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“Kantian optimization, social ethos, and Pareto efficiency” 

by 

John E. Roemer1 

 

Abstract.   Although evidence accrues in biology, anthropology and experimental 

economics that homo sapiens is a cooperative species, the reigning assumption in 

economic theory is that individuals optimize in an autarkic manner (as in Nash and 

Walrasian equilibrium).  I here postulate an interdependent kind of optimizing behavior, 

called Kantian.  It is shown that in simple economic models, when there are negative 

externalities (such as congestion effects from use of a commonly owned resource) or 

positive externalities (such as a social ethos reflected in individuals’ preferences), 

Kantian equilibria dominate Nash-Walras equilibria in terms of efficiency.  While 

economists schooled in Nash equilibrium may view the Kantian behavior as utopian, 

there is some – perhaps much -- evidence that it exists.  If cultures evolve through group 

selection, the hypothesis that Kantian behavior is more prevalent than we may think is 

supported by the efficiency results here demonstrated. 
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1. Introduction 

 Three strands of work in contemporary social science, evolutionary biology, and 

political philosophy unite in emphasizing this fact: that homo sapiens is a cooperative 

species.  In evolutionary biology, this statement is accepted as a premise, and scientists 

are interested in explaining how cooperation and ‘altruism’ may have developed among 

humans.   In economics, there is now a long series of experiments whose results are most 

easily explained by the hypothesis that individuals are to some degree altruistic.    

Altruism is to be distinguished from reciprocity: when behaving in a cooperative manner, 

a reciprocator expects cooperation in return, which will increase his/her net payoff  (net, 

that is, of the original sacrifice entailed in cooperation), while an altruist cooperates 

without the expectation of a future reciprocating behavior.   Many biologists, 

experimental economists, and anthropologists now accept the existence of altruistic as 

well as reciprocating behavior.    A recent summary of the state-of-the-art in experimental 

economics, anthropology, and evolutionary biology is provided by Bowles and Gintis 

(2011).   See Rabin (2006) for a summary of the evidence from experimental economics.   

An anthropological view is provided in Henrich and Henrich (2007).  A recent paper 

which provides a good bibliography of work attempting to explain altruistic preferences 

as evolutionary equilibria is Alger and Weibull (2012). 

 In political philosophy, G.A. Cohen (2010) offers a definition of ‘socialism’ as a 

society in which earnings of individuals at first accord with a conception of equality of 

opportunity that has developed in the last thirty years in political philosophy (see Rawls 

(1971), Dworkin (1981), Arneson (1989), and Cohen(1989)), but in which inequality in 

those earnings is then reduced because of the necessity to maintain ‘community,’ an ethos 

in which ‘…people care about, and where necessary, care for one another, and, too, care 

that they care about one another.’   Community, Cohen argues, may induce a society to 

reduce material inequalities (for example, through taxation) that would otherwise be 

acceptable according to ‘socialist’ equality of opportunity.   But, Cohen writes: 

…the principal problem that faces the socialist ideal is that we do 
not know how to design the machinery that would make it run. Our problem is 
not, primarily, human selfishness, but our lack of a suitable organizational 
technology: our problem is a problem of design. It may be an insoluble design 
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problem, and it is a design problem that is undoubtedly exacerbated by our selfish 
propensities, but a design problem, so I think, is what we’ve got.  
 

 An economist reading these words thinks of the first theorem of welfare 

economics.   A Walrasian equilibrium is Pareto efficient in an economy with complete 

markets, private goods, and the absence of externalities.  But under the communitarian 

ethos, people care about the welfare of others – which induces massive consumption 

externalities – and so the competitive equilibrium will not, in general, be efficient.  What 

economic mechanism can deliver efficiency under these conditions2? 

 There is an important line of research, conducted by Ostrom (1990) and her 

collaborators, arguing that, in many small societies, people figure out how to avoid, or 

solve, the ‘tragedy of the commons.’  The ‘tragedy’ has in common with altruism the 

existence of an externality which conventional optimizing behavior does not properly 

address3.   It may be summarized as follows.  Imagine a lake which is owned in common 

by a group of fishers, who each possess preferences over fish and leisure, and perhaps 

differential skill (or sizes of boats) in (or for) fishing.  The lake produces fish with 

decreasing returns with respect to the fishing labor expended upon it.  In the game in 

which each fisher proposes as her strategy a fishing time, the Nash equilibrium is 

inefficient: there are congestion externalities, and all would be better off were they able 

to design a decrease, of a certain kind, in everyone’s fishing.    Ostrom has studied many 

such societies, and maintains that many or most of them learn to regulate ‘fishing,’ 

without privatizing the ‘lake.’   Somehow, the inefficient Nash equilibrium is avoided.   

This example is not one in which fishers care about other fishers (necessarily), but it is 

one in which cooperation is organized to deal with a negative externality of autarkic 

behavior. 

  Ostrom’s observations pertain to small societies.   In large economies, we 

observe the evolution of the welfare state, supported by considerable degrees of taxation 

                                                
2 In war-time Britain, many spoke of ‘doing their bit’ for the war effort – voluntary 
additional sacrifice for the sake of the common good.  (See the wonderful BBC series 
‘Foyle’s War’ to understand the pervasiveness of this ethos.)   But, if I want to contribute 
to the common struggle, how much extra should I do?   
3 In the case of altruism, ‘conventional’ behavior is market behavior, and in the case of 
the tragedy of the commons, it is autarkic optimizing behavior in using a resource which 
is owned in common. 
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of market earnings.   It is not immediately evident that welfare states are due to a feeling 

of community (à la Cohen), or simply provide a more conventional public good or a good 

in which market failures abound (insurance), or reflect reciprocating behavior  among 

citizens (welfare states expand after wars, perhaps as a reward to returning soldiers; see 

Scheve and Stasavage[in press]).    Nevertheless, the large scope of welfare states, 

especially in Northern Europe, is perhaps most easily explained by a communitarian 

ethos.  Redistributive taxation is, that is to say,  at least some degree a reaction to the   

material deprivation of a section of society, which others view as undeserved, and desire 

to redress.   Nevertheless, as is well-known, redistributive taxation induces, to some 

degree, allocative inefficiency.  The solution is second-best. 

 Economic theorists are beginning to pay attention to the design problem – that is, 

how to achieve economic efficiency in a society where people care about other people.   

Perhaps to say they are ‘beginning’ to do so is uncharitable: implementation theory, 

largely initiated with Maskin’s (1999) work of thirty years ago, asks whether a social-

choice rule can be implemented as the Nash equilibrium of a game.   And before Maskin, 

Leonid Hurwicz pioneered the work on mechanism design, in which he studied the 

efficiency properties of different economic mechanisms at a highly abstract level.  This 

work, however, did not focus upon the issue of externalities induced by the fact that 

people care about the welfare of other people. 

 A recent contribution which is relevant to this inquiry is that of  Dufwenberg, 

Heidhues, Kirchsteiger, Riedel, and Sobel (2010),  entitled “Other-regarding preferences 

in general equilibrium,” which studies, at an abstract level,  the veracity of the first and 

second welfare theorems in the presence of other-regarding preferences. From the 

viewpoint of the evolution of economic thought, it is significant that their article is the 

result of combining three independent papers by subsets of the five authors: in other 

words, the problem of addressing seriously the efficiency consequences of the existence 

of other-regarding preferences is certainly in the air at present. 

 In this paper, I wish to offer a partial solution to two problems of economic 

allocation: how to achieve efficiency in environments where there are positive and 

negative externalities and individuals are conventionally self-interested,  and secondly, 

how to achieve efficiency in the presence of a social ethos – I use the term, taken from 
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Bowles and Gintis (2011) -- although ‘other-regarding preferences’ is a synonym.   

(Perhaps social ethos includes the kind of second-order preference that G.A. Cohen refers 

to in defining community, that people care that they care about others,  while ‘other-

regarding preferences’ does not.)  The ‘problem’ is that market equilibria are in general 

Pareto inefficient in the presence of a social ethos, and moreover, redistributive taxation 

is also inefficient.  

 I next describe the economic environment for this inquiry. There is a concave 

production function which produces a single output from a single input, called effort.  

Effort is supplied by individuals; it may differ in intensity or efficiency units, but effort 

can be aggregated across individuals when measured in the proper units.  Individuals 

have conventional personal utility functions, representing their self-interested preferences 

over income and effort.   In general, they care about the welfare of others as well.  There 

are two aspects to this caring:  how individuals choose to aggregate individual welfares 

into social welfare, and the degree to which social welfare counts in the individual’s 

preferences.  We will assume here that individuals are homogeneous with respect to these 

two decisions.   

  An individual of type  has preferences represented by an all-encompassing 

utility function which might be of the form: 

 
  
U γ (x(⋅), E(⋅)) = uγ (x(γ ), E(γ ))+αexp log[uτ(x(τ), E(τ))∫ ]dF(τ)    (1.1) 

where   u
γ (⋅,⋅) is the personal utility function of type γ over consumption and effort, 

   E(⋅) : + → +  is a function which describes the efforts of individuals of all types,  

   x(⋅) : + → +  is a function which defines the amount of output (a single good) allocated 

to each type, α  is a non-negative number measuring the degree of social ethos, F is the 

distribution of types in the society, and the social-welfare function  (in this case) is given 

by a member of the CES family  

    
  
W p (u[i]) = u[i]p dF(i)∫( )1/ p

,     (1.2) 
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as   p 0 .  (It is well-known that the function in (1.2) approaches the exponential of the 

average of the logarithms as   p 0 .)   Think of an individual’s type as signifying, inter 

alia, the degree to which effort is easy for him, or his natural talent. 

 A society in which people do not count the welfare of others is one with 

individualistic ethos: in such a society,  α = 0 ,  A society in which they do is one with 

social ethos.  Social ethos can be stronger or weaker, as represented by the  

parameter α .  When α = ∞ , the economy is equivalent to the one in which for everyone, 

all-encompassing utility is equal to social welfare; this is the purely altruistic economy. 

 Production is described by a differentiable, concave production function G.  In the 

continuum economy, the value   G(E)  is per capita output of the good when the effort 

schedule is   E( )  and   E ≡ E(γ )dF(γ )∫ .   When the number of agents is finite, I usually 

write the discrete effort vector as   E = (E1,..., En ) and the sum of efforts as  E
S ≡ E j∑ .   

Total output is then   G(ES ) . 

 Suppose that G is linear and there is a private-ownership economy with zero 

profits at competitive equilibrium.  A typical allocation rule is the linear-tax rule: 

    xt
γ (E(⋅)) = (1− t)wE(γ )+ t wE(τ)dF(τ)∫  ,    (1.3) 

where w is the wage paid by the firm and t is the tax rate.   Under the competitive 

assumption, the firm pays a wage equal to the marginal product of effort,   w = ′G (E) .  

There are two important kinds of externality here – both positive: the tax system creates 

positive externalities to individual labor, because in general some of each worker’s 

earnings is redistributed to others, and there are also positive consumption externalities 

due to social ethos.   It is unfortunate that, under classical behavior, at least if the 

economy is large, individuals ignore the positive externalities induced by their labor.  I 

call this classical behavior autarkic, and contrast it with behavior that I call 

interdependent.    The equilibrium concept associated with autarkic behavior is Nash 

equilibrium; the concept associated with interdependent behavior is Kantian equilibrium.    

In Nash equilibrium, each person adjusts his action if and only if his situation would 

improve assuming that others do not adjust theirs.  In Kantian equilibrium, a person 

adjusts his action if and only if his situation would improve if all others adjust their 
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actions in similar fashion to the personal adjustment he is contemplating.  Definitions 

will be provided in the next section.  There is only one concept of Nash equilibrium, but 

there are many concepts of Kantian equilibrium, because the phrase ‘in similar fashion’ 

can be spelled out in various ways.  

 My main focus will be upon behavior: that is, upon how a change in optimizing 

behavior from autarkic to interdependent  (Nash to Kantian) can (or cannot) resolve the 

inefficiencies due to positive and negative externalities, and in particular, those induced 

by the existence of a social ethos.     Just as economists are often asked to accept the idea 

that the formal concept Nash equilibrium captures a common kind of actual stable point 

in human economic relations, so I will ask readers to accept, for the sake of argument, 

that Kantian equilibrium (in its various versions) can capture a kind of social equilibrium.   

In section 5,  I will contemplate whether Kantian behavior is achievable in human 

societies, or is simply a utopian idea. 

 I contrast the approach here with that of almost all the literature on altruism,  cited 

earlier.   In that literature, the focus is upon explaining the emergence and stability of 

altruistic preferences.   My focus here is upon a different protocols of optimization, and 

hence upon different conceptions of equilibrium in games4. 

 Section 2 defines Kantian equilibrium, and studies its efficiency properties in 

conventional economies where there is individualistic ethos.  Section 3 looks at 

economies with a social ethos, and studies Kantian equilibrium there.  Section 4 provides 

an existence theorem for Kantian equilibrium, and comments upon dynamic properties. 

Section 5 discusses the question whether Kantian optimization is a utopian idea, of only 

theoretical interest, or whether it might come to be characterize human societies.   

 I originally proposed the definition of (multiplicative) Kantian equilibrium in 

Roemer (1996), and showed its relationship to the ‘proportional solution.’  In Roemer 

(2010), I investigated multiplicative Kantian equilibrium more carefully.  The present 

paper shows that there are many versions of Kantian optimization, and characterizes 

                                                
4 One can define a two-by-two taxonomy of models.  Preferences can be either altruistic 
or individualistic, and optimization can either be Nash or Kantian.  The classical world is 
modeled as (individualistic preferences, Nash optimization).   The work I have cited 
focuses upon models of the form (altruistic, Nash).  In this paper, I study (individualistic, 
Kantian) and (altruistic, Kantian).   
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when they deliver efficient outcomes in the presence of the various kinds of externality 

that I have reviewed in this section. 

 

2.  Kantian equilibrium in economies with an individualistic ethos 

 

 Immanuel Kant proposed the behavioral ethic known as the categorical 

imperative: take those actions and only those actions which you would have all others 

emulate5.    This suggests the following formalization.  Let   {V (E( ))} be a set of payoff 

functions for a game played by types γ, where the strategy of each player is a non-

negative effort   E( ) .  Thus the payoff of each depends upon the efforts of all.  A 

multiplicative Kantian equilibrium is an effort schedule   E
*( )  such that nobody would 

prefer that everybody alter his effort by the same factor. That is: 

   (∀γ )(∀r ≥ 0)(V γ (E*(⋅)) ≥V γ (rE*(⋅))) . (2.1) 

   

In Roemer (1996, 2010), this concept was simply called ‘Kantian equilibrium.’  

 The remarkable feature of multiplicative Kantian equilibrium is that it resolves 

the tragedy of the commons.  Consider the example given in section 1 of the community 

of fishers.    At an effort allocation   E( ) , if each fisher of type γ keeps his catch, then his 

fish income will be : 

 
  
x f (E(⋅),γ ) = E(γ )

E
G(E) . (2.2)  . 

Thus, the fishers’ game is defined by the payoff functions: 

   V
γ (E(⋅)) = uγ (x f (E(⋅),γ ), E(γ )) . (2.3) 

 It is proved in the two citations given above to Kantian equilibrium  that if a 

strictly positive effort allocation is a multiplicative Kantian equilibrium, then it is Pareto 

efficient in the economy    ξ = (u,G, F ,0) , where u is a profile of concave utility functions, 

and the last co-ordinate in the description of the economy is the value of α .   This is a 

                                                
5 The somewhat more general version of the categorical imperative is that one’s behavior 
should accord with 'universalizable maxims.’ 
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stronger statement than saying the allocation is efficient in the game   {V } : for in the 

game, only certain types of allocation are permitted – ones in which fish are distributed in 

proportion to effort expended.  But the economy(u,G, F ,0)  defines any allocation as 

feasible, as long as   x(γ )dF(γ )∫ ≤ G(E) .   So Kantian behavior, if adopted by 

individuals, resolves the tragedy of the commons.     The intuition is that the Kantian 

counterfactual (that every person will expand his labor by a factor r if I do so – or so I 

contemplate) forces each to internalize the externality associated with the congestion 

effect of his own fishing.    It is not obvious that multiplicative Kantian equilibrium will 

internalize the externality in exactly the right way – to produce efficiency – but it does.  

 A proportional solution in the fisher economy is defined as an allocation 

  (x( ), E( ))  with two properties: 

 (i)   x( ) = x f (E( ), ) , and 

 (ii)   (x( ), E( ))  is Pareto efficient. 

The proportional solution was introduced in Roemer and Silvestre (1993), although the 

concept of (multiplicative) Kantian equilibrium came later.  The proportional solutions of 

the fisher economy are exactly its positive multiplicative Kantian equilibria  (see theorem 

1 below).  In the small societies which Ostrom has studied, which are (in the formal 

sense) usually ‘economies of fishers’ where each ‘keeps his catch,’ she argues that 

internal regulation assigns ‘fishing times’ that engender a Pareto efficient allocation.  If 

this is so, these allocations are proportional solutions, and therefore (by the theorem just 

quoted) they are multiplicative Kantian equilibria in the game where participating 

fishers/hunters/miners propose labor times for accessing a commonly owned resource.    

This suggests that small societies discover their multiplicative Kantian equilibria.  

Ostrom (1990), however, does not provide any evidence for Kantian thinking among 

citizens of these socieities.   Knowing the theory of multiplicative Kantian equilibrium, 

one is tempted to ask whether a ‘Kantian ethos’ exists in these small societies, which 

somehow leads to the discovery of the equilibrium. 
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 I now introduce a second Kantian protocol which leads to additive Kantian 

equilibrium6. An effort allocation   E( )  is an additive Kantian equilibrium if and only if 

no individual would have all individuals add (or subtract) the same amount of effort to 

everyone’s present effort.  That is: 

 
  
(∀γ )(∀r ≥ − inf

τ
E(τ))(V γ (E(⋅)) ≥V γ (E(⋅)+ r)) , (2.4) 

where   E( )+ r  is the allocation in which the effort of type γ individuals is   E(γ )+ r .  The 

lower bound 
  
(r ≥ − inf

τ
E(τ))  is necessary to avoid negative efforts, and to keep the 

optimization problem proposed in (2.4) a concave problem.    (It is assumed that effort is 

unbounded above but bounded below by zero.)   Additive Kantian equilibrium again 

postulates that each person ‘internalizes’ the effects of his contemplated change in effort, 

but now the variation is additive rather than multiplicative. 

 In the sequel, I will denote these two kinds of Kantian behavior as  K  and  K + . 

 We can moreover define a general ‘Kantian variation’ which includes as special 

cases additive and multiplicative Kantian equilibrium.  We say a function 
  :

+

2
+

 is 

a Kantian variation if : 

     x (x,1) = x , 

and if,  for any   x ≠ 0  , the function    ϕ(x,⋅)  maps onto the non-negative real line. 

Denote by   [E( ),r]  the effort schedule    E  defined by 
   E( ) = (E( ),r) .   

Then an effort schedule   E( )  is a Kantian equilibrium if and only if: 

   (∀γ )(V γ (ϕ[E(⋅),r]) is maximized at r = 1) . (2.5)  

If we let   (x,r) = rx , this definition reduces to multiplicative Kantian equilibrium; if we 

let   (x,r) = x + r 1, it reduces to additive Kantian equilibrium.   

 Let   (x,r)  be any Kantian variation that is concave in r, and let the payoff 

functions with respect to some sharing rule   {V
γ}  be concave.   Then a positive effort 

schedule   E( )  is a positive Kantian equilibrium if and only if: 

                                                
6 This variation of Kantian equilibrium was proposed to me by J. Silvestre in 2004. 
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∀γ d

dr
r=1

V γ (ϕ[E(⋅),r]) = 0 . (2.6)   

Eqn. (2.6) follows immediately from definition (2.5), since   V ( [E( ),r])  is a concave 

function of r, and hence its maximum, if it is interior, is achieved where its derivative 

with respect to r is zero.    Note that both the additive and multiplicative Kantian 

variations are concave functions of r. 

 I find it convenient to describe allocation rules by sharing rules.   Denote by G 

the set of all concave differentiable production functions, and by E the set of all effort 

vectors, that is, functions    E : + → + .   A sharing rule is a set of functions  {θ
γ}, one 

for each type, where   θ
γ :E×G→ [0,1] and for all   (E,G) : 

   θ
γ (E,G)dF(γ ) = 1∫ . (2.7) 

The amount of output which type γ  receives at   E(⋅) when the production function is G is 

  θ
γ (E,G)G(E) , where  E  is interpreted as average effort in continuum economies, and as 

the sum of efforts in finite economies.   Note that, although sharing rules (and hence 

allocation rules) can depend on G, they do not depend on the utility functions of agents. 

 

Examples. 

1.  The proportional sharing rule is given by 
  
θγ ,P(E(⋅),G) = E(γ )

E
 

2.  The equal division sharing rule is given by  

 

  

θγ ,ED (E(⋅),G) =
1,  in continuum economies

1
n

,  in economies with n agents

⎧

⎨
⎪

⎩
⎪

 

3.  The Walrasian sharing rules are given by: 

 
  
θγ ,W (E(⋅),G) = ′G (E)E(γ )

G(E)
+ σ(γ ) 1− E ′G (E)

G(E)
⎛
⎝⎜

⎞
⎠⎟

, 

where  σ(γ )  is the share of the firm that operates G owned by each agent of type γ .    

Note that although the proportional and equal-division sharing rules do not, in fact, 
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depend upon G, the Walrasian sharing does (except when G is linear).   This is one 

reason it is important to allow sharing rules to depend on G. 

 Once we propose a sharing rule, then we can define, for any economy    (u,G, F ,0) , 

its payoff functions   {V
γ} , and hence its   K

×  and K +  equilibria.  Define the domain of 

concave economies  G  as all economies    (u,G, F ,α)  where u is a profile of concave 

personal utility functions    u : +
2 → , G ∈G , F is a distribution function of types, and 

 α ≥ 0  is any degree of social ethos.   (We fix the social-welfare function – for instance, 

the one displayed in (1.1).)   Denote by   G0  the class of economies with  α = 0 , by   G fin  

the class of economies with a finite number of agents, and by  L  the class of economies 

where G is linear, and so.   (E.g.,    L0, fin  is the class of finite economies with  α = 0 .) 

Although proofs of theorems will generally appear in the appendix, it is important to 

demonstrate the most important idea in this paper by proving the first proposition in the 

text.   

 

Proposition 1   Any strictly positive  K
×  equilibrium with respect to the proportional 

sharing rule is Pareto efficient on the domain   G0 .   Any strictly positive  K
+  equilibrium 

with respect to the equal-division sharing rule is Pareto efficient on the domain   G0 . 

Proof: 

1.  Let   E(⋅)  be a strictly positive  K ×  equilibrium w.r.t. the proportional sharing rule  θ
P .   

The first-order condition stating this fact is: 

 
  
(∀γ ) d

dr
r=1

uγ (rE(γ )
rE

G(rE),rE(γ )) = 0 , (2.8) 

which means: 

 
  
(∀γ ) u1

γ ⋅ E(γ )
E

′G (E)E
⎛
⎝⎜

⎞
⎠⎟
+ u2

γ E(γ ) = 0 . (2.9) 

Since   E(γ ) > 0 , divide through (2.9) by   E(γ ) , giving: 

 
  
(∀γ ) −

u2
γ

u1
γ = ′G (E) . (2.10) 
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Eqn. (2.10) states that the marginal rate of substitution between income and effort is, for 

every agent, equal to the marginal rate of transformation, which is exactly the condition 

for Pareto efficiency at an interior solution.  This proves the first claim. 

2.  For the second claim, let   E(⋅)  be a  K +  equilibrium w.r.t. the equal-division sharing 

rule  θ
ED  for any economy in   G0 .  Then: 

 
  
(∀γ ) d

dr
r=0

u(G(E + r), E(γ )+ r) = 0 , (2.11) 

which means: 
   (∀γ ) u1

γ ⋅ ′G (E)+ u2
γ = 0 . (2.12) 

(Strict positivity of E is here used so that the range of r includes a small neighborhood of 

zero.)   Clearly (2.12) implies (2.10), and again the allocation is Pareto efficient.  

 Examine the proof of the first part of this proposition, and compare the reasoning 

that agents who are Kantian employ to Nash reasoning.  When a fisher contemplates 

increasing his effort on the lake by 10%,  she asks herself, “How would I like it if 

everyone increased his effort by 10%?”  She is thereby forced to internalize the 

externality that her increased labor would impose on others, when G is strictly concave.   

 It is important to note that, in Kantian optimization, agents evaluate deviations 

from their own viewpoints, as in Nash optimization.   They do not put themselves in the 

shoes of others, as they do in Rawls’s original position, or in Harsanyi’s (1977) thought 

experiment in which agents employ empathy.   In this sense,  Kantian behavior requires 

less of a displacement of the self than ‘veil-of-ignorance’ thought experiments require.    

Agents require no empathy to conduct Kantian optimization: what changes from Nash 

behavior is the supposition about the counterfactual.    

 Indeed, the next theorem states that there is a unidimensional continuum of 

sharing rules, with the proportional and equal-division rules as its two endpoints, each of 

which can be efficiently implemented on   G0  using a particular Kantian variation.  Define 

the allocation rule: 

 
  
θβ
γ (E(⋅)) = E(γ )+β

E +β
, 0 ≤ β ≤ ∞  (2.13) 

and the Kantian variations: 



 13 

   
ϕβ(x,r) = rx + (r −1)β, 0 ≤ β ≤ ∞ . (2.14) 

( For finite economies, we write (2.13) as 
  
θβ
γ (E(⋅)) = E(γ )+β

ES + nβ
, ES = E(τ)∑ .)   Note 

that for  β = 0 , θβ  is the proportional rule and ϕβ  is the multiplicative Kantian variation, 

and for β = ∞ , θβ  is the equal-division rule and ϕβ  is the additive Kantian variation (this 

last fact is perhaps not quite obvious).    We will call a Kantian equilibrium associated 

with the variation ϕβ ,  a  K β  equilibrium.    (So   K 0 ≡ K × , etc.) 

 Before stating the next theorem we must define the following.  Fix β  and an 

effort vector   E ∈ ++
n .   Define 

 
ri

j = Ei +β
E j +β

.   Now consider the set of vectors in   +
n  of 

the form 
  
(ϕβ(x,r1

j ),ϕβ(x,r2
j ),...,ϕβ(x,rj

n ))  where x varies over the positive real numbers, 

but restricted to an interval that keeps the defined vector non-negative.  This is a 

unidimensional manifold in   +
n  which I denote as   M E

j .      We have: 

 
 
Theorem 17   For  0 ≤ β ≤ ∞ : 
A. If   E(⋅)  is a strictly positive  K

β  equilibrium w.r.t. the sharing rule θβ  at any economy 

in   G0 , then the induced allocation is Pareto efficient.   

B.   θ0  is the only sharing rule for which the  K
×  equilibrium is Pareto efficient on the 

domain    G0, fin
.  

C. For  β > 0 ,  the only sharing rules that are efficiently implementable on    G0, fin
 are of 

the form 
  
θ j (E,G) = θβ

j (E)+ k j (E)
G(E)  where   {k j}  are any functions satisfying: 

 

 (i)
  

k j (E) ≡ 0
j
∑  

                                                
7  Theorem 3 of Roemer (2010) stated something similar to part B of the present theorem, 
but the proof offered there is incorrect.     
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 (ii)   (∀j, E)(θ j (E,G)∈[0,1]) , and  

 (iii)    (∀j, E)(k j  is constant on the manifold M E
j ) . That is, on    M E

j ,  

     ∇k j ⋅r j ≡ 0 .  

Proof: See appendix8. 

 The theorem states first that for all  β ≥ 0 , the pair  
(ϕβ ,θβ )  is an efficient Kantian 

pair: i.e., that the sharing rule θβ  is efficiently implementable in  K β  equilibrium on the 

convex domain    E
0, fin .   Part C states that the only other sharing rules that are K β  

implementable are ones which add numbers to the θβ  shares that are constant on certain 

sets of lines in   +
n .   Part B states that (in the unique case when  β = 0 ) these constants 

must be zero.   

 Unfortunately, part C makes theorem 1 difficult to state.  One may ask, is it 

necessary?   That is, do there in fact exist sharing rules satisfying conditions C (i)-C(iii) 

of the theorem where the functions  k j  are not identically zero?   The following example 

shows that there are. 

 

Example 4. 

 We consider  K +  equilibrium (i.e., β = ∞ ) where   n = 2 .  In this case  

   
  
θ∞

j (E1, E2 ) = 1
2

 , 

that is, the equal-division sharing rule.    Now consider: 

 

  

   

θ1(E) =

1
2
+ G(E1 − E2 )

2G(E1 + E2 )
,  if E1 ≥ E2

1
2
− G(E1 − E2 )

2G(E1 + E2 )
,  if E1 < E2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

θ2(E) = 1− θ1(E)

     .  (2.15) 

                                                
8 I believe that parts B and C are also true on the space of continuum economies, but 

proving that would require more sophisticated mathematical techniques. 
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The  θ  rule satisfies conditions C(i)-C(iii).     To explain in words why rules like this 

work, think of what happens when we apply the appropriate Kantian variation to a vector 

E under this rule.   In this case, we add a constant r to all effort levels.  Notice that the 

second term in    θ
j (E)  is unaffected, because   E

1 + r − (E2 + r) = E1 − E2 .   Therefore, 

when looking at Kantian deviations, and setting the derivative of utility equal to zero at 

  r = 0  (in the additive case),  these  k j  terms vanish.  Sharing rules like  θ  can be 

constructed for any n  and any  β > 0 . 

 From the history-of-thought vantage point, the case  β = 0  is the classical socialist 

economy: that is, it’s an economy where output is distributed in proportion to labor 

expended and efficiently so.   The rule θβ  in case β = ∞  is the classical ‘communist’  

economy: output is distributed ‘according to need’ (here, needs are identical across 

persons), and efficiently so.   Obviously, the sharing rules θβ associated with  β ∈(0,∞)  

are (in a sense) averages between these two classical concepts.   If the ‘interactive’ 

optimization reflected in the Kantian way of thinking is akin to a kind of cooperation, it is 

perhaps not surprising to note that these classical concepts of cooperative societies are 

efficiently implemented by different versions of Kantianism.   

 I believe that history displays examples of both the proportional and equal-

division solutions.   The former has been discussed in relation to Ostrom’s work on fisher 

economies.  And anthropologists conjecture that many hunter-gatherer societies 

employed equal-division.  Many Israeli kibbutzim employed the equal division rule, at 

least in the early days.  (Whether they found Pareto efficient equal-division allocations is 

another question.)    Theorem 1 suggests that we look for societies that implemented 

some of the other allocation rules in the β  continuum, although the Kantian variation 

involved for  β ∉{0,∞}may be too arcane for human societies.  

 It remains to ask, when we discover an example of a society which appears to 

implement one of these sharing rules, whether Kantian thinking among its members plays 

a role in maintaining its stability.   Just as a Nash equilibrium is stable, so a Kantian 

allocation will be stable if the players in the game employ Kantian optimization.  

 The analogous result to theorem 1 for Nash equilibrium is: 
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Theorem 2  

A.  There is no sharing rule that is efficiently implementable in Nash equilibrium on the 

domain    E
0, fin .    

B. On continuum economies, Walrasian rules are efficiently Nash implementable9. 

Proof: Appendix.  

 

 The reason that the Walrasian sharing rule, as defined in the previous footnote, is 

not efficiently implementable in Nash equilibrium on finite economies is that an 

individual’s Nash behavior at the Walrasian sharing rule takes account of her affect on 

  ′G (ES )  and on her share of profits as she deviates her effort  (i.e., agents are not price 

takers).  It is only in the continuum economy that the agent rationally ignores such 

affects, and hence, Nash behavior induces efficiency.    Of course, this is the point that 

Makowski and Ostroy (2001)   have focused upon in their work on the distinction 

between perfect competition and Walrasian equilibrium.   

 

                                                
9 A Walrasian rule allocates output to an individual of type γ  equal to his value marginal 

product    E(γ ) ′G (E)  plus a fixed share of the firm’s profits. 



March 1, 2012 

3.  Economies with a social ethos 

A. Efficiency results 

 We begin by characterizing interior Pareto efficient allocations in continuum 

economies where individuals have all-encompassing utility functions like those in (1.1), 

except we use the more general CES social-welfare function.  That is, we assume that: 

   
U γ (x(⋅), E(⋅)) = uγ (x(γ ), E(γ ))+α uτ(x(τ), E(τ))

0

∞

∫ ]p dF(τ)
⎛
⎝⎜

⎞
⎠⎟

1/ p

 ,   (3.1) 

where   1 p > .  As noted, the case   p = 0  generates the formulation in (1.1). 

 At an allocation   (x*( ), E*( )) , we write   u
γ (x*(γ ), E*(γ )) ≡ u[*,γ ] , and for the two 

partial derivatives of u,
  
u j
γ (x*(γ ), E*(γ )) ≡ uj[*,γ ] . 

 

Theorem 3   A strictly positive allocation is Pareto efficient in the economy    (u,G, F ,α)  if 

and only if: 

  (a) 
  

u2[*, ]
u1[*, ]

= G (E) , and 

 

  (b) 
  
∀γ 1

u1[*,γ ]
≥
α(Q*)(1− p)/ p u[*,γ ]p−1 u1[*,τ]−1 dF(τ)∫

1+α(Q*)(1− p)/ p u[*,τ]p−1 dF(τ)∫
, 

where .     

 I offer some remarks about and corollaries to theorem 3. 

 First, we introduce a quasi-linear economy for which the results take a 

particularly simple and intuitive form.   In the quasi-linear economy, we take  

   
  
uγ (x, E) = x − E2

γ
.         (3.2) 

1.  Note the separate roles played by the conditions (a) and (b) of theorem 3.  Condition 

(a) assures allocative efficiency in the economy with  α = 0 .  Condition (b) is entirely 

responsible for the efficiency requirement induced by social ethos.  Note that the function 

G does not appear in (b).  

  Indeed, it is obvious that any allocation which is Pareto efficient in the α-

economy (for any α) must be efficient in the economy with  α = 0 .  For suppose not.  

  
Q* u[*, ]p dF( )
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Then the allocation in question is Pareto-dominated by some allocation in the 0-economy.  

But immediately, that allocation must dominate the original one in the α -economy, as it 

causes the social-welfare function to increase (as well as the private part u of all-

encompassing utility).  It is therefore not surprising that the characterization of theorem 2 

says that ‘the allocation is efficient in the 0-economy (part (a)) and satisfies a condition 

which becomes increasingly restrictive as α becomes larger (part (b)).’  

2.  Define   PE(α)  as the set of interior Pareto efficient allocations for the α-economy.  It 

follows from condition (b) of theorem 3 that the Pareto sets are nested, that is: 

    α > ′α ⇒ PE(α)⊂ PE( ′α ) . 

Hence, denoting the fully altruistic economy by α = ∞ , we have: 

    PE(∞) =∩α≥0 PE(α) . 

  PE(∞)  will generally be a unique allocation – the allocation that maximizes social 

welfare. 

3.  Let α→∞ ; then condition (b) of theorem 3 reduces to: 

  .       (3.3) 

We have: 

Corollary 1  An interior allocation is efficient in the fully altruistic economy (i.e., 

maximizes social welfare)  if and only if: 

  (a) 
  

u2[*, ]
u1[*, ]

= G (E)
 
, 

and   (c)  for some   > 0, u1[*, ]= u[*, ]1 p . 

Proof: 

 We need only show that (3.3) implies (c). (The converse is obviously true.)   

Denote 
  
=

u1[*, ] 1 dF( )
u[*, ]p 1 dF( )

. Then (3.3) can be written: 

   ∀γ u1[*,γ ]−1 ≥ λu[*,γ ]p−1 . (3.4) 

    

  

u1[*, ] 1

u1[*, ] 1 dF( )
u[*, ]p 1

u[*, ]p 1 dF( )
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Suppose there is a set of types of positive measure for which the inequality in (3.4) is 

slack.  Then integrating (3.4) gives us: 

         u1[*, ] 1 dF( ) > u[*, ]p 1 dF( ) ,  

which says > , a contradiction.  Therefore (3.4) holds with equality for almost all γ, 

and the corollary follows.  

 

4.  Consider the quasi-linear economy.  Then .  Now corollary 1 implies that in the 

quasi-linear economy, the only Pareto efficient interior allocation as α→∞  is the 

equal-utility allocation for which condition (a) holds.  

  Let us compute this allocation in the quasi – linear economy  in which production 

is linear:  G(x) = x .   Then these conditions reduce to: 

  (i)   
  

2E( )
= 1, and 

  (ii)  
  
k = x( ) E( )2

, and 

  (iii)    x( )dF( ) = E( )dF( ) . 

It is not hard to show that (i), (ii), and (iii) characterize the equal utility allocation: 

  
  
E( ) =

2
, x( ) = +

4
, where   = dF( ).  

5. Consider the preferences when .  In this case, the altruistic part of U is 

, and .  Therefore condition (b) of theorem 2 becomes 

simpler: 

  
(∀γ ) u[*,γ ]

u1[*,γ ]
≥

α u1
−1[*,τ]dF(τ)∫

1+α u−1[*,τ]dF(τ)∫
. 

 We next prove: 

 

Theorem 4.  Let a sharing rule θ be given, and denote the set of β − Kantian equilibria 

for the economy    (u,G, F ,α)  by   K
β(θ,α) .  Then   K

β(θ,α) = Kβ(θ,0) . 

  u1 1

  p = 0

  
exp[ log(u[*, ])dF( )   Q

*
= 1
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 Indeed, the theorem is more general than stated: different agents can have 

different values of the altruistic parameter α . The argument shows that the Kantian 

equilibria of these economies are identical to the Kantian equilibria of the associated 

economy where all   α 's  are zero.     This is apparently a disturbing result: for it says that 

Kantian optimization cannot deal, at least explicitly, with the externalities induced by 

altruism! 

 We do, however, have one instrument – namely, β -- which may help achieve 

Pareto efficient allocations when  α > 0 .   Indeed, consider the family of quasi-linear 

economies, where, for some fixed  ρ >1:  

 
  

uγ (x, E) = x − Eρ

ργ
. (3.5) 

For these economies we can always choose a value β  so that the  K β  equilibrium w.r.t. 

the allocation rule θβ  is efficient for economies with any value of α : that is to say, the 

  
(K β ,θβ )  allocation maximizes social welfare (and so is in   PE(∞) ). 

Theorem 5   Let 
  
uγ (x, E) = x − Eρ

ργ
, some  ρ >1.  Let G be any concave production 

function. Define  E  by the equation 
  
E = γ ρ ′G (E)1/(ρ−1)   where 

  
γ ρ ≡ γ1/(ρ−1) dF(γ )∫ . Then 

for this economy : 

(a) An allocation is PE(0) iff   E(γ ) = γ1/(ρ−1) ′G (E)1/(ρ−1) .   

(b)  Define 
  
β(ρ) = ρ G(E)

′G (E)
− E .   The  K

β  allocation w.r.t. the sharing rule θβ   is in 

  PE(∞) . 

(c) As  β→β(ρ)  from below, the maximum value of α  for which the 
  
(K β ,θβ )  allocation 

is in   PE(α)  approaches infinity. 

 The reader is entitled to ask: What happens for  β > β(ρ) ?   The answer is that, in 

the 
  
(K β ,θβ )  allocation, some utilities become negative, and so social welfare for the CES 

family of functions is undefined, and so all-encompassing utility U is undefined. 
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B. Taxation in private-ownership economies 

 The  K β  equilibria for the sharing rules θβ  are not implementable with markets in 

any obvious way.   This is most easily seen by noting that the proportional rule is not so 

implementable10.   Of course, according the second theorem of welfare economics, there 

is some division of shares in the firm which operates G which would implement these 

rules in Walrasian equilibrium in continuum economies, but to compute those shares, one 

would have to know the preferences of the agents.    The advantage of the Kantian 

approach is that the Kantian allocations are decentralizable in the sense that agents need 

only know the production function G , average effort  E , and their own preferences,  to 

compute the deviation they would like (everybody) to make. 

 Nevertheless, one would like Kantian optimization to be useful in market 

economies as well.   For the linear economies, we have a hopeful result.  Before stating it, 

let us define the sharing rules associated with linear taxation.  Define the linear sharing 

rule for linear economies with production function   G(x) = ax  by: 

  
  
θ j

[t ](E) = (1− t) E j

ES + t
n

.    (3.6) 

That is, each agent receives   (1− t)  times the marginal product of his labor plus an equal 

share of tax revenues. 

 

Theorem 6 

A.  For any   t ∈[0,1] , the  K
+ equilibria for the linear tax rule   

θ[t ]  is Pareto efficient on  

   L0, fin . 

B.  The only allocation rules which are efficiently implementable in  K
+  on    L0, fin  are of 

the form 
  
θ j (E) = θ[t ]

j (E)+ k j (E)
G(E)

 for some   t ∈[0,1]  where: 

  (i) for all E,   k j (E) = 0∑  

                                                
10 However, the equal-division sharing rule is market-implementable. Impose linear 

taxation in a Walrasian economy and set the tax rate equal to unity.  This is equivalent to 

the equal-division sharing rule. 
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  (ii) for all (j,E)   θ
j (E)∈[0,1] , and 

  (iii) for all (j,E),    ∇k j (E) ⋅E = 0 . 

 

Proof: See appendix. 

 Part A of the theorem states that for finite economies with linear production, 

linear taxation provides a redistributive mechanism which is consistent with efficiency – 

for any tax rate in the [0,1] interval.     Therefore, in such an economy with a social ethos, 

citizens could choose a high tax rate to redistribute income substantially, without 

sacrificing allocative efficiency.  Part B of the theorem is analogous to part C of theorem 

1.     

  As in theorem 1, one is entitled to ask whether  there are examples of sharing 

rules where the functions  k j  are not identically zero.   There are, as the next example 

shows. 

 

Example 5.   

 Let n = 2, and consider the sharing rule: 

 

  

θ1(E) =
(1− t) E1

ES + t
2
+ t2(E1 − E2 )

2ES , if E1 ≥ E2

(1− t) E1

ES + t
2
− t2(E2 − E1)

2ES ,  if E1 ≥ E2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

θ2(E) = 1− θ1(E)

,            (3.7) 

for   t ∈(0,1) .  It is easy to verify that these rules satisfy conditions B(i)-(iii), and these 

rules are clearly not linear tax rules.   

 We are not interested in linear economies as such, because they are so special.  

Theorem 6 is presented because it motivates us to ask how linear taxation performs in 

concave economies with a continuum of agents.  Let us postulate that a linear-taxation 

sharing rule is applied to a person’s income, which is equal to his effort times the 

Walrasian wage plus an equal-per-capita share of the firm’s profits.  The effort allocation 

  E(⋅)  is a  K +  equilibrium  for the t-linear tax rule if: 
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(∀γ ) d
dr

r=0

uγ ((1− t)(E(γ )+ r) ′G (E + r)+ (1− t)(G(E + r)− (E + r) ′G (E + r))+ tG(E + r), E(γ )+ r) = 0  

or:     u1
γ ⋅ (1− t)(E(γ )− E) ′′G (E)+ ′G (E)( ) + u2

γ = 0 ,        (3.8) 

and so the marginal rate of substitution of type γ  is: 

  
  
−

u2
γ

u1
γ = ′G (E)+ (1− t)(E(γ )− E) ′′G (E) .        (3.9) 

What is noteworthy is that the wedge between the MRS and the MRT, which is 

  (1− t)(E(γ )− E) ′′G (E) ,   goes to zero as  t  approaches one.   Of course, this must be the 

case, since the allocation at   t = 1 is the kibbutz allocation, which we know is 0-efficient 

on concave economies.    (Of course, (3.9) gives the proof that the linear share rules are 

Pareto efficient on linear economies.) 

 Compare (3.9) with Nash-Walras equilibrium in the same private-ownership 

economy, which is given by: 

  
  
−

u2
γ

u1
γ = (1− t) ′G (E) .     (3.10) 

Here, the wedge between the MRS and the MRT is   t ′G (E)  which becomes equal to the 

whole MRT as t goes to one.   If there is a social ethos, citizens might well wish to 

redistribute market incomes via taxation.  Under Nash optimization, it becomes 

increasingly costly to do so (as taxes increase), while with  K +  optimization, equation 

(3.9) suggests it may become decreasingly costly to do so. 

 We study this issue with some simulations. I choose 
  
G(x,r) = xr

r
, for several 

values of   r ∈(0,1) ,  and use the quasi-linear utility 
  
uγ (x, y) = x − y2

γ
.  The distribution F 

is lognormal with a mean of 50 and a median of 40.   Let the distribution of profit shares 

be egalitarian:  σ(γ ) ≡ 1.   (If we desire an anonymous Walrasian rule, we must choose 

this distribution.)  
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 I describe the computational procedure by which the  K +  equilibrium is computed 

for various tax rates.  The characterization of the effort schedule in  K +  equilibrium for 

the quasi-linear utility profile  is given by:  

    
(1− t) ′′G (E)(E(γ )− σ(γ )E)+ ′G (E) = 2

γ
E(γ )         (3.11)

  

  For the specified production function, this equation may be solved to yield:  

  
  
E( ,t) = E(t)r 1 (1+ (1 r)(1 t))

2+ (1 r)(1 t)E(t)r 2 ,   (3.12) 

where   E(t)  is the integral of   E( ,t)  dF.    Integrating (3.12) and manipulating the result 

gives an equation in the single unknown   E(t) : 

  
  
1= (1+ (1 r)(1 t))

2E(t)2 r
+ (1 r)(1 t)

dF( ) .  (3.13) 

Fixing r, we solve (3.13) for   E(t) numerically, for various values of t, and then compute 

the Kantian equilibrium effort schedule from (3.12).   Then we compute social welfare at 

the various values of t. 

 It is a standard exercise to compute the effort schedule for Walrasian equilibrium.  

Individual effort is given by 
   
E( ,t) = (1 t)w

2
, and average effort is given by 

   
E(t) = (1 t)w

2
, where w is the Walrasian wage, which solves to be:   

    
   
w = ′G (E) = (1− t)γ

2
⎛
⎝⎜

⎞
⎠⎟

(r−1)/(2−r )

  .    

 We will perform a political-economy simulation.  For each voter, we may define 

an indirect (all-encompassing) utility function which gives her utility at the  K +  

equilibrium as a function of the tax rate, and another indirect utility function which gives 

her (all-encompassing) utility at the Nash-Walras equilibrium as a function of the tax 

rate.  These indirect utility functions are single-peaked in t, and so we will assume that 

the politically chosen tax rate is the ideal tax rate of the median-type voter.   (This will be 

the median ideal tax rate.)   We compute these tax rates for various values of the social-

ethos parameter α , for both  K +  and Nash-Walras equilibrium.  We compare social 
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welfare in these two equilibria, using the social-welfare function that citizens use in their 

all-encompassing utility functions. 

 Tables 1a and 1b report results for   r = 0.90 and r = 0.50 .   In the first case, the 

maximum admissible tax rate is about 0.70, because for higher rates, some utilities 

become negative, and the social-welfare function is undefined.  For each value of ! , I 

compute the ideal tax rate of the median type at the Kantian and Walrasian equilibrium, 

and report the values of social welfare at those political equilibria.   For   r = 0.5 , the 

maximum admissible tax rate is about 0.8.  In both cases, it turns out that the ideal tax 

rate of the median type, in the Kantian regime, is the maximum admissible rate.  We see 

from the tables that the ideal tax rate of the median type, in the Walrasian regime, is 

much smaller, and decreases slightly as !  increases.  

 

 

 

 

 

 

 

 

Table 1a  Political-equilibrium tax rates and social welfare in Kantian and Walrasian 

regimes, for  the quasi-linear economy with   G(x) = x0.9 / 0.9  and  !(" ) # 1  

  

 
 

Out[44]//TableForm=
alpha t�Kant t�Walras Soc Wel � Kant Soc Wel � Walras
0. 0.7 0.166667 8.47076 7.72644
0.1 0.7 0.167536 8.47076 7.72656
0.2 0.7 0.168222 8.47076 7.72665
0.3 0.7 0.168778 8.47076 7.72672
0.4 0.7 0.169238 8.47076 7.72676
0.5 0.7 0.169624 8.47076 7.7268
0.6 0.7 0.169953 8.47076 7.72683
0.7 0.7 0.170237 8.47076 7.72686
0.8 0.7 0.170484 8.47076 7.72687
0.9 0.7 0.170701 8.47076 7.72689
1. 0.7 0.170894 8.47076 7.7269
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Table 1b Political-equilibrium tax rates and social welfare in Kantian and Walrasian 

regimes, for  the quasi-linear economy with   G(x) = x0.5 / 0.5  and  ( ) 1  

 

This is a consequence of the deadweight loss experienced with taxation in the Walrasian 

regime.  We see that, even with substantial concavity, the political equilibrium in the 

Kantian regime dominates that of the Walrasian regime in terms of social welfare, at least 

for values of α  in  [0,1] .  

 

4. Existence and dynamics 

 The existence of proportional solutions, which are the  K ×  equilibria of convex 

economies    (u,G, F ,α)  was proved in Roemer and Silvestre (1993).   Here, we provide 

conditions under which β − Kantian equilibria exist, with respect to the sharing rules 

described in Theorem 1. 

 

Theorem 7.   .  Let   ξ ∈E fin . Let the component functions of u be strictly concave. 

A.  If for all   u ∈u , 
  

∂2u
∂x∂y

≤ 0 , then a strictly positive  K
+  equilibrium w.r.t. the equal-

division sharing rule  θ
ED  exists on ξ . 

B. Let  0 ≤ β < ∞ .   If for all   u ∈u , u is quasi-linear, then a strictly positive β − Kantian 

equilibrium w.r.t. the sharing rule θβ  exists. 

Proof: Appendix. 

 The premises of this theorem can surely be weakened. 

 We turn briefly to dynamics.  There will not be robust dynamics for Kantian 

equilibrium, as there are not for Nash equilibrium.   There is, however, a simple dynamic 

mechanism that will, in well-behaved cases, converge to a Kantian equilibrium from any 

initial effort vector.   The mechanism is based on the mapping Θ  defined in the proof of 

theorem 7.   We illustrate it here for the case of a profile of quasi-linear utility functions 

and the equal-division sharing rule.  Thus,  let    u
j (x, y) = x − c j ( y) , for   j = 1,...,n , where 
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 c
j  is a strictly convex function.  For any vector    E0 ∈ ++

n , define   r
j (E0 )  as the unique 

solution of: 

 
  
max

r

G(E0 + nr)
n

− c j (E0
j + r)

⎛
⎝⎜

⎞
⎠⎟

. (4.1) 

Define    Θ
j (E0 ) = E0

j + r j (E0 ) .  The mapping   Θ = (Θ1,...,Θn ) maps   +
n → +

n  and is 

analogous to the best-reply correspondence in Nash equilibrium.   A fixed point of Θ  is a 

 K
+  equilibrium for the equal-division sharing rule, since at a fixed point   E* ,    r

j (E*) = 0  

for all j.  Since the example is special, the next result is proved only for the case n = 2, 

although it is true for finite n.  The next proposition shows that if we iterate the mapping 

Θ  indefinitely from any initial starting vector   E0  it converges to (the unique) K +  

equilibrium for the equal-division sharing rule. 

 

Proposition 2   For n = 2, there exists a unique fixed point of the mapping Θ , which is a 

 K
+  equilibrium for the equal-division sharing rule with quasi-linear preferences.  The 

dynamic process defined by iterating the application of Θ  from any initial effort vector 

converges to the  K
+  equilibrium.  

Proof: Appendix.  

  

5. Discussion 

 My analysis has been positive rather than normative.   I have argued that if agents 

optimize in the Kantian way, then certain allocation rules will produce Pareto efficient 

allocations, while Nash optimization will not.  While the analysis is positive,  Kantian 

optimization,  if people follow it, is motivated by a moral point of view:  each must think 

that he should take an action if and only if he would advocate that all others take a similar 

action.     Is it plausible to think that there are (or could be) societies where individuals do 

(or would) optimize in the Kantian manner?   

 Certainly parents try to teach Kantian behavior to their children, at least in some 

contexts.   “Don’t throw that candy wrapper on the ground: How would you feel if 

everyone did so?”   The golden rule  (“Do unto others as you would have them do unto 

you” ) is a special case of Kantian ethics.   (And wishful thinking  [“if I do X, then all 
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those who are similarly situated to me will do X”], although a predictive claim, rather 

than an ethical one, will also induce Kantian equilibrium – if all think that way.)   This 

may explain why people vote in large elections, and make charitable contributions.    So 

there is some reason to believe that Kantian equilibria are accessible to human societies. 

 Consider the relationship between the theoretical concept of Nash equilibrium and 

the empirical evidence that agents play the Nash equilibrium in certain social situations 

that can be modeled as games.   We do not claim that agents are consciously computing 

the Nash equilibrium of the game: rather, we believe there is some process by which 

players discover the Nash equilibrium, and once it is discovered, it is stable, given 

autarkic reasoning.    We now know there are many experimental situations in which 

players in a game do not play (what we think is) the Nash equilibrium.  Conventionally, 

this ‘deviant’ behavior has been rationalized by proposing that players have different 

payoff functions from the ones that the experimenter is trying to induce in them, or that 

they are adopting behavior that is Nash in repeated games generated by the one-shot 

game under consideration.    Another possibility, however, is that players in these games 

are playing some kind of Kantian equilibrium.   In Roemer (2010), I showed that if, in the 

prisoners’ dilemma game, agents play mixed strategies on the two pure strategies of 

{cooperate, defect}, then all multiplicative Kantian equilibria entail both players’ 

cooperating with probability at least one-half   (i.e., no matter how great the payoff to 

defecting is).   It can also be shown that, in a stochastic dictator game, where the dictator 

is chosen randomly at stage 1 and allocates the pie between herself and the other player in 

stage 2,  the unique  K ×  equilibrium is that each player gives one-half the pie to the other 

player,  if he is chosen. 

 The non-experimental (i.e., real-world) counterpart, as I have said in the 

introduction, may be the games that the societies that Elinor Ostrom has studied are 

playing.   If these games can be modeled as ‘fisher’ economies, with common ownership 

of a resource whose use displays negative congestion externalities, and if, as Ostrom 

contends, these societies figure out how to engender efficient allocations of labor applied 

to the common resource, then they are discovering the multiplicative Kantian equilibrium 

of the game.  Perhaps Kantian reasoning helps to maintain the equilibrium, if optimizing 

behavior is ‘interdependent’ and not ‘autarkic.’  Ostrom  explains the maintenance of the 
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efficient labor allocation by the use of sanctions and punishments, but that may not be the 

entire story: it may be that most fishers are thinking in the Kantian manner, and that 

punishments and monitoring are needed only to control a minority who are Nash 

optimizers.   What I am proposing is that an ethic may have evolved, in these societies, in 

which the fisher says to himself,  “I would like to increase my fishing time by 5 hours a 

week, but I have a right to do so only if all others could similarly increase their fishing 

times, and that I would not like. ”       Armed only with the theory of Nash equilibrium, 

one naturally thinks that these Pareto efficient solutions to the tragedy of the commons 

require punishments to keep everyone in line.   But this may not be the case.  

 As I noted earlier, Kantian ethics, and therefore the behavior they induce, require 

less selflessness than another kind of ethic: putting oneself in the shoes of others.   

Consider charity.   “I should give to the unfortunate, because I could have been that 

unfortunate soul – indeed, there but for the grace of God go I. ”  The Kantian ethic says, 

“I will give to the unfortunate an amount which I would like all others who are similarly 

situated to me to give.”  Assuming that there is a social ethos (that is,  α > 0 ) this kind of 

reasoning may induce substantial charity – or, in the political case, fiscal redistribution.     

The Kantian ethic does not require the individual to place herself in the shoes of another.   

In this sense, it requires a less radical departure from self than the ‘grace of God’ 

reasoning does.   

 My analysis has studied the consequences of assuming that the optimizing 

behavior of individuals might not be autarkic, as in Nash equilibrium, but interdependent, 

as in the various kinds of Kantian optimization.    To the extent that human societies have 

prospered by invoking the ability of individuals of members of our species to cooperate 

with each other, it is perhaps likely that Kantian reasoning is a cultural adaptation, 

selected by evolution ( the classic reference is Boyd and Richerson [1985]).  Because we 

have shown that Kantian behavior can resolve, in many cases, the inefficiency of autarkic 

behavior, cultures which discover it, and attempt to induce that behavior in their 

members, will thrive relative to others.  Group selection may produce Kantian 

optimization as a meme. 

 One can rightfully ask whether it is utopian to suppose that the allocation rules 

studied here can be used in large economies.   I am skeptical, because the market 
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mechanism is so important in large economies, and most of the allocation rules described 

in theorem 1 cannot be decentralized using markets.   (I noted that the equal-division rule 

can be.)   This motivated my simulations of the linear-tax sharing rules where the market 

allocation is Walrasian.    We do not get full Pareto efficiency, but the results are much 

better when agents are Kantian  than when they are Nash optimizers.    

 One of the main motivations I gave for studying Kantian optimization was in 

order to resolve the inefficiencies in economies with a social ethos, due to the 

consumption externalities that they entail.   It seems that, if a society is solidaristic in the 

sense of possessing a social ethos, then its members should behave in a cooperative 

fashion.    The behavior upon which I have focused in this paper is optimizing behavior.    

I leave the reader with a question.  Is there reason to think that if a society is 

characterized by having a high degree of social ethos, it is more likely that its members 

can learn to optimize in the Kantian manner?    My intuition indicates this is probably so, 

but I cannot yet provide an argument to show it.   



March 1, 2012 
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“Appendix: Proofs of theorems” 
   

Proof of Theorem 1. 

The proof of part A simply mimics the proof of Proposition 1.  We prove part B. 

1.  Consider the Kantian variation   ϕ
β(x,r) = rE + (r −1)β , and any share rule 

  {θ
j , j = 1,...,n}, defined for a finite economy with n agents. 

The condition that must hold for a rule θ  to be efficiently implemented on  E  in  K β  

equilibrium is the FOC: 

 
  
(∀j) ∇θ j (E) ⋅(E +β)G(ES )+ θ j (E) ′G (ES )(ES + nβ)

E j +β
= ′G (ES ) , (A.1) 

which is the statement that that at a  K β  equilibrium   E = (E1,..., En ) , the marginal rate of 

substitution between effort and income for each agent is equal to the marginal rate of 

transformation.  Recall that  E
S ≡ E j∑ ,  ∇θ

j  is the gradient of the function  θ
j  with 

respect to its n arguments,  E +β  is the vector whose jth component is  E
j +β , and 

  ∇θ
j (E) ⋅(E +β)  is the scalar product of two n vectors.  (A.1) can be written as: 

 
 

 
  
(∇θ j (E) ⋅ (E +β)

E j +β
) G(ES )

′G (ES )
+ θ j (E) (ES + nβ)

E j +β
= 1.  (A.2) 

2.  We now argue that (A.2) must hold as a set of partial differential equations on   ++
n .  

For let   E ∈ ++
n  be any vector.  Fix a production function G.  We can always construct n 

utility functions whose marginal rates of substitution at the points   (θ
j (E), E j )  are exactly 

given by the value of the left-hand side of equation (A.1).   For the economy thus defined, 

E is indeed a  K β  equilibrium.   This demonstrates the claim. 

3.  Continue to fix a vector   E ∈ ++
n .  Define 

 
ri

j =
Ei +β
E j +β

 for   i = 1,...,n  and notice that 

  
ϕβ(E j ,ri

j ) = Ei .  Consider the one dimensional manifold gotten by varying x:

   
M E

j = (ϕβ(x,r1),ϕβ(x,r2 ),...,ϕβ(x,rn )) .  Note that when 
 
x = E j ,  this picks out the vector 

E.    

We will reduce the system (A.2) of PDEs to ordinary differential equations on   M E
j . 
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Define 

  
ψ j (x) = θ j (ϕβ(x,r1

j ),...,ϕβ(x,rn
j )) .    Note that : 

 
  
(ψ j ′) (x) = ∇θ j (ϕβ(x,r j )) ⋅r j  (A.3) 

where   
ϕβ(x,r)  is the generic vector in the manifold, and   r

j = (r1
j ,...,rn

j ) . 

Define   μ
j (x) = G( ϕ(x,ri

j ))∑  and note that: 

   (μ
j ′) (x) = ′G ( ϕ(x,ri

j )) ri
j∑∑ . (A.4) 

It follows that we may write (A.2) restricted to the manifold   M E
j  as: 

 
  
(ψ j ′) (x)r S , j μ j (x)

(μ j ′) (x)
+μ j (x)r S , j = 1, (A.5) 

where 
  
r S , j ≡ ri

j

i
∑ .  

4.   (A.5) is a first-order ODE.    A particular solution is given by the constant function: 

 
  
ψ j (x) = 1

r S , j , (A.6) 

and the general solution to its homogeneous variant is: 

 
  
ψ̂ j (x) = k j (r j )

μ j (x)
, (A.7) 

where  k j  a constant that depends on  r
j  (i.e., on the manifold   M E

j ).  Therefore the 

general solution of  (A.5) is  

   
  
ψ j (x) = 1

r S , j +
k j (r j )
μ j (x)

.        (A.8) 

Now, evaluating this equation at  x = E j  gives: 

 
  
ψ j (E j ) = θ j (E) = 1

r S , j +
k j (r j )
G(E)

= E j +β
(Ei +β)∑

+ k j (r j )
G(E)

. (A.9) 

Since the n shares in (A.8) sum to one, (A.8) tells us that we must have   k j (r j ) = 0∑ .  

This proves part C.     

5.  To prove part B,  return to equation (A.8) which holds on the manifold   M E
j .   For 

 β = 0  (i.e.,  K ×  equilibrium), the manifold    M E
j ={(r1

j x,...,rn
jx) | x ≥ 0}.  Hence, as x 

approaches zero   μ
j (x)  approaches zero.  If, for some j,   k

j (r j ) ≠ 0 , then for sufficiently 

small x,   ψ
j (x)  would violate the constraint that it lie in  [0,1] .  Hence, for the case when 
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 β = 0  (and only for that case) we may conclude that the constants  k j  are identically zero, 

and the claim of part B follows.   

 

Proof of Theorem 2: 

1.  An interior allocation E is Nash implementable on the class of finite convex 

economies for the sharing rule θ  if and only if 

 
  
∀j u1

j ⋅(∂θ
j (E)

∂E j

G(ES )+ θ j (E) ′G (ES ))+ u2
j = 0  (A.10) 

Therefore θ  is efficiently implementable iff:  

 
  
∀j 1= θ j (E)+ G(ES )

′G (ES )
∂θ j (E)
∂E j

. (A.11) 

2.  Indeed, (A.11) must hold for the entire positive orthant   ++
n , for given any positive 

vector E,  we can construct n concave utility functions such that (A.10) holds at E. 
 
3.  For fixed E, define 

  
ψ j (x) = θ j (E1, E2 ,..., E j−1,x, E j+1,..., En )  and 

  
μ j (x) = G(x + ES − E j ) .  Then (A.11) gives us the differential equation: 
 

 
  
1= ψ j (x)+ μ j (x)

(μ j ′) (x)
(ψ j ′) (x) , (A.12) 

which must hold on  ++ . 
4.  But (A.12) implies that  

 
  

(ψ j ′) (x)
1− ψ j (x)

= (μ j ′) (x)
μ j (x)

 (A.13) 

which implies that   μ
j (x)(1− ψ j (x)) = k j  and therefore 

  
ψ j (x) = 1− k j (E− j )

μ j (x)
 where 

the constant  k j  may depend on the manifold   (E1,.., E j−1,x, E j+1,.., En )  on which  ψ
j  is 

defined. 
.   
5.  In turn, this last equation says that on the unidimensional space 

  
(E1,..., E j−1,x, E j+1,..., En )  we have: 

 
  
θ j (E1,..., E j−1,x, E j+1,..., En )G(x + ES − E j ) = G(x + ES − E j )− k j (E− j ) , (A.14) 

which says that ‘every agent receives his entire marginal product’ on this space.  To be 

precise: 
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(∀x, y > 0)
(θ j (E1,..., E j−1,x, E j+1,..., En )G(x + ES − E j )− θ

j (E1,..., E j−1, y, E j+1,..., En )G( y + ES − E j ) =

G(x + ES − E j )−G( y + ES − E j ))
 
           (A.15) 
Now let   

y = 0 and x = E j  and let 
  
z j = G(ES − E j ) ,   Then (A.15) says that: 

 
  
(∀j)(θ j (E)G(E)− z j = G(E)−G(E − E j )) . (A.16) 

6.  Adding up the equations in (A.16) over j, and using the fact that   
z j ≥ 0 , we have: 

   
G(E) ≥ nG(E)− G(E − E j )∑  (A.17) 

or: 

 
  
G(E) ≤ 1

n−1
G(E − E j )∑ . (A.18) 

 

7.  Now note that 
  

1
n−1

(ES − E j ) = ES∑ .   Therefore (A.18) can be written: 

 
  
G( 1

n−1
(ES − E j )) ≤

1
n−1

G(ES − E j )∑∑ , (A.19) 

which is impossible for any strictly concave G.   This proves part A of the theorem. 

8.  The proof of part B is familiar: for part B just says that Nash behavior, taking prices as 

given, at the Walrasian sharing rule, induces Pareto efficiency. 

 
  
 

Proof of Theorem 3: 

Consider the program: 

  

  

max
K ,h(),q()

uτ(x*(τ)+ h(τ), E*(τ)+ q(τ)
τ∈D
∫ )dF(τ)+αF(D)K

subject to
∀γ uγ (x*(γ )+ h(γ ), E*(γ )+ q(γ ))+αK ≥ uγ (x*(γ ), E*(γ ))+αK *

∀γ x*(γ )+ h(γ ) ≥ 0
∀γ E*(γ )+ q(γ ) ≥ 0

K ≤ uγ (x*(γ )+ h(γ ), E*(γ )+ q(γ )) p dF(γ )∫( )1/ p

G( (E*(γ )+ q(γ ))∫ dF(γ )) ≥ (x*(γ )+ h(γ )∫ )dF(γ )
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where D  is any set of types of positive measure.  Suppose the solution to this program is 

 . (K* is the value of the social-welfare function – given in the K 

constraint in the program -- when   h = q = 0 .) Then   (x*(⋅), E*(⋅))  is a Pareto efficient  

allocation.  Since we are studying strictly positive allocations, the second and third sets of 

constraints at the proposed optimal solution will be slack. 

 We will show that conditions (a) and (b) of the proposition characterize the * 

allocations for which this statement is true.  Let  be any feasible triple in the 

above program, for a fixed positive allocation   (x*, E*) .  Let .   Then define 

the Lagrange function: 

 

  

Δ(ε) = uτ(x*(τ)+ εh(τ), E*(τ)+ εq(τ)
τ∈D
∫ )dF(τ)+αF(D)(K * + εΔK )+

ρ G( (E*(τ)+ εq(t))dF(τ)− (x*(τ)+ εh(τ))dF(τ)∫∫( ) + λ uτ(x*(τ)+ εh(τ), E*(τ)+ εq(τ)∫ ) p dF(τ)⎛
⎝⎜

⎞
⎠⎟

1/ p

−

λ K * + εΔK )( ) + B(γ )∫ (u(x*(τ)+ εh(τ), E*(τ)+ εq(τ),τ)+αεΔK − u(x*(τ), E*(τ),τ))dF(τ).

 

 

Suppose there is non-negative function   B( )  and non-negative numbers  for which 

the function  is maximized at zero.   Note  is the value of the objective of the 

above program, when  and , and  equals the value of the 

objective at  plus some non-negative terms.  The claim will then follow.   Since 

 is a concave function, it suffices to produce an allocation   (x*, E*)  for which non-

negative  exist such that . 

 Compute the derivative of  at zero: 

 

  h
* 0, q* 0, K = K *

  (h,q, K )

  K = K K *

 ( , )

 (0)

  h
* 0 q*

  K = K *
 (1)

  (h,q, K )

  (B, , )  (0) = 0
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′Δ (0) = u1[*,γ ]h(γ )+ u2[*,γ ]q(γ )dF(γ )( )
D
∫ +αF(D)ΔK +

ρ ′G ( E*(τ)dF(τ)) q(τ)dF(τ)− h(τ)dF(τ)∫∫∫( ) +
λ
p

(Q*)(1− p)/ p p u[*,γ ]p−1∫ u1[*,γ ]h(γ )+ u2[*,γ ]q(γ )( )dF(γ )−

λΔK + B(γ )∫ u1[*,γ ]h(γ )+ u2[*,γ ]q(γ )+αΔK( )dF(γ ).

 

 

We now gather together the coefficients of   K ,h,  and q in the above expression 

and set them equal to zero: 

 

Coefficient of   ΔK :      αF(D)+α B(γ )dF(γ )− λ = 0∫   (A.9) 

 

Coefficient of    h( ) : u1[*, ]1D + (Q*)(1 p)/ p u[*, ]p 1u1[*, ]+ B( )u1[*, ]= 0 ,   

(A.10) 

Coefficient of    q( ) : u2[*, ]1D + G (E)+ (Q*)(1 p)/ p u[*, ]p 1u2[*, ]+ B( )u2[*, ] = 0 ,  

(A.11) 

where  and   E = E*( )dF( ) . 

 By setting all these coefficients equal to zero, and solving for the Lagrange 

multipliers, we will discover the characterization of the allocation .  Note that, 

at an interior Pareto efficient solution, we must have: 

   
  

u2[*, ]
u1[*, ]

= G (E) , 

for this is the statement that the marginal rate of substitution for each type between labor 

and output is equal to the marginal rate of transformation between labor and output.  

Therefore write: 

  
  
u1[*, ]+ u2[*, ]= u1[*, ] 1+

u2[*, ]
u1[*, ]

= u1[*, ] 1 G (E)( ) .  (A.12) 

   
1D ( ) =

1,  if D

0,  if D

  (x*(), E*())
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Now add together the equations for the coefficients of   q( ) and h( ) , divide this new 

equation by   1 G (E) , use equation (A.12), and the result is exactly the equation (A.11). 

Therefore, eqn. (A.12) has enabled us to eliminate equation (A.11): if we can produce 

non-negative values   (B( ), , )  satisfying (A.9) and (A.10), we are done. 

 Solve eqn. (A.10) for   B( ) : 

 
   
B( ) =

u1[*, ]1D u1[*, ] (Q*)(1 p)/ p u[*, ]p 1

u1[*, ]
 .    (A.13) 

From eqn. (A.9), we have   λ = αF(D)+α B(γ )dF(γ )∫ , and substituting the expression 

for   B( )  into this equation, we integrate and solve for  :  

  
  
λ =

αρ u1[*,γ ]−1 dF(γ )∫
1+α(Q*)(1− p)/ p u[*,γ ]p−1 dF(γ )∫

   (A.14). 

 

Eqn. (A.13) says that   B( )  is non-negative if and only if  

     u1[*, ](1D + (Q*)(1 p)/ p u[*, ]p 1)  ;                (A.15) 

substituting the expression for λ from (A.14) into (A.15) yields an inequality in ρ which, 

by rearranging terms, can be written as: 

 
  
ρ 1− u1[*,γ ]

α(Q*)(1− p)/ p u[*,γ ]p−1 u1[*,τ]−1 dF(τ)∫
1+α(Q*)(1− p)/ p u[*,τ][−1 dF(τ)∫

⎛

⎝⎜
⎞

⎠⎟
≥ u1[*,γ ] .        (A.16) 

In sum, we can find non-negative Lagrange multipliers iff we can produce a non-negative 

number ρ such that (A.16) is true for all γ.  This can be done iff: 

 
  
∀γ 1

u1[*,γ ]
≥
α(Q*)(1− p)/ p u[*,γ ]p−1 u1[*,τ]−1 dF(τ)∫

1+α(Q*)(1− p)/ p u[*,τ]p−1 dF(τ)∫
, 

proving the theorem.     

 

Proof of Theorem 4. 

 We prove the generalization of the theorem stated in the text.  We prove the result 

for  K ×  equilibrium for simplicity’s sake, although the proof for  K β  equilibrium is the 

same.  Also for simplicity’s sake, we use the social-welfare function of (1.1). 
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1.   For the sharing rule θ , an allocation E is a  K ×  equilibrium iff: 

  

d
dr

|r=1 uγ (θγ (rE)G(rE),rE(γ ))+αγ exp log(uτ(θτ(rE)G(rE),rE(τ))dF(τ)∫( ) = 0 , (A.17) 

where we assume that the altruism parameters  {α
γ} are non-negative.  Expand this 

derivative, writing it as:  

 
  
(∀γ ) Dγ (E)+αγ exp log(uτ(θτ(E)G(E)∫ , E(τ))dF(τ) Dτ(E)

uτ∫ dF(τ)
⎛

⎝⎜
⎞

⎠⎟
= 0,   (A.18) 

where 
  
Dτ(E) = d

dr
r=1

uτ(θτ(rE)G(rE),rE(τ)) . 

2.  Now (A.18) says that : 
   (∀γ )(Dγ (E) = −αγk)  

where k is a constant (independent of γ ).   Therefore we can substitute  −α
τk  for   D

τ(E)  

on the r.h.s. of eqn. (A.18), and re-write that equation as: 

   −α
γk −αγkm = 0 ,      (A. 19) 

where m is a positive constant.   If  α
γ = 0 ,  we have from  (A.18) that   D

γ (E) = 0 . Id 

 α
γ ≠ 0 ,   it follows from (A.19)   that   k = 0 .   But this means that for all γ ,   D

γ (E) = 0 , 

which is exactly the condition that E is a Kantian equilibrium for the economy with 

 α = 0 .  

 

Proof of Theorem 5: 

 

1.  The effort allocation in part (a) maximizes the surplus, which is the condition for 

efficiency in the quasi-linear economy with  α = 0 . 

2. Integrating the expression for   E(γ ) , we have that the equation 

  
E = γ ρ ′G (E)1/(ρ−1)  ,characterizing  E .  

3.  To prove claim (b), we show that the  β(ρ) -Kantian 

 equilibrium produces equal utilities across γ . From Remark 4 stated after Theorem 2, 

this suffices to show that the allocation will be in   PE(∞) .    We have: 
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u[γ ,β]= γ1/(ρ−1) ′G (E)1/(ρ−1) +β
γρ ′G (E)1/(ρ−1) +β

G(E)− γ ρ/(ρ−1) ′G (E)ρ/(ρ−1)

ργ
=

γ1/(ρ−1) ′G (E)1/(ρ−1)G(E)
γ ρ ′G (E)1/(ρ−1) +β

− ′G (E)ρ/(ρ−1)

ρ

⎛

⎝
⎜

⎞

⎠
⎟ + k

 (A.17) 

 

where k is a constant independent of γ .   Calculation shows that the value of β  that 

causes the coefficient of  γ
1/(ρ−1)  in (A.17) to vanish is  β(ρ)  as defined in claim (b).  It is 

easy to observe that  β(ρ) > 0  by the concavity of G, and because  ρ >1.  This proves 

claim (b). 

4.  Claim (c) follows from analyzing the condition (b) of theorem 2, which for quasi-

linear economies is: 

     (∀γ ) 1+α u[*,τ]−1 dF(∫ τ) ≥ αu[*,γ ]−1 , 

 

 as β  approaches  β(ρ)  from below.   

 

Proof of Theorem 6: 

1.   A simple calculation shows that if  E  is a  K +  equilibrium for an economy with a 

linear production function   G(x) = ax  w.r.t. any linear tax sharing rule 
  
θ[t ] , for   t ∈[0,1] , 

then the  allocation is 0-Pareto efficient.   

2.  Now let  E  be a  K +  equilibrium w.r.t. any sharing rule θ  on    (u,G, F ,0)  which is 

Pareto efficient on that economy.  E is a K
+  equilibrium means: 

  
   
u1

j (∇θ j (E) ⋅1)aES + θ j (E)an( ) + u2
j = 0 , 

and so Pareto efficiency means that: 

  
   
(∇θ j (E) ⋅1)aES + θ j (E)an( ) = a , 

or: 

     (∇θ
j (E) ⋅1)ES + nθ j (E) = 1.     (A.18) 

As has been argued in previous proofs,  (A.18) must hold as a system of partial 

differential equations on   ++
n .   
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3. Define  ri
j = Ei − E j .  Define   ψ

j (x) = θ j (x + r1
j ,...,x + rn

j ) .  Note that 

   (ψ
j ′) (E j ) = (∇θ j (E) ⋅1) .  Hence, on the manifold    M E

j ={(x + r1
j ,...,x + rn

j )}, we may 

write the differential equation (A.18) as: 

     (ψ
j ′) (x)(nx + r j ,S )+ nψ j (x) = 1,   (A.19) 

where 
  
r j ,S = ri

j

i
∑ .   Since the linear tax rules satisfy (A.18) by step 1, it follows that a 

particular solution of (A.19) is 
  
ψ j (x) = (1− t) x

nx + r j ,S + t
n

, for any   t ∈[0,1] .   The 

general solution to the homogeneous variant of (A.19) is 
  
ψ j (x) = k j

nx + r j ,S ,  where  k j  is 

a constant that may depend upon the manifold   M E
j .   Therefore the general solution to 

(A.19) is: 

   
  
ψ j (x) = (1− t) x

nx + r j ,S + t
n
+ k j

nx + r j ,S , 

where t may be chosen freely, and  k j  is as described.  Translating back, this means that 

  
  
θ j (E) = θ[t ]

j (E)+ k j (E)
ES  

where we must have: 

 (i) for all E,   k j (E) = 0∑  

 (ii)   θ
j (E)∈[0,1]  

 (iii) for all j and E,    ∇k j (E) ⋅1 = 0 . 

Statements (i) and (ii) are obvious requirements, while statement (iii) says that the 

functions  k j  are constant on the manifolds   M E
j .    

 

Proof of Theorem 7: 

Part A 

1.  Define the functions: 

 
  
r j (K , y) = max

r
u j (G(K + y + nr)

n
, y + r)  for    (K , y)∈ +

2 . 



 11 

These are single-valued functions, by strict concavity of u. 

 

The first-order condition defining rj  is: 

    u1
j (⋅) ′G (K + y + nr)+ u2

j (⋅) = 0 . 

 

2.  Using the implicit function theorem,  compute that the derivatives of  r j  w.r.t. its 

arguments are : 

  
  

dr
dK

= −
u1

j ′′G + u11
j ′G 2 + u12

j ′G

n(u1
j ′′G + u11

j ( ′G )2 + 2 ′G u12
j + u22

j )
< 0

. 

 

The denominator of this fraction is negative by concavity of u and G, the the numerator is 

negative since   u12
j ≤ 0 , and hence 

  

dr
dK

< 0 .    And: 

  
  

dr
dy

= −
u22

j + ( ′G )2u11
j + (n+1)u12

j + u1
j ′′G

n(u22
j + ( ′G )2u11

j + 2 ′G u12
j + u1

j ′′G )
< 0 . 

Likewise,  
  

dr
dy

< 0 .  

3. Define   y
j  by r j (0, y j ) = 0 .   If all agents other than j are putting in zero effort, then  y

j  

is the amount of effort for j at which he would not like to increase all efforts by any 

number.  Now define 
 
K − j = y j

i≠ j
∑ .   Next define   z

j  by    r
j (K − j , z j ) = 0 .    z j  is the 

amount of effort for j such that, if all other agents i are expending  y
i and he is expending 

 z
j ,  he would not like to add or subtract any amount from all efforts. 

4.   We argue that  z
j < y j  for all j.   Just note that   r

j (K − j , z j ) = 0 = r j (0, y j ) .   Since 

  K − j > 0 , it follows that  z
j < y j , because the  r j are decreasing functions. 

5.  Hence we may define the non-degenerate rectangle    Δ ={E ∈ ++
n | z ≤ E ≤ y}. 

6.   By applying the definition of   r
j (K , y) , note that we have the identity: 

    r
j (K + (n−1)b,a + b) = r j (K ,a)− b . 
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7.  We now define a function    Θ : +
n → +

n : 

    Θ(E1,..., En ) = (E1 + r1( Ê−1, E1),..., En + r n( Ê−n , En ))  

where 
  
Ê− j ≡ Ei

i≠ j
∑ .   Θ  is like the best-reply correspondence in Nash equilibrium. 

Θ  is single-valued and continuous, by the Berge maximum theorem.   

   We next show that  Θ(Δ)⊆ Δ .   Let   E = (E1,..., En )∈Δ .   We must show: 

     (∀j)(z j ≤ E j + r j ( Ê− j , E j ) ≤ y j .   (A.20) 

By step 6,   we have  

     r
j ( Ê− j , E j )− ( y j − E j ) = r j ( Ê− j + (n−1)( y j − E j ), y j ) ≤ 0 , 

where the inequality follows because  r j  is decreasing and   r
j (0, y j ) = 0  and 

  Ê
− j + (n−1)( y j − E j ) ≥ 0 .   This proves the second inequality in (A. 20).  

 Again by step 6, we have: 

   r
j ( Ê− j , E j )− (z j − E j ) = r j ( Ê− j + (n−1)(z j − E j ),z j ) ≥ 0  

where the inequality follows because  r j  is decreasing and   Ê
− j + (n−1)(z j − E j ) ≤ K − j  

(note that   (n−1)(z j − E j ) ≤ 0 ).   This proves the first inequality in (A.20). 

8.  Hence, the function Θ  satisfies all the premises of Brouwer’s Fixed Point Theorem, 

and hence possesses a fixed point. But a fixed point of Θ  is a vector E such that for all j, 

  r
j ( Ê− j , E j ) = 0 , which is precisely a  K +  equilibrium.  (Note that the rectangle is in the 

strictly positive orthant, which implies that the equilibrium is strictly positive.) 

 Part B 

9.  The proof proceeds in the same fashion as above, except we now define the functions: 

         
  
rβ

j (K , y) = argmax
r

u j ( ry +β(r −1)+β
r(K + y)+ nβ(r −1)+ nβ

G(r(K + y)+ n(r −1)β,ry +β(r −1)) . 

Recall that y will be evaluated at  E j  and K  at    Ê− j  for a vector E. 

The first-order condition defining the functions 
 
rβ

j  is: 

      u1
j ⋅ ′G + u2

j = 0 , 
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where u is evaluated at the point 
  
( y +β

K + y + nβ
G(r(K + y)+ (r −1)nβ),ry + (r −1)β) .  We 

compute, using the implicit function theorem, that: 

 
  

drβ
j

dK
= −

( ′G u11
j + u12

j ) y +β
K + y + nβ

′G rβ
j − G

K + y + nβ
⎛
⎝⎜

⎞
⎠⎟
+ rβ

j ′′G u1
j

( y +β)( ′G 2u11
j + 2 ′G u12

j + u22
j )+ u1

j ′′G (K + y + nβ)
. 

The denominator is negative by the concavity of u and G.   Quasi-linearity implies that 

  ′G u11
j + u12

j = 0  and so the numerator is negative if 
  
rβ

j > 0 .   But note that we must have 

  ry + (r −1)β ≥ 0 , since efforts cannot be negative, and so r is restricted to the interval 

with lower bound 
  
r ≥ β

y +β
> 0 , and so 

  
rβ

j > 0 .     Hence   
  

drβ
j

dK
< 0 .  

 Compute that:  

  

drβ
j

dy
= −

u11
j rβ

j ′G 2 ( y +β)
K + y + nβ

+ ′G G
(K + (n−1)β)
(K + y + nβ)2

⎛
⎝⎜

⎞
⎠⎟
+ u12

j rβ
j ′G

K + 2y + (n+1)β
K + y + nβ

⎛
⎝⎜

⎞
⎠⎟
+ K + y + (n−1)β

(K + y + nβ)2

⎛
⎝⎜

⎞
⎠⎟
+ rβ

ju22
j

( y +β)( ′G 2u11
j + 2 ′G u12

j + u22
j + u1 ′′G (K + y + nβ)

 

The denominator is negative by concavity, and the numerator is negative since   u12
j = 0 , 

and so 
  

drβ
j

dy
< 0 . 

10.  Hence the functions 
 
rβ

j  are decreasing, and the proof proceeds as before, from steps 

3 through 8.          

 

Proof of Proposition 2: 

The proof proceeds by showing that the mapping Θ  is a contraction mapping.  It uses the 

following well-known result: 

Lemma  Let  be a norm on   n  and let   A  be the associated sup norm on mappings 

   A : n → n , defined by 
   

A = sup
x =1

A(x) .   Let   J ( A)  be the Jacobian matrix of A. If 

   J ( A) <1, then A is a contraction mapping. 
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 If we can show that Θ  is a contraction mapping, then it possesses a unique fixed 

point, and the dynamic process induced by iterating the application of Θ  from any initial 

effort vector will converge to the fixed point. 

 

1.  For   n = 2 , the Jacobian of the map Θ  is 

  

1+ r1
1 r2

1

r1
2 1+ r2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, where 

  
ri

j (E1, E2 ) = ∂r j

∂Ei (E1, E2 ) , assuming that these derivatives exist.  Thus, the lemma 

requires that we show the norm of this matrix is less than unity.   We take  to be the 

Euclidean norm on   2 .   We must show that: 

 

  

E = 1⇒
1+ r1

1(E) r2
1(E)

r1
2(E) 1+ r2

2(E)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E1

E2

⎛

⎝
⎜

⎞

⎠
⎟ <1.   (A.21) 

2.  Assuming differentiability of  c j , the function   r
j (E)  is defined by the following first-

order condition: 

   ′G (ES + 2r j (E)) = (c j ′) (E j + r j (E)) ,      (A.22) 

which has a unique solution under standard assumptions.  By the implicit function 

theorem, the derivatives of   r
j (⋅)  are given by: 

 

   ′′G ( y j )(1+ 2ri
j (E)) = (c j ′′) (x j )(δ i

j + ri
j (E)) , 

where   y
j = G(ES + nr j (E)), x j = E j + r j (E)  and 

  
δ i

j =
1,  if i = j

0,  if i ≠ j

⎧
⎨
⎪

⎩⎪
; or 

   
  
ri

j (E) =
δ i

j (c j ′′) (x j )− ′′G ( y j )
2 ′′G ( y j )− (c j ′′) (x j )

.    (A.23) 

3.   It follows from step 1 that the Jacobian of Θ  is given by: 
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′′G ( y1)
2 ′′G ( y1)− (c1 ′′) (x1)

− ′′G ( y1)
2 ′′G ( y1)− (c1 ′′) (x1)

− ′′G ( y2 )
2 ′′G ( y2 )− (c2 ′′) (x2 )

′′G ( y2 )
2 ′′G ( y2 )− (c2 ′′) (x2 )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 

and so, from step 1, we need only show that: 

    (Q
1(E1 − E2 ))2 + (Q2(E1 − E2 ))2 <1   (A. 24) 

where 
  
(E1, E2 ) = 1 and 

  
Q j = ′′G ( y j )

2 ′′G ( y j )− (c j ′′) (x j )
.     Note that 

  
Q j < 1

2
.  Therefore 

(A.24) reduces to showing that 
  

1
2

(1− E1E2 ) <1, which is obviously true, proving the 

proposition.    

 

 

   
 

 

  
 

   

   

   

 

 
 


