ (x)− u′ (x)

1 + ex
.

From equation (12) we obtain an expression for the derivative of u with respect to x:

u′ (x) =
(λ+ u) c′ (u)− c (u)− v

c′′ (u) (1 + ex) (λ+ u)
.
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Let g (u) = v + c (u)− (λ+ u) c′ (u) and study u′′ (x) when w′ (x) = 0. We have

u′′ (x) =
u′

1 + ex
+
g ((1 + ex) (c′′ + (λ+ u) c′′′)u′ (x) + exc′′ (λ+ u))

(c′′ (u) (1 + ex) (λ+ u))
2

=
c′′ (λ+ u)u′ (x)

c′′ (1 + ex) (λ+ u)
− u′ (x) ((1 + ex) (c′′ + (λ+ u) c′′′) u′ (x) + exc′′ (λ+ u))

c′′ (1 + ex) (λ+ u)

= −u
′ (x) ((1 + ex) (c′′ + (λ+ u) c′′′)u′ (x) + exc′′ (λ+ u)− c′′ (λ+ u))

c′′ (1 + ex) (λ+ u)

= −u
′ (x) ((2c′′ + (λ+ u) c′′′) ex (λ+ u)− c′′ (λ+ u))

c′′ (1 + ex) (λ+ u)
.

We therefore consider the quantity

u′′ (x) − u′ (x) = −u
′ (x) ((2c′′ + (λ+ u) c′′′) ex − c′′ + c′′ (1 + ex))

c′′ (1 + ex)

= −u
′ (x) (3c′′ + (λ+ u) c′′′) ex

c′′ (1 + ex)
< 0,

if as we have assumed, c′′+(λ+ u) c′′′ > 0. Therefore, we have single-peaked (at most increasing then decreasing)

wages. �

Proof of Lemma 2.3. We shall use the necessary conditions obtained in the previous proof. Part (1) is almost

immediate. Note that in both the linear and convex case, the necessary conditions define a vector field (u̇, ẋ),

with trajectories that only define on the time left before the deadline and the current belief. Because trajectories

do not cross (in the plane (−τ, x), where τ is time-to-go and x is the belief), and belief x can only increase with

time, if we compare two trajectories starting at the same level x0, the one that involves a longer deadline must

necessarily involve as high a terminal belief x as the other (as the deadline expires).

(2) In the linear case, it is straightforward to solve for the switching time (or switching belief) under As-

sumption 2.2. For all terminal beliefs xT > x∗, for which no effort is exerted at the deadline, the switching belief

between equilibrium phases is determined by

(1 + k − α)e−xT − α =

∫ xT

x

e−sαλ− v

λ
ds,

which gives as value of x (as a function of t)

x (t) = ln
(

(1 + k − v/λ)e−λ(T−t) − (α− v/λ)
)

− lnα.

This represents a frontier in (t, x) space that the equilibrium path will cross from below for sufficiently long

deadlines. Consistent with the fact that, in the optimum, a switch to zero effort is irreversible, when ut = 0 and

ẋt = λ, the path leaves this locus (i.e., it holds that x′ (t) < λ).

The switching belief x (t) decreases in T : the longer the deadline, the longer maximum effort will be exerted

(recall that x measures pessimism). This belief decreases in α and increases in v and k: the higher the cost of
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failing, or the lower the cost of effort, the longer effort is exerted. These are the comparative statics mentioned

in the text before Lemma 2.3.

Furthermore, by differentiating, the boundary x(·) satisfies x′(t) < 0 (resp. > 0) if and only if 1 + k < v/λ.

In that case, total effort increases with T : considering the plane (−τ , x), where τ is time-to-go and x is the belief,

increasing the deadline is equivalent to increasing τ , i.e. shifting the initial point to the left; if x′ < 0, it means

that the range of beliefs over which high effort is exerted (which is 1-to-1 with time spent exerting maximum effort,

given that ẋ = λ+ ū) increases. If instead x′ is positive, total effort decreases with T , by the same argument.

Consider now the convex case. Note that

1

x′ (u)
=

du

dx
=
u̇

ẋ
=

(λ+ u) c′ (u)− c (u)− v

c′′ (u) (1 + ex) (λ+ u)
,

along with

(1 + exT ) c′ (uT ) = 1 + k,

which is the transversality condition, can be integrated to

φ (u) =
(k + 1)φ (uT )

1 + k − c′ (uT )

1

1 + e−x
.

Note also that, defining g (u) := φ(u)
1+k−c′(u) ,

g′ (u) =
(λ+ u) c′′ (u)

1 + k − c′ (u)
+

φ (u)

(1 + k − c′ (u))
2 c

′′ (u) ,

which is of the sign of

ψ(u) := (λ+ u)(1 + k)− c(u)− v,

which is strictly concave, negative at ∞, and positive for u small enough if and only if 1 + k > v/λ.

Note that increasing T is equivalent to increasing xT , which in turn is equivalent to decreasing uT , because

the transversality condition yields
duT
dxT

= − c′ (u) ex

(1 + ex) c′′ (u)
< 0.

Because φ is increasing, u increases when uT decreases if and only if ψ is decreasing at u.

So if maxu[(λ + u)(1 + k) − c(u)] < v, ψ is negative for all u, and it follows that u increases for fixed x; in

addition to all values of x that are visited in the interval [x0, xT ], as T increases, additional effort accrues at time

T ; overall, it is then unambiguous: total effort increases.

On the other hand, if 1 + k > v/λ, then if the deadline is long enough for effort to be small throughout,

effort at x < xT decreases as T increases, but since an additional increment of effort is produced at time T , it is

unclear. A simple numerical example shows that total effort can then decrease. �
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B Proofs for Section 3

Proof of Lemma 3.1. We address the two claims in turn.

Existence: Note that the state equation is linear in the control u, while the objective’s integrand is concave

in u. Hence the set N(x, U, t) is convex (see Thm. 8, Ch. 2 of Seierstad and Sydsæter, 1987). Therefore, the

Filippov-Cesari existence theorem applies.

Uniqueness: We can write the objective as, up to constant terms,

∫ T

0

(1 + e−xt)(wt − v − c (ut))dt− ke−xT ,

or, using the likelihood ratio lt := pt/ (1− pt) > 0,

J (l) :=

∫ T

0

(1 + lt)(wt − v − c (ut)) dt− klT .

Consider the linear case. Letting gt := wt − v + αλ, we rewrite the objective in terms of the likelihood ratio

as
∫ T

0

ltgtdt− (k − α)lT + α ln lT + Constant.

Because the first two terms are linear in l while the last is strictly concave, it follows that there exists a unique

optimal terminal odds ratio l∗T := lT . Suppose that there exists two optimal trajectories l1, l2 that differ.

Because l1,0 = l2,0 = p0/
(
1− p0

)
and l1,T = l2,T = l∗T , yet the objective is linear in lt, it follows that every

feasible trajectory l with lt ∈ [min {l1,t, l2,t} ,max {l1,t, l2,t}] is optimal as well.27 Consider any interval [a, b] ⊂
[0, T ] for which t ∈ [a, b] =⇒ min {l1,t, l2,t} < max {l1,t, l2,t}. Consider any feasible trajectory l with lt ∈
[min {l1,t, l2,t} ,max {l1,t, l2,t}] for all t, lt ∈ (min {l1,t, l2,t} ,max {l1,t, l2,t}) for t ∈ [a, b] and associated control

such that ut ∈ (0, ū) for t ∈ [a, b]. Because there is an open set of variations of u that must be optimal in [a, b] ,

it follows from Lemma 2.4.ii of Cesari (1983) that gt = 0 (a.e.) on [a, b].

Consider now the convex case. Suppose that there are two distinct optimal trajectories l1 and l2, with

associated controls u1 and u2. Assume without loss of generality that

l1,t < l2,t for all t ∈ (0, T ].

We analyze the modified objective function

J̃ (l) :=

∫ T

0

(1 + lt)(wt − v − c̃t (ut))dt− klT ,

in which we replace the cost function c (ut) with

c̃t (u) :=

{

αtu if u ∈ [min {u1,t, u2,t} ,max {u1,t, u2,t}]
c (u) if u 6∈ [min {u1,t, u2,t} ,max {u1,t, u2,t}],

27Feasibility means that l̇t ∈ [ltλ, lt (λ+ ū)] for all t.
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where

αt :=
max {c (u1,t) , c (u2,t)} −min {c (u1,t) , c (u2,t)}

max {u1,t, u2,t} −min {u1,t, u2,t}
.

(If u1,t = u2,t =: ut for some t, set αt equal to c′(ut)). Because c̃t (u) ≥ c (u) for all t, u, the two optimal

trajectories l1 and l2, with associated controls u1 and u2, are optimal for the modified objective J̃ (l) as well.

Furthermore, J̃ (l1) = J (l1) and J̃ (l2) = J (l2).

We will construct a feasible path lt and its associated control ut ∈ [min {u1,t, u2,t} ,max {u1,t, u2,t}] which
attains a higher payoff J̃ (l) and therefore a strictly higher payoff J (l). Suppose ut ∈ [u1,t, u2,t] for all t. Letting

gt := wt − v + αλ− α̇t, we rewrite the modified objective as
∫ T

0

ltgtdt−
∫ T

0

α̇t ln ltdt− (k − αT )lT + αT ln lT + Constant.

We now consider a continuous function εt ≥ 0 and two associated variations on the paths l1 and l2,

l′1,t := (1− εt) l1,t + εtl2,t

l′2,t := (1− εt) l2,t + εtl1,t.

Because l1 and l2 are optimal, for any εt it must be the case that

J̃ (l1)− J̃ (l′1) ≥ 0

J̃ (l2)− J̃ (l′2) ≥ 0.

We can write these payoff differences as
∫ T

0

εt (l1,t − l2,t) gtdt+

∫ T

0

α̇tεt
l2,t − l1,t
l1,t

dt− (k − αT )εT (l1,T − l2,T )− αT εT
l2,T − l1,T

l1,T
+ o (‖ε‖) ≥ 0

∫ T

0

εt (l2,t − l1,t) gtdt+

∫ T

0

α̇tεt
l1,t − l2,t
l2,t

dt− (k − αT )εT (l2,T − l1,T )− αT εT
l1,T − l2,T

l2,T
+ o (‖ε‖) ≥ 0.

Letting

ρt : l1,t/l2,t < 1 for all t > 0,

we can sum the previous two conditions (up to the second order term). Finally, integrating by parts, we obtain

the following condition,
∫ T

0

[
ε̇t
εt

(

2− ρt −
1

ρt

)

+ ρ̇t
1− ρ2t
ρ2t

]

αtεtdt ≥ 0,

which must hold for all εt. Using the fact that ρ̇ = ρ (u2 − u1) we have
∫ T

0

[

− ε̇t
εt

(1− ρt) + (u2,t − u1,t) (1 + ρt)

]

αtεt
1− ρt
ρt

dt ≥ 0. (13)

We now identify bounds on the function εt so that both variations l′1 and l′2 are feasible and their associated

controls lie in [min {u1,t, u2,t} ,max {u1,t, u2,t}] for all t. Consider the following identities

l̇′1 = −l′1,t (λ+ ut) ≡ ε̇t (l2,t − l1,t)− λl′1,t − (1− εt)u1,tl1,t − εtu2,tl2,t

l̇′2 = −l′2,t (λ+ ut) ≡ ε̇t (l1,t − l2,t)− λl′2,t − εtu1,tl1,t − (1− εt) u2,tl2,t.
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We therefore have the following expressions for the function ε̇/ε associated with each variation

ε̇t
εt

=
(u1,t − ut)

1−εt
εt

l1,t + l2,t (u2,t − ut)

l2,t − l1,t
, (14)

ε̇t
εt

=
(u1,t − ut) l1,t +

1−εt
εt

l2,t (u2,t − ut)

l1,t − l2,t
. (15)

In particular, whenever u2,t > u1,t the condition

ε̇t
εt

∈
[

−1− εt
εt

l2,t (u2,t − u1,t)

l2,t − l1,t
,
l1,t (u2,t − u1,t)

l2,t − l1,t

]

ensures the existence of two effort levels ut ∈ [u1,t, u2,t] that satisfy conditions (14) and (15) above. Similarly,

whenever u1,t > u2,t we have the bound

ε̇t
εt

∈
[

− l1,t (u1,t − u2,t)

l2,t − l1,t
,
1− εt
εt

l2,t (u2,t − u1,t)

l2,t − l1,t

]

.

Note that ε̇t/εt = 0 is always contained in both intervals.

Finally, because ρ0 = 1 and ρt < 1 for all t > 0, we must have u1,t > u2,t for t ∈ [0, t∗) with t∗ > 0. Therefore,

we can construct a path εt that satisfies

(u2,t − u1,t)
1 + ρt
1− ρt

<
ε̇t
εt
< 0 ∀t ∈ [0, t∗),

with ε0 > 0, and εt ≡ 0 for all t ≥ t∗. Substituting into condition (13) immediately yields a contradiction. �

Proof of Proposition 3.2. Recall from the proof of Lemma 2.3 that

1

x′ (u)
=

du

dx
=
u̇

ẋ
=

(λ+ u) c′ (u)− c (u)− v

c′′ (u) (1 + ex) (λ+ u)

must hold for the optimal trajectory (in the (x, u)-plane) for the social planner. Denote this trajectory xFB . The

corresponding law of motion for the agent’s optimum trajectory x∗ given w is

1

x′ (u)
=

(λ+ u) c′ (u)− c (u) + wt − v

c′′ (u) (1 + ex) (λ+ u)
.

(Note that, not surprisingly, time matters). This implies that (in the (x, u)-plane) the trajectories xFB and x∗

can only cross one way, if at all, with x∗ being the flatter one. Yet the (decreasing) transversality curve of the

social planner, implicitly given by

(1 + exT ) c′ (uT ) = 1 + k,

lies above the (decreasing) transversality curve of the agent, which is defined by

(1 + exT ) c′ (uT ) = k.

Suppose now that the trajectory xFB ends (on the transversality curve) at a lower belief xFB
T than x∗: then it

must be that effort u was higher throughout along that trajectory than along x∗ (since the latter is flatter, xFB
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must have remained above x∗ throughout). But since the end value of the belief x is simply x0 +
∫ T

0 usds, this

contradicts xFB
T < x∗T .

It follows that for a given x, the effort level u is higher for the social planner.

The same reasoning implies the second conclusion: if xFB
T = x∗T , so that total effort is the same, yet the

trajectories can only cross one way (with x∗ being flatter), it follows that x∗ involves lower effort first, and then

larger effort, i.e. the agent backloads effort. �

Proof of Proposition 3.3.

Consider the convex case. Applying Pontryagin’s theorem yields eqn. (7). It also follows that the effort and

belief (x, u) trajectories satisfy

c′′ (u) (1 + ex) u̇ = (λ+ u) c′ (u)− c (u) + wt − v (16)

ẋ = λ+ u (17)

with boundary conditions

x0 = x0 (18)

ke−xT =
(
1 + e−xT

)
c′ (uT ) . (19)

Differentiating (16) further, we obtain

(c′′ (u) (1 + ex))
2
u′′t = ((λ+ u) c′′ (u)u′t + w′

t) c
′′ (u) (1 + ex)

− ((λ+ u) c′ (u) + wt − c (u)− v) (c′′′ (u)u′t (1 + ex) + ex (λ+ u) c′′ (u)) .

So that when u′t = 0 we obtain

c′′ (u) (1 + ex)u′′t = w′
t.

This immediately implies the first conclusion.

In the linear case, mimicking the proof of Lemma 2.1, Pontryagin’s principle applies, and yields the existence

of an absolutely continuous function γ : [0, T ] → R such that

γt − α
(
1 + e−xt

)
> (<)0 ⇒ ut = ū (ut = 0) .

as well as

γ̇t = e−xt(wt − αut − v), γT = ke−xT .

Define φ by φt := γt − α(1 + e−xt). Note that φt > 0 (resp. < 0) ⇒ ut = ū (resp. = 0). Differentiating φt with

respect to time, and using the last equation gives

φ̇t = e−xt(αλ+ wt − v), φT = (k − α)e−xT − α.

(This is the formal derivation of eqn. (8).) Observe now that if w is monotone, so is αλ + wt − v, and hence φ̇

changes signs only once. Conclusion 1 follows for the linear case. If it is strictly monotone, φ is equal to zero at

most at one date t, and so the optimal strategy is extremal, yielding the second conclusion of the lemma. �
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C Proofs for Section 4

We shall start with Proposition 4.3 before turning to Theorem 4.2.

Proof of Proposition 4.3. We prove the following:

1. If there exists t ∈ (0, T ) such that φt > 0, then there exists t′ ∈ [t, T ] such that us = ū for s ∈ [t, t′], us = 0

for s ∈ (t′, T ].

2. If there exists t ∈ (0, T ) such that φt < 0, then either us = 0 for all s ∈ [t, T ] or us = 0 for all s ∈ [0, t],

which implies the desired decomposition. For the first part, note that either us = ū for all s > t, or there

exists t′′ such that both φt′′ > 0 (so in particular ut′′ = ū) and φ̇t′′ < 0. Because pt decreases over time, and

us ≤ ut′′ for all s > t′′, it follows that ws < wt′′ , and so φ̇s < φ̇t′′ < 0. Hence φ can cross 0 only once for values

above t, establishing the result. For the second part, note that either us = 0 for all s ≥ t, or there exists t′′ ≥ t

such that φt′′ < 0 (so in particular ut′′ = 0) and φ̇t′′ > 0. Because pt decreases over time, and us ≥ ut′′ for all

s < t′′, it follows that ws ≥ wt′′ , and so φ̇s > φ̇t′′ > 0. For all s < t′′, φs < 0 and φ̇s > 0. Hence, us = 0 for all

s ∈ [0, t]. �

Proof of Theorem 4.2. We study the linear and convex cases in turn.

Proof of Theorem 4.2 (Linear case). We start by establishing uniqueness.

Uniqueness: Assume an equilibrium exists, and note that, given a final belief xT , the pair of differential equations

for φ and x (along with the transversality condition) admit a unique solution, pinning down, in particular, the

effort exerted by, and the wage received by the agent. Therefore, if two (or more) equilibria existed for some

values (x0, T ), it would have to be the case that each of them is associated with a different terminal belief xT .

However, we shall show that, for any x0, the time it takes to reach a terminal belief xT is a continuous, strictly

increasing function T (xT ); therefore, no two different terminal beliefs can be reached in the same time T .

We start with a very optimistic initial belief x0 < x1, as this allows for the richest paths (the other cases are

subsets of these).

Clearly, we have T (x0) = 0. As long as x0 < x∗, we have a first range for xT over which full effort is always

exerted. For these terminal beliefs, we have T (xT ) = (xT − x0) / (λ+ ū), increasing. If for all xT ≤ x∗ the

following expression is strictly positive

(k − α) e−xT − α−
∫ xT

x0

e−x

(
1

1 + ex
− v − αλ

λ+ ū

)

dx, (20)

then we always have full effort, until xT = x∗. If so, go to the section “Long Terminal Beliefs.” Otherwise, go to

the section “Short Terminal Beliefs.”
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Short Terminal Beliefs

For these beliefs, we have a full effort phase at the end. We assume x0 < x1 < x∗, as the other cases are subsets

of those discussed here. Full effort is exerted at the end typically for short deadlines. If xT < x∗ then the full

effort region is given by [x2, xT ], where x2 solves

(k − α) e−xT − α−
∫ xT

x2

e−x

(
1

1 + ex
− v − αλ

λ+ ū

)

dx = 0.

Therefore, we have

dx2
dxT

=

(
1

1 + ex2
− v − αλ

λ+ ū

)−1(

k − α+
1

1 + exT

− v − αλ

λ+ ū

)

ex2−xT .

The denominator is positive by construction (φ (x) hits zero going backwards).

1. Suppose x2 > x1. Then the time to get to xT is given by

T (xT ) =
xT − x2
λ+ ū

+

∫ x2

x1

dx

λ+ u (x)
+
x1 − x0

λ
.

Using the formula for interior effort,

u (x) = (v − αλ) (1 + ex)− λ,

we can write

T ′ (xT ) =
1

λ+ ū
+

dx2
dxT

ū− u (x2)

(λ+ ū) (λ+ u (x2))

∝ λ+ u (x2) +
dx2
dxT

(ū− u (x2))

= (v − αλ) (1 + ex2) + (ū− u (x2))
dx2
dxT

.

We want to show T ′ (xT ) > 0. Clearly, if dx2/dxT > 0, we are done. If not, then we have

T ′ (xT ) > (v − αλ) (1 + ex2) + (λ+ ū− (v − αλ) (1 + ex2))
dx2
dxT

e−(x2−xT )

= (v − αλ) (1 + ex2) + (1 + ex2) (λ+ u)

(

k − α+
1

1 + exT

− v − αλ

λ+ ū

)

∝ k − α+
1

1 + exT

> 0.

2. Now suppose x0 < x2 < x1, and so no effort is exerted on [x0, x2] . Notice that if x2 (xT ) ≤ x0 then T (xT )

is clearly increasing, in xT (since we have full effort throughout). If x2 (xT ) > x0, the time necessary to

reach the terminal belief is given by

T (xT ) =
xT − x2
λ+ ū

+
x2 − x0

λ
.
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Therefore,

λ (λ+ ū)T ′ (xT ) = λ+ ū
dx2
dxT

.

It is immediate that if x2 is increasing in xT then T ′ (·) > 0. If not, then we have

T ′ (xT ) ∝ λ+ ū
dx2
dxT

> λ+ ū
dx2
dxT

e−(x2−xT )

∝ λ

(
1

1 + ex2
− v − αλ

λ+ ū

)

+ ū

(

k − α+
1

1 + exT

− v − αλ

λ+ ū

)

.

We also know ex2 < ex1 = λ/ (v − αλ)− 1, and thus

T ′ (xT ) > λ

(
v − αλ

λ
− v − αλ

λ+ ū

)

+ ū

(

k − α+
1

1 + exT

− v − αλ

λ+ ū

)

= ū

(

k − α+
1

1 + exT

)

> 0.

Longer Terminal Beliefs

For xT > x∗ we can have four possible patterns: never work (in which case the time to xT is clearly increasing),

zero-interior-zero, zero-interior-full-zero, or zero-full-zero. We now show that T (xT ) is increasing under any of

these patterns. In addition the times at which the equilibrium path switches between the various effort regions

are continuous functions of xT , so it suffices to establish T ′ (xT ) in each of these cases separately.

Zero and Interior Effort Phases

We again consider the time necessary to reach a given terminal belief xT . We consider beliefs xT > x∗, for which

the agent does not work at the end. If there is no full effort phase, the agent works at a rate

u (x) = (v − αλ) (1 + ex)− λ

until the switching belief x3, then stops until xT . The two thresholds are linked by the equation

(k − α) e−xT − α−
∫ xT

x3

e−x

(
1

1 + ex
+ α− v

λ

)

dx = 0.

From the state equation, we know beliefs increase at rate λ + u (x) in the first phase, and at rate λ afterwards.

The time to xT is therefore given by

T (xT ) =

∫ xT

x1

1

λ+ u (x)
dx =

∫ x3(xT )

x1

1

(v − αλ) (1 + ex)
dx+

xT − x3 (xT )

λ
.

Consider the derivative of T with respect to xT ,

λT ′ (xT ) = 1 +

(
λ

λ+ u (x3)
− 1

)
dx3
dxT

,

where dx3/dxT is given by

dx3
dxT

=

(
1

1 + ex3
− v

λ
+ α

)−1(

k +
1

1 + exT

− v

λ

)

ex3−xT . (21)
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Now, we know (1 + ex3)
−1

+α− v/λ < 0 for all x > x1. Therefore, if k ≥ v/λ (or more generally if (1 + ex3)
−1

+

k − v/λ > 0), then dx3/dxT < 0, the whole expression is positive and we are done.

Conversely, suppose that (1 + ex3)
−1

+ k − v/λ < 0. We then check whether T ′ (xT ) can be negative. We obtain

λT ′ (xT ) = 1− ex3−xT
u (x3)

λ+ u (x3)

(
v

λ
− 1

1 + exT

− k

)/(
v

λ
− 1

1 + ex3
− α

)

> 1− u (x3)

λ+ u (x3)

(
v

λ
− 1

1 + exT

− k

)/(
v

λ
− 1

1 + ex3
− α

)

.

Now plug in the expression for u (x3), notice that the x3 drops out, and obtain

λT ′ (xT ) > λ
k − α

v − αλ
> 0.

Full and Interior Effort Phases

Now suppose the path involves interior effort on [x1, x2], full effort on [x2, x3] and zero effort on [x3, xT ]. The

time it takes to reach xT is then given by

λT (xT ) =

∫ x2(xT )

x1

λ

(v − αλ) (1 + ex)
dx+

λ

λ+ ū
(x3 (xT )− x2 (xT )) + xT − x3 (xT ) .

Hence

λT ′ (xT ) = 1− ū

λ+ ū

dx3
dxT

+
dx2
dxT

(
λ

λ+ u (x2)
− λ

λ+ ū

)

.

Notice that x2 is the solution to
∫ x3

x2

e−x

(
1

1 + ex
+
αλ− v

λ+ ū

)

dx = 0. (22)

We then have

dx2
dxT

= −
e−x3

(
1

1+ex3
+ αλ−v

λ+ū

)

e−x2

(
1

1+ex2
+ αλ−v

λ+ū

)
dx3
dxT

, (23)

and so

λT ′ (xT ) = 1− dx3
dxT

ū

λ+ ū
+

dx2
dxT

(
λ

λ+ u (x2)
− λ

λ+ ū

)

.

Clearly, k ≥ v/λ implies dx3/dxT < 0, dx2/dxT > 0 and T ′ (xT ) > 0.

Conversely, suppose k < v/λ. Plug in the explicit formula for u(x2) and for dx3/dxT to obtain the following

expression for λT ′(xT ):

(exT (v − kλ)− (k + 1)λ+ v) (−λex2 (ū+ ex3(αλ− v)− v + αλ+ λ)− ū (ex3 + 1) ex3(v − αλ))

exT (ū+ λ) (exT + 1) (v − αλ) (ex3(v − αλ) + v − (α+ 1)λ)
+ 1.

To simplify, let V = λ/(v − αλ)− 1, U = (λ+ ū)/(v − αλ)− 1, k = α(K + 1), and Xi = exi to get

1− (K(V + 1)(X3 + 1)α+ V −XT )
(
U
(
V X2 +X2 +X2

3 +X3

)
−X3(V (X2 +X3 + 1) +X2)

)

(U + 1)XT (XT + 1)(V −X3)
.
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The constraints are: 0 < V < X2 < U < X3 < XT , 0 < K < XT , and α > 0. Note that the conditions v > αλ

and ū > 0 follow from U > V > 0. The condition α < k < α(XT + 1) is captured by 0 < K < XT . Finally,

note that if v > kλ (which is equivalent to αK < (1 + V )
−1

) then this expression is positive, as it is linear in

A = K(1 + V )α, and it is positive both for A = 0, 1.28

Full Effort Phase Only

In this case, the incentives to exert effort hit zero when beliefs are at a level that does not allow interior effort,

or x2 < x1. The candidate equilibrium involves zero-full-zero effort. The time required is then given by

λT (xT ) = xT − x3 + (x3 − x2)
λ

λ+ ū
+ x2 − x0

= xT − (x3 − x2)
ū

λ+ ū
− x0,

where x3 and x2 solve the same equations as before. Therefore,

λT ′ (xT ) = 1− ū

λ+ ū

(
dx3
dxT

− dx2
dxT

)

,

where the last two terms are given by equations (21) and (23) respectively.

If k ≥ v/λ, then dx3/dxT < 0, dx2/dxT > 0, and we are done by the same argument as before.

28This requires a little bit of work. Consider the case A = 0. The derivative w.r.t. U of the expression is

− (1 + V ) (X3 + 1) (X3 +X2) (XT − V )

(1 + U)
2
(X3 − V )XT (1 +Xt)

< 0,

so the expression is minimized by choosing U as high as possible given the constraints, i.e. U = X3, in which

case the expression simplifies to
X3V +XT (1 +XT −X3)

XT (1 +XT )
> 0.

Consider now A = 1. Similarly, the derivative w.r.t. U does not depend on U itself, so the expression is minimized

at one of the extreme values of U ; if U = X3, it is equal to

X3 (1 +X3 + V ) +XT (XT −X3 + 1)

XT (1 +XT )
> 0;

if U = X2, the resulting expression’s derivative w.r.t. X2 is independent of X2, so we can again plug in one of

the two extreme cases, X2 = X3 or X2 = V ; the values are then, respectively,

X3 (1 + V +X3) +XT (XT −X3 + 1)

XT (1 +XT )
> 0

and
XT (1 +XT + V )− V (1 + V +X3)

XT (1 +XT )
≥ X3 (X3 + 1)− V (V + 1)

XT (1 +XT )
≥ 0.
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If v > kλ, then dx3/dxT > 0 and we proceed as follows. Substituting the expressions in (21) and (23), and using

the same change of variable as before, we want to show that

1− X2 (X2 + 1) (U − V ) (U −X3) (XT (K(V + 1)α− 1) +K(V + 1)α+ V )

(U + 1)XT (XT + 1) (U −X2) (V −X3)
> 0.

To establish this inequality, it is simpler to bound α. Setting the expression to zero, this is equivalent to requiring

that

αK <
(U + 1)XT (U −X2) (V −X3)

(V + 1)X2 (X2 + 1) (U − V ) (U −X3)
− 1

XT + 1
+

1

V + 1
,

a sufficient condition for this is that αK < (1 + V )−1, which is equivalent to v > kλ.

Existence: We have established that the time necessary to reach the terminal belief is a continuous and strictly

increasing function. Therefore, the terminal belief reached in equilibrium is itself given by a strictly increasing

function

xT (T ) : R+ → [x0,∞).

Since there exists a unique path consistent with optimality for each terminal belief, given a deadline T we can

establish existence by constructing the associated equilibrium outcome, and in particular, the equilibrium wage

path. Existence and uniqueness of an optimal strategy for the worker, after any (on or off-path) history, follows

then from Lemma 3.1.

Proof of Theorem 4.2 (Convex case). We proceed as in the linear case.

Uniqueness: Fix T. The two differential equations obeyed by the (x, u)-trajectory are

ẋ = λ+ u

u̇ =
(λ+ u) c′ (u)− c (u) + λ+u

1+ex − v

c′′ (u) (1 + ex)
.

We have, using that dx = (λ+ u) dt,

du

dx
=: f (u, x) =

(λ+ u) c′ (u)− c (u) + λ+u
1+ex − v

(λ+ u) c′′ (u) (1 + ex)
. (24)

Recall also that the transversality curve is given by

(1 + ex) c′ (u) = k,

and so
duT
dxT

= − c′ (u) ex

(1 + ex) c′′ (u)
< 0.

Note that the slope of u (x) at the deadline T is at most first positive then negative. To see this, differentiate the

numerator in (24) and impose (24) equal to zero. We obtain

d

dxT

du (xT )

dx
=

d

dxT

[

(λ+ u (xT )) c
′ (u (xT ))− c (u (xT )) +

λ+ u (xT )

1 + exT

]

=

(

(λ+ u (xT )) c
′′ (u (xT )) +

1

1 + exT

)
duT
dxT

− (λ+ u (xT )) e
xT

(1 + exT )
2 < 0.
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Suppose now we had

u′ (x) >
duT
dxT

, at x = xT ,

so that the trajectory does not cross the transversality line from above. Then we would be done. A path leading

to a higher xT lies below one leading to the lower xT so later beliefs take longer to reach.

Denote the difference in the slopes of the effort and transversality lines by

∆ (u, x) :=
(λ+ u) c′ (u)− c (u) + λ+u

1+ex − v

(λ+ u) c′′ (u) (1 + ex)
+

c′ (u) ex

(1 + ex) c′′ (u)
.

Note that ∆ = 0 ⇒ ∆′ (xT ) < 0 so our trajectory crosses transversality (at most) first from below then from

above.

More generally, the time required to reach terminal belief xT is given by

T =

∫ xT

x0

1

λ+ u (x)
dx =

∫ xT

x0

(

λ+ u (xT )−
∫ xT

x

u′ (x) dx

)−1

dx.

Differentiating with respect to xT we obtain

dT

dxT
=

1

λ+ u (xT )
+

(

u′ (xT )−
duT
dxT

)∫ xT

x0

1

(λ+ u (x))
2 dx

=
1

λ+ u (xT )
+ ∆ (uT , xT )

∫ xT

x0

1

(λ+ u (x))2
dx.

Clearly, if the function u (x) crosses the transversality line from below (∆ > 0) then we are done: a path leading

to a higher xT lies below one leading to the lower xT so later beliefs take longer to reach. Imposing transversality

and simplifying we obtain that a necessary condition for ∆ > 0 for all xT is

k ≥ v/λ.

Because we do not wish to assume that, note that the function f (u, x) in (24) has the following properties

f (u, x) ≤ 0 ⇒ fu (u, x) > 0

f (u, x) ≥ 0 ⇒ fx (u, x) < 0.

In words, a trajectory at (x, u+ du) comes down not as fast as a trajectory at (x, u) if (x, u) is such that u̇ ≤ 0.

Conversely, a trajectory at (x− dx, u) climbs faster than a trajectory at (x, u) if (x, u) is such that u̇ ≥ 0.

Therefore, consider a trajectory u (x) such that ∆ (xT ) < 0. As we increase xT , the new trajectory lies

everywhere above the original one. For a small increase in xT , because the trajectory changes continuously, the

two properties of f (u, x) ensure that the vertical distance between the two trajectories is maximized at xT .

We then have the condition

dT

dxT
>

1

λ+ u (xT )
+ (xT − x0)

∆ (uT , xT )

(λ+ u (xT ))
2 .

62



Using transversality and rewriting ∆ (uT , xT ) we obtain the condition

c′′ (u (xT )) (λ+ u (xT )) ≥
xT − x0
1 + exT

(
c (u (xT )) + v

λ+ u (xT )
− k − 1

1 + exT

)

. (25)

Note that (25) clearly holds at xT = x0. Furthermore, if c′′ (0) > 0, (25) also holds in the limit for xT → ∞.

Finally, since c′′ (u) (λ+ u) was assumed increasing, a sufficient condition for (25) to be satisfied is given by

c′′ (0) >
1

λ

( v

λ
− k
)

h (x0) ≥
1

λ

( v

λ
− k
)

e−x0 ,

which is the condition for uniqueness. Existence is established as in the linear case.

Single-peakedness: Single-peakedness of effort is almost immediate. Substituting the equilibrium expression

wt = (λ+ ut) / (1 + ext) in the boundary value problem (16). Differentiating u′t further, we obtain

u′t = 0 ⇒ c′′ (u)
(
1 + e−x

)
u′′t = − (wt)

2
,

which implies that the function u is at most first increasing then decreasing.

We now argue that the wage is single-peaked. In terms of x, the wage is given by

w (x) =
λ+ u (x)

1 + ex
, and so

w′ (x) =
u′ (x)

1 + ex
− λ+ u (x)

(1 + ex)2
ex,

so that w′ (x) = 0 is equivalent to

u′ (x) = w (x) ex.

As in the proof of Lemma 2.1, when w′ (x) = 0 we have

w′′ (x) =
u′′ (x)− u′ (x)

1 + ex
.

Furthermore, we know that

u′ (x) =
(λ+ u) c′ (u)− c (u) + λ+u

1+ex − v

c′′ (u) (1 + ex) (λ+ u)
.

Mimicking the proof of Lemma 2.1, we conclude that w′ (x) = 0 implies

u′′ (x)− u′ (x) = −u
′ (x) (3c′′ + (λ+ u) c′′′) ex

c′′ (1 + ex)
< 0,

if as we have assumed, c′′ + (λ+ u) c′′′ > 0. Therefore, we also have single-peaked (at most increasing then

decreasing) wages. (More generally, if c′′′ < 0 but 3c′′ + (λ+ u) c′′′ is increasing in u then the wage can be

increasing on at most one interval.) �

Proof of Proposition 4.4. An important distinction is whether a full effort region occurs right before the

terminal belief xT = x∗. This depends on the sign of

φ′ (x∗ | ū) := 1

1 + ex∗
− v − αλ

λ+ ū
=
α

k
− v − αλ

λ+ ū
≶ 0.
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(1.) Fix a terminal belief xT = x3 +λ (T − t) and consider the equation defining the no effort frontier, which

is given in (50). The left hand side of (50) is decreasing in x3, because fixing xT the derivative is simply given by

φ′ (x3 | u = 0), which is negative by construction. In addition, it is immediate to show that the left hand side of

(50) is increasing in k and v and decreasing in α and λ, which establishes the result.

(2.) We analyze the cases of xT ≤ x∗ and xT > x∗ separately.

Fix a terminal belief xT ≤ x∗ and consider the definition of the full effort frontier, which is obtained by setting

x0 = x2 in equation (20). The left hand side of (20) is increasing in x2, because fixing xT the derivative is simply

given by φ′ (x2 | u = ū), which is positive by construction. In addition, it is immediate to show that the left hand

side of (20) is increasing in k and v and decreasing in α, λ, and ū,which establishes the result.

Fix a terminal belief xT > x∗ and consider the equation defining the full effort frontier, which in this case is given

in (22) and depends on x3 (xT ) as well. The left hand side of (22) is increasing in x2, because fixing xT and

hence x3 (xT ) the derivative is simply given by φ′ (x2 | u = ū), which is positive by construction. In addition, it

is immediate to show that the integrand in (20) is increasing in α, λ, and ū, and decreasing in v. Finally, the left

hand side of (20) is decreasing in x3 (the derivative is given by φ′ (x3 | u = ū) < 0). Combining these facts with

the comparative statics of x3 from part (1.) establishes the result. �

D Proofs for Section 5

D.1 Proofs for Subsection 5.1

Proof of Theorem 5.1. The proof is divided in several steps. Consider the maximization program P in the text:

we begin by conjecturing a full-zero (or “FO”) solution, i.e. a solution in which the agent first exerts maximum

effort, then no effort; we show this solution solves a relaxed program; and finally we verify that it also solves the

original program.

D.1.1 Candidate solution

Consider the following compensation scheme: pay a wage wt = 0 for t ∈ [0, t0] ∪ [t1, T ] , a constant wage

wt = v − αλ for t ∈ [t0, t1], and a lump-sum L at t = T . The agent exerts maximal effort for t ≤ t1 and zero

thereafter. Furthermore, the agent is indifferent among all effort levels for t ∈ [t0, t1] .

For short enough deadlines, there exists a payment scheme of this form that induces full effort throughout,

i.e. t0 > 0 and t1 = T , and leaves the agent indifferent between effort levels at T . Whenever this is the case, we

take this to be our candidate solution. The conditions that pin down this solution are given by indifference at

T and by zero profits at t = 0. Recall the definition of φt from the proof of Proposition 3.3. The conditions are
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then given by

φT = (k − α− L) e−xT − α = 0, (26)
∫ t0

0

(
1 + e−xs

) λ+ u

1 + exs

ds+

∫ T

t0

(
1 + e−xs

)
(
λ+ ū

1 + exs

− v + αλ

)

ds−
(
1 + e−xT

)
L = 0. (27)

As T increases, t0 → 0. Let T ∗ denote the longest deadline for which this solution induces full effort

throughout. The threshold T ∗ is the unique solution to (26) and (27) with xT = x0 + (λ+ ū)T and t0 = 0.

Lemma D.1 The candidate solution is the unique compensation scheme that induces full effort on [0, T ∗].

Proof of Lemma D.1. Delaying any payment from t to t′ would induce the agent to shirk at t′ because he is

now indifferent for t ≤ t1. Anticipating payments while preserving zero profits ex ante would lead the agent to

shirk at t. To see this, notice that, if the firm wants to hold the ex-ante profit level constant and shift wages

across time periods, it can do so by setting

∆w1 = −1 + e−x2

1 + e−x1
∆w2.

Then by construction,

∆w1 +∆w2 = −
(
e−x1∆w1 + e−x2∆w2

)
.

Therefore, by delaying payments (in a profit-neutral way, and without affecting effort), incentives at time t can

be increased. Consider the function

φt = φT −
∫ T

t

e−xs (ws − v + αλ) ds

and two times t1 and t2. Indeed, if ∆w2 > 0, then ∆w1 < 0 and ∆w1+∆w2 > 0, which increases φ1. Conversely,

anticipating payments reduces incentives φ1. �

For T > T ∗, we cannot obtain full effort throughout. Our candidate solution is then characterized by t0 = 0,

t1 < T , indifference at t = T , and zero profits at t = 0. The final belief is given by xT = xt+λ (T − t)+ ū (t1 − t).

It is useful to rewrite our three conditions in beliefs space. We have

(k − α− L) e−xT − α+ (v/λ− α)
(
e−x1 − e−xT

)
= 0, (28)

e−x0 − e−xT − v − αλ

λ+ ū

(
e−x0 − e−x1 + x1 − x0

)
−
(
1 + e−xT

)
L = 0, (29)

xT − x1
λ

+
x1 − x0
λ+ ū

− T = 0, (30)

that determine the three variables (L, x1, xT ) as a function of x0 and T . In order to compute the solution, we

can solve the second one for L and the third for xT and obtain one equation in one unknown for x1.

We can now compute the agent’s payoff under this compensation scheme

W̃ (x0, T ) =

∫ t1

0

(
1 + e−xs

)
(v − αλ− αū− v) ds−

∫ T

t1

(
1 + e−xs

)
vds+

(
1 + e−xT

)
(L− k)

= −
∫ x1

x0

(
1 + e−x

)
αdx−

∫ xT

x1

(
1 + e−x

) v

λ
dx+

(
1 + e−xT

)
(L− k) ,
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where (L, x1, xT ) are the solution to (28)–(30) given (x0, T ). Plugging in the value of L from (27), we can rewrite

payoffs as

W̃ (x0, T ) = −
∫ x1

x0

(
v − αλ

λ+ ū
+ e−x

(
v + ūα

ū+ λ
− 1

))

dx−
∫ xT

x1

(
v

λ
+ e−x v − λ

λ

)

dx−
(
1 + e−xT

)
k.

Now fix x0 and T . We denote by J (x) the payoff under an offer that follows our candidate solution to an agent

who holds belief x. This requires solving the system (28)–(30) as a function of the current belief and the residual

time. In particular, we have J (x) = W̃
(

x, T − x−x0

λ+ū

)

when x < x1 (x0, T ) and J (x) = W̃
(

x, T − x1−x0

λ+ū − x−x1

λ

)

when x ≥ x1 (x0, T ).

Finally, we denote by Y (x) the agent’s continuation payoff at x under the original scheme. Notice that the

bound in (11) ensures that
λ+ ū

1 + ext

≥ v − αλ,

for all t ≤ t1 and for all T. This means the firm is running a positive flow profit when paying v−αλ during full a

effort phase, hence effort at t contributes positively to the lump sum L. In other words, the firm does not obtain

positive profits when the agent’s continuation value is Y (x). We show how to derive this bound in Section D.1.5.

D.1.2 Original and relaxed programs

Consider the original program P , and rewrite it in terms of the log-likelihood ratios xt, up to constant terms.

W (t, xt) = max
w,u

∫ T

t

(
1 + e−xs

)
(ws − v − αus) ds− ke−xT , (31)

s.t. u = argmax
u

∫ T

t

(
1 + e−xs

)
(ws − v − αus) ds− ke−xT ,

∀τ ≥ t :

∫ T

τ

(
1 + e−xs

)
(ws − v − αus) ds− ke−xT ≥W (τ , xτ ) , (32)

0 ≤
∫ T

0

(
1 + e−xt

)
(
λ+ ut
1 + ext

− wt

)

dt. (33)

We first argue that the non negative profit constraint (33) will be binding. This is immediate if we observe

that constraint (32) implies the firm cannot make positive profits on any interval [t, T ] , t ≥ 0. If it did, the worker

could be poached by a competitor that offers, for example, the same wage plus a signing bonus. We now consider

a relaxed problem in which we substitute (32) and (33) with the non positive profit constraint (34).

W (t, xt) = max
w,u

∫ T

0

(
1 + e−xt

)
(wt − v − αut) dt− ke−xT ,

s.t. u = argmax
u

∫ T

0

(
1 + e−xt

)
(wt − v − αut) dt− ke−xT ,

0 ≥
∫ T

τ

(
1 + e−xt

)
(
λ+ ut
1 + ext

− wt

)

dt for all τ ≤ T . (34)

We then use the following result to further relax this program.

66



Lemma D.2 Let T > T ∗ and consider our candidate solution described in (28)–(30). If another contract gen-

erates a strictly higher surplus W (0, x0), then it must yield a strictly higher xT .

Proof of Lemma D.2. We use the fact that our solution specifies maximal frontloading of effort, given xT .

Notice that we can rewrite the social surplus (which is equal to the agent’s payoff at time 0) as

− (1 + k − α) e−xT − αxT −
∫ T

0

(
1 + e−xt

)
(v − αλ) dt+Constant. (35)

Therefore, for a given xT , surplus is maximized by choosing the highest path for xt, which is obtained by

frontloading effort. Furthermore, (35) is strictly concave in xT . Because T > T ∗, we know from Proposition 3.2

that, under any non negative payment function w, the agent works strictly less than the social planner. Since the

agent receives the entire surplus, his ex ante payoff is then strictly increasing in xT . �

We therefore consider the even more relaxed problem P ′ which is given by

max
w,u

xT

s.t. u = argmax
u

∫ T

0

(
1 + e−xt

)
(wt − v − αut) dt− ke−xT

0 ≥
∫ T

τ

(
1 + e−xt

)
(
λ+ ut
1 + ext

− wt

)

dt for all τ ≤ T.

We will prove that our candidate solves the relaxed program P ′. We then show that under our candidate “FO”

solution, constraint (32) in the original program never binds (except at t = 0), and hence that we have found a

solution to the original program P .

D.1.3 Solving the relaxed program

We argue that our candidate “FO” contract solves the relaxed program P ′ in four steps:

1. Showing that gaps in effort provision should be achieved with zero wages and lump sums.

2. Ruling out final zero-full-zero (“OFO”) phases (that is, a structure in which no effort is followed by

maximum effort and then by no effort until T ).

3. Ruling out an overall zero-full-zero phase (that is, an OFO phase beginning at 0 and extending to T ).

4. Ruling out interior effort (that is, showing that ut ∈ {0, ū} a.e.).

For this part, as mentioned in the text, we also need the following technical assumption:

v ≥ λ (1 + k) . (36)

Zero wages and lump sums. Suppose the agent exerts zero effort on [t, t′] and consider his incentives to work

at t as measured by the function φt. The firm can then backload all wages ws owed to the agent at times s ∈ [t, t′] ,
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and pay a single lump-sum Lt′ that keeps φt constant. Since the agent’s incentives have not changed, the value

of xT also remains constant. However, by the argument in proof of Lemma D.1, we know the firm now obtains

lower profits on [t, t′], hence the non positive continuation profits constraint (34) is relaxed.

Ruling out final OFO. Consider a final “OFO” phase. We must have non-positive profits at the beginning of

the first O phase, i.e. π0 ≤ 0. Let x0 denote the belief at the beginning of this phase. In addition, if the OFO

does not begin at t = 0, we must have φx0
= 0. Conversely, since OFO is final, at the end of the second O phase,

we have φT as given by transversality. We now hold both φ0 and π0 constant, and we consider shrinking the

initial O phase by varying the belief x1 at the end of the first O.

Without loss, we consider O phases achieved through lump sums and zero wages. In particular let M and L

denote the intermediate and final lump sums respectively. Let x2 denote the second switching belief F→O, and

consider the equations characterizing the endogenous variables.

φT − Le−xT + (v/λ− α)
(
e−x2 − e−xT

)
= 0

−Me−x1 + (v/λ− α)
(
e−x0 − e−x1

)
= φ0 = 0

e−x0 − e−xT −M
(
1 + e−x1

)
− v − αλ

λ+ ū

(
e−x1 − e−x2 + x2 − x1

)
− L

(
1 + e−xT

)
= π0

x0 +
x2 − x1
λ+ ū

ū+ λT = xT

(k − α) e−xT − α = φT

Note that this includes as a special case the “OF” structure in which x2 = xT . We then wish to show that

xT is decreasing in x1, or equivalently that

∂x2/∂x1 < 1.

Therefore, solve for L and M and substitute into the first equation, letting b := x2 − x1. We obtain

0 = φT + (v/λ− α)
(

e−x1−b − e−x0− b

λ+ū
ū−λT

)

−
e−x0 − π0 − (v/λ− α) (e−x0 − e−x1) (1 + ex1)− e−x0− b

λ+ū
ū−λT − v−αλ

λ+ū

(
e−x1 − e−x1−b + b

)

1 + ex0+
b

λ+ū
ū+λT

.

Multiplying by (1 + ex0+
b

λ+ū
ū+λT )ex1 and collecting the terms in ex1 , we obtain

0 = e2x1 (v/λ− α) e−x0 + (v/λ− α)

(

ex0− λ

λ+ū
b+λT + ū

e−b − 1

λ+ ū

)

+ex1




(k − v/λ+ 1)

(

1 + e−x0− b

λ+ū
ū−λT

)

− αex0+
b

λ+ū
ū+λT

−
(

(1 + α− v/λ) e−x0 − π0 + 1 + v/λ− v−αλ
λ+ū b

)



 . (37)

For ū large enough (see Section D.1.5), this expression is decreasing in b. Furthermore, it is quadratic in ex1

with a positive coefficient on e2x1 . Therefore

∂b

∂x1
= −∂ [37] /∂x1

∂ [37] /∂b
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has the same sign as ∂ [37] /∂x1, computed at the relevant root. Let

A = (v/λ− α) e−x0 ,

B = (k − v/λ+ 1)
(

1 + e−x0− b

λ+ū
ū−λT

)

− αex0+
b

λ+ū
ū+λT

−
(

(1 + α− v/λ) e−x0 − π0 + 1 + v/λ− v − αλ

λ+ ū
b

)

,

C = (v/λ− α)

(

e−bex0+
b

λ+ū
ū+λT + ū

e−b − 1

λ+ ū

)

,

and consider the two roots

ex1 =
−B ±

√
B2 − 4AC

2A
.

Because A > 0, if the relevant solution to (37) is the left root, then ∂ [37] /∂x1 < 0 (which is the desired result

here).

Now consider profits at the beginning of the full effort phase.

π1 = e−x1 − e−xT − v − αλ

λ+ ū

(
e−x1 − e−x1−b + b

)
− L

(
1 + e−xT

)

= e−x1 −
(
e−x0 −M

(
1 + e−x1

))

= e−x1 − e−x0 + (1 + ex1) (v/λ− α)
(
e−x0 − e−x1

)

=
(
e−x0 − e−x1

) v − λ+ vex1 − αλ− αλex1

λ
∝ (ex1 + 1) (v − αλ)− λ.

Note that profits are increasing in x1 (actually, their sign). Impose the solution ex1 = −B+
√
B2−4AC
2A , and find

π1 =

(

−B +
√
B2 − 4AC

2A
+ 1

)

(v − αλ)− λ

>

(

− B

2A
+ 1

)

(v − αλ)− λ

∝ 2 (v/λ− α− 1) e−x0 − (k − v/λ+ 1)
(

1 + e−x0− b

λ+ū
ū−λT

)

+αex0+
b

λ+ū
ū+λT + (1 + α− v/λ) e−x0 − π0 + 1 + v/λ− v − αλ

λ+ ū
b.

Since b ≥ 0 we have

π1 > 2e−x0 (v/λ− α− 1) + αex0 + (1 + α− v/λ) e−x0 + 1 + v/λ− (k − v/λ+ 1)
(
1 + e−x0

)
− v − αλ

λ+ ū
b,

and for ū large enough we can ignore the last term and obtain

π1 > (ex0 + 1) (v − kλ) + vex0 − λ+ αλe2x0 .

Under assumption (36), this expression is positive for all x0.Therefore we can have π1 < 0 only under the lower

root. We then conclude that ∂ [37] /∂x1 < 0 and ∂xT /∂x1 < 0.
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Ruling out overall OFO. Suppose the optimal contract induced a single OFO phase. Then we would have

π0 = 0 and φ0 ≤ 0. In addition, it would be optimal for the firm to keep profits as low as possible at the beginning

of the F phase, so we also have π1 = 0. We now shrink the initial O phase while holding profits constant and

equal to zero at the beginning of the F phase. At the end of the second O phase, the value of φ is pinned down

by the transversality condition.

We have the following equations for the endogenous variables x2, xT and L:

φT − Le−xT + (v/λ− α)
(
e−x2 − e−xT

)
= φ0 = 0

e−x1 − e−xT − v − αλ

λ+ ū

(
e−x1 − e−x2 + x2 − x1

)
− L

(
1 + e−xT

)
= π1 = 0

x0 +
x2 − x1
λ+ ū

ū+ λT = xT

(k − α) e−xT − α = φT .

Note that an “OF” phase corresponds to the special case x2 = xT . We then wish to show that xT is decreasing

in x1, or

∂x2/∂x1 < 1.

Therefore, substitute the second and third into the first equation, and let b := x2 − x1. Collecting the terms with

e−x1 , we obtain

0 = φT −
e−x1 − e−x0− b

λ+ū
ū−λT − v−αλ

λ+ū

(
e−x1 − e−x1−b + b

)

1 + e−x0− b

λ+ū
ū−λT

e−x0− b

λ+ū
ū−λT

+ (v/λ− α)
(

e−x1−b − e−x0− b

λ+ū
ū−λT

)

= e−x1

(

(v/λ− α) e−b −
1− v−αλ

λ+ū

(
1− e−b

)

1 + e−x0− b

λ+ū
ū−λT

e−x0− b

λ+ū
ū−λT

)

+φT +

(

e−x0− b

λ+ū
ū−λT + v−αλ

λ+ū b

1 + e−x0− b

λ+ū
ū−λT

− (v/λ− α)

)

e−x0− b

λ+ū
ū−λT ,

then solving for e−x1 (b) we get (just plug-in to verify)

e−x1 =
−φT

(

1 + ex0+
b

λ+ū
ū+λT

)

+ (v/λ− α− 1) e−x0− b

λ+ū
ū−λT + v/λ− α− v−αλ

λ+ū b

e−b
(

(v/λ− α)
(

1 + ex0+
b

λ+ū
ū+λT

)

− v−αλ
λ+ū

)

−
(

1− v−αλ
λ+ū

)

=
αex0+

b

λ+ū
ū+λT + (v/λ− k − 1) e−x0− b

λ+ū
ū−λT + v/λ− k + α− v−αλ

λ+ū b

e−b
(

(v/λ− α)
(

1 + ex0+
b

λ+ū
ū+λT

)

− v−αλ
λ+ū

)

−
(

1− v−αλ
λ+ū

) .

For ū high enough, the expression is increasing in b. Therefore, x′1 (b) < 0 and again we have

x′2 (x1) = 1 + b′ (x1) = 1 +
1

x′1 (b (x1))
< 1,

which is the desired result.

70



Ruling out interior effort. Consider a “FO” phase that generates profits π0 and a terminal φT . This phase is

characterized by the following equations:

φT − Le−xT + (v/λ− α)
(
e−x2 − e−xT

)
= 0

e−x0 − e−xT − v − αλ

λ+ ū

(
e−x0 − e−x2 + x2 − x0

)
− L

(
1 + e−xT

)
= π0

x0 +
x2 − x0
λ+ ū

ū+ λT = xT .

We ask whether we can improve the final xT by choosing interior effort and generating the same revenue. We

would then have

φT −Me−xT + (v/λ− α)
(
e−x1 − e−xT

)
= 0

e−x0 − e−xT −
∫ x1

x0

v − αλ

λ+ u (x)

(
1 + e−x

)
dx−M

(
1 + e−xT

)
= π0

x0 +

∫ x1

x0

u (x)

λ+ u (x)
dx+ λT = xT .

Now assume the agent is indifferent at the end of the phase, so that φT = 0 (it is straightforward to extend the

calculations to the case of a terminal φT pinned down by the transversality condition). We obtain

∫ xT

x1

(

e−x − v − αλ

λ
e−x (1 + exT )

)

dx+

∫ x1

x0

(

e−x − v − αλ

λ+ u (x)

(
1 + e−x

)
)

dx = π0

x0 +

∫ x1

x0

u (x)

λ+ u (x)
dx+ λT = xT .

Now consider increasing u at x. We obtain

dxT
du

=
λ

(λ+ u (x))
2 +

u (x1)

λ+ u (x1)

∂x1
∂u

,

with

∂x1
∂u

= − ∂π/∂u

∂π/∂x1
= −

∂π0

∂xT

λ
(λ+u(x))2

+ v−αλ
(λ+u(x))2

(1 + e−x)

∂π0

∂xT

u(x1)
λ+u(x1)

+ (v/λ− α) e−x1 (1 + exT )− v−αλ
λ+u(x1)

(1 + e−x1)
,

therefore

dxT
du

=
λ

(λ+ u (x))
2 −

∂π0

∂xT

λ
(λ+u(x))2

+ v−αλ
(λ+u(x))2

(1 + e−x)

∂π0

∂xT

u(x1)
λ+u(x1)

+ (v/λ− α) e−x1 (1 + exT )− v−αλ
λ+u(x1)

(1 + e−x1)

u (x1)

λ+ u (x1)
.

We can compute the derivative ∂π0/∂xT and rewrite ∂xT /∂u up to constant terms. We have

dxT
du

=

(
u (x1)

λ+ u (x1)
e−x1 + exT−x1 − λ

λ+ u (x1)

)

−
(
1 + e−x

) u (x1)

λ+ u (x1)
.

Because this expression is strictly monotone in x, it is optimal to ask the agent for zero (or maximal) effort, and

we have characterized the optimal contract under extremal effort levels. �
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D.1.4 Competing contracts

We know that our FO contract maximizes aggregate effort (and hence, by frontloading, social surplus) for each

(x0, T ) . We now show that the agent’s continuation value under the original contract is higher than the value of

the best FO contract offered at a later date. In particular, consider a full-zero competing contract offered when

the agent’s belief is x, and denote by x2 (x) the new switching belief. The value of the new contract for the agent

is given by

J (x) =

∫ x2

x

1 + e−x

λ+ ū

(
λ+ ū

1 + ex
− v − αū

)

dx+

∫ xT

x2

1 + e−x

λ

(
λ

1 + ex
− v

)

dx−
(
1 + e−xT

)
k,

with

xT (x2) = x0 + λT + ū
x2 − x0
λ+ ū

.

We compare this to the continuation value under the original contract. We are led to analyze three cases,

depending on the timing of payments in the two contracts.

Case 1: the original contract induces full effort at x.

Y (x) =

∫ t1

0

(
1 + e−xs

)
(v − αλ− αū− v) ds−

∫ T

t1

(
1 + e−xs

)
vds+

(
1 + e−xT

)
(L0 − k)

= −
∫ x1

x

(
1 + e−x

)
αdx−

∫ xT

x1

(
1 + e−x

) v

λ
dx+

(
1 + e−xT

)
(L0 − k) ,

where (x1, xT , L0) are the switching and terminal beliefs, and the lump sum, under the original contract. We

then evaluate the difference in continuation payoffs:

d (Y (x)− J (x))

dx
= α

(
1 + e−x

)
+ e−x − v + αū

λ+ ū

(
1 + e−x

)
− ∂J

∂x2

∂x2
∂x

.

Note that because dJ/dx2 > 0 and because, by assumption, we have (λ+ ū) / (1 + ex) > v − αλ, a sufficient

condition for the difference to increase is ∂x2/∂x < 0. Furthermore, notice that the social surplus under a

competing contract evolves according to:

dJ

dx2
= −v + αū

λ+ ū

(
1 + e−x2

)
+
v

λ

(
1 + e−x2

)
+

ū

λ+ ū

(

− v

λ

(
1 + e−xT

)
+ (1 + k) e−xT

)

=
ū

λ+ ū

((

1 + k − v

λ

)

e−xT − v

λ
+
( v

λ
− α

) (
1 + e−x2

))

. (38)

Using equation (29), and substituting into (28), we also have an expression characterizing the switching x2 as a

function of x and xT (x2) only:

(k − v/λ)
(
1 + e−xT

)
+
(
(v/λ− α) e−x2 − α

)
(1 + exT ) + e−xT

+
v − αλ

λ+ ū

(
−e−x2 + x2

)
− e−x +

v − αλ

λ+ ū

(
e−x − x

)
= 0. (39)

Totally differentiating with respect to x yields

∂x2
∂x

=
e−x − v−αλ

λ+ū (1 + e−x)
ū

λ+ūe
−xT (1 + k − v/λ) + (v/λ− α) λ

λ+ūe
xT e−x2 + α ū

λ+ūe
xT − (1 + e−x2) v−αλ

λ+ū + (v/λ− α) e−x2

. (40)
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Therefore
d (Y (x)− J (x))

dx
=

(

e−x − v − αλ

λ+ ū

(
1 + e−x

)
)(

1− ∂J

∂x2

∂x2
∂x

)

.

Computing the difference between (38) and the denominator of (40) we obtain

(e−x2exT − 1) (v − αλ) + αū (1 + exT )

ū+ λ
> 0. (41)

Clearly, Y (x0) = J(x0) and Y
′ > J ′ imply the original contract offers a higher continuation value to the agent at

all x.

Case 2: the original contract induces no effort at x. If there is no effort to be exerted under the competing

contract, the comparison is immediate. Assuming there is still effort to be exerted under the competing contract,

we have

Y (x) = −
∫ xT

x

(
1 + e−x

) v

λ
dx+

(
1 + e−xT

)
(L0 − k) ,

J (x) =

∫ x2

x

1 + e−x

λ+ ū

(
λ+ ū

1 + ex
− v − αū

)

dx+

∫ xT

x2

1 + e−x

λ

(
λ

1 + ex
− v

)

dx−
(
1 + e−xT

)
k,

with

xT (x, x2) = x+ λ

(

T − x1 − x0
λ+ ū

− x− x1
λ

)

+ ū
x2 − x

λ+ ū

= λT +
ūx1 + λx0
λ+ ū

+ ū
x2 − x

λ+ ū
. (42)

Therefore,

d (Y (x)− J (x))

dx
=

v

λ

(
1 + e−x

)
+ e−x − v + αū

λ+ ū

(
1 + e−x

)

+
ū

λ+ ū

(

e−xT (1 + k)− v

λ

(
1 + e−xT

))

− dJ

dx2

dx2
dx

.

Furthermore, notice that dJ/dx2 is still given by (38). Therefore we can write

d (Y (x)− J (x))

dx
=

( v

λ
− α

) (
1 + e−x

)
+ e−x − v − αλ

λ+ ū

(
1 + e−x

)

+
ū

λ+ ū

(

e−xT (1 + k)− v

λ

(
1 + e−xT

))

− dJ

dx2

dx2
dx

,

and with the notation J ′ (x) := [dJ (x2 (x)) /dx2]x2=x, we obtain

d (Y (x)− J (x))

dx
= e−x + J ′ (x)− J ′ (x2)

dx2
dx

.

Since dJ/dx2 is decreasing in x2 it will be sufficient to show that

e−x + J ′ (x2)

(

1− dx2
dx

)

> 0.
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Assume dx2/dx > 1 otherwise the result is immediate. Now consider equation (39) for x2 (x), but keep in mind

now xT is given by (42). Differentiating with respect to x yields

dx2
dx

=
e−x − v−αλ

λ+ū (1 + e−x)− ū
λ+ū (−e−xT (1 + k − v/λ) + exT ((v/λ− α) e−x2 − α))

e−x2 (v/λ− α) (1 + exT )− (1 + e−x2) v−αλ
λ+ū − ū

λ+ū (−e−xT (1 + k − v/λ) + exT ((v/λ− α) e−x2 − α))
.

Notice that the denominator (and the derivative J ′ (x2)) are unchanged from the previous case. Therefore, if

dx2/dx > 1, we can use the result in (41) to conclude

e−x +
dJ

dx2

(

1− dx2
dx

)

> e−x −
(

e−x − v − αλ

λ+ ū

(
1 + e−x

)
−
(

e−x2 (v/λ− α) (1 + exT )−
(
1 + e−x2

) v − αλ

λ+ ū

))

=
v − αλ

λ+ ū

(
1 + e−x

)
+ e−x2 (v/λ− α) (1 + exT )−

(
1 + e−x2

) v − αλ

λ+ ū

>
v − αλ

λ+ ū
e−x + e−x2

(
v − αλ

λ
(1 + exT )− v − αλ

λ+ ū

)

> 0.

Case 3: the competing contract induces full effort throughout. Consider the scenario in which the original

contract induces full effort at x and the competing contract full effort throughout the remaining time. We obtain

Y (x) = −
∫ x1

x

(
1 + e−x

)
αdx−

∫ xT

x1

(
1 + e−x

) v

λ
dx+

(
1 + e−xT

)
(L0 − k)

J (x) =

∫ xT

x

1 + e−x

λ+ ū

(
λ+ ū

1 + ex
− v − αū

)

dx−
(
1 + e−xT

)
k,

with (for the competing contract)

xT = x0 + (λ+ ū)T.

Therefore

Y ′ (x)− J ′ (x) = α
(
1 + e−x

)
+ e−x − v + αū

λ+ ū

(
1 + e−x

)
> 0

as before. If conversely the original contract induces zero effort for the remaining time, we have

Y (x) = −
∫ xT

x

(
1 + e−x

) v

λ
dx+

(
1 + e−xT

)
(L0 − k) ,

J (x) =

∫ xT

x

1 + e−x

λ+ ū

(
λ+ ū

1 + ex
− v − αū

)

dx−
(
1 + e−xT

)
k,

and

xT = x0 + (λ+ ū)T +
ū

λ
(x1 − x) .

Also remember it must be the case that

φxT
:= (k − α) e−xT − α > 0.
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Therefore,

Y ′ (x)− J ′ (x) =
(
1 + e−x

) v

λ
+

1 + e−x

λ+ ū

(
λ+ ū

1 + ex
− v − αū

)

+
ū

λ

(

e−xT − (v + αū)
1 + e−xT

λ+ ū
+ ke−xT

)

>
(
1 + e−x

) v

λ
+

1 + e−x

λ+ ū

(
λ+ ū

1 + ex
− v − αū

)

+
ū

λ

(

e−xT − (v − αλ)
1 + e−xT

λ+ ū

)

= e−x +
e−x − e−xT

λ+ ū

ū

λ
(v − αλ) +

ū

λ
e−xT > 0.

This ends this step of the proof.

D.1.5 Bound on ū

We now derive a lower bound on ū that ensures

λ+ ū

1 + ex
≥ v − αλ

over all beliefs x for which the agent exerts maximal effort. This clearly requires finding an upper bound on

the range of such beliefs. Under the conjectured strategy, the switching belief and the lump sum payment are

determined by the two equations (28) and (29). Solve (29) for L, and substitute into (28). We obtain

(

k +
1

1 + exT

− v/λ

)

e−xT −
e−x0 − v−αλ

λ+ū (e−x0 − e−x1 + x1 − x0)

1 + exT

− α+ (v/λ− α) e−x1. (43)

Notice that as we let xT → ∞, x1 must approach

x̄1 := ln (v/αλ− 1) .

Furthermore, we have
dx1
dxT

=
((v/λ− α) e−x1 − α) exT − (k + 1− v/λ) e−xT

(v/λ− α)
(

exT−x1 − λ
λ+ū + ū

λ(ū+λ)e
−x1

) ,

whose numerator is clearly positive.

If (36) holds, then v/λ ≥ 1 + k. Consider equation (43). Notice that the numerator of the second term is

e−x0 − v − αλ

λ+ ū

(
e−x0 − e−x1 + x1 − x0

)
>

∫ x1

x0

(
1 + e−x

)
(

1

1 + ex
− v − αλ

λ+ ū

)

dx > 0.

Therefore the sum of the first two terms is negative, and hence the last two terms must be positive, which implies

x1 < x̄1.

Now suppose v/λ ≤ 1 + k. Notice that x1 > x̄1 implies dx1/dxT < 0. Therefore, if x1 (xT ) ever exceeds x̄1,

it does so for all lower xT compatible with work-shirk solutions. Now consider the equation characterizing the

lowest such xT :

∫ xT

x0

(
1 + e−x

)
(

1

1 + ex
− v − αλ

λ+ ū

)

dx−
(
1 + e−xT

)
(k − α (1 + exT )) = 0.
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As x0 → −∞ the integrand is positive and grows without bound. This implies the solution to this equation xT

must also diverge to −∞. But since we must have x1 ≤ xT , this contradicts x1 lying above x̄1 for some xT .

It follows that x̄1 is a tight upper bound on x1 independently of our assumption (36) on v, and that a lower

bound on ū is given by

ū ≥
( v

αλ
− 1
)

v − λ.

D.2 Proofs for Subsection 5.2

Proof of Lemma 5.2. Suppose that the equilibrium effort is zero on some open set Ω. Consider the sets

Ωt′ = {(x, s) : s ∈ (t′, T ] } such that the trajectory starting at (x, s) intersects Ω. Suppose that u is not identically

zero on Ω0 and let τ = inf {t′ : u = 0 on Ωt′}. That is, for all t′ < τ , there exists (x, s) ∈ Ωt′ such that u (x, s) > 0.

Suppose first that we take (x, τ ) ∈ Ωτ . According to the definition of τ and Ωτ , there exists (xk, k) ∈ Ω such that

the trajectory starting at (x, τ ) intersects Ω at (xk, k) and along the path the effort is zero. We can write the

payoff

V (x, τ ) =

∫ xk

x

1 + e−s

1 + e−x

(
λ

1 + es
− v

)
1

λ
ds+

1 + e−xk

1 + e−x
V (xk, k) ,

or, rearranging,

(
1 + e−x

)
V (x, τ ) = −

(
e−xk − e−x

) (

1− v

λ

)

− v

λ
(xk − x) +

(
1 + e−xk

)
V (xk, k) ,

where V (xk, k) is differentiable. The Hamilton-Jacobi-Bellman equation (a function of (x, τ )) can be derived

from

V (x, τ ) =
λ+ û

1 + ex
dt− vdt

+max
u

[

−αudt+
(

1− λ+ u

1 + ex
dt+ o (dt)

)

(V (x, τ ) + Vx(x, τ )(λ + u)dt+ Vt(x, τ )dt+ o(dt))

]

,

which gives, taking limits,

0 =
λ+ û

1 + ex
− v + max

u∈[0,ū]

[

−αu− λ+ u

1 + ex
V (x, τ ) + Vx(x, τ )(λ + u) + Vt(x, τ )

]

.

Therefore, if u (x, τ ) > 0,

−V (x, τ )

1 + ex
− α+ Vx(x, τ ) ≥ 0, or

(
1 + e−x

)
Vx(x, τ )− e−xV (x, τ ) ≥ α

(
1 + e−x

)
,

or finally,
∂

∂x

[(
1 + e−x

)
V (x, τ )

]
− α

(
1 + e−x

)
≥ 0.

Notice, however, by direct computation, that, because low effort is exerted from (x, τ ) to (xk, k), for all points

(xs, s) on this trajectory, s ∈ (τ , k) ,

∂

∂x

[(
1 + e−xs

)
V (xs, s)

]
− α

(
1 + e−xs

)
= −e−xs

(

1 + α− v

λ

)

+
v

λ
− α ≤ 0,
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so that, because x < xs, and 1 + α− v/λ > 0,

∂

∂x

[(
1 + e−x

)
V (x, τ )

]
− α

(
1 + e−x

)
< 0,

a contradiction to u (x, τ ) > 0.

If instead u (x, τ ) = 0 for all (x, τ ) ∈ Ωτ , then there exists (x′, t′) → (x, τ ) ∈ Ωτ , u (x
′, t′) > 0. Because u is upper

semi-continuous, for every ε > 0, there exists a neighborhood N of (x, τ ) such that u < ε on N . Hence

lim
(x′,t′)→(x,τ)

∂

∂x

[(

1 + ex
′

)

V (x′, t′)
]

− α
(

1 + ex
′

)

=
∂

∂x

[(
1 + e−x

)
V (x, τ )

]
− α

(
1 + e−x

)
< 0,

a contradiction. �

Proof of Theorem 5.3. We start with (1.). That is, we show that u (x, t) = ū for x < xt in all equilibria. We

first define x as the solution to the differential equation

(λ(1 + α)− v + (λ+ ū)αex(t) + ū− ((1 + k)(λ+ ū)− (v + αū))e−(λ+ū)(T−t))

(
x′ (t)

λ+ ū
− 1

)

= −ū, (44)

subject to x (T ) = x∗. This defines a strictly increasing function of slope larger than λ+ ū, for all t ∈ (T − t∗, T ],

with limt↑t∗ x (T − t) = −∞.29 Given some equilibrium, and an initial value (xt, t), let u (τ ;xτ ) denote the value

at time τ ≥ t along the equilibrium trajectory. For all t, let

x̃ (t) := sup {xt : ∀τ ≥ t : u (τ ;xt) = ū in all equilibria} ,

with x̃ (t) = −∞ if no such xt exists. By definition the function x̃ is increasing (in fact, for all τ ≥ t, x̃ (τ) ≥
x̃ (t) + (λ+ ū) (τ − t)), and so it is a.e. differentiable (set x̃′ (t) = +∞ if x jumps at t). Whenever finite, let

s (t) = x̃′ (t) / (x̃′ (t)− λ) > 0. Note that, from the transversality condition, x̃ (T ) = x∗. In an abuse of notation,

we also write x̃ for the set function t→ [limt′↑t x̃ (t
′) , limt′↓t x̃ (t

′)].

We first argue that the incentives to exert high effort decrease in x (when varying the value x of an initial

condition (x, t) for a trajectory along which effort is exerted throughout). Indeed, recall that high effort is exerted

iff
∂

∂x

(
V (x, t)

(
1 + e−x

))
≥ α

(
1 + e−x

)
. (45)

29The differential equation for x can be implicitly solved, which yields

ln
k − α

α
= (xt + (λ+ ū) (T − t )) +

ū

λ (1 + α) + ū− v
ln (k − α) ū (λ+ ū)

− ū

λ (1 + α) + ū− v
ln

(

e(λ+ū)(T−t ) (λ (1 + α) + ū− v) (λ (1 + α)− v + α (λ+ ū) ext)

− (λ (1 + α)− v) (λ (1 + α) + ū− v + (k − α) (λ+ ū))

)

.
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The value V H(x, t) obtained from always exerting (and being paid for) high effort is given by

(1 + e−x)V H(x, t) =

∫ T

t

(1 + e−xs)

[
λ+ ū

1 + exs

− v − αū

]

ds− k(1 + e−xT )

=
(
e−x − e−xT

)
(

1− v + αū

λ+ ū

)

− (T − t) (v + αū)− k(1 + e−xT ) (46)

where xT = x+ (λ+ ū) (T − t). Therefore, using (45), high effort is exerted if and only if

k −
(

1 + k − v + αū

λ+ ū

)(

1− e−(λ+ū)(T−t)
)

≥ α (1 + ex) .

Note that the left-hand side is independent of x, while the right-hand side is increasing in x. Therefore, if high

effort is exerted throughout from (x, t) onward, then it is also from (x′, t) for all x′ < x.

Fix an equilibrium and a state (x0, t0) such that x0 + (λ+ ū) (T − t0) < x∗. Note that the equilibrium

trajectory must eventually intersect some state (x̃t, t). We start again from the formula for the payoff

(
1 + e−x0

)
V (x0, t0) =

∫ t

t0

[
e−xs (λ+ u (xs, s))−

(
1 + e−xs

)
(v + αu (xs, s))

]
ds

+
(
1 + e−x̃t

)
V H (x̃t, t) .

Let W (x̃t) = V H (x̃t, t) (since x̃ is strictly increasing, it is well-defined). Differentiating with respect to x0, and

taking limits as (x0, t0) → (x̃t, t), we obtain

lim
(x0,t0)→(x̃t,t)

∂ (1 + e−x0)V (x0, t0)

∂x0

=
[
e−x̃tλ−

(
1 + e−x̃t

)
v
] s (x̃t)− 1

λ
+ s (x̃t)

[
W ′ (x̃t)

(
1 + e−x̃t

)
−W (x̃t) e

−x̃t

]
.

If less than maximal effort can be sustained arbitrarily close to, but before the state (x̃t, t) is reached, it must be

that this expression is no more than α
(
1 + e−x̃t

)
in some equilibrium, by (45). Rearranging, this means that

(

1−W (x) + (1 + ex)
(

W ′ (x)− v

λ

))

s (x) +
( v

λ
− α

)

ex ≤ 1 + α− v

λ
,

for x = x̃t. Given the explicit formula for W (see (46)), and since s (x̃t) = x̃′t/ (x̃
′
t − λ), we can rearrange this to

obtain an inequality for x̃t. The derivative x̃
′
t is smallest, and thus the solution x̃t is highest, when this inequality

binds for all t. The resulting ordinary differential equation is precisely (44).

Next, we turn to (2.). That is, we show that u (x, t) = 0 for x > x̄t in all equilibria. We define x̄ by

x̄t = ln

[

k − α+

(
v + ūα

λ+ ū
− (1 + k)

)(

1− e−(λ+ū)(T−t)
)]

− lnα, (47)

which is well-defined as long as k − α+
(

v+ūα
λ+ū − (1 + k)

) (
1− e−(λ+ū)(T−t)

)
> 0. This defines a minimum time

T − t∗ mentioned above, which coincides with the asymptote of x (as can be seen from (44)). It is immediate to

check that x̄ is continuous and strictly increasing on [T − t∗, T ], with limt↑t∗ x̄T−t = −∞, xT = x∗, and for all

t ∈ (T − t∗, T ), x̄′t > λ+ ū.
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Let us define W (x, t) = (1 + e−x)V (x, t), and re-derive the HJB equation. The payoff can be written as

W (x, t) =
[
(λ+ u (x, t)) e−x −

(
1 + e−x

)
(v + αu)

]
dt+W (x+ dx, t+ dt) ,

which gives

0 = (λ+ u (x, t)) e−x − v
(
1 + e−x

)
+Wt (x, t) + λWx (x, t) + max

u∈[0,ū]

(
Wx (x, t)− α

(
1 + e−x

))
u.

As we already know (see (45)), effort is maximum or minimum depending on Wx (x, t) ≶ α (1 + e−x). Let us

rewrite the previous equation as

v − αλ−Wt (x, t)

= ((1 + α) λ− v + u (x, t)) e−x + λ
(
Wx (x, t)− α

(
1 + e−x

))
+
(
Wx (x, t)− α

(
1 + e−x

))+
ū.

Given Wx, Wt is maximized when effort u (x, t) is minimized: the lower u (x, t), the higher Wt (x, t), and

hence the lower W (x, t− dt) =W (x, t)−Wt (x, t) dt. Note also that, along any equilibrium trajectory, no effort

is never strictly optimal (by (iv)). Hence, Wx (x, t) ≥ α (1 + e−x), and therefore, again u (x, t) (or W (x, t− dt))

is minimized when Wx (x, t) = α (1 + e−x): to minimize u (x, t), while preserving incentives to exert effort, it is

best to be indifferent whenever possible.

Hence, integrating over the equilibrium trajectory starting at (x, t),

(v − αλ) (T − t) + k
(
1 + e−xT

)
+W (x, t)

=

∫ T

t

u (xs, s) e
−xsds+

∫ T

t

[

((1 + α)λ− v) e−xs + (λ+ ū)
(
Wx (xs, s)− α

(
1 + e−xs

))+
]

ds.

We shall construct an equilibrium in which Wx (xs, s) = α (1 + e−xs) for all x > xt. Hence, this equilibrium

minimizes
∫ T

t

u (xs, s) e
−xsds,

along the trajectory, and since this is true from any point of the trajectory onward, it also minimizes u (xs, s),

s ∈ [t, T ]; the resulting u (x, t) will be shown to be increasing in x, and equal to ū at x̄t.

Let us construct this interior effort equilibrium. Integrating (45) over any domain with non-empty interior,

we obtain that

(1 + ex)V (x, t) = ex(αx+ c(t)) − α, (48)

for some function c(t). Because the trajectories starting at (x, t) must cross x (whose slope is larger than λ+ ū),

value matching must hold at the boundary, which means that

(1 + ext)V H(xt, t) = ext(αxt + c(t))− α,

which gives c (t) (for t ≥ T − t∗). From (48), we then back out V (x, t). The HJB equation then reduces to

v − αλ =
λ+ u (x, t)

1 + ex
+ Vt (x, t) ,
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which can now be solved for u (x, t). That is, the effort is given by

λ+ u (x, t) = (1 + ex) (v − αλ)− ∂

∂t
[(1 + ex)V (x, t)]

= (1 + ex) (v − αλ)− exc′ (t) .

It follows from simple algebra (c′ is detailed below) that u (x, t) is increasing in x. Therefore, the upper end x̄t

cannot exceed the solution to

λ+ ū =
(
1 + ex̄

)
(v − αλ)− ex̄c′ (t) ,

and so we can solve for

ex̄ =
λ (1 + α)− v + ū

v − αλ− c′ (t)
.

Note that, from totally differentiating the equation that defines c (t),

c′ (t) = x′ (t) e−x(t)
[

(W ′ (x (t))− α)
(

ex(t) + 1
)

−W (x (t))
]

= v − αλ+ e−x(t) (v − (1 + α)λ) ,

where we recall that x is the lower boundary below which effort must be maximal, and W (x) = V H (xt, t). This

gives

ex̄ = ex
λ (1 + α)− v + ū

λ (1 + α)− v
, or ex =

λ (1 + α)− v

λ (1 + α)− v + ū
ex̄.

Because (44) is a differential equation characterizing x, we may substitute for x̄ from the last equation to obtain

a differential equation characterizing x̄, namely

ū

1− x̄′(t)
λ+ū

+ ((1 + k) (λ+ ū)− (v + αū)) e−(λ+ū)(T−t)

= λ (1 + α) + ū− v +
α (λ+ ū) (λ (1 + α)− v)

λ (1 + α)− v + ū
ex̄,

with boundary condition x̄ (T ) = x∗. It is simplest to plug in the formula given by (47) and verify that it is

indeed the solution of this differential equation.

Finally, we prove (3.). The same procedure applies to both, so let us consider σ̄, the strategy that exerts high

effort as long as x < x̄t, (and no effort above). We shall do so by “verification.” Given our closed-form expression

for V H(x, t) (see (46)), we immediately verify that it satisfies the (45) constraint for all x ≤ x̄t (remarkably, x̄t is

precisely the boundary at which the constraint binds; it is strictly satisfied at xt, when considering σ). Because

this function V H(x, t) is differentiable in the set {(x, t) : x < x̄t}, and satisfies the HJB equation, as well as the

boundary condition V H(x, T ) = 0, it is a solution to the optimal control problem in this region (remember that the

set {(x, t) : x < x̄t} cannot be left under any feasible strategy, so that no further boundary condition needs to be

verified). We can now consider the optimal control problem with exit region Ω := {(x, t) : x = x̄t}∪{(x, t) : t = T }
and salvage value V H(x̄t, t) or 0, depending on the exit point. Again, the strategy of exerting no effort satisfies

the HJB equation, gives a differentiable value on R× [0, T ] \Ω, and satisfies the boundary conditions. Therefore,

it is a solution to the optimal control problem. �
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Proof of Proposition 5.4 The results can be obtained directly by differentiating expression (47) for the frontier

x̄ (t). �

Proof of Proposition 5.5 (1.) The equation defining the full effort frontier in the unobservable case x2 (t) is

given by

(k − α) e−x2−(λ+u)(T−t) − α−
∫ x2+(λ+u)(T−t)

x2

e−x

(
1

1 + ex
− v − αλ

λ+ ū

)

dx. (49)

Plug the expression for x̄ (t) given by (47) into (49) and notice that (49) cannot be equal to zero unless x̄ (t) = x∗

and t = T , or x̄ (t) → −∞. Therefore, the two frontiers cannot cross before the deadline T , but they have the

same vertical asymptote.

Now suppose that φ′ (x∗ | ū) > 0 so that the frontier x2 (t) goes through (T, x∗) . Consider the slopes of x2 (t)

and x̄ (t) evaluated at (T, x∗). We obtain

[x̄′ (t)− x′2 (t)]t=T ∝ (ū+ λ) (k − α) > 0,

so the unobservable frontier lies above the observable one for all t.

Next, suppose φ′ (x∗ | ū) < 0, so there is no mixing at x∗ and the frontier x2 (t) does not go through (T, x∗) . In

this case, we still know the two cannot cross, and we also know a point on x2 (t) is the pre-image of (T, x∗) under

full effort. Since we also know the slope x̄′ (t) > λ + ū, we again conclude that the unobservable frontier x2 (t)

lies above x̄ (t).

Finally, consider the equation defining the no effort frontier x3 (t),

(k − α) e−x3−λ(T−t) − α−
∫ x3+λ(T−t)

x3

e−x

(
1

1 + ex
− v − αλ

λ

)

dx = 0. (50)

Totally differentiating with respect to t shows that x′3 (t) < λ (might be negative). Therefore, the no effort region

does not intersect the full effort region defined by x̄ (t) in the observable case.

(2.) To compare the effort regions in the unobservable case and the full effort region in the social optimum,

consider the planner’s frontier xP (t), which is given by

xP (t) = ln
(

(1 + k − v/λ)e−λ(T−t) − (α− v/λ)
)

− lnα.

The slope of the planner’s frontier is given by

x′P (t) = λ
(1 + k − v/λ)e−λ(T−t)

(1 + k − v/λ)e−λ(T−t) + v/λ− α
∈ [0, λ].

In the equilibrium with unobservable effort, all effort ceases above the frontier x3 (t) defined in (50) above, which

has the following slope

x′3 (t) = λ

((
1 + ex3+λ(T−t)

)−1
+ k − v/λ

)

e−λ(T−t)

((
1 + ex3+λ(T−t)

)−1
+ k − v/λ

)

e−λ(T−t) + v/λ− α− (1 + ex3)
−1
.
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We also know x3 (T ) = x∗ and xP (T ) = ln ((1 + k − α) /α) > x∗. Now suppose towards a contradiction that the

two frontiers crossed at a point (t, x). Plugging in the expression for xP (t) in both slopes, we obtain

x′3 (t) =

(

1 +
v/λ− α− s (t)

(1 + k − v/λ+ (1− s (t)))e−λ(T−t)

)−1

>

(

1 +
v/λ− α

(1 + k − v/λ)e−λ(T−t)

)−1

= x′P (t) ,

with

s (t) = 1/
(

1 + exP (t)
)

∈ [0, 1] ,

meaning the unobservable frontier would have to cross from below, a contradiction. �

D.3 Proofs for Subsection 5.3

This subsection starts by proving Proposition 5.6 in several steps.

If the agent is indifferent between continuing and stopping, then the flow expected payoff must be zero. His

overall equilibrium payoff is given by

∫ T

0

(
e−xt ((λ+ ut)− v)−

(
1 + e−xt

)
c (ut)

)
dt− ke−xT .

[Recall that, to analyze deadlines, we must take into account that v is premultiplied by the belief pt in the original

problem, see footnote 4.] When the agent stops, we also know the transversality condition

ke−xT =
(
1 + e−xT

)
c′ (uT ) . (51)

Therefore, the terminal belief xT must satisfy the following equation

(1 + k)
λ+ uT
1 + exT

− v

1 + exT

− c (uT ) = 0,

where uT is given above. Now, remember the boundary-value problem

c′′ (u) (1 + ex)u′ = (λ+ u) c′ (u)− c (u) +
λ+ ut
1 + ext

− v.

We ask how effort behaves at the quitting belief. We have

u′T ∝ (λ+ u) c′ (u) +
λ+ ut
1 + ext

− c (u)− v

= (λ+ u) c′ (u)− k
λ+ uT
1 + exT

+
v

1 + exT

− v

= − exT

1 + exT

v < 0.

This means wages and effort are decreasing at the deadline. Finally, compare the slope of the trajectory with the

transversality curve at the stopping point.
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Lemma D.3 The equilibrium effort trajectory hits the locus in (51) from above if and only if v ≥ k.

Indeed, we have

−
exT

1+exT
v

c′′ (u) (1 + ex)
+

c′ (u) ex

(1 + ex) c′′ (u)

∝ − 1

1 + exT

v + c′ = −v + k.

Therefore ∆ (x∗T ) < 0 iff v > k.

Finally, note that the planner quits when

(1 + k)
λ+ uT
1 + exT

− v

1 + exT

− c (uT ) = 0 (52)

He exerts effort given by

(1 + k) e−xT =
(
1 + e−xT

)
c′ (uT ) .

Now solve (52) for 1 + ex and consider the function

gS (u) :=
(1 + k) (λ+ u)− v

c (u)
.

The optimal deadline is characterized by the intersection of gS (u) with the transversality conditions, which may

be expressed as

1 + ex = gA (u) := k/c′ (u)

1 + ex = gP (u) := (1 + k) /c′ (u)

for the agent and the planner respectively. Clearly 0 < gA < gP and both are strictly decreasing. Furthermore,

notice that gS (u) is strictly quasiconcave whenever positive. Finally, it is immediate to check that g′S (u) = 0

when intersecting gP (u) . Therefore, it must be that gP (u∗P ) > gP (u∗P ) , hence the planner’s terminal belief pT

is lower.

The planner’s effort slope at the deadline is given by

u′T ∝ (λ+ u) c′ (u)− c (u)− v.

Therefore,

u′T =
(λ+ u)

1 + ex
(1 + k)− c (u)− v

= − exT

1 + exT

v < 0.

So it is efficient to have decreasing effort at the deadline. Of course, the planner’s effort is decreasing throughout.
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D.3.1 Convex Cost, with Commitment

Suppose that the agent commits to a deadline. With commitment, the first-order condition is different, as the

agent takes into account the effect of xT on all previous effort levels. Therefore we have

V (xT ) =

∫ T

0

(
e−xt ((λ+ ut)− v)−

(
1 + e−xt

)
c (ut)

)
dt− ke−xT

=

∫ xT

x0

(

e−x

(

1− v

λ+ u (x)

)

− 1 + e−x

λ+ u (x)
c (u (x))

)

dx− ke−xT

= −
∫ xT

x0

e−xv + (1 + e−x) c (u (x))

λ+ u (x)
dx− (1 + k) e−xT ,

and so

V ′ (xT ) = e−xT

(

1 + k − v

λ+ u (xT )

)

− 1 + e−xT

λ+ u (xT )
c (u (xT ))

−
∫ xT

x0

d

dxT

e−xv + (1 + e−x) c (u (x))

λ+ u (x)
dx,

where

u (x) = u (xT )−
∫ xT

x

u′ (z) dz,

du/dxT = duT /dxT − u′ (xT ) = −∆(xT ) ,

and therefore

V ′ (xT ) = e−xT

(

1 + k − v + c (u (xT ))

λ+ u (xT )

)

− c (u (xT ))

λ+ u (xT )

−∆(xT )

∫ xT

x0

e−xv + (1 + e−x) (c (u (x))− (λ+ u (x)) c′ (u (x)))

(λ+ u (x))
2 dx.

We know the first term is zero at the optimal deadline without commitment. Let us now study the numerator of

the second term i.e.
(
1 + e−x

)
(v + c (u (x))− (λ+ u (x)) c′ (u (x)))− v.

Its derivative with respect to x is

−
(
1 + e−x

)
(λ+ u (x))u′ (x) c′′ (u (x))− e−x (c (u (x))− (λ+ u (x)) c′ (u (x)))− ve−x

= e−x (− (1 + ex) (λ+ u (x)) c′′ (u (x))u′ (x) + (λ+ u (x)) c′ (u (x))− c (u (x))− v) .

Note that the slope of our trajectory is given by

(λ+ u) c′′ (u) (1 + ex)u′ (x) = (λ+ u) c′ (u)− c (u) +
λ+ u

1 + ex
− v,

Thus the derivative of the numerator is given by

−λ+ u (x)

1 + ex
e−x < 0.
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Its value at xT is proportional to

c (u (xT ))− (λ+ u (xT )) c
′ (u (xT )) +

v

1 + exT

. (53)

Now let us focus on the value of the numerator at xT as we change xT . We obtain

− (λ+ u (xT )) c
′′ (u (xT ))

duT
dxT

− vexT

(1 + exT )
2

=
c′ (u) ex

(1 + ex) c′′ (u)
(λ+ u (xT )) c

′′ (u (xT ))−
vexT

(1 + exT )
2

= c′ (u) (λ+ u (xT ))−
v

1 + exT

= k (λ+ u (xT ))− v

≤ k (λ+ uT (x0))− v.

We then impose the following condition

k (λ+ uT (x0))− v ≤ 0 (54)

which corresponds to the condition on the cost function

v ≥ k

(

λ+ ζ

(
k

1 + ex0

))

,

where ζ (υ) := (c′)
−1

(u) .

Therefore, under this sufficient condition, the derivative of (53) is negative, and hence this expression is

positive for all xT (notice that it goes to zero from above as xT → ∞). Evaluating V ′(xT ) at the optimal deadline

without commitment yields the following result.

Lemma D.4 Under condition (54), the optimal deadline with commitment is longer than the one without com-

mitment if and only if v > k.

This is the intuitive result that says if the trajectory obtained by moving past the non commitment deadline

lies above the previous one then keep going.

D.3.2 The Role of Observable Effort

We now adapt our results to the linear model, in order to assess the role of observable effort. As before, given an

equilibrium deadline T , we fix the off-equilibrium beliefs to specify ût = ū if xt < x∗, and ût = 0 otherwise. In

other words, the market does not react to a failure to quit, anticipates the agent quitting immediately afterwards

and expects instantaneous effort to be determined as if x = xT were the terminal belief.

In the linear model, the agent’s payoff can be written as a function of the terminal belief as

V (xT ) =

∫ xT

x0

1 + e−x

λ+ u (x)

(
λ+ u (x)

1 + ex
− αu (x)− v

1 + ex

)

dx− ke−xT ,
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and its derivative is given by

V ′ (xT ) =

(

1 + k − v

λ+ u (xT )

)

e−xT −
(
1 + e−xT

)
α

u (xT )

λ+ u (xT )
.

Consider the unobservable case first.

If the agent is exerting full effort at xT , his payoff is increasing if and only if xT ≤ x̂, which is defined as the

unique solution to equation (55) below.

(λ+ ū) (1 + k)− v − αū (1 + exT ) = 0. (55)

Note that x̂ ≤ x∗ if and only if

v ≥ λ (1 + k) + ū,

and that x̂ < −∞ if and only if

v < λ (1 + k) + ū (1 + k − α) .

If the agent does not work at xT , we obtain

V ′ (xT ) =
(

1 + k − v

λ

)

e−xT ,

which means that, while not working, the agent will quit immediately or never, depending on the value of

v − λ (1 + k) .

To summarize, we have the following characterization in terms of the final beliefs xT .

Lemma D.5 If effort is unobservable, the optimal deadline in the absence of commitment is given by

xT∗ =







max{x0, x̂} if v > λ (1 + k) + ū,

max{x0, x∗} if v ∈ [λ (1 + k) , λ (1 + k) + ū] ,

∞ if v ≤ λ (1 + k).

Proof of Lemma D.5 Suppose the agent quits before x∗. Then he must quit while exerting maximal effort.

This can only occur at xT = x̂ < x∗. If x̂ ≥ x∗ then the agent can quit at x∗. This requires V ′ (x∗) < 0, where

the payoff is computed assuming the market expects zero effort (for x > x∗) and the agent does not work going

forward. Therefore, if v > λ (1 + k) the agent quits immediately at x∗. For v ≤ λ (1 + k), he never does. �

We now turn to the case of observable effort.

Lemma D.6 If effort is observable, the optimal deadline in the absence of commitment is given by

xT∗ =







x̃ ≤ x̂ if v > λ (1 + k) + ū,

∈ [x0, x
∗] if v ∈ [λ (1 + k) , λ (1 + k) + ū],

∞ if v ≤ λ (1 + k).

Furthermore, V (x̂) < V (x0) for v sufficiently close to λ (1 + k) + ū.
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Proof of Lemma D.6 If v < λ (1 + k) the market never pays a wage corresponding to zero effort, and the

worker chooses the optimal deadline as in the unobservable case, i.e. he never quits.

If v ∈ [λ (1 + k) , λ (1 + k) + ū] and the agent were paid a wage corresponding to full effort, he would never

stop as long as xT < x∗. However, he would stop immediately if he were expected to quit at xT > x∗ and were

paid a wage corresponding to zero effort. We therefore construct a mixed strategy equilibrium in which the agent

randomizes at each point in time between the following strategies: (a) exerting full effort and quitting, and (b)

exerting zero effort and staying in the game. Denote by µ the instantaneous probability of quitting. The equations

characterizing this equilibrium are given by agent indifference and zero profits, or

(wt − ptv − αū) dt− (1− pt (λ+ ū) dt) k = (wt − ptv) dt+ (1− ptλdt)Vt+dt

with Vt+dt = (wt+dt − pt+dtv − αū) dt− (1− pt+dt (λ+ ū) dt) k,

and wt = pt (λ+ µtū) .

Deleting terms of order higher than dt (notice that terms of order 1 cancel), we obtain

wt = pt (v − λk)

and hence

µ ≡ v − λ (1 + k)

ū
.

Therefore, as v approaches λ (1 + k), µ vanishes. In particular, when v = λ (1 + k) the agent is indifferent between

stopping immediately and never quitting, and our equilibrium places a mass point at T = 0. Conversely, as v

approaches λ (1 + k) + ū, µ goes to one, and the agent quits immediately. Finally, we need to verify that the

agent’s incentives to exert full and zero effort are satisfied. For all xT < x∗ the transversality condition implies the

agent exerts full effort at the deadline. Because the agent quits at rate µ, his strategy assigns positive probability

to stopping at x∗. (Notice that its support cannot exceed x∗, as the agent would not exert effort at the quitting

time then.) It follows that the agent is indifferent between stopping and at x∗ he is indifferent between effort

levels. We know from the analysis with a fixed deadline and observable effort that, when expected not to work,

the agent would not exert effort. In this case, he is expected to exert a constant amount of work (µū), independent

of t and x. As the agent cannot alter is wage (beyond what he can do for a fixed deadline) he has strict incentives

to shirk in this case too.

Finally, if v ≥ λ (1 + k) + ū, we have x̂ < x∗. The agent’s payoff is increasing in the deadline as long as he

is exerting full effort, receiving the maximum wage, and xT ≤ x̂. Conversely, it is decreasing in xT if the agent

is receiving the minimum wage. We now construct a backward induction equilibrium. In the continuation game

starting at x, for x close enough to x̂, the agent is expected to quit at x̂ and to exert effort throughout. For lower

values of x, he is expected to quit at x̂ and shirk initially. Denote by {xj}j=1,...J a sequence of critical values. Let

x1 denote the belief x that leaves the agent indifferent between quitting and continuing until x̂. This belief is well

defined because as we decrease x the agent’s payoff from continuing is first decreasing then increasing without

bound. The agent is expected to quit at x1. Therefore, he is expected to exert maximal effort for lower values of
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x, close enough to x1. For even lower x he will shirk, then work, and then quit at x1. Let x2 denote the belief

at which he is indifferent between quitting and continuing until x1. Recursively define xj+1. We can repeat this

construction. Clearly, the value of x0 determines the equilibrium terminal belief, and the resulting effort pattern.

�

An immediate consequence of Lemmas D.5 and D.6 is that the total amount of effort exerted in equilibrium

is weakly higher in the unobservable case. Thus, the comparison result carries over to the case of endogenous

termination of the relationship. In the unobservable case, the effort patterns can then be traced back to x0. In

particular, when the agent quits at x̂, the equilibrium phases are interior-full (because then v > λ (1 + α)); when

he quits at x∗ the phases are interior-full or always interior effort; and when he never quits, the equilibrium can

have all four phases.

What about the social planner, in the non-commitment case? She follows exactly the same behavior, except

she has a lower threshold v̂P := λ (1 + k) + αū, above which the planner chooses an interior stopping point with

full effort at the end. This follows from the fact that the planner can work at full speed for a larger set of

parameters. Note that, when quitting is inefficient, the agent takes the efficient quitting decision (he never does).

D.3.3 Deadlines with commitment but competition

The agent’s payoff may be written as (up to constants)

V (xT ) = − (1 + k) e−xT −
∫ x1

x0

g (ū, x) dx−
∫ xT

x1

g (0, x) dx,

where

g (u, x) := e−x v

λ+ u
+
(
1 + e−x

) αu

λ+ u
.

Its derivative is given by

V ′ (xT ) = (1 + k − v/λ) e−xT +
((v/λ− α) e−x1 − α) exT − (1 + k − v/λ) e−xT

(v − αλ)
(

1
λe

xT−x1 − 1
λ+ū

)

+ ū(v−αλ)
λ(ū+λ) e

−x1

(g (0, x1)− g (ū, x1))

= (1 + k − v/λ) e−xT +
((v/λ− α) e−x1 − α) exT − (1 + k − v/λ) e−xT

(v − αλ)
(

1
λe

xT−x1 − 1
λ+ū

)

+ ū(v−αλ)
λ(ū+λ) e

−x1

(

e−x1

(
v

λ
− v

λ+ ū

)

− (1 + e−x1)αū

λ+ ū

)

.

Note that

gu (u, x) ∝ αλ (1 + ex)− v.

Because we know from our bound that

ex1 < ex̄1 = v/αλ− 1.

We also know

αλ (1 + ex)− v < 0.
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Assume now v/λ ≤ 1 + k. Then we can write V ′ (xT ) as

V ′ (xT ) ∝ (1 + k − v/λ) e−xT

(

(v − αλ)

(
1

λ
exT−x1 − 1

λ+ ū

)

+
ū (v − αλ)

λ (ū+ λ)
e−x1

)

− (1 + k − v/λ) e−xT

(

e−x1

(
v

λ
− v

λ+ ū

)

−
(
1 + e−x1

) αū

λ+ ū

)

+
(
(v/λ− α) e−x1 − α

)
exT

(

e−x1

(
v

λ
− v

λ+ ū

)

−
(
1 + e−x1

) αū

λ+ ū

)

= (1 + k − v/λ) e−xT

(

(v − αλ)

(
1

λ
exT−x1 − 1

λ+ ū

)

+ ū
α

ū+ λ

)

+exT
ū

ū+ λ

(
(v/λ− α) e−x1 − α

)2
,

which is positive as all terms in this expression are positive, and so the optimal deadline is infinite.

Conversely, if v/λ ≥ 1 + k we know dx1/dxT > 0 and so

V ′ (xT ) = (1 + k − v/λ) e−xT

(

(v/λ− α) exT−x1 − v

λ+ ū
+ α

)

+ exT
ū

ū+ λ

(
(v/λ− α) e−x1 − α

)2

= (1 + k − v/λ) e−x1 (v/λ− α) +

(

α− v

λ+ ū

)

(1 + k − v/λ) e−xT

+exT
ū

ū+ λ

(
(v/λ− α) e−x1 − α

)2
.

This expression is negative for xT large enough (because x1 converges to x̄1 at rate xT and hence the last term

vanishes). Therefore, if v/λ > 1 + k, the optimal deadline is finite. Finally, plugging in x1 = xT we obtain

V ′ (xT ) = (1 + k − v/λ) v
ū

λ (ū+ λ)
e−xT + exT

ū

ū+ λ

(
(v/λ− α) e−x1 − α

)2

∝ (1 + k − v/λ)
v

λ
+ (v/λ− α (1 + ex))

2

= (1 + k − 2α (1 + ex))
v

λ
+ α2 (1 + ex)

2
. (56)

This is clearly positive for x0 low enough (because we know in that case the lowest xT yielding work-shirk is

arbitrarily low). Now consider the equation determining the lowest xT . We know this expression is increasing

in x0 (because the integrand is positive), and it is decreasing in xT (all the terms go in the same direction).

Therefore, we know dxT /dx0 > 0. We therefore look for the highest x0 that allows for work-shirk, which is given

by

x0 = x∗ = ln
k − α

α
.

We then have condition (56), which is positive as x → −∞ and as x = x∗ (just plug in). Furthermore, it is

quadratic in α (1 + ex) and decreasing at x∗. Therefore, it is everywhere positive.

Now consider the derivative of the social planner’s payoff when exerting maximal effort throughout. We have

V ′ (xT ) = ((1 + k) (λ+ ū)− v) e−xT −
(
1 + e−xT

)
αū.
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Therefore, we have

V ′ (x∗) ∝ (1 + k)λ+ ū− v.

We conclude with the following result.

Lemma D.7 The socially optimal deadline is finite if and only if v/λ ≥ 1 + k.

Furthermore, if v/λ ≤ 1 + k + ū/λ the optimal deadline induces full then zero effort.

For values of v exceeding the upper bound, the optimal deadline is finite and may induce either full or full,

then zero effort.

Planner’s optimal deadline: Contrast this with the planner’s optimal deadline under full commitment. We

again have

V ′ (xT ) = (1 + k − v/λ) e−xT +
dx1
dxT

(g (0, x1)− g (ū, x1)) ,

with

(1 + k − α) e−xT − α+ (v/λ− α)
(
e−x1 − e−xT

)
= 0, (57)

and so

e−x1 = e−xT

(

1− 1 + k − α

v/λ− α

)

+
α

v/λ− α
,

dx1
dxT

=
e−xT

(

1− 1+k−α
v/λ−α

)

e−xT

(

1− 1+k−α
v/λ−α

)

+ α
v/λ−α

.

Therefore we can rewrite V ′ as

V ′ (xT ) = (1 + k − v/λ) e−xT +
dx1
dxT

(

e−xT

(

1− 1 + k − α

v/λ− α

)

+
α

v/λ− α

)(
v

λ
− v

λ+ ū

)

− dx1
dxT

(

1 + e−xT

(

1− 1 + k − α

v/λ− α

)

+
α

v/λ− α

)
αū

λ+ ū

= (1 + k − v/λ) e−xT −
e−xT

(

1− 1+k−α
v/λ−α

)

e−xT

(

1− 1+k−α
v/λ−α

)

+ α
v/λ−α

ū

λ

e−xT

ū+ λ
(λ− v + kλ)

∝ e−xT

(

1− 1 + k − α

v/λ− α

)
λ

ū+ λ
+

α

v/λ− α

∝ (1 + k − v/λ)

(

α− e−xT (1 + k − v/λ)
λ

ū+ λ

)

.

Notice that the second term is positive, because

α− e−xT (1 + k − v/λ)
λ

ū+ λ
≥ α

(

1− 1 + k − v/λ

1 + k − α

λ

ū+ λ

)

> 0

which follows from plugging x1 = xT into (57). Therefore, v ≤ λ (1 + k) is necessary and sufficient for the

planner’s problem to be increasing in the deadline, and we have the following characterization.
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Lemma D.8 If v ∈ [λ (1 + k) , λ (1 + k) + αū], the planner’s optimal deadline is x∗P = ln
(
1+k
α − 1

)
.

If v > λ (1 + k) + αū, the optimal deadline is x̂ < x∗P .

If v < λ (1 + k), the optimal deadline is infinite.

To summarize, when it is inefficient to stop the relationship, the socially optimal deadline is infinite, as is the

planner’s. However, when under full commitment (contractable output), the planner finds it optimal to work at

full speed and stop, whereas the socially optimal deadline typically includes shirking (speculating, because the

payment of a lump sum depresses incentives so much at the end that a bit of shirking is nevertheless beneficial

–without shirking the highest attainable xT is very low).

D.3.4 Finishing Lines

Proof of Proposition 5.7 Let x̂ denote the stopping belief, fixed exogenously for now. The payoff to be

maximized is

∫ x̂

x

(λ+ u (x)) e−x − (1 + e−x) (v + αu)

λ+ u
dx− k

(
1 + e−x̂

)
+ v

∫ x̂

0

dx

λ+ u

=

∫ x̂

x

(λ− v + u (x)) e−x − (1 + e−x)αu

λ+ u
dx− k

(
1 + e−x̂

)
,

where u (x) is the expected effort given state x and u is the control variable (equal to u (x) at x in equilibrium).

[The last term on the first line corresponds to the term vT discussed in footnote 5.] Transversality requires that

u = u (x̂) maximizes
(λ− v + u (x̂)) e−x̂ −

(
1 + e−x̂

)
αu

λ+ u
,

whose derivative w.r.t. u is proportional to

v − u(x̂)− (1 + α)λ − αλex̂.

Hence,

u (x̂) =







ū if ex̂ < v−ū−(1+α)λ
αλ ,

u ∈ (0, ū) if ex̂ = v−u−(1+α)λ
αλ ,

0 if ex̂ > v−(1+α)λ
αλ .

The intuition is straightforward: if x̂ is high enough, there is no reason to work: the wage might be low, but then

again the outside option v is not hurting, as it is unlikely to be collected.

More generally, the objective is maximized pointwise by setting:

u (x) =







ū for ex > v−ū−(1+α)λ
αλ ,

v − (1 + α)λ− αλex if ex ∈
[
v−ū−(1+α)λ

αλ , v−(1+α)λ
αλ

]

,

0 if ex > v−(1+α)λ
αλ ,
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for all relevant values of x (i.e., values such that x < x̂). Note now that the derivative of the objective with

respect to the finishing line is simply

(λ− v + u (x̂)) e−x̂ −
(
1 + e−x̂

)
αu (x̂)

λ+ u
+ ke−x̂,

which, given the formula for u(x̂) is non-increasing in x̂. When 1+ k > v/λ, then this derivative is positive for all

values of x̂: the optimal finishing line is infinite in that case. When 1+ k ∈ [(v− ū)/λ, v/λ], the optimal finishing

line solves

ex̂ =
k − α

α
,

i.e. x̂ = x∗, and effort is interior at the finishing line. Finally, if 1 + k < (v − ū)/λ, the optimal finishing line

solves

1 + ex̂ =
(1 + k)(λ+ ū)− v

αū
,

with maximum effort throughout. Note that this finishing line coincides with the (belief at the) optimal deadline

in the absence of commitment under non-observability (See Lemma D.3). �

92


