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Abstract

This paper introduces a model of inequality aversion that captures a preference

for equality of ex-ante expected payoff relative to a preference for equality of ex-post

payoff by a single parameter. On deterministic allocations, the model reduces to the

model of Fehr and Schmidt (1999). The model provides a unified explanation for

recent experiments on probabilistic dictator games and dictator games under veil of

ignorance. Moreover, the model can describe experiments on a preference for efficiency,

which seem inconsistent with inequality aversion. We also apply the model to the

optimal tournament. Finally, we provide a behavioral foundation of the model.
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1 Introduction

Consider two drifters X and Y on a solitary island far out at sea. Unexpectedly, X finds a

plank with which only one of them can escape from the island. Y proposes “We should use

a fifty-fifty lottery to decide which of us gets to use the plank.” Only X knows where the

plank is, so he gets the plank by rejecting Y’s offer. However, rejecting the offer makes X

feel guilty. From an ex-ante viewpoint, the lottery gives each drifter an equal probability of

getting the plank. However, from an ex-post viewpoint, the lottery may make X feel envy

if Y uses the plank. Should X accept Y’s offer ?

1
2

1
2

p:

(0, 1)

(1, 0)

Figure 1: The fifty-fifty lottery (1 denotes getting the plank and 0 denotes not getting it)

This example shows that an individual has a preference for two distinct notions of equal-

ity: equality of opportunity (i.e., equality of ex-ante expected payoff) and equality of outcome

(i.e., equality of ex-post payoff). The individual could face a trade-off between them, espe-

cially when his ex-post payoff may be inferior to others’ ex-post payoff.

In the literature on social preferences, many theories have been proposed on inequality

aversion of an individual but most of them study deterministic environments.1 As Fuden-

berg and Levine (2011) point out, “leading theories of outcome-based social preferences,

. . . , fail to reflect concerns for ex-ante fairness.”2 In social choice literature, several papers

have studied the trade-off between the two notions of equality.3 However, they focus on

an impartial social planner; much less attention has been devoted to the study of a partial

individual who might feel envy or guilt, which seems more relevant to recent experimental

1See Camerer (2003) and Fehr and Schmidt (2005) for surveys on models of inequality aversion in
deterministic environments.

2Ex-ante fairness corresponds to what we call equality of opportunity
3See Diamond (1967), Machina (1989), and Gajdos and Maurin (2004) for examples.
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evidence that shows equality of opportunity is often a concern for an individual. For in-

stance, in experiments on probabilistic dictator games, where subjects were asked to allocate

probabilities to win an indivisible good with a passive recipient, Karni et al. (2008), Bohnet

et al. (2008), Kircher et al. (2009), and Bolton and Ockenfels (forthcoming) found that a

considerable number of subjects shared the probability to win equally.

The purpose of this paper is to provide a step toward filling this gap by proposing a

model of inequality aversion of an individual under risk that captures both a preference for

equality of opportunity and a preference for equality of outcome. We call it the expected

inequality-averse (EIA) model. We show that the EIA model is consistent with various

recent experimental evidence. Then, we apply the model to investigate the optimal tourna-

ment, where agents are inequality-averse. Finally, we provide a behavioral foundation for

the model.

In the EIA model, the decision maker’s preference is represented by the following func-

tion: For a lottery p on allocations (x1, ..., xn) of material payoffs among n individuals,

V (p) = δ U
(
Ep(x1), ..., Ep(xn)

)
+ (1− δ) Ep

(
U(x1, ..., xn)

)
, (1)

where δ ∈ [0, 1] and Ep is the expectation operator with respect to p.4 In addition, U

is the model of Fehr and Schmidt (1999): U(y1, ..., yn) = y1 −
∑n

i=2(αimax{yi − y1, 0} +

βi max{y1 − yi, 0}), where y1 denotes the payoff of the decision maker and yi denotes the

payoff of individual i. U captures inequality aversion as follows: for each i ̸= 1, the term

multiplied αi captures the disutility of envy when the decision maker’s payoff is smaller than

individual i’s payoff; the term multiplied βi captures the disutility of guilt when his payoff

is larger than individual i’s payoff. All of the parameters α, β, and δ are unique and can be

identified experimentally.

In the EIA model, the first term represents a preference for equality of opportunity be-

cause the term captures inequality aversion in the ex-ante expected payoffs (i.e., (Ep(x1), ..., Ep(xn)))

and, in contrast, the second term represents a preference for equality of outcome because

4Let p be a lottery that yields an allocation (xs
1, ..., x

s
n) with probability αs for each s ∈ {1, ...,m}. Then,

Ep(xi) = α1x
1
i + · · ·+ αmxm

i and Ep

(
U(x1, ..., xn)

)
= α1U(x1

1, ..., x
1
n) + · · ·+ αmU(xm

1 , ..., xm
n ).
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the term captures inequality aversion in the ex-post payoffs (i.e., (x1, ..., xn)). Therefore, the

relative weight δ between the first and the second terms captures a preference for equality

of opportunity relative to a preference for equality of outcome.

To demonstrate the tractability of the EIA model, reconsider the example of the two

drifters. Assume that X’s preference is represented by the EIA model. Then, X’s utility of

the fifty-fifty lottery (i.e., p in Figure 1) is

V (p) = δ
1

2
+ (1− δ)

[1
2
(−α) +

1

2
(1− β)

]
. (2)

The lottery p gives the equal expected payoff
1

2
to both, which is captured by the first term.

However, ex-post allocations are not equal, so X could suffer from either envy when Y gets

the plank or guilt when X gets the plank with equal probability. This is captured by the

second term. Therefore, X accepts the lottery p (i.e., V (p) > V (1, 0)) if and only if the

weight on equality of opportunity is high enough, or δ >
1 + α− β

α + β
.

Notice that this example of the two drifters is similar in spirit to the experiments on

probabilistic dictator games, where subjects are asked to allocate probabilities to win an

indivisible good, such as the plank in the example. By finding conditions on the parameters

in a similar way, we show that the EIA model is consistent with the experiments. We also

show that the EIA model is consistent with an experiment by Kariv and Zame (2009) on

dictator games under a veil of ignorance.

Then, we apply the EIA model to describe experimental evidence for a preference for

efficiency (i.e., maximizing the sum of payoffs across individuals), which seems inconsistent

with inequality aversion. For example, Charness and Rabin (2002) found that in a dictator

game, almost 50% of 80 subjects preferred an efficient but unequal allocation (where the

dictator received 375 points and the receiver received 750 points) to an equal but inefficient

allocation (where both subjects received 400 points).5 However, the EIA model can describe

both a preference for efficiency and inequality aversion consistently by taking into account

the fact that in the experiments, each subject makes a decision as if he were a dictator, but

5See Engelmann and Strobel (2004, 2006) for other examples.
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the actual roles (i.e., dictator or recipient) are assigned at random after the decision. Under

this role-assignment risk, choosing an efficient but unequal allocation can be compatible

with equality of opportunity because other subjects also have the same chance to choose

the same unequal allocation.

Moreover, we apply the EIA model to the optimal tournament of a firm in which em-

ployees are inequality-averse among them. We show that in contrast to the standard model,

when δ < 1 the firm cannot make the wage differences between the winner and the loser

large enough to implement the employees’ efficient effort because of their inequality aver-

sion and participation constraints. However, as the employees’ concerns about equality of

opportunity become larger (i.e., δ approaches 1), the firm can make the wage differences

larger to implement the efficient effort while keeping the participation constraints. This is

because in any equilibrium both employees exert the same effort level so that both have the

equal opportunity to be the winner. Hence, as δ approaches 1, the employees’ disutilities of

inequality aversion vanish.

We conclude the paper by providing behavioral conditions that characterize the EIA

model.6 We introduce a novel condition, the dominance condition, which states that if p is

preferred to q in both equality of opportunity and equality of outcome, then p should be

preferred to q. In addition to this key condition, we also assume a weaker version of the (von

Neumann-Morgenstern risk) independence axiom because the original independence axiom

implies no preference for equality of opportunity (i.e., the special case of the EIA model

where δ = 0). This implication is consistent with Fudenberg and Levine’s (2011) main

result that the original independence axiom is incompatible with a preference for equality

of opportunity.7

6Rohde (2010) characterized the model of Fehr and Schmidt (1999). Since Rohde (2010) studied deter-
ministic environment, she has not studied the trade-off between the two notions of equality, which is the
main issue in our paper. Independently of Rohde (2010), we obtained the characterization of Fehr and
Schmidt (1999). (Our paper has circulated since January 2007. A later version of the paper has been avail-
able as COE Discussion Paper No. F-217 at the University of Tokyo (http://www2.e.u-tokyo.ac.jp/cemano/
research/ DP/dp.html) since January 2008.)

7Based on this result, Fudenberg and Levine (2011) claim that “leading theories of outcome-based social
preferences for fairness, those of Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Charness and
Rabin (2002), Cox and Sadiraj (2004), and Andreoni and Miller (2002) all fail to reflect concerns for ex-ante
fairness because they are expected utility theories.”
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The rest of the paper is organized as follows: In Section 2 we introduce the EIA model

formally and show its uniqueness. In Section 3 we show the consistency of the EIA model

with the the aforementioned experiments. In Section 4 we apply the EIA model to the

optimal tournament. In Section 5 we provide a behavioral foundation: a characterization of

the EIA model is in Section 5.1 and a characterization of the parameters is in Section 5.2.

Finally in Section 6, we provide a conclusion. We provide proofs in the text in Sections 3,

4, and 5.2. The other proofs are in the appendix.

2 The EIA Model

We assume that the set of (material) payoffs is R. Let I = {1, ..., n} be the set of individuals

and let 1 denote the decision maker. A vector x = (x1, ..., xn) in Rn is called an allocation of

payoffs among the individuals. The set of probability distributions over the allocations with

finite supports is denoted by ∆(Rn). An element in ∆(Rn) is called a lottery on allocations.

For any p ∈ ∆(Rn), Ep is the expectation operator with respect to p.8

Definition: An expected inequality-averse (EIA) model with a triple (α, β, δ) of vectors

α, β ∈ Rn−1
+ and δ ∈ [0, 1] is a function V on ∆(Rn) such that

V (p) = δ U
(
Ep(x )

)
+ (1− δ) Ep

(
U(x )

)
,

where U(y ) = y1−
∑n

i=2(αimax{yi−y1, 0}+βi max{y1−yi, 0}). If a preference is represented

by V , the preference is called an EIA preference.9

Proposition 1 The following two statements are equivalent:

(i) Two EIA models with (α, β, δ) and (α′, β′, δ′) represent the same preference on ∆(Rn).

(ii) (α, β) = (α′, β′) and if (α, β) ̸= 0 then δ = δ′ .

In the case of interest, where the decision maker cares about inequality (i.e., where

(α, β) ̸= 0), the triple of parameters (α, β, δ) is unique.

8If p is a lottery that yields allocation x s = (xs
1, , ..., x

s
n) with probability αs for each s ∈ {1, ...,m}, then

Ep(x ) = α1x
1 + · · ·+ αmxm = (α1x

1
1 + · · ·+ αmxm

1 , ..., α1x
1
n + · · ·+ αmxm

n ). In addition, for any function
f : Rn → R, Ep(f(x )) = α1f(x

1) + · · ·+ αmf(xm).
9The representation can be extended to allow for risk aversion.
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3 Consistency with Experiments

We focus on experiments that involve risks because the EIA model reduces to the model of

Fehr and Schmidt (1999) on the deterministic allocations. It is well known that the model

of Fehr and Schmidt (1999) can describe various experiments that do not involve risks.

Moreover, we focus on stochastic versions of dictator games because these games provide

the cleanest test for the model.10

To describe the risks involved in the experiments, we define a probability mixture to be

a lottery on allocations and denote the mixture by ⊕ as follows:

Definition: For all α ∈ [0, 1] and p, q ∈ ∆(Rn), αp ⊕ (1 − α)q ∈ ∆(Rn) is a lottery on

allocations such that (αp⊕ (1− α)q)(x ) = αp(x ) + (1− α)q(x ) ∈ [0, 1] for each x ∈ Rn.11

For example, p in Figure 1 corresponds to probability mixture
1

2
(1, 0)⊕ 1

2
(0, 1).

3.1 Probabilistic Dictator Games

First, we discuss the experimental results in probabilistic dictator games, where dictators

allocate probabilities to win an indivisible good. In such experiments, it is observed that

a substantial fraction of dictators shared the probability of winning. For example, Kircher

et al. (2009) asked 60 subjects to choose among receiving 1 euro, donating 1 euro to Red

Cross, or randomizing between the two with equal probability. Kircher et al. (2009) found

that 25% of the subjects chose the equal randomization.12 See Karni et al. (2008), Bohnet

et al. (2008), and Bolton and Ockenfels (forthcoming) for similar experimental evidence.

To see that this experimental finding is consistent with the EIA model, consider a dictator

whose preference is represented by the EIA model. The dictator chooses a probability

r ∈ [0, 1] that he receives the indivisible good ex post. Since the recipient receives the

good with the rest of the probability 1− r, the dictator obtains probability mixture p(r) =

10The dictator games perfectly fit the framework of a single-person decision-making problem and do not
involve non-distributional concerns such as reciprocity.

11For degenerate lotteries on allocations, we write αx ⊕ (1− α)y ∈ ∆(Rn), instead of αδx ⊕ (1− α)δy .
12In a similar experiment with 92 subjects, Kircher et al. (2009) also found that almost 30% of the

subjects randomized with equal probability.
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r(1, 0)⊕ (1− r)(0, 1).13 Thus, the utility by choosing r is 14

V
(
p(r)

)
=

 δ
(
r − α(1− 2r)

)
+ (1− δ)

(
r(1− β) + (1− r)(−α)

)
if r ≤ 1

2
,

δ
(
r − β(2r − 1)

)
+ (1− δ)

(
r(1− β) + (1− r)(−α)

)
if r ≥ 1

2
.

(3)

Under the commonly used assumption that disutility from envy is larger than that from

guilt (i.e., α > β), the optimal probability r∗ (i.e., the maximizer of (3)) is characterized as

follows.15

Proposition 2 Suppose that α > β. The optimal probability is

r∗ =


1

2
if δ ≥ 1 + α− β

α + β
,

1 if δ ≤ 1 + α− β

α + β
.

Proof : Since α > β, it is easy to see that r ≤ 1
2
is not optimal. For any r ∈ [1

2
, 1], define

f(r) ≡ V (p(r)) = (α+β)δ−α+(1+α−β−δ(α+β))r. By the linearity of f , the candidates

for the maximizers are r = 1
2
or r = 1. In addition, f(1

2
) > f(1) ⇔ 1

2
[1− (1− δ)(α + β)] >

1− β ⇔ δ > 1+α−β
α+β

. �

Therefore, the dictator shares the probability of winning if and only if δ ≥ 1 + α− β

α+ β
.

Given the values of α and β that are often assumed in the literature, the condition is

compatible with δ ∈ [0, 1].16

3.2 Dictator Games under a Veil of Ignorance

Next, we investigate Kariv and Zame’s (2009) experiments. In their experiments, subjects

are asked to divide payoff 1 into x and y such that x + qy ≤ 1, where q ≥ 1. After

the decision, the material payoffs of the decision maker and the recipient are determined

13This specification of the allocation is without loss of generality. We can obtain the same result with x
and y such that x > y, instead of 1 and 0.

14By definition, V (p(r)) = δ
(
r− αmax{1− 2r, 0} − βmax{2r− 1, 0}

)
+ (1− δ)

(
r(1− β) + (1− r)(−α)

)
.

A direct calculation shows the equation for each case.
15The assumption α > β is common in the literature. See, for example, Fehr and Schmidt (1999, 2006).
16For α = 1 and β = 0.6, which are assumed for 30 percent of the population by Fehr and Schmidt (1999),

the condition is equivalent to δ ≥ 0.875. For α = 2 and β = 0.6, which are assumed for 10 percent of the
population by Fehr and Schmidt (1999), the condition is equivalent to δ ≥ 0.93.

8



to be x or y with probability
1

2
. Thus, the decision maker obtains probability mixture

1

2
(x, y)⊕ 1

2
(y, x). In other words, the subjects are required to decide an allocation under a

veil of ignorance.

Kariv and Zame (2009) found that the mode of the distribution of x is around x =
1

1 + q
,

which corresponds to dividing the payoff equally. The distribution falls off sharply from the

mode but has a mass (about 7%) at x = 1. To see that the EIA model can describe these

two major choices x =
1

1 + q
and x = 1, note that the utility of the fifty-fifty probability

mixture is17

V
(1
2
(x, y)⊕ 1

2
(y, x)

)
=

1

2

[
(x+ y)− (1− δ)(α + β)|x− y|

]
. (4)

Hence, the optimal allocation (x∗, y∗) (i.e., the maximizer of (4)) is characterized as follows:

Proposition 3 The optimal allocation is

(x∗, y∗) =


(1, 0) if δ ≥ 1− q − 1

(α + β)(q + 1)
,( 1

1 + q
,

1

1 + q

)
if δ ≤ 1− q − 1

(α + β)(q + 1)
.

Proof : Since V is monotonic on equal allocations, the budget constraint is binding in

the optimal allocation.18 By the substitution of x = 1 − qy, the utility by choosing y is

V (1
2
(1 − qy, y) ⊕ 1

2
(y, 1 − qy)) = 1

2
[1 + (1 − q)y − (1 − δ)(α + β)|1 − (1 + q)y|]. Define

f(y) ≡ V (1
2
(1 − qy, y) ⊕ 1

2
(y, 1 − qy)). Since q ≥ 1, y > 1

1+q
is not optimal. By the

linearity of f , the candidates for the maximizers are y = 0 or y = 1
1+q

. In addition,

f(0) > f( 1
1+q

) ⇔ 1
2
[1− (1− δ)(α + β)] > 1

1+q
⇔ δ > 1− q−1

(α+β)(q+1)
. �

3.3 Preference for Efficiency

Third, we investigate a preference for efficiency under role-assignment risk. Several experi-

mental research has found an evidence for a preference for efficiency, which seems inconsis-

17The derivation is as follows: V ( 12 (x, y)⊕
1
2 (y, x)) = δ 1

2 (x+y)+(1−δ)[ 12 (x−αmax{y−x, 0}−βmax{x−
y, 0}) + 1

2 (y − αmax{x− y, 0} − βmax{y − x, 0})] = 1
2 [(x+ y)− (1− δ)(α+ β)|x− y|].

18V (x, . . . , x) ≥ V (y, . . . , y) ⇔ x ≥ y.

9



tent with inequality aversion. For example, Charness and Rabin (2002) have found that in

a dictator game under role-assignment risk, almost 50% of 80 subjects preferred an efficient

but unequal allocation to an equal but inefficient allocation. (See Engelmann and Strobel

(2004, 2006) for other examples.)

We consider two versions of dictator games where a dictator can choose between an

efficient (but unequal) allocation or an equal (but inefficient) allocation: in one version of

the dictator game, the efficient allocation is an altruistic allocation and in the other version,

the efficient allocation is a selfish allocation. Then, assuming mild assumptions on the

parameters, we show that under role-assignment risk, a subject who has an EIA preference

can choose the altruistic allocation in one game and the selfish allocation in the other game

but without role-assignment risk he always chooses the equal allocation over those efficient

allocations.

The games are formally defined as follows. We consider two players 1 and 2 who have

EIA preferences. In game I, the players make a choice between an altruistic allocation and

an equal allocation under role-assignment risk. If a player chooses the altruistic allocation

and becomes a dictator, then his payoff is 0 and and the other player’s payoff is x > 2. In

contrast, if a player chooses an equal allocation and becomes a dictator, then both players’

payoffs are 1.19 Note that since x > 2, the altruistic allocation is more efficient than the

equal allocation.

Due to role-assignment risk, in fact, each player obtains a fifty-fifty lottery over allo-

cations. For example, if player 1 chooses the altruistic allocation (i.e., (0, x)) and player

2 chooses the equal allocation (i.e., (1, 1)), then both players obtain probability mixture
1

2
(0, x)⊕ 1

2
(1, 1), where the first and the second coordinates of the profiles show the mate-

rial payoffs of players 1 and 2, respectively. Hence, game I is illustrated in Figure 2, where

A denotes choosing the altruistic allocation and E denotes choosing the equal allocation.

Game II is the same as game I except for the point that each player can choose a selfish

allocation, instead of the altruistic allocation. If a player chooses the selfish allocation and

becomes a dictator, then his payoff is x > 2 and the other player’s payoff is 0. Since x > 2,

19This specification of allocation is without loss of generality. We can obtain the same result with y
instead of 1 and z instead of 0 such that x > y > z.
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1
2
(0, x)⊕ 1

2
(x, 0)

1
2
(0, x)⊕ 1

2
(1, 1)

1
2
(1, 1)⊕ 1

2
(x, 0)

1
2
(1, 1)⊕ 1

2
(1, 1)

A

E A

E

E

A

1

2

Game I

1
2
(x, 0)⊕ 1

2
(0, x)

1
2
(x, 0)⊕ 1

2
(1, 1)

1
2
(1, 1)⊕ 1

2
(0, x)

1
2
(1, 1)⊕ 1

2
(1, 1)

S

E S

E

E

S

1

2

Game II

Figure 2: Dictator games with role-assignment risk

the selfish allocation is more efficient than the equal allocation. Game II is also illustrated

in Figure 2, where S denotes choosing the selfish allocation.

Games I’ and II’ are the same as games I and II, respectively, except for the point that

there is no role-assignment risk. Thus, in games I’ and II’ only one player’s choice determines

the allocation as illustrated in Figure 3, where player 1 is a dictator for sure.

(1, 1)

(0, x)
A

E

1

Game I’

(1, 1)

(x, 0)
S

E

1

Game II’

Figure 3: Dictator games without role-assignment risk

Proposition 4 Suppose that α > β and 1 > β.20 Then, for any payoff x such that

δ(α + β)− α ≥ 1

x
≥ 1− β, (5)

the following results hold:21

(i) In game I, both subjects choose the altruistic allocation in an equilibrium.

(ii) In game II, both subjects choose the selfish allocation in an equilibrium.

(iii) In games I’ and II’, choosing the equal allocation is dominant.22

20The assumptions α > β and 1 > β are common in the literature. See, for example, Fehr and Schmidt
(1999, 2006).

21Under the assumption that β > 1
2 , x that satisfies (5) and x > 2 exists if and only if δ(α+β)−α ≥ 1−β.

22In (i) and (ii), there is the other symmetric pure equilibrium where both choose the equal allocation.
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Proof : By a direct calculation, (iii) holds if 1 > x(1 − β). To show (i) and (ii), we

denote by Πi(si|sj) the utility of player i when his strategy is si and the strategy of player

j is sj. Then, Π1(A|A) = V
(
1
2
(0, x) ⊕ 1

2
(x, 0)

)
= 1

2
x[1 − (1 − δ)(α + β)], Π1(E|A) =

V
(
1
2
(1, 1)⊕ 1

2
(x, 0)

)
= 1

2
[1+x(1−β)], Π1(S|S) = V

(
1
2
(x, 0)⊕ 1

2
(0, x)

)
= 1

2
x[1−(1−δ)(α+β)],

and Π1(E|S) = V
(
1
2
(1, 1) ⊕ 1

2
(0, x)

)
= 1

2
(1 − αx). Since the game is symmetric across the

players, Πi(A|A) > Πi(E|A) if and only if (δ(α+β)−α)x > 1. Similarly, Πi(S|S) > Πi(E|S)

if and only if (δ(α+ β)− β +1)x > 1. Since α > β, (δ(α+ β)− β +1)x > (δ(α+ β)− α)x.

Therefore, (i), (ii), and (iii) hold if δ(α + β)− α ≥ 1
x
≥ 1− β. �

As (iii) states, in games I’ and II’ without role-assignment risk, the dictator always

chooses the equal allocation over both the altruistic allocation and the selfish allocation.

However with role-assignment risk, the same dictator can choose the altruistic allocation

in game I and the selfish allocation in game II. Therefore, if an experimenter did not take

into consideration role-assignment risk in these games, the observed behavior would look

inconsistent with inequality aversion and consistent only with a preference for efficiency.

To understand this result intuitively, note that role-assignment risk has an effect similar

to that of a veil of ignorance. Suppose that each of the two players decides to allocate x to

himself and y to the other. Then, under role-assignment risk, the utility of each subject is

determined as (4); that is,

V
(1
2
(x, y)⊕ 1

2
(y, x)

)
=

1

2

[
(“efficiency”)− (1− δ)(α + β)(“inequality”)

]
.

Hence, the subject’s utility from choosing the efficient allocation can be larger than his

utility from choosing the equal allocation, provided that he weighs equality of opportunity

heavily enough (i.e., δ is large enough) and the other player chooses the same efficient

allocation.

Finally, we stress that our explanation is only one possible hypothesis and does not deny

the importance of a preference for efficiency. However, in three-person voting games, Bolton

This is not inconsistent with our main claim in this section: with role-assignment risk, the choices of dictators
are unstable (i.e., choosing the equal allocation is not dominant and there is an equilibrium where both
players choose the efficient allocation); in contrast, without role-assignment risk, the choices are stable (i.e.,
choosing the equal allocation is dominant).
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and Ockenfels (2006) found experimentally that a preference for efficiency is significantly

mitigated without role-assignment risk.23 This evidence would imply that, as Proposition 4

suggests, part of the preference for efficiency under role-assignment risk would be driven by

a preference for equality of opportunity.

4 Application to Optimal Tournament

In this section, we investigate the optimal tournament of a firm with two employees. We

assume that the employees i and j are inequality-averse between them and their preferences

are represented by the EIA model. We show that in contrast to the standard model by

Lazer and Rosen (1981), when δ < 1 the firm cannot implement the employees’ efficient

effort.24 However, as δ approaches 1, the firm can asymptotically implement the efficient

effort.

The firm chooses wage w1 for the winner and wage w2 for the loser to maximize the

sum of the employees’ productions. The employees compete in their quantity of production.

The production of employee k ∈ {i, j} is qk(ek) = ek + εk, where ek is his effort level and εk

is an exogenous random shock. Let G and g be the distribution function and the density

function of εi − εj. We assume that εi and εj are independently and identically distributed

and g(0) > 0. Then g(x) = g(−x).

The probability that employee i wins is pi(ei, ej) ≡ Pr{qi(ei) > qj(ej)} = G(ei − ej).

Hence, when the pair of effort levels is (ei, ej), employee i obtains probability mixture

pi(ei, ej)(w1, w2) ⊕ (1 − pi(ei, ej))(w2, w1). Given (w1, w2) and ej, employee i chooses ei to

maximize V (pi(ei, ej)(w1, w2)⊕ (1− pi(ei, ej))(w2, w1)) −e2i , where e2i is the cost of effort.

Remark 1 Suppose α ≥ β. Given (w1, w2), in any pure strategy equilibrium, both employees

choose an identical effort level e1 = e2 = e such that ∆wg(0)(δ(1−2α)+(1−δ)(1−β+α)) ≤

2e ≤ ∆wg(0)(δ(1− 2β) + (1− δ)(1− β + α)), where ∆w = w1 − w2.

Proof : First, we show ei = ej in any pure strategy equilibrium. Without loss of generality,

23Charness and Rabin (2002) and Engelmann and Strobel (2006) also found that, in different games, the
percentage of choices of efficient allocations decreases without role-assignment risk, although the decreases
are not significant.

24Grund and Sliwka (2005) studied the case where δ = 0.
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assume ei ≥ ej. Then pi ≥ 1
2
≥ pj and the utility of employee i is δ(w2 + pi∆w − β(2pi −

1)∆w) + (1 − δ)(w2 − α∆w + pi∆w(1 + α − β)) − e2i and the utility of employee j is

δ(w2 + pj∆w − α(1 − 2pj)∆w) + (1 − δ)(w2 − α∆w + pj∆w(1 + α − β)) − e2j . By the

first order conditions, 0 = δ(dpi
dei

∆w − 2β dpi
dei

∆w) + (1 − δ)(dpi
dei

∆w(1 + α − β)) − 2ei and

0 = δ(
dpj
dej

∆w + 2α
dpj
dej

∆w) + (1 − δ)(
dpj
dej

∆w(1 + α − β)) − 2ej. By the symmetry, dpi
dei

=

g(ei − ej) = g(ej − ei) =
dpj
dej

. We obtain 2(ei − ej) = −2δ(α + β)∆wg(ei − ej) ≤ 0. Hence,

ej ≥ ei. Therefore, in any pure strategy equilibrium, ei = ej.

Next, we check incentives to deviate from (e, e). Individual i has no incentive to increase

his effort at (e, e) if δ(g(0)∆w − 2βg(0)∆w) + (1 − δ)(g(0)∆w(1 − β + α)) − 2e ≤ 0.

Similarly, he has no incentive to decrease his effort at (e, e) if δ(−g(0)∆w − 2αg(0)∆w) +

(1 − δ)(−g(0)∆w(1 − β + α)) + 2e ≤ 0. Given (w1, w2), therefore, (ei, ej) is a pair of

best responses if and only if ∆w g(0)(δ(1 − 2α) + (1 − δ)(1 − β + α)) ≤ 2ei = 2ej ≤

∆wg(0)(δ(1− 2β) + (1− δ)(1− β + α)). �

Given (w1, w2), equilibrium effort levels of both employees must be the same but there are

multiple best-response effort levels because of the kink of the EIA model. In the following,

we select two equilibria where the effort level is highest (i.e., 2e = ∆wg(0)(δ(1− 2β) + (1−

δ)(1− β+α))) or lowest (i.e., 2e = ∆wg(0)(δ(1− 2α)+ (1− δ)(1− β+α))).25 Since higher

effort implies higher profit of the firm and lower utility of the employees, the high effort

equilibrium is the best equilibrium for the firm and the low effort equilibrium is the best

equilibrium for the employees.26 We show that both equilibria have the same properties in

comparative statics with respect to δ.

In an equilibrium, (w1, w2, e) must maximize the firm’s expected profit: E[qi(e, e) +

qj(e, e)]−w1−w2 = 2e− 2w2−∆w+E(εi)+E(εj) subject to the employee’s participation

constraint:

0 ≤ V
(1
2
(w1, w2)⊕

1

2
(w2, w1)

)
− e2 = w2 +

1

2
∆w(1− (1− δ)(α + β))− e2

25We assume the standard assumption that α ≥ β.
26The high effort equilibrium would arise as a focal point through the influence of the firm. The low effort

equilibrium would arise as a result of coordination among the employees.

14



and the incentive rationality constraint: 2e = ∆wg(0)(δ(1− 2β)+ (1− δ)(1−β+α)) in the

high effort equilibrium and 2e = ∆wg(0)(δ(1 − 2α) + (1 − δ)(1 − β + α)) in the low effort

equilibrium, respectively.

Proposition 5 Let 1
2
≥ α ≥ β and δ > 0. In both equilibria, the following results hold:

Suppose α + β = 0, then the effort level is efficient (i.e., 1
2
).

Suppose α + β > 0, then (i) the effort level is smaller than the efficient level if δ < 1 ,

(ii) the effort level is increasing in δ and tends to be efficient as δ approaches 1 (i.e., e → 1
2

as δ → 1), and (iii) the wage differences ∆w is increasing in δ.

Proof : In any equilibrium, the participation constraint is satisfied with equality: w2(e) =

−1
2
(1 − (1 − δ)(α + β))∆w(e) + e2. In addition, ∆w(e) is determined by the incentive

constraints in both equilibria: ∆w(e) = 2e
δ(1−2β)+(1−δ)(1−β+α)

in the high effort equilibrium

and ∆w(e) = 2e
δ(1−2α)+(1−δ)(1−β+α)

in the low effort equilibrium. Since α ≥ β, ∆w(e) is

increasing in δ in both equilibria, if e is increasing in δ.

The firm’s problem is maxe 2e−2w2(e)−∆w(e)+E(εi)+E(εj). The first order condition

is 0 = 2 − 4e − (1 − δ)(α + β)(∆w)′(e). Therefore, e = 1
2
− 1

4
(1 − δ)(α + β)(∆w)′(e).

Since (∆w)′′(e) = 0, the second order condition is satisfied. Therefore, the equilibrium

effort level is e = 1
2
− α+β

2g(0)
1

δ
1−δ

(1−2β)+(1−β+α)
in the high effort equilibrium and e = 1

2
−

α+β
2g(0)

1
δ

1−δ
(1−2α)+(1−β+α)

in the low effort equilibrium. Since 1
2
≥ α ≥ β, δ

1−δ
is increasing in δ,

and δ
1−δ

→ ∞ as δ → 1, the results in Proposition 5 hold. �

As Lazer and Rosen (1981) have shown, if employees are not inequality-averse (i.e.,

α = 0 = β), the equilibrium effort is efficient (i.e., e = 1
2
). However, when they are

inequality-averse and δ < 1, as (i) states, the equilibrium effort level is smaller than the

efficient level. To understand this result intuitively, note that as the incentive constraints in

both equilibria show, implementing higher effort requires larger wage differences ∆w. The

larger wage differences in turn implies a higher disutility caused by the inequality. Since the

firm must compensate the disutility by making w2 higher, it can be too costly to implement

the efficient effort level in the equilibria.

However, as Remark 1 shows, in any equilibrium, the employees’ effort levels are the
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same, so that the payoff distribution 1
2
(w1, w2)⊕ 1

2
(w2, w1) is equal in opportunity. Therefore

the disutility caused by inequality aversion vanishes as δ increases. Hence, as (iii) states,

the firm can make the wage differences larger as δ increases to implement higher effort while

keeping the participation constraints. As a result, as (ii) states, the equilibrium effort level

tends to be efficient, as δ approaches 1.

The implication of Proposition 5 might suggest an explanation of the divergence in

the wage systems between the United States and Western Europe: the wage differences

in the United States are larger than those in Western Europe.27 A recent meta-analysis

by Oosterbeek, Sloof, and van de Kuilen (2004) have suggested no significant difference in

deterministic inequality aversion (i.e., α and β) between the two regions.28

The EIA model could still explain the divergence in the wage systems by taking into

account the difference in a preference for equality of opportunity (i.e., δ). One explanation

that is consistent with Proposition 5 (iii) is that Americans are more concerned about

equality of opportunity than Western Europeans (i.e., δ is higher in the United States than

in Western Europe). In other words, inequality of outcome (i.e., larger wage differences) as a

result of fair competition is more acceptable in the United States than in Western Europe.29

5 Behavioral Foundation

The primitive preference % is on ∆(Rn). As usual, ≻ and ∼ denote the asymmetric and

symmetric parts of %, respectively.30

5.1 Characterization of the EIA Model

The following five conditions characterize the EIA model. The first condition is standard.

Condition (Rationality): % is complete, transitive, continuous, and monotonic in equal

allocations (i.e., (x, ..., x) % (y, ..., y) if and only if x ≥ y).31

27See Bertola and Ichino (1995) for the evidence.
28Oosterbeek, Sloof, and van de Kuilen (2004) found no significant difference in both offered shares and

rejection rates between Western Europe and the Eastern United States by conducting a meta-analysis of 37
papers on ultimatum game experiments.

29This explanation is also consistent with the empirical evidence that Americans work more than Western
Europeans. See Prescott (2004) for the evidence.

30For all x, x′ ∈ R, we write x % x′ instead of (x, ..., x) % (x′, ..., x′), when there is no danger of confusion.
31The continuity assumed here is von Neumann-Morgenstern continuity with respect to outcome mixtures
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The next condition captures envy and guilt respectively. In the condition, we denote by

(x, (y)−i) the allocation that gives payoff x only to individual i and gives payoff y to the

other individuals.

Condition (Inequality Aversion): For all i ̸= 1, (0, (0)−i) % (1, (0)−i) and (0, (0)−i) %
(−1, (0)−i).

To provide a weaker version of the independence axiom, we define an outcome mixture

of allocations as follows. Note that we denote outcome mixtures using +, not ⊕.

Definition: For all α ∈ [0, 1] and x ,y ∈ Rn, αx + (1 − α)y ∈ Rn is an allocation such

that αx + (1− α)y = (αx1 + (1− α)y1, ..., αxn + (1− α)yn).

Inequality-averse preferences may violate the (von Neumann-Morgenstern) independence

axiom. For example, a violation often observed in (two-person) dictator games is as follows:

1
2
(1, 0)+ 1

2
(0, 1) ≡ (1

2
, 1
2
) ≻ (1, 0) % (0, 1).32 The source of the violation here is the fact that

in the mixed allocations, the rankings of the payoffs are opposite (i.e., the other individual

is better off in (0, 1) and worse off in (1, 0) than the decision maker).

We want to assume the independence axiom when such reversals do not occur.

Definition: Two allocations x ,y ∈ Rn are said to be quasi-comonotonic if there is no i ̸= 1

such that xi > x1 and yi < y1. (Remember that 1 ∈ I denotes the decision maker.)

If x and y are quasi-comonotonic, then the rankings of payoffs of any individual with

respect to the decision maker are not reversed between x and y .33

Condition (Outcome Quasi-comonotonic Independence): For all α ∈ (0, 1] and x ,y , z ∈

Rn such that the pairs x , z , and y , z are each quasi-comonotonic,

and probability mixtures. Formally, (i) for all x ,y , z ∈ Rn, if x ≻ y and y ≻ z , then there exist α and β
in (0, 1) such that αx + (1− α)z ≻ y and y ≻ βx + (1− β)z ; and (ii) for all p, q, r ∈ ∆(Rn), if p ≻ q and
q ≻ r, then there exist α and β in (0, 1) such that αp⊕ (1− α)r ≻ q and q ≻ βp⊕ (1− β)r.

32Suppose that % satisfies the independence axiom. Then (1, 0)%(0, 1) implies (1, 0) ≡ 1
2 (1, 0)+

1
2 (1, 0)%

1
2 (1, 0) +

1
2 (0, 1) ≡ ( 12 ,

1
2 ). This contradicts with ( 12 ,

1
2 ) ≻ (1, 0).

33The definition is a weaker version of comonotonicity provided by Schmeidler (1989). Schmeidler (1989,
p. 586) has presented an interpretation of comonotonicity from the viewpoint of a social planner’s inequality
aversion as follows: two allocations x and y are comonotonic if the social rank of any two individuals is
not reversed between x and y . When we focus on an individual’s inequality-averse preferences, what is
relevant to the individual is social rank with respect to the individual himself, not the social rank of any two
individuals.
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x % y ⇔ α x + (1− α)z % αy + (1− α)z .

These three conditions are enough to obtain the model of Fehr and Schmidt (1999) on

the restricted domain Rn (i.e., the set of degenerate lotteries on allocations).34

Just as outcome mixtures may change the rankings of ex-post payoffs, probability mix-

tures may change the rankings of ex-ante expected payoffs. However, probability mixtures

with an equal allocation (x, ..., x) should not change any rankings. This suggests the follow-

ing condition:

Condition (Probability Certainty Independence): For all α ∈ (0, 1], p, q ∈ ∆(Rn), and

x ∈ R,
p % q ⇔ αp⊕ (1− α)(x, ..., x) % αq ⊕ (1− α)(x, ..., x).

Under the above conditions, for any allocation x , it will be shown that there uniquely

exists z ∈ R such that (z, ..., z) ∼ x . Such payoff z is denoted by e(x ) and is called an

equality equivalent. The value e(x ) reflects the equality of allocation x .

The final key condition, dominance, states that if p is preferred to q in both equality of

opportunity and equality of outcome, then p should be preferred to q. To show the condition,

we formalize the two notions of equality by using equality equivalents. Let p = α1x
1⊕· · ·⊕

αmx
m. Then, Ep(x ) = (

∑m
i=1 αix

i
1, ...,

∑m
i=1 αix

i
n) is the expected allocation in p. Therefore

e(Ep(x )) reflects the evaluation of p in terms of equality of opportunity. In contrast, since

each e(x i) reflects the equality of outcome x i, Ep(e(x )) = α1e(x
1) + · · ·+ αme(x

m) is the

expected evaluation of p in terms of equality of outcome.

Condition (Dominance): For all p, q ∈ ∆(Rn), (i) e(Ep(x )) ≥ e(Eq(x ))

(ii) Ep(e(x )) ≥ Eq(e(x ))

 ⇒ p % q.

To demonstrate how to use the dominance condition, let p = 1
2
(1, 1) ⊕ 1

2
(0, 0) and q =

1
2
(1, 0)⊕ 1

2
(0, 1). On one hand, Ep(x ) = (1

2
, 1
2
) = Eq(x ), so that e(Ep(x )) =

1
2
= e(Eq(x )).

Hence, p and q are indifferent in equality of opportunity. On the other hand, to evaluate the

34See Lemma 1 in the appendix for the statement.
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1
2

1
2

q :
1

2
(1, 0)⊕ 1

2
(0, 1) =

(0, 1)

(1, 0)1
2

1
2

p :
1

2
(1, 1)⊕ 1

2
(0, 0) =

(0, 0)

(1, 1)

(i) e(Ep(x )) = e(1
2
, 1
2
) e(Eq(x )) = e(1

2
, 1
2
)

(ii) Ep(e(x )) =
1
2
e(1, 1) + 1

2
e(0, 0) Eq(e(x )) =

1
2
e(1, 0) + 1

2
e(0, 1)

Figure 4: Dominance

lotteries in equality of outcome, suppose that the decision maker is strictly inequality-averse

(i.e., (1, 1) ≻ (1, 0) and (0, 0) ≻ (0, 1)), so that 1 > e(1, 0) and 0 > e(0, 1). Since e(1, 1) = 1

and e(0, 0) = 0, it follows that Ep(e(x )) =
1
2
e(1, 1) + 1

2
e(0, 0) = 1

2
> 1

2
e(1, 0) + 1

2
e(0, 1) =

Eq(e(x )). Hence, p is preferred to q in equality of outcome. Therefore, the dominance

condition implies that the decision maker should prefer p to q.35

The above five conditions are equivalent to an EIA model. Formally,

Theorem: % satisfies Rationality, Inequality Aversion, Outcome Quasi-comonotonic Inde-

pendence, Probability Certainty Independence, and Dominance if and only if there exists a

triple (α, β, δ) of vectors α, β ∈ Rn−1
+ and δ ∈ [0, 1] such that % is represented by

V (p) = δ U
(
Ep(x )

)
+ (1− δ) Ep

(
U(x )

)
,

where U(y ) = y1 −
∑n

i=2(αimax{yi − y1, 0}+ βimax{y1 − yi, 0}).

5.2 Characterizations of Parameters

We can identify the parameters easily by experiments: α and β are respectively identified

by finding αi and βi such that

(−αi, ...,−αi) ∼ (1, (0)−i) and (−βi, ...,−βi) ∼ (−1, (0)−i), (6)

35In contrast to the dominance condition, the reversal of order condition proposed by Anscombe and
Aumann (1963) does not take equality of outcome into consideration: the condition implies that if
e(Ep(x )) = e(Eq(x )) then p ∼ q.
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for each i ∈ I \ {1}.36 After identifying α and β, we can identify δ by finding c such that

(c, ..., c) ∼ 1

2
(1, (0)−i)⊕

1

2
(−1, (0)−i), (7)

for some i ∈ I \ {1}.37 Then, by the representation, δ = 1 +
2c

αi + βi

. 38

In the following, we characterize the special cases of the EIA model with δ = 1 and

δ = 0.39 The next condition characterizes the special with δ = 1. The condition states that

allocation (0, ..., 0) is indifferent to a probability mixture whose ex-ante expected allocation

is (0, ..., 0).

Condition (Indifference to Timing of Mixture): For all i ̸= 1,

(0, ..., 0) ∼ 1

2
(1, (0)−i)⊕

1

2
(−1, (0)−i). (8)

The other special case with δ = 0 has been used in several papers.40 This special case

is characterized by the condition that the decision maker does not have a strict preference

for probability mixtures.

Condition (Probability Mixture Neutrality): For all i ̸= 1 and x, y ∈ R such that x > 0 > y,

(x, (0)−i) ∼ (y, (0)−i) ⇒
1

2
(x, (0)−i)⊕

1

2
(y, (0)−i) ∼ (x, (0)−i).

Proposition 6 Suppose % is represented by an EIA model with (α, β, δ) where (α, β) ̸= 0.

(i) % exhibits indifference to timing of mixture if and only if δ = 1.

(ii) % exhibits probability mixture neutrality if and only if δ = 0.

Proof : Assume αi > 0 for some i ̸= 1, without loss of generality. To prove (i), note

that V (1
2
(1, (0)−i) ⊕ 1

2
(−1, (0)−i)) = −1

2
(1 − δ)(αi + βi). Hence, (0, (0)−i) ∼ 1

2
(1, (0)−i) ⊕

36By inequality aversion, (0, (0)−i)%(1, (0)−i) and (0, (0)−i)%(−1, (0)−i). Hence, by monotonicity, αi and
βi are nonnegative. We use 1 and −1 just for simplicity. Instead of 1 and −1, we could use any real numbers
x and y such that x > y. In that case, x+y

2 must be used instead of 0.
37Any i ̸= 1 works.
38Given (7), the representation shows c = − 1

2 (1− δ)(αi+βi). For inequality-averse subjects, it is natural
to assume (0, (0)−i)%1

2 (1, (0)−i)⊕ 1
2 (−1, (0)−i). Hence, under monotonicity, c is negative. Thus, δ ≤ 1.

39The characterization of α and β are similar and easier.
40For example, Fehr, Klein, and Schmidt (2007) and Grund and Sliwka (2005) used the special case.
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1
2
(−1, (0)−i) ⇔ δ = 1, so that (i) holds. To prove (ii), choose any x, y ∈ R such that x ≻

0 ≻ y and (x, (0)−i) ∼ (y, (0)−i). Then, U(x, (0)−i) = −αix and U(y, (0)−i) = βiy. Consider

the case where 1
2
x+ 1

2
y ≥ 0.41 Then V (1

2
(x, (0)−i)⊕ 1

2
(y, (0)−i))−U(x, (0)−i) = δαi

1
2
(x−y).

Hence, 1
2
(x, (0)−i)⊕ 1

2
(y, (0)−i) ∼ (x, (0)−i) ⇔ δ = 0. For the other case where 1

2
x+ 1

2
y ≤ 0,

the result can be proved in the same way. �

The above proposition states that these two special cases have rather extreme impli-

cations for behavior. This would suggest that the generic case where δ ∈ (0, 1) is more

relevant.

6 Conclusion

We have introduced a model of inequality aversion of an individual under risk, which we

call the EIA model. Under risk, there are two distinct and sometimes incompatible notions

of equality, in contrast to a deterministic environment: equality of opportunity and equality

of outcome. In the EIA model, a single parameter δ captures a preference for equality

of opportunity relative to a preference for equality of outcome. Furthermore, the model

reduces into the model of Fehr and Schmidt (1999) on the deterministic allocations. We have

applied the EIA model to provide a unified explanation for various experimental evidence,

including a preference for efficiency. Moreover, we have applied the EIA model to the

optimal tournament and have shown that the efficiency can be achieved as δ → 1 in spite of

inequality aversion. One underling insight suggested by these applications is that equality

of opportunity can often be compatible with efficiency in contrast to equality of outcome.

Finally, we have provided behavioral conditions that characterize the EIA model.

Appendix: Proofs

Before proving the theorem, we show two independent lemmas. The first lemma provides the

representation theorem of the model of Fehr and Schmidt (1999) on the restricted domain

Rn of the set of degenerate lotteries.

41In this case, V ( 12 (x, (0)−i)⊕ 1
2 (y, (0)−i)) = −δαi

[
1
2x+ 1

2y
]
− (1− δ) 12

[
αix− βiy

]
.
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A Lemmas

Lemma 1 A preference % on Rn satisfies Rationality, Inequality Aversion, and Outcome

Quasi-Comonotonic Independence if and only if there exists a pair (α, β) of vectors α, β ∈

Rn−1
+ such that % on Rn is represented by U(x ) = x1−

∑n
i=2

(
αi max{xi−x1, 0}+βi max{x1−

xi, 0}
)
.

Proof of Lemma 1: The necessity of the conditions is trivial. In the following, we show

the sufficiency. Fix % that satisfies the conditions.

Step 1: There exists a utility function U : Rn → R such that (i) for all α ∈ [0, 1] and

x ,y ∈ Rn, if x and y are quasi-comonotonic, then U(αx+(1−α)y ) = αU(x )+(1−α)U(y ),

(ii) for all x ∈ Rn and a ∈ R+, U(ax ) = aU(x ), and (iii) U is unique up to positive affine

transformation.

Proof of Step 1: Since an equal allocation (z, ..., z) is quasi-comonotonic with any other

allocations, Outcome Quasi-comonotonic Independence implies that for all x ,y ∈ Rn, z ∈

R, and α ∈ (0, 1), x % y ⇔ αx +(1−α)(z, ..., z) % αy +(1−α)(z, ..., z). By the standard

argument with the von Neumann-Morgenstern’s Theorem, the above property implies that

there exists a utility function U on Rn such that for all x ∈ Rn, z ∈ R, and α ∈ (0, 1),

U(αx + (1− α)(z, ..., z)) = αU(x ) + (1− α)U(z, ..., z). (9)

In addition, U is unique up to positive affine transformation, so that (iii) holds. Hence,

we can normalize U by U(1, ..., 1) = 1 and U(−1, ...,−1) = −1, without loss of generality.

Then, U(0, ..., 0) = 0. Therefore, (9) shows that for all x ∈ R and a ∈ [0, 1] such that a ≤ 1,

U(ax ) = aU(x ). This immediately implies (ii).42

To show (i), choose α ∈ [0, 1] and x ,y ∈ Rn such that x and y are quasi-comonotonic.

By (ii), there exists a positive integer n such that 1
n
U(x ) = U( 1

n
x ) ∈ [−1, 1]. Since [−1, 1] ⊂

{U(z, ..., z)|z ∈ R}, there exists z ∈ R such that (z, ..., z) ∼ 1
n
x . In addition, 1

n
x and 1

n
y

are also quasi-comonotonic. Hence, Outcome Quasi-comonotonic Independence shows that

42Let a > 1 and x ∈ R. Then, x ∼ 1
a (ax ) +

(
1 − 1

a

)
(0, ..., 0). Hence, U(x ) = 1

aU(ax ), so that
U(ax ) = aU(x ).
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α( 1
n
x ) + (1 − α)( 1

n
y ) ∼ α(z, ..., z) + (1 − α)( 1

n
y ). Therefore, by using (9) and (ii), we

obtain 1
n
U(αx + (1−α)y

)
= U(α(z, ..., z) + (1−α)( 1

n
y )) = αU(z, ..., z) + (1−α)U( 1

n
y ) =

α
(
1
n
U(x )

)
+ (1− α)

(
1
n
U(y )

)
, so that (i) holds. �

For all i ̸= 1, define αi = −U(1, (0)−i) and βi = −U(−1, (0)−i). By Inequality Aversion,

αi ≥ 0 and βi ≥ 0 for all i ̸= 1. Fix any x ∈ Rn.

Step 2: Let I = {i ∈ I|xi > x1} and I = {i ∈ I|x1 > xi}. Then, (i) for all i ∈ I, U(xi −

x1, (0)−i) = −αimax{xi − x1, 0}, (ii) for all i ∈ I, U(xi − x1, (0)−i) = −βi max{x1 − xi, 0},

and (iii) for all i ∈ I \ (I ∪ I), U(xi − x1, (0)−i) = 0.

Proof of Step 2: To show (i), fix i ∈ I. By Step 1 (ii), U(xi − x1, (0)−i) = (xi −

x1)U(1, (0)−i) = −αimax{xi − x1, 0}. (ii) and (iii) can be proved in the same way. �

By the steps, the following calculations complete the proof of Lemma 1. Note that

1
n
x ∼ 1

n
(x1, ..., x1) +

∑n
i=2

1
n
(xi − x1, (0)−i) and any pair among {(x1, ..., x1), (x2 − x1, (0)−2)

, ..., (xn−x1, (0)−n)} is quasi-comonotonic. Therefore, U(x ) = nU( 1
n
x ) = nU( 1

n
(x1, ..., x1)+∑n

i=2
1
n
(xi − x1, (0)−i)) = U(x1, ..., x1) +

∑n
i=2 U(xi − x1, (0)−i) = x1 −

∑n
i=2(αimax{xi −

x1, 0}+ βimax{x1 − xi, 0}). �

Lemma 2 provides a representation result for a preference %̂ on a subset set D of R2.

Condition (Certainty Monotonicity): (c, c) %̂ (c′, c′) if and only if c ≥ c′.

Condition (Certainty Independence): For all (a, b), (a′, b′), (c, c) ∈ D and α ∈ [0, 1], (a, b)

%̂ (a′, b′) if and only if α(a, b) + (1− α)(c, c) %̂α(a′, b′) + (1− α)(c, c).

Condition (Certainty Continuity): For all (a, b), (a′, b′), (c, c) ∈ D , if (a, b) %̂ (a′, b′) %̂ (c, c)

or (c, c) %̂ (a′, b′) %̂ (a, b) then there exists α ∈ [0, 1] such that (a′, b′) ∼̂α(a, b)+ (1−α)(c, c).

Lemma 2 : Suppose that (i) for any (a, b) ∈ D , a ≥ b, (ii) for all (a, b), (c, c) ∈ D and α ∈

[0, 1], α(a, b)+(1−α)(c, c) ∈ D , and (iii) there exist (a∗, b∗), (c, c), (c, c) ∈ D such that a∗ >

b∗ and c > a∗ > c. If a preference %̂ on D satisfies Completeness, Transitivity, Certainty

Monotonicity, Certainty Independence, and Certainty Continuity, then there exists a real

number δ such that (a, b) %̂ (a′, b′) ⇔ δa+ (1− δ)b ≥ δa′ + (1− δ)b′.
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Proof of Lemma 2: Consider the case where (a∗, a∗) %̂ (a∗, b∗). By assumption (iii),

c > a∗. Certainty Monotonicity shows (c, c) ≻̂ (a∗, a∗). Then by Certainty Continuity, there

exist α > 0 such that (a∗, a∗) ∼̂α(a∗, b∗)+(1−α)(c, c). Denote
(
αa∗+(1−α)c, αb∗+(1−α)c

)
by (â, b̂). 43 Then, (â, b̂) ∼̂ (a∗, a∗).

45◦

a∗

b̂

â

a∗

c

D

T

c

b∗

Figure 5: Indifference curves of %̂ on T

Let T be a triangle including the interior which consists of the vertices (c, c), (a∗, a∗),

and (â, b̂).44 In the following, we show the existence of the desired real number δ on T and

then extend the result on D .

Step 1: T is a nondegenerate subset of D .

Proof of Step 1: Since a∗ > b∗ and α > 0, â > b̂. Therefore, (a∗, a∗) ̸= (â, b̂) ̸= (c, c).

Hence, T is not degenerate. Choose any (a, b) ∈ T to show (a, b) ∈ D . Since T is a

triangle, there exist α, β ∈ [0, 1] such that (a, b) = α(c, c) + β(a∗, a∗) + (1 − α − β)(â, b̂) =

(α + β)(c, c) + (1− α− β)(â, b̂), where c ≡ α
α+β

c+ β
α+β

a∗. Since (â, b̂) ∈ D , it follows from

assumption (ii) that (a, b) ∈ D . �

Step 2: There exists a real number δ such that for any (a, b), (a′, b′) ∈ T , (a, b) %̂ (a′, b′) ⇔

δa+ (1− δ)b ≥ δa′ + (1− δ)b′.

Proof of Step 2:

43In the other case where (a∗, b∗)%(a∗, a∗), there exist α > 0 such that (a∗, a∗) ∼̂α(a∗, b∗) + (1−α)(c, c).
Denote

(
αc + (1 − α)a∗, αc + (1 − α)b∗

)
by (ã, b̃). Then, instead of the triangle T defined in the proof,

consider a triangle including the interior, which consists of the vertices (c̃, c̃), (c, c), and (a∗, a∗). Then, the
rest of the proof goes through exactly in the same way.

44Formally, T =
{
(a, b) ∈ R2|a ≥ b,

⟨
(a∗−â, b̂−a∗), (a, b)−(a∗, a∗)

⟩
≥ 0,

⟨
(c−â, b̂−c), (a, b)−(c, c)

⟩
≥ 0

}
,

where ⟨·, ·⟩ is a inner product.
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Substep 2.1: For all (a, b) ∈ T , there exists a unique number α ∈ [0, 1] such that

(a, b) ∼̂α(c, c) + (1− α)(a∗, a∗).

Proof of Substep 2.1: Choose any (a, b) ∈ T . Since T is the triangle, there exist

α, β ∈ [0, 1] such that (a, b) = α(c, c) + β(a∗, a∗) + (1 − α − β)(â, b̂). Since (â, b̂) ∼̂ (a∗, a∗),

Transitivity and Certainty Independence show (a, b) ∼̂α(c, c)+(1−α)(a∗, a∗). Since c > a∗,

Certainty Monotonicity shows that α is unique. Hence, Substep 2.1 is proved.

For all (a, b) ∈ T , define c(a, b) = αc+ (1− α)a∗, where α is obtained in Substep 2.1.

Substep 2.2: For all (a, b) ∈ T ,
a− c(a, b)

a− b
=

â− a∗

â− b̂
.

Proof of Substep 2.2: Choose any (a, b) ∈ T . Since c(a, b) = αc + (1 − α)a∗, a−c(a,b)
a−b

=

a−αc−(1−α)a∗

a−b
. Since (a, b) ∈ T , (a, b) = α′(c, c)+β(a∗, a∗)+(1−α′−β)(â, b̂) for some α′, β ∈

[0, 1]. Since (a∗, a∗) ∼̂ (â, b̂), Transitivity and Certainty Independence show (a, b) ∼̂α′(c, c)+

(1−α′)(a∗, a∗). Hence, Substep 2.1 shows α′ = α, so that (a, b) = α(c, c)+β(a∗, a∗)+(1−α−

β)(â, b̂). Thus, a−αc−(1−α)a∗ = (αc+βa∗+(1−α−β)â)−αc−(1−α)a∗ = (1−α−β)(â−a∗)

and a− b = (1− α− β)(â− b̂). Hence, a−αc−(1−α)a∗

a−b
= â−a∗

â−b̂
, so that Substep 2.2 is proved.

Define δ = 1− â− a∗

â− b̂
. By substituting this into the result of Substep 2.2, we conclude

that for all (a, b) ∈ T , c(a, b) = δa + (1 − δ)b. Therefore, for any (a, b), (a′, b′) ∈ T

by Substeps 2.1 and 2.2, (a, b) %̂ (a′, b′) ⇔ (c(a, b), c(a, b)) %̂ (c(a′, b′), c(a′, b′)) ⇔ c(a, b) ≥

c(a′, b′) ⇔ δa+ (1− δ)b ≥ δa′ + (1− δ)b′. �

Step 3: For all (a, b), (a′, b′) ∈ D , (a, b) %̂ (a′, b′) ⇔ δa+ (1− δ)b ≥ δa′ + (1− δ)b′.

Proof of Step 3: Let c∗ = 1
2
c+ 1

2
a∗. Choose any (a, b), (a′, b′) ∈ D . Then, by assumption

(i), a ≥ b and a′ ≥ b′. Thus, there exists α ∈ (0, 1] such that α(a, b) + (1 − α)(c∗, c∗) and

α(a′, b′) + (1− α)(c∗, c∗) belong to T . Therefore, Step 2 and Certainty Independence show

that (a, b) %̂ (a′, b′) ⇔ α(a, b)+(1−α)(c∗, c∗) %̂α(a′, b′)+(1−α)(c∗, c∗) ⇔ δ(αa+(1−α)c∗)+

(1 − δ)(αb + (1 − α)c∗) ≥ δ(αa′ + (1 − α)c∗) + (1 − δ)(αb′ + (1 − α)c∗) ⇔ δa + (1 − δ)b ≥

δa′ + (1− δ)b′. �

B Proof of Theorem and Proposition 1
The necessity of the conditions is trivial. To show Continuity, note that the EIA model is a

weighted sum of max functions. In the following, we show the sufficiency. Fix % on ∆(Rn)
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that satisfies the conditions.

Step 1: There exists a utility function V such that (i) V (αp⊕ (1− α)(x, ..., x)) = αV (p) +

(1− α)V (x, ..., x) for all p ∈ ∆(Rn), x ∈ R, and α ∈ [0, 1]; (ii) V = U on Rn, where U is a

degenerate EIA model.

Proof of Step 1: By Lemma 1, there exists a degenerate EIA model U of % on Rn. As in

Step 1 of the proof of Lemma 1, there exists a utility function V such that for all p ∈ ∆(Rn),

x ∈ R, and α ∈ [0, 1], V (αp⊕(1−α)(x, ..., x)) = αV (p)+(1−α)V (x, ..., x), so that (i) holds.

In addition, V is unique up to positive affine transformation. Hence, we can normalize V

by V (1, ..., 1) = 1 and V (−1, ...,−1) = −1, without loss of generality.

To prove (ii), it suffices to show that V = U on {(x, ..., x)|x ∈ R} because V is unique up

to positive affine transformation. Since U(x, ..., x) = x for all x ∈ R, we prove V (x, ..., x) = x

for all x ∈ R. Note that for all x, y ∈ R, V (x, ..., x) ≥ V (y, ..., y) ⇔ (x, ..., x) % (y, ..., y) ⇔

x ≥ y. Hence, there exists an increasing function f : R → R such that V (x, ..., x) = f(x)

for all x ∈ R. To show that f is the identity function, note that Dominance trivially

implies α(x, ..., x) + (1 − α)(y, ..., y) ∼ α(x, ..., x) ⊕ (1 − α)(y, ..., y) for all x, y ∈ R and

α ∈ [0, 1]. Therefore, property (i) of V shows that f is affine (i.e, f(αx + (1 − α)y) =

αf(x) + (1 − α)f(y)).45 In addition, by the normalizations, f(1) = 1 and f(−1) = −1.

Therefore, f is the identity function. �

If (α, β) = 0, then the theorem holds trivially. Thus, we consider the case where (α, β) ̸=

0. To use Lemma 2, define D =
{(

U(Ep(x )), Ep(U(x ))
)
∈ R2

∣∣ p ∈ ∆(Rn)
}
.

Step 2: D satisfies the properties (i), (ii), and (iii) in Lemma 2.

Proof of Step 2: To show (i), it suffices to show that U(Ep(x )) ≥ Ep(U(x)) for all p ∈

∆(Rn). To show this, fix p ∈ ∆(Rn). For all i ̸= 1 and x = (x1, ..., xn) ∈ Rn, define Gi(x ) =

−αimax{xi−x1, 0}−βimax{x1−xi, 0}. Then, Gi is concave and U(x ) = x1+
∑

i̸=1 Gi(x ) for

all x ∈ Rn.46 Since U is a sum of concave functions, U is also concave. Therefore, Jensen’s

45To see this fix x, y ∈ R and α ∈ [0, 1]. Then αf(x) + (1− α)f(y) = αV (x, ..., x) + (1− α)V (y, ..., y) =
V (α(x, ..., x)⊕ (1− α)(y, ..., y)) = V (α(x, ..., x) + (1− α)(y, ..., y)) = f(αx+ (1− α)y). Hence, f is affine.

46Remember (i) for any convex function ϕ and positive number a, amax{ϕ(·), 0} is convex; (ii) a sum of
convex functions is convex; (iii) for any convex function ϕ, −ϕ is concave. By (i), αi max{xi − x1, 0} and
βi max{x1 − xi, 0} are convex. Then, by (ii), αi max{xi − x1, 0} + βi max{x1 − xi, 0} is convex. Finally,
then by (iii), Gi is concave.
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Inequality shows that U(Ep(x )) ≥ Ep(U(x )) for all p ∈ ∆(Rn). Property (ii) follows from

property (9) of U in Lemma 1. To show (iii) assume αi > 0 for some i ̸= 1 without loss of

generality. Let p = 1
2
(1, (0)−i)⊕ 1

2
(−1, (0)−i). Define (a

∗, b∗) = (U(Ep(x )), Ep(U(x ))). Then

a∗ = U(1
2
(1, (0)−i) +

1
2
(−1, (0)−i)) = 0 > −1

2
(αi + βi) =

1
2
U(1, (0)−i) +

1
2
U(−1, (0)−i) = b∗.

Obviously, there exist c, c ∈ R such that c > a∗ and b∗ > c. This completes the proof of

(iii). �

For all (a, b) ∈ D , define v(a, b) = V (p), where p ∈ ∆(Rn) such that U(Ep(x )) = a and

Ep(U(x )) = b. Dominance implies that v is a well-defined increasing function.47 Then, for

all (a, b), (a′, b′) ∈ D define, (a, b) %̂ (a′, b′) ⇔ v(a, b) ≥ v(a′, b′).

Step 3: %̂ satisfies Completeness, Transitivity, Certainty Monotonicity, Certainty Inde-

pendence, and Certainty Continuity.

Proof of Step 3: Since v is a well-defined increasing function, %̂ satisfies Completeness,

Transitivity, and Certainty Monotonicity. Certainty Independence follows from Step 1. To

see this, choose any (a, b), (a′, b′), (z, z) ∈ D and α ∈ [0, 1]. Then, there exist p, q ∈ ∆(Rn)

such that (a, b) =
(
U(Ep(x )), Ep(U(x ))

)
and (a′, b′) =

(
U(Eq(x )), Eq(U(x ))

)
. To simplify

notation, let p′ = αp ⊕ (1 − α)(z, ..., z) and q′ = αq ⊕ (1 − α)(z, ..., z). By Step 1(i), then

(a, b) %̂ (a′, b′) ⇔ V (p) ≥ V (q) ⇔ V (p′) ≥ V (q′) ⇔
(
U(Ep′(x )), Ep′(U(x ))

)
%̂
(
U(Eq′(x )),

Eq′(U(x ))
)
. Moreover, since (U(Ep′(x )), Ep′(U(x ))

)
= α(a, b)+(1−α)(z, z) and (U(Eq′(x )),

Eq′(U(x ))
)
= α(a′, b′) + (1−α)(z, z). This completes the proof of Certainty Independence.

Finally, we show that %̂ satisfies Certainty Continuity. Choose any (a, b), (a′, b′), (z, z) ∈

D such that (a, b) %̂ (a′, b′) %̂ (z, z). Then, there exist p, q ∈ ∆(Rn) such that
(
U(Ep(x )),

Ep(U(x ))
)
= (a, b) and

(
U(Eq(x )), Eq(U(x ))

)
= (a′, b′). Then p % q % (z, ..., z). Then by

Continuity, there exists α ∈ [0, 1] such that q ∼ αp ⊕ (1 − α)(z, ..., z). By definition, this

implies that (a′, b′) ∼̂α(a, b) + (1− α)(z, z). The other case where (z, z) %̂ (a′, b′) %̂ (a, b) is

proved in the same way. �

Given Steps 2 and 3, Lemmas 2 shows that p% q ⇔ V (p) ≥ V (q) ⇔
(
U(Ep(x )), Ep(U(x ))

)
47To see that v is well-defined (i.e., if (U(Ep(x )), Ep(U(x ))) = (U(Eq(x )), Eq(U(x ))), then V (p) = V (q)),

choose any p, q ∈ ∆(Rn) such that (U(Ep(x )), Ep(U(x ))) = (U(Eq(x )), Eq(U(x ))). Then, conditions (i)
and (ii) in Dominance are satisfied with equality. Therefore, Dominance shows V (p) = V (q).
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%̂
(
U(Eq(x )), Eq(U(x ))

)
⇔ δU(Ep(x )) + (1− δ)Ep(U(x )) ≥ δU(Eq(x )) +(1− δ)Eq(U(x ))

for all p, q ∈ ∆(Rn). This completes the proof of Theorem.

In the following, we provide the proof of Proposition 1

Proof : It is easy to see that (ii) implies (i). To show that (i) implies (ii), suppose that

(δ, α, β) and (δ′, α′, β′) represent %. Let V and V ′ be the function defined by (δ, α, β) and

(δ′, α′, β′), respectively.

First, we show (α, β) = (α′, β′). Suppose to the contrary that (α, β) ̸= (α′, β′). As-

sume α′
i > αi for some i ̸= 1, without loss of generality. Therefore, V (1, (0)−i) = −αi =

V (−αi, ...,−αi) = −αi > −α′
i = V (−α′

i, ...,−α′
i) and V ′(1, (0)−i) = −α′

i = V ′(−α′
i, ...,−α′

i).

Thus, (1, (0)−i) ∼ (−αi, ...,−αi) ≻ (−α′
i, ...,−α′

i) ∼ (1, (0)−i), which is a contradiction.

Second, we show that if (α, β) ̸= 0, then δ = δ′. Suppose to the contrary that (α, β) ̸= 0

but δ ̸= δ′. Without loss of generality, assume δ > δ′ and αi > 0 for some i ̸= 1. Then,

V (1
2
(1, (0)−i) ⊕ 1

2
(−1, (0)−i)) = −1

2
(1 − δ)(αi + βi) = V (−1

2
(1 − δ) (αi + βi), ...,−1

2
(1 −

δ) (αi + βi)). Therefore,
1
2
(1, (0)−i)⊕ 1

2
(−1, (0)−i) ∼ (−1

2
(1− δ) (αi + βi), ...,−1

2
(1− δ) (αi +

βi)) ≻ (−1
2
(1− δ′)(αi + βi), ...,−1

2
(1− δ′)(αi + βi)) ∼ 1

2
(1, (0)−i)⊕ 1

2
(−1, (0)−i), which is a

contradiction.
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