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Abstract. We examine a repeated interaction between an agent, who undertakes ex-
periments, and a principal who provides the requisite funding for these experiments. The
agent’s actions are hidden, and the principal cannot commit to future actions. The re-
peated interaction gives rise to a dynamic agency cost—the more lucrative is the agent’s
stream of future rents following a failure, the more costly are current incentives for the
agent. As a result, the principal may deliberately delay experimental funding, reducing
the continuation value of the project and hence the agent’s current incentive costs. We
characterize the set of recursive Markov equilibria. We also find that there are non-Markov
equilibria that make the principal better off than the recursive Markov equilibrium, and
that may make both agents better off. Efficient equilibria front-load the agent’s effort,
inducing as much experimentation as possible over an initial period, until making a switch
to the worst possible continuation equilibrium. The initial phase concentrates the agent’s
effort near the beginning of the project, where it is most valuable, while the eventual
switch to the worst continuation equilibrium attenuates the dynamic agency cost.
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Incentives for Experimenting Agents

Johannes Hörner and Larry Samuelson

1 Introduction

1.1 Experimentation and Agency

Suppose an agent has a project whose profitability can be investigated and potentially
realized only through a series of costly experiments. For example, the project may require
new technological developments whose feasibility is uncertain, to be ascertained only by
building and testing a sequence of prototypes.

For an agent with sufficient financial resources, the result is a conceptually straightfor-
ward programming problem. He funds a succession of experiments until either realizing a
successful outcome or becoming sufficiently pessimistic as to make further experimenta-
tion unprofitable. But what if he lacks the resources to support such a research program,
and must instead seek funding from a principal? What constraints does the need for
outside funding place on the experimentation process? What is the nature of the contract
between the principal and agent?

This paper addresses these questions. In the absence of any contractual difficulties,
the problem is still straightforward. Suppose, however, that the experimentation requires
costly effort on the part of the agent that the principal cannot monitor (and cannot under-
take herself). It may require hard work to develop either a new super-efficient battery or a
new pop act, and the principal may be able to verify whether the agent has been successful
(presumably because people are scrambling to buy the resulting batteries or music), but
unable to discern whether a string of failures represents the unlucky outcomes of earnest
experimentation or the product of too much time spent playing computer games. We
now have an incentive problem that significantly complicates the relationship. In particu-
lar, the agent continually faces the temptation to simply pocket the funding provided for
experimentation, explaining the resulting failure as an unlucky draw from a good-faith
effort, and hence must receive sufficient rent to forestall this possibility.

The problem of providing incentives for the agent to exert effort is complicated by
the assumption that the principal cannot commit to future contract terms. Perhaps
paradoxically, one of the advantages to the agent of a failure is that the agent may then
be able to extract further rent from future experiments, while a success obviates the need
for the agent and terminates the rent stream. The principal may be able to reduce the cost
of current incentives by committing to a string of less lucrative future contracts (perhaps
terminating experimentation altogether) in the event of failure. We allow the principal to
alter future contract terms or terminate the relationship only if doing so is sequentially
rational.
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1.2 Optimal Incentives: A Preview of Our Results

Because the action of the agent is hidden, his private belief may differ from the public
belief held by the principal. Part of our contribution is then methodological, as we develop
techniques to explicitly solve for the equilibria of this hidden-action hidden-information
problem. We accordingly divide the paper into two parts.

We work with a continuous time model which, in order to be well defined, incorporates
some inertia in actions, in the form of a minimum length of time ∆ between offers on
the part of the principal. The bulk of the paper, including Section 6 and its associated
appendices, provides a complete characterization of the set of equilibria for this game. It
is here that we make our methodological contribution. However, because this material
is detailed and technical, Sections 3–4 examine equilibrium outcomes in the frictionless
limit obtained by letting ∆ go to zero. These arguments are intuitive and may be the only
portion of the paper of interest to many readers. One must bear in mind, however, that
this is not an analysis of a game without inertia (or ∆ = 0), which is not well defined,
but is a description of the limits (as ∆ → 0) of equilibria in games with inertia. Toward
this end, the intuitive arguments made in Sections 3–4 are founded on precise arguments
and limiting results presented in Section 6.

The presence of the agent forces the principal to bear an agency cost, reflected in the
fact that every equilibrium abandons experimentation before the first-best policy would
do so. In addition, the repeated relationship gives rise to a dynamic agency cost. The
higher the agent’s continuation payoff, the higher the principal’s cost of inducing effort.
This dynamic agency cost may make the agent so expensive that the principal can earn
a nonnegative payoff only by delaying the pace of experimentation in order to reduce the
future value of the relationship.

Section 3.1 characterizes the recursive Markov equilibrium outcomes of the experi-
mentation problem (explaining the “recursive” in the process). The key question here is
whether the principal seizes every opportunity to induce experimentation on the part of
the agent, or sometimes delays doing so. Equilibria without delay exist in some cases,
but in other cases equilibrium requires either delay for optimistic beliefs, or delay for pes-
simistic beliefs, or both. Delay can seemingly only reduce payoffs, and so is a potentially
surprising feature in a Markov equilibrium. However, this may be the only way for the
principal to bring the dynamic agency cost to a manageable level.

The principal’s preferences over these equilibria can exhibit some intriguing non-
monotonicities. For example, the principal may prefer a project with a lower initial
probability of a success to a project with a higher prior probability. The seemingly
surplus-reducing effect of this preference is overwhelmed by the salutary effects of making
it less expensive to create incentives for the agent.

There also exist non-Markov equilibria, which have a simple and striking structure.
The efficient non-Markov equilibria all front-load the agent’s effort. Such an equilibrium
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features an initial period without delay, after which a switch is made to the worst equilib-
rium possible. In some cases this worst equilibrium halts experimentation altogether, and
in other cases it features the maximal delay one can muster. The principal’s preferences
are clear when dealing with non-Markov equilibria—she always prefers a higher likeli-
hood that the project is good, eliminating the non-monotonicity of the Markov case. The
principal always reaps a higher payoff from the best non-Markov equilibrium than from
the Markov equilibrium, and the non-Markov equilibria may make both players better off
than the Markov equilibrium.

It is not too surprising that the principal can gain from a non-Markov equilibrium.
Front-loading effort on the strength of an impending switch to the worst equilibrium
reduces the agent’s future payoffs, and hence reduces the agent’s current incentive cost.
But the eventual switch appears to squander surplus, and it is less clear how this can make
both players better off. The cases in which both players benefit from such front-loading
are those in which the Markov equilibrium features some delay. Front-loading effectively
pushes the agent’s effort forward, coupling more intense initial effort with the eventual
switch to the undesirable equilibrium. It can be surplus-enhancing to move effort forward,
allowing both players to benefit.

Section 4 provides some comparisons. We relate our results to those of Bergemann
and Hege [1], in which the agent rather than the principal has the bargaining power in the
relationship, identifying circumstances under which the agent might prefer the bargaining
power rest with the principal. We also examine the case in which the principal can observe
the agent’s effort, so there is no hidden information problem. We identify circumstances
in which this observability makes the principal worse off, and hence under which the
principal would prefer to not observe the agent’s action.

1.3 Related Literature

Our paper is most directly related to Bergemann and Hege [1].1 Bergemann and Hege
[1] examine a model differing primarily from ours in that their agent makes an offer to
the principal in each period, reversing the bargaining positions from ours (in which the
principal makes offers).

There are some similarities in results across the two papers. Bergemann and Hege
find four types of behaviors, each existing in a different region of parameter values. We
identify four analogous regions of parameter values (thought the details differ), each with
a different equilibrium structure. However, there are also some differences between the
two papers. Bergemann and Hege describe the behavior along the equilibrium path of
a particular “Markov equilibrium,” without noting that other such equilibria may exist

1Bergemann, Hege and Peng [2] present an alternative model of sequential investment in a venture
capital project, without an agency problem, which they then use as a foundation for an empirical analysis
of venture capital projects.
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and that Markov equilibria may fail to exist (See Section B.3 in the appendix for exam-
ples). The characterization of the set of “Markov equilibria” in their model, as well as
the investigation of non-Markov equilibria, remain open questions. Because existence is
problematic in such models, we introduce the weaker solution concept of recursive Markov
equilibrium, provide a complete characterization of the set of recursive Markov equilibria,
and show that the associated outcome is unique in the limit.2 We also characterize a rich
set of additional equilibria exhibiting properties quite different from those of recursive
Markov equilibria. We return to these differences in Section 4.2.

Our analysis combines elements of optimal learning, research-and-development, ven-
ture capital provision, and dynamic contracting, each of which has been the subject of a
large literature. We touch here on only the most directly related papers.

Gerardi and Maestri [8] examine a model in which a principal must choose between
two alternatives {B,G}, with payoffs that depend on the realization of an unknown state.
In each period the principal can hire an agent to exert unobservable effort, at some cost,
in order to generate a signal that is informative about the state. One signal provides
conclusive evidence the state is G, much like a success in our model. In contrast to our
model, the principal need not provide funding to the agent in order for the latter to exert
effort, the length of the relationship is fixed (though the principal can end the relationship
by making the decision early), the outcome of the agent’s experiments is unobservable
(and so the agent must be given incentives to report that outcome), and the principal
can ultimately observe and condition payments on the state. Their game gives rise to
a unique equilibrium in which the agent always exerts effort and truthfully reports the
resulting signals. Payments are made to the agent only when the game ends (either before
the last period, in the event of a signal is realized implying state G, or otherwise after the
final period), with this payment depending on the realized state.

Mason and Välimäki [11] examine a model in which the probability of a success is
known and the principal need not advance the cost of experimentation to the agent.
The agent has a convex cost of effort, creating an incentive to smooth effort over time.
The principal makes a single payment to the agent, upon successful completion of the
project. If the principal is unable to commit, then the problem and the agent’s payment
are stationary. If able to commit, the principal offers a payment schedule that declines
over time in order to counteract the agent’s effort-smoothing incentive to push effort into
the future.

Finally, our paper incorporates both hidden action and hidden information. In this
sense, this paper is related to the literature on repeated moral hazard with unmonitored
wealth. In both cases, the agent takes a hidden action (here, how much to divert funds;

2Non-existence of Markov equilibria is common in extensive-form games of incomplete information
(hence the use of weak Markov equilibria in bargaining models). See footnote 6 for a brief description of
the issue for the class of models that we and Bergemann and Hege study, and Section 6 for the detailed
analysis).
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there, how much to save income) that affects his future attitudes towards risk-taking
(here, it affects his optimism; there, his actual risk-aversion). See, for instance, Doepke
and Townsend [6], Werning [15] and Williams [16].

2 The Model

2.1 The Agency Relationship

2.1.1 Actions

We consider a long-term interaction between a principal (she) and an agent (he). The
agent has access to a project that is either good or bad. The project’s type is unknown,
with principal and agent initially assigning probability q ∈ [0, 1) to the event that it is
good. The case q = 1 requires minor adjustments in the analysis, and is summarized in
Section 4.4.

The game starts at time t = 0 and takes place in continuous time. At time t, the
principal makes a (possibly history-dependent) offer st to the agent, where st identifies
the principal’s share of the proceeds from the project.3 Whenever the principal makes an
offer to the agent, she cannot make another offer until ∆ > 0 units of time have passed.
This inertia in actions ensures that our model is well-defined.4 We will be primarily
interested in the limiting behavior and limiting payoffs as inertia becomes insignificant
(∆ → 0). Notice that this is not the same as studying the game without inertia, which is
not well defined.

Whenever an offer is made, the principal advances the amount c∆ to the agent, and
the agent immediately decides whether to conduct an experiment, at cost c∆, or to shirk.
If the experiment is conducted and the project is bad, the result is inevitably a failure,
yielding no payoffs in that period but leaving open the possibility of conducting further
experiments in future periods. If the project is good, the experiment yields a success with
probability p∆ and a failure with probability 1− p∆, where p∆ ∈ (0, 1). Alternatively, if
the agent shirks, there is no success, and the agent expropriates the advance c∆.

The game ends at time t if and only if there is a success at that time. A success
represents a breakthrough that generates a surplus of π, representing the future value of
a successful project and obviating the need for further experimentation. The principal
receives payoff πst from a success and the agent retains π(1−st). The principal and agent

3Given the binary (success/failure) nature of the possible experimental outcomes, there is no loss
of generality in restricting the principal to offering the agent a share of the proceeds of a success. In
particular, allowing payments conditional on failure would not change the results, as such payments
dampen incentives.

4There are well-known difficulties in defining games in continuous time, especially when attention is not
restricted to Markov strategies. See, in particular, Bergin and MacLeod [3] and Simon and Stinchcombe
[14]. Our reliance on an interval between offers is similar to the approach of Bergin and MacLeod.
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discount at the common rate r, with e−r∆ := δ(∆) ≈ 1 − r∆ then being the discount
factor for a period of length ∆.

In the baseline model, the principal cannot observe the agent’s action, observing only
a success (if the agent experiments and draws a favorable outcome) or failure (otherwise).5

2.1.2 Strategies

A history ht at date t is a full description of the actions of the players from time
zero up to, but not including, time t. It specifies for every t′ < t whether the principal
made no offer (wait, w), or whether an offer s ∈ [0, 1] was made, as well as the agent’s
action in that case (shirk, S, or work, W ). Formally, a history at time t is a function
ht : [0, t) → {[0, 1]×{S,W}}∪{w} such that, for all τ < t, if ht(τ) ∈ [0, 1]×{S,W}, then
ht(t

′) = w for all t′ ∈ (τ, τ +∆), t′ < t. Implicit in this description is that all experiments
were unsuccessful, as the game ends otherwise. A public history hPt is defined in the
same way, but it only specifies the actions taken by the principal (i.e., it takes values in
[0, 1]∪ {w}). The set of such functions are denoted Ht and HP

t , and we write hPt|t′ , t
′ < t,

for the truncated history in HP
t′ obtained from hPt (hPt is said to be a continuation of hPt|t′).

A (behavior) strategy for the principal is a collection σP = (σPt )t∈R+ , where the σPt
are probability transitions from HP

t into [0, 1] × {w}, such that, for all t′ and t with
t ∈ (t′, t′ + ∆), we have hPt (t

′) ∈ [0, 1] implies that σP (hPt ) = {w}. The strategy of
the agent σA is defined similarly (with Ht replacing HP

t ), given an outstanding offer s.
To ensure that every pair σ of strategies uniquely determines a continuation-path, it is
furthermore necessary to (innocuously) assume that, for all t > t′ ≥ 0, if σP (hPt|t′) = w,

there exists t′′ > t′ such that σP (hPt′ |τ ) = w for all τ ∈ (t′, t′′). See Perry and Reny [13]
for details. As usual, we write σP

∣

∣

hPt
(resp. σA

∣

∣

ht
) for the continuation strategy induced

by the given history.

2.2 The Equilibrium Concept

Posterior beliefs are continually revised throughout the course of play, with each failure
being bad news, leading to a more pessimistic posterior expectation that the project is
good. Moreover, the agent’s hidden action gives rise to hidden information: if the agent
deviates, he will update his belief unbeknownst to the principal, and this will affect his
future incentives to work, given the future equilibrium offers, and hence his payoff from
deviating. In turn, the principal must compute this payoff in order to determine which
offers will induce the agent to work.

We have two types of beliefs. On one hand, the agent holds a belief about the quality
of the project, qA ∈ [0, 1], which results from his experiments. On the other hand, the

5This is the counterpart of Bergemann and Hege’s [1] “arm’s length” financing. We investigate the
case of observable effort (Bergemann and Hege’s “relationship financing”) in Section 4.3.
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principal holds a belief about the agent’s belief, qP ∈ ∆ [0, 1], which results from the
history of offers and the agent’s equilibrium strategy.

We examine weak perfect Bayesian equilibria of this game. In addition, because actions
by the agent are not observed, and the principal does not know the state, it is natural
to impose the “no signaling what you don’t know” requirement on posterior beliefs after
histories ht (resp. hPt for the principal) that have probability zero under σ = (σP , σA).
In particular, we assume that the agent’s belief is consistent with Bayes’ rule and his
own history of experiments, after all ht: that is, after such a history, he holds the belief
that would be derived from Bayes’ rule under the probability distribution induced by
any strategy profile (σ′P , σ′A) under which this history would be on the equilibrium path.
Similarly, the principal’s belief is consistent with Bayes’ rule after all hPt : that is, after
such a history, she holds the belief that would be derived from Bayes’ rule under the
probability distribution induced by any strategy profile (σ′P , σA) under which this history
would be on the equilibrium path (note that σA is fixed). These restrictions on beliefs
imply that a strategy profile, along with a history, uniquely defines the public and private
belief, and there is thus no need to describe them explicitly whenever an equilibrium is
specified. Let qP

(

hPt
)

and qA (ht) denote the public and private belief given hPt and ht,
given the strategy profile.

“Equilibrium” henceforth refers to a weak perfect Bayesian Equilibrium satisfying these
requirements. We restrict attention to equilibria that involve only pure actions along the
equilibrium path. We explain as we proceed both why mixtures are sometimes required
off the equilibrium path (Section 6.5.4) and why we view our continuous-time formulation
as rendering innocuous the restriction that on the equilibrium path, the principal never
mixes over whether to make an offer (Section 6.4).

2.3 The First-Best Policy

Suppose there is no agency problem—either the principal can conduct the experiments
(or equivalently the agent can fund the experiments), or there is no monitoring problem
and hence the agent necessarily experiments whenever asked to do so. This problem is
well-defined for ∆ = 0 (with a value and an optimal policy that converge as ∆ → 0), and
so we focus attention directly on this case.

The principal will experiment until either achieving a success, or being rendered suffi-
ciently pessimistic by a string of failures as to deem further experimentation unprofitable.
The optimal policy, then, is to choose an optimal stopping time, given the initial belief.
That is, the principal chooses T ≥ 0 so as to maximize the normalized expected value of
the project, given by

V (q̄) = E

[

πe−rυ1υ≤T −

∫ υ∧T

0

ce−rtdt

]

,
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where r is the discount rate, υ is the random time at which a success occurs, and 1E is
the indicator of the event E.

The probability that no success has obtained by time t is exp
(

−
∫ t

0
pqυdυ

)

, and we

can then use the law of iterated expectations to rewrite this payoff as

V (q̄) =

∫ T

0

e−rt−
∫ t
0
pqυdυ (pqtπ − c) dt.

From this formula, it is clear that it is optimal to pick T ≥ t if and only if pqtπ − c > 0.
Hence, the principal experiments if and only if

qt >
c

pπ
. (1)

The optimal stopping time T then solves qT = c/pπ.
Appendix A develops an expression for the optimal stopping time that immediately

yields some intuitive comparative statics. The first-best policy operates the project longer
when the prior probability q̄ is larger (because it then takes longer to become so pessimistic
as to terminate), when (holding p fixed) the benefit-cost ratio pπ/c is larger (because more
pessimism is then required before abandoning the project), and when (holding pπ/c fixed)
the success probability p is smaller (because consistent failure is then less informative).

3 Equilibrium Outcome in the Frictionless Limit

This section describes the set of equilibrium outcomes, characterizing both behavior
and payoffs, in the frictionless limit. We explain the intuition behind these outcomes in
this section, and our intention is that this description, including some heuristic derivations,
should be sufficiently compelling that most readers need not delve into the technical
details behind this description. However, we also note that there is no well-defined game
corresponding to the frictionless limit. The formal arguments supporting this section’s
results require a characterization of equilibrium behavior and payoffs for ∆ > 0, and a
demonstration that the behavior and payoffs described here are the unique limits of such
equilibria. Section 6 provides these arguments.

3.1 Markov Equilibria

It is natural to start by looking for equilibria in which the players’ on-path behavior
depends only on the current common belief and (for the agent) the outstanding offer. As
we explain in detail in Section 6, such Markov equilibria need not exist for a fixed ∆, and
we must work with the slightly weaker solution concept of recursive Markov equilibrium
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(defined in Section 6.4). Even when Markov equilibria exist, they need not be unique.6

But Section 6 demonstrates that the outcomes of recursive Markov equilibria have a
unique limit as ∆ tends to zero. We therefore simplify (though also abuse) the terms by
referring to this limit as the Markov equilibrium in the frictionless limit.

3.1.1 No Delay

We begin by examining equilibria in which the principal never delays making an offer,
and the agent is indifferent between accepting and rejecting the equilibrium offer. Let
qt be the common (on path) belief at time t. This is the state variable in a Markov
equilibrium, and equilibrium behavior will depend only on this belief. Let v(q) and w(q)
denote the “ex post” equilibrium payoffs of the principal and the agent, respectively, given
that the current belief is q and that the principal has not yet made an offer to the agent.
By ex post, we refer to the payoffs when the principal is on the verge of making the next
offer; here, this means right after the requisite waiting time ∆ since the previous offer has
passed. Let s(q) denote the offer made by the principal at belief q, leading to a payoff
πs(q) for the principal and π(1− s(q)) for the agent if the project is successful.

The principal’s payoff v(q) follows a differential equation. To interpret this equation,
let us first write the corresponding difference equation for a given ∆ > 0 (up to second
order terms):

v(qt) = (pqtπs(qt)− c)∆ + (1− r∆)(1− pqt∆)v(qt+∆).

The first term on the right is the expected payoff in the current period, consisting of the
probability of a success pqt multiplied by the payoff πs(qt) in the event of a success, minus
the cost of the advance c, all scaled by the period length ∆. The second term is the
continuation value to the principal in the next period v(qt+∆), evaluated at next period’s
belief qt+∆ and multiplied by the discount factor 1 − r∆ and the probability 1 − pqt of
reaching the next period via a failure.

6The issue can be summarized as follows: the agent’s incentives depend on his continuation payoff,
hence on the principal’s belief, and hence on the expectation about the agent’s action. As a result,
depending on the parameters, there are shares for which: (i) if the agent is expected to shirk, it is optimal
to shirk, and if expected to work, it is optimal to work, so that multiple equilibria arise, according to the
specified beliefs (this multiplicity always arises with inertia for low beliefs, and plays an important role
in the construction of non-Markov equilibria in the frictionless limit, see footnote 17) (ii) if the agent is
expected to shirk, it is optimal to work, and if expected to work, it is optimal to shirk; unsurprisingly,
the agent must then randomize, which has two consequences. First, the principal’s beliefs are no longer
degenerate, so that the game cannot be solved by “backward induction” on (degenerate) beliefs. Second,
for the agent to be indifferent, the principal’s continuation strategy must be fine-tuned; in particular,
it must depend on the exact share that led to randomization, which violates the Markov assumption.
Hence the weakening of the solution concept. In our model, offers that lead to such histories turn out to
be unprofitable, but to prove this, equilibrium play after such histories must be studied.
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Taking the limit ∆ → 0, we get the differential equation corresponding to the friction-
less limit,

(r + pq)v(q) = pqπs(q)− c− pq(1− q)v′(q). (2)

The left side is the annuity on the project, given the effective discount factor (r+pq). This
must equal the sum of the flow payoff, pqπs(q)− c, and the capital loss, v′(q)q̇, imposed
by the deterioration of the posterior belief induced by a failure. To see how q̇ arises in
(2), we note that Bayes’ rule gives

qt+∆ =
qt(1− p∆)

1− pqt∆
,

from which it follows that, in the limit,

q̇t = −pqt(1− qt). (3)

Similarly, the payoff to the agent, w(qt), must solve, to the second order,

w(qt) = pqtπ(1− s(qt))∆ + (1− r∆)(1− pqt∆)w(qt+∆)

= c∆+ (1− r∆)(w(qt+∆) + x(qt)∆). (4)

The first equality gives the agent’s equilibrium value as the sum of the agent’s current-
period payoff pqtπ(1 − s(qt))∆ and the agent’s continuation payoff w(qt+∆), discounted
and weighted by the probability the game does not end. The second equality is the agent’s
incentive constraint. The agent must find the equilibrium payoff at least as attractive as
the alternative of shirking. The payoff from shirking includes the appropriation of the
experimentation cost c∆, plus the discounted continuation payoff w(qt+∆), which is now
received with certainty and is augmented by x(qt), defined to be the marginal gain from
t+∆ onward from shirking at time t unbeknownst to the principal.

To evaluate x(qt), note that, by shirking, the agent holds an unchanged posterior belief,
qt, while the principal wrongly updates to qt+∆ < qt. If the equilibrium expectation is
that the agent works in all subsequent periods, then he will do so as well if he is more
optimistic. Furthermore, the agent’s value (when he always works) arises out of the
induced probability of a success in the subsequent periods. A success in a subsequent
period occurs with a probability that is proportional to his current belief. As a result, the
value from being more optimistic is qt/qt+∆ higher than if he had not deviated. Hence,

x(qt)∆ =

(

qt
qt+∆

− 1

)

w(qt+∆), (5)

or, taking the limit ∆ → 0 and using (3),

x(qt) = p(1− qt)w(qt).
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Using this expression and again taking the limit ∆ → 0, the agent’s payoff satisfies

0 = pqπ(1− s(q))− pq(1− q)w′(q)− (r + pq)w(q)

= c− pq(1− q)w′(q)− (r + pq)w(q) + pw(q). (6)

The term pw(q) in (6) reflects the future benefit from shirking now. This gives rise to
what we call a dynamic agency cost. One virtue of shirking is that it ensures the game
continues, rather than risking a game-ending success. The larger the agent’s continuation
value w(q), the larger the temptation to shirk, and hence the more expensive will the
principal find it to induce effort.

This gives us three differential equations (equation (2) and the two equalities in (6))
in three unknown functions (v, w and s). What about the boundary condition? If exper-
imentation stops at some belief q, then w(q) = 0, and so, combining the two equations
in (6), the agent’s incentive constraint gives pqπ(1− s(q)) = c. The flow payoff from the
principal is then

pqπs(q)− c = pqπ − 2c.

The principal will be unwilling to continue experimentation to belief q if this expression is
negative, and similarly will be unwilling to forego further experimentation if it is positive.
Hence, experimentation will stop at the posterior

q :=
2c

pπ
.

This failure boundary highlights the cost of agency. The first-best policy derived in
Section 2.3 experiments until the posterior drops to c/pπ, while the agency cost forces
experimentation to cease at 2c/pπ. In the absence of agency, experimentation continues
until the expected surplus pqπ just suffices to cover the experimentation cost c. In the
presence of agency, the principal must not only pay the cost of the experiment c, but must
also provide the agent with a rent of at least c, to ensure the agent does not shirk and ap-
propriate the experimental funding. This effectively doubles the cost of experimentation,
in the process doubling the termination boundary.

We are now in a position to solve for the candidate equilibrium. It is useful to adopt
the notation

ψ :=
pπ − 2c

c
σ :=

p

r
.

In particular, q = 2/(2 + ψ). We thus assume that ψ is positive, since otherwise q ≥ 1
and hence no experimentation takes place no matter what the prior belief.

Using this notation, we can use the second equation from (6) to solve for w, using as
boundary condition w(q) = 0:

w(q) =

q
q
(1− qσ)

(

(1−q)q

q(1−q)

)
1
σ
− (1− qσ)

σ − 1

c

r
. (7)
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It is a natural expectation that w(q) should increase in q, since the agent seemingly
always has the option of shirking and the payoff from doing so increases with the time
until experimentation stops. Figure 2 (below) shows that w(q) may decrease in q for
large values of q. To see how this might happen, fix a period length ∆ and consider what
happens to the agent’s value if the prior probability q is increased just enough to ensure
that the maximum number of experiments has increased by one. From the incentive
constraint (4) and (5) we see that this extra experimentation opportunity (i) gives the
agent a chance to expropriate the cost of experimentation c (which the agent will not do
in equilibrium, but nonetheless is indifferent between doing so and not), (ii) delays the
agent’s current value by one period and hence discounts it, and (iii) increases this current
value by a factor of the form q/ϕ(q), reflecting the agent’s more optimistic prior. The
first and third of these are benefits, the second is a cost. The benefits will often outweigh
the costs, for all priors, and W will then be increasing in q. However, the factor q/ϕ(q)
is smallest for large q, and hence if w is ever to be decreasing, it will be so for large q, as
in Figure 2.

We can use the first equation from (6) to solve for s(q), and then solve (2) for the
value to the principal, which gives, given the boundary condition v(q) = 0,

v(q) =

[

(

(1− q)q

q(1− q)

)

1
σ
(

1−
(1− q)q(ψ + 1)

(1− q)(σ + 1)
+
q(1− q)

q(σ − 1)

)

+
2(1− qσ)

σ2 − 1
−
σ − q(ψ + 2)

σ + 1

]

c

r
.

(8)
This complicated expression is actually straightforward to manipulate. For instance,
a simple Taylor expansion reveals that v is approximately proportional to (q − q)2 in
the neighborhood of q, while w is approximately proportional to (q − q). Both payoffs
tend to zero as q approaches q, since the net surplus pqπ − 2c declines to zero. The
principal’s payoff tends to zero faster, as there are two forces behind this disappearing
payoff: the remaining time until experimentation stops for good vanishes, and the mark-
up she gets from success does so as well. The agent’s mark-up, on the other hand, does
not disappear, as shirking yields a benefit that is independent of q, and hence the agent’s
payoff is proportional to the remaining amount of experimentation time.

These strategies constitute an equilibrium if and only if the principal’s participation
constraint v(q) ≥ 0 is satisfied for q ∈ [q, q]. (The agent’s incentive constraint implies the
corresponding participation constraint for the agent.) First, for q = 1, (8) immediately
gives:

v(1) =
ψ − σ

σ + 1

c

r
, (9)

which is positive if and only if ψ > σ. This is the first indication that our candidate
no-delay strategies will not always constitute an equilibrium.
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To interpret the condition ψ > σ, let us rewrite (9) as

v(1) =
ψ − σ

σ + 1

c

r
=
pπ − c

r + p
−
c

r
. (10)

When q = 1, the project is known to be good, and there is no learning. Our candidate
strategies will then operate the project as long as it takes to obtain a success. The
first term on the right in (10) is the value of the surplus, calculated by dividing the
(potentially perpetually received) flow value pπ− c by the effective discount rate of r+ p,
with r capturing the discounting and p capturing the hazard of a flow-ending success. The
second term in (10) is the agent’s equilibrium payoff. Since the agent can always shirk,
ensuring that the project literally endures forever, the agent’s payoff is the flow value c
of expropriating the experimental advance divided by the discount rate r.

As the players become more patient (r decreases), the agent’s equilibrium payoff in-
creases without bound, as the discounted value of the payoff stream c becomes arbitrarily
valuable. In contrast, the presence of p in the effective discount rate r + p, capturing the
event that a success ends the game, ensures that the value of the surplus cannot similarly
increase without bound, no matter how patient the players. But then the principal’s pay-
off (given q = 1), given by the difference between the value of the surplus and the agent’s
payoff, can be positive only if the players are not too patient. The players are sufficiently
impatient that v(1) > 0 when ψ > σ, and too patient for v(1) > 0 when ψ < σ. We say
that we are dealing with impatient players (or an impatient project or simply impatience),
in the former case, and patient players in the latter case.

We next examine the principal’s payoff near q. We have noted that v(q) = v′(q) = 0,
so everything here hinges on the second derivative v′′(q). We can use the agent’s incentive
constraint (6) to eliminate the share s from (2) and then solve for

v′ =
pqπ − c− pw − (r + pq)v

pq(1− q)
.

With some fortuitous foresight, we first investigate the derivative v′′(q), in the case in
which ψ = 2. This case is particularly simple, as ψ = 2 implies q = 1/2, and hence
pq(1− q) is maximized at q. Marginal variations in q will thus have no effect on pq(1− q),
and we can take this product to be a constant. Using v′(q) = 0 and calculating that
w′(q) = c/(pq(1− q)), we have

v′′(q) = pπ − pw′(q) = pπ − p
c

pq(1− q)
.

Hence, as q increases above q, v′ tends to increase in response to the increased value
of the surplus (captured by pπ), but to decrease in response to the agent’s larger payoff
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(−pw′(q)). To see which force dominates, multiply by pq(1−q) and then use the definition
of ψ to obtain

pq(1− q)v′′(q) = pqψc− pc = pc

(

ψ

2
− 1

)

= 0.

Hence, at ψ = 2, the surplus-increasing and agent-payoff-increasing effects of an increase
in q precisely balance, and v′′(q) = 0. It is intuitive that larger values of ψ enhance the
surplus effect, and hence v′′(q) > 0 for ψ > 2.7 In this case, v(q) > 0 for values of q near
q. We refer to these as high-surplus projects. Alternatively, smaller values of ψ attenuate
the surplus effects, and hence v′′(q) < 0 for ψ < 2. In this case, v(q) < 0 for values of q
near q. We refer to these as low-surplus projects.

This gives us information about the endpoints of the interval [q, 1] of possible posteri-
ors. It is a straightforward calculation that v admits at most one inflection point, so that
it is positive everywhere if it is positive at 1 and increasing at q = q. We can then sum-
marize our results as follows, with Lemma 9 in Section 6.5.3 providing the corresponding
formal argument:

- v is positive for values of q > q close to q if ψ > 2, and negative if ψ < 2.

- v(1) is positive if ψ > σ and negative if ψ < σ.

- If ψ > 2 and ψ > σ, then v(q) ≥ 0 for all q ∈ [q, 1], and hence the Markov
equilibrium never calls for the principal to delay an offer.

3.1.2 Delay

If either ψ < 2 or ψ < σ, then a strategy profile in which the principal never delays
an offer and the agent always works cannot constitute an equilibrium, as it will yield
a negative principal payoff for some beliefs. Whether it occurs at high or low beliefs,
this negative payoff reflects the dynamic agency cost. The agent’s continuation value
is sufficiently lucrative, and hence shirking in order to ensure that continuation value is
realized is sufficiently attractive, that the principal can induce the agent to work only at
such expense as to render the principal’s payoff negative. Delay pushes the agent’s future
payoffs yet further into the future, reducing their value and hence reducing the cost to the
agent. This reduced cost holds the key to the principal’s achieving a nonnegative payoff.

When ∆ > 0, the principal delays an offer by waiting longer than the inertial length
∆ before making an offer. In the limit as ∆ → 0, this delay appears in the form of
replacing the discount factor r with an effective discount factor rλ(q). We have λ(q) ≥ 1,
with λ(q) = 1 whenever there is no delay (as is the case throughout Section 3.1.1), and

7Once ψ edges over 2, we can no longer take pq(1 − q) to be approximately constant in q, yielding a

more complicated expression for v′′ that confirms this intuition. In particular, v′′(q) = (ψ+2)3(ψ−2)
4σψ2

c
r
.
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λ(q) > 1 indicating delay. The principal can obviously choose different amounts of delay
for different posteriors, making λ a function of q.

We must rework the system of differential equations from Section 3.1.1 to incorporate
delay. It can be optimal for the principal to delay only if the principal is indifferent
between receiving the resulting payoff later rather than sooner. This in turn will be the
case only if the principal’s payoff is identically zero, so we have v = v′ = 0. In turn,
the principal’s payoff is zero at qt and at qt+∆ only if her flow payoff at qt is zero, which
implies

pqs(q)π = c, (11)

and hence fixes the share s(q). To reformulate equation (6), identifying the agent’s payoff,
let w(qt) identify the the agent’s payoff at posterior qt. We are again working with ex
post valuations, so that w(qt) is the agent’s value when the principal is about to make an
offer, given posterior qt, and given that the inertial period ∆ as well as any extra delay
has occurred. The discount rate r must then be replaced by rλ(q). Combining the second
equality in (6) with (11), we have

w(q) =
pqπ − 2c

p
. (12)

This gives w′(q) = π which we can insert into the first equality of (6) (replacing r with
rλ(q)) to obtain

(rλ(q) + pq)w(q) = pq2π − c.

We can then solve for the delay

λ(q) =
(2q − 1)σ

q(ψ + 2)− 2
, (13)

which is strictly larger than one if and only if

q(2σ − ψ − 2) > σ − 2. (14)

We have thus solved for the values of both players’ payoffs (given by v(q) = 0 and (12)),
and for the delay over any interval of time in which there is delay (given by (13)).

From (14), note that the delay λ strictly exceeds 1 at q = 1 if and only if ψ < σ and
at q = 2/(2+ψ) if and only if ψ < 2. In fact, since the left side is linear in q, λ(q) ≥ 1 for
all q ∈ [q, 1] if ψ < σ and ψ < 2. Conversely, there can be no delay if ψ > σ and ψ > 2.
This fits the conditions derived in Section 3.1.1.

3.1.3 Markov Equilibrium Outcomes: Summary

We now have descriptions of two regimes of behavior, one without delay and one with
delay. We must patch these together to construct equilibria. If ψ > σ and ψ > 2, then
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from (14) there is no delay at q = 1 and no delay at q = 2/(2 + ψ). Further, since the
left side of (14) is linear in q, we have no delay for any q ∈ [q, 1], matching the no-delay
conditions derived in Section 3.1.1. Conversely, if ψ < σ and ψ < 2, then we have λ(1) > 1
and λ(q) > 1, and hence delay for all posteriors. This gives us an equilibrium in which
the principal’s payoff is inevitably zero.

If ψ < 2 (but ψ > σ) it is natural to expect delay for low beliefs, and this delay to
disappear as we reach the point at which equation (13) exactly gives no delay. That is,
delay should disappear for beliefs above

q∗∗ :=
2− σ

2 + ψ − 2σ
.

Alternatively, if ψ < σ (but ψ > 2), we should expect delay to appear once the belief
is sufficiently high for the function v defined by (2), which is positive for low q, to hit 0
(which it must, under these conditions). Because v has a unique inflection point, there is
a unique value q∗ ∈ (q, 1) that solves v(q∗) = 0.

We can summarize this with:

Proposition 1 Depending on the parameters of the problem, we have four types of Markov
equilibria, distinguished by their use of delay, summarized by:

High Surplus Low Surplus
ψ > 2 ψ < 2

Impatience, ψ > σ No delay Delay for low beliefs
(q < q∗∗)

Patience, ψ < σ Delay for high beliefs Delay for all beliefs
(q > q∗)

.

We can provide a more detailed description of these equilibria, with Sections 6.7 and
B.8 providing the technical arguments:

High Surplus, Impatience (ψ > 2 and ψ > σ): No Delay. In this case, there is
no delay until the belief reaches q, in case of repeated failures. At this stage, the project
is abandoned. The relatively impatient agent does not value his future rents too highly,
which makes it relatively inexpensive to induce him to work. Since the project produces
a relatively high surplus, the principal’s payoff from doing so is positive throughout.
Formally, this is the case in which w and v given by (7) and (8) and are both positive
over the entire interval [q, 1].
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High Surplus, Patience (ψ > 2 and ψ < σ): Delay for High Beliefs. In this case,
the Markov equilibrium is characterized by some belief q∗ ∈ (q, 1). For higher beliefs,
there is delay and the principal’s payoff is zero. As the belief reaches q∗, delay disappears
(taking a discontinuous drop in the process), and no further delay occurs until the project
is abandoned (in the absence of an intervening success) when the belief reaches q.

When beliefs are high, the agent expects a long-lasting relationship, which his patience
renders quite lucrative, and effort is accordingly prohibitively expensive. Equilibrium
requires delay in order to reduce the agent’s continuation payoff and hence current cost.
As the posterior approaches q, the likely length of the agent’s future rent stream declines,
as does its value and hence the agent’s current incentive cost. This eventually brings the
relationship to a point where the principal can secure a positive payoff without delay.

Formally, it is not hard to show that the value of λ exceeds 1 on (q∗, 1].8 In fact, delay
does not vary continuously at q = q∗, i.e. limq↓q∗ λ(q) > 1. Uniqueness of this outcome
follows from the fact that there cannot be delay for q close to q (as (14) is violated at
q = q). Hence, the principal’s payoff is given by (2) for beliefs that are low enough, and it
then follows by continuity of the principal’s payoff that there cannot be delay for q < q∗,
at which point the function given by (8) dips below zero and delay arises.9

Low Surplus, Impatience (ψ < 2 and ψ > σ): Delay for Low Beliefs. When
beliefs are higher than q∗∗, there is no delay. When the belief reaches q∗∗, delay appears
(with delay being continuous at q∗∗).

To understand why the dynamics are reversed, compared to the previous case, note
that it is now not too costly to induce the agent to work when beliefs are high, since the
impatient agent discounts the future heavily and does not anticipate a lucrative contin-
uation payoff, and the principal here has no need to delay. However, when the principal
becomes sufficiently pessimistic (q becomes sufficiently low), the low surplus generated by

8It is easy to check that the coefficient of ((1−q)q)/(q(1−q)) in (8) is positive given ψ > 2 and ψ < σ,
so that, by ignoring this term while solving for the root v(q) = 0, we obtain a lower bound on q∗. That
is, q∗ ≥ q̃ := (σ − 2)(σ + 1)/[(ψ − 2)σ]. Since λ(q) > 1 if and only if q > q∗∗ (from (14) given that ψ < 2
in this case), it suffices now to note that q̃ ≥ q∗∗.

9This is not enough to imply that there is delay for all beliefs above q∗. To prove that there cannot
be a subinterval (q1, q2) of (q∗, 1] in which there is no delay, consider such a maximal such interval and
note that it would have to be the case that v(q1) = 0 and w(q1) = (q1π − 2c/p)c/r, by continuity in q
of the players’ payoff functions. Solving for the differential equations for v, w in such an interval (q1, q2),
one obtains that, at q1, v(q1) = v′(q1) = 0, while

v′′(q1) =

(

σ − 2 + σq1(ψ − 1)

q21(1 − q1)2σ2

)

c

r
.

Yet the numerator of this expression is necessarily negative for all q1 > q̃ (cf. footnote 8), and thus, in
particular, for q > q∗. This contradicts the fact that v must be nonnegative on the interval (q1, q2).
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the project still makes it too costly to induce effort. The principal must then resort to
delay in order to reduce the agent’s cost and render her payoff nonnegative.

Formally, we note that λ(q) ≥ 1 over [q, q∗∗], as the function λ given by (13) is
decreasing in q over the interval (q, 1) in this case. It is also simple to check that the
payoffs of the principal and the agent are positive above q∗∗ in this case.10 To show that
the equilibrium outcome must have this structure, note first that we cannot have λ(q) ≥ 1,
and hence cannot have delay, for values of q strictly above q∗∗. An argument analogous
to that of footnote 9 shows that there can be no interval without delay involving values
of q less than q∗∗.11

Low Surplus, Patience (ψ < 2 and ψ < σ): Perpetual Delay. In this case, the
Markov equilibrium involves delay for all values of q ∈ [q, 1]. The agent’s patience makes
him relatively costly, and the low surplus generated by the project makes it relatively
unprofitable, so that there is no belief at which the principal can generate a nonnegative
payoff without delay. Formally, λ, as given by (13), is larger than one over [q, 1]. To show
that there cannot be an interval (q1, q2) in which there is no delay, we again proceed as
in footnote 9.12

Two implications are notable here. First, the qualitative features of the Markov equi-
librium depend sensitively on the parameters. Delay appears for high beliefs in some
cases, but for low beliefs in others. Second, a project that is more likely to be good is not
necessarily better for the principal. This is obviously the case for a high surplus, patient
project, where the principal is doomed to a zero payoff for high beliefs but earns a positive
payoff when less optimistic. Moreover, even when the principal’s payoff is positive, it need
not be increasing in the probability the project is good. Figure 1 illustrates two cases (a
high surplus, impatient project and a high surplus, patient project) where this is not the

10This requires a calculation. First, we can solve for the differential equations giving v and w over the
range [q∗∗, 1], where we use as boundary conditions w(q∗∗) = (q∗∗(ψ+1)− 2/σ)c/r, and v(q∗∗) = 0. It is
easy to check that v′′(q∗∗) = 0 (compare, for instance, with v′′(q) above), so the curvature of v is actually
zero at q∗∗. However,

v′′′(q∗∗) =
σ3(ψ − 1)5

(σ − 2)2(2 + σ − σ(ψ + 1))2
c

r
,

which is strictly positive. Since v admits at most one inflection point over the interval (q∗∗, 1), and it is
positive at 1, it follows that it is positive over the entire interval.

11That is, assume for the sake of contradiction that there is delay on a non-degenerate interval [q1, q2]
with q1 < q∗∗. Then since v(q1) = 0 and w(q1) = ((q1(ψ + 2) − 2)/σ)(c/r), we can solve for v and w,
which gives v′(q1) = 0 and the same value of v′′(q1) as in footnote 9. However, this value is strictly
negative because ψ < 2 and ψ > σ imply σ− 2+ qσ(ψ− 1) < 0. This implies that v is strictly decreasing
at q1, and hence strictly negative over some range above q1, a contradiction.

12We show that, solving the differential equations for v and w, the value of v′′(q1) is negative. Since
v(q1) = v′(q1) = 0, this implies that the payoff of the principal would be strictly negative for values of q
slightly above q1, a contradiction.
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Figure 1: The principal’s payoff (vertical axis) from the Markov equilibrium, as a function
of the probability q that the project is good (horizontal axis). The parameters are c/r = 1
for all curves. For the dotted curve, (ψ, σ) = (3, 27/10), giving a high surplus, impatient
project, with no delay and the principal’s value positive throughout. For the dashed
curve, (ψ, σ) = (3/2, 5/4), giving a low surplus, impatient project, with delay and a zero
principal value below the value q∗∗ = 0.75. For the solid curve, (ψ, σ) = (3, 4), giving a
high surplus, patient project, with delay and a zero principal value for q > q∗ ≈ .94. We
omit the case of a low surplus, patient project, where the principal’s payoff is 0 for all q.
Notice that the principal’s payoff need not be monotonic in the probability the project is
good.

case. The principal may thus prefer to be pessimistic about the project. Alternatively,
the principal may find a project with lower surplus more attractive than a higher-surplus
project, if the former is coupled with a less patient agent.

In two of the four possible cases, there is delay in equilibrium for beliefs that are low
enough. One might then wonder whether the event that the belief reaches q = 2/ [2 + ψ]
affects payoffs, or whether delay increases sufficiently fast, in terms of discounting, that
the event that the belief reaches q becomes irrelevant. In those cases, it is simple to verify
that not only does λ(q) diverge as q ց q, but so does the integral

lim
qցq

∫ q

q

λ(υ)dυ.

That is, the event that the project is abandoned is entirely discounted away in those cases
in which there is delay for low beliefs. This means that, in real time, the belief q is only
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reached asymptotically, so that the project is never really abandoned. Rather, the pace
of experimentation slows sufficiently fast that this belief is never reached.

3.2 Non-Markov Equilibria

We now study the other equilibria of the game. Our goal is to characterize the set of
all equilibrium payoffs of the game. That is, we drop the restriction to recursive Markov
equilibrium, though we maintain the assumption that equilibrium actions are pure on the
equilibrium path.

This requires, as usual, to first understand how severely players might be credibly
punished for a deviation, and thus, what each player’s lowest equilibrium payoff is.

3.2.1 Lowest Equilibrium Payoffs

Low-Surplus Projects (ψ < 2). We first discuss the relatively straightforward case of
a low-surplus project. In the corresponding unique Markov equilibrium, there is delay for
all beliefs that are low enough (i.e., for all values of q ∈ I, where

I =

{

[q, q∗∗] Impatient project,
[q, 1] Patient project.

For these values of q, the principal’s equilibrium payoff is zero. This implies that, for
these beliefs, there exists a trivial non-Markov equilibrium in which the principal offers
no funding on the equilibrium path, and so both players get a zero payoff; if the principal
deviates and makes an offer, players revert to the strategies of the Markov equilibrium,
and so the principal has no incentive to deviate. Let us refer to this equilibrium as the
“full-stop equilibrium.” This implies that, at least for q in I, there exists an equilibrium
that drives down the agent’s payoff to 0.

We claim that zero is also the agent’s lowest equilibrium payoff for beliefs q > q∗∗,
in case I = [q, q∗∗]. We show this in two steps. First, using the full-stop equilibrium for
q ∈ I, we can construct a candidate non-Markov “no-delay” equilibrium in which there is
no delay from the prior q until the belief reaches some given q ∈ I, q > q, at which point
players revert to the full-stop equilibrium (and shares make the agent indifferent between
working and shirking for all intermediate beliefs).

This only gives a nonnegative payoff to the principal if q is not too large relative to
the fixed belief q. That is, this is an equilibrium if q is in I and q is in some interval
[q, q(q)], where q(q) is such that the principal’s payoff in such an equilibrium is precisely
0. Note that it must be that limq→q q(q) = q, since otherwise the payoff function v(q)
defined by (8) would not be negative for values of q close enough to q (which it is, because
ψ < 2). This implies that q(I), the image of I under this map q 7→ q(q), intersects I.
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More precisely, I ∪ q(I) := I1 is an interval, and it is clear that it is of length strictly
greater than I.

Because for every initial belief in I1, we have now constructed an equilibrium in which
the principal’s payoff is zero (either because it is the full-stop equilibrium, or because
it is the highest belief associated with a no-delay zero-payoff equilibrium), we may now
repeat the entire argument: for each such belief q ∈ I1, q > q, we can construct a full-stop
equilibrium (since the principal’s payoff is zero anyhow); so we can use this belief as the
point at which experimentation stops in a no-delay equilibrium for any initial belief no
larger than q(q). Thus, we have a sequence of intervals In+1 := In ∪ q(In).

Plainly, every q in (q, 1) is in In for n large enough, and so we have shown that
for every such prior belief, there exists an equilibrium in which both the agent and the
principal have a payoff of zero. We shall refer to this equilibrium as the worst equilibrium.
Somewhat more formally, one can show:13

Lemma 1 Fix ψ < 2. For all q > q, there exists ∆ > 0, for all ∆ ∈ (0,∆), both the
principal and the agent lowest equilibrium payoff is zero on (q, 1).14

High-Surplus Projects (ψ> 2). This case is considerably more involved, as the unique
Markov equilibrium features no delay for initial beliefs that are close enough to q, i.e. for
all beliefs in J , where

J =

{

[q, 1] Impatient project,
[q, q∗) Patient project.

We must consider the principal and the agent in turn.
Because the principal’s payoff in the Markov equilibrium is not zero, we can no longer

construct a full-stop equilibrium. Can we find some other non-Markov equilibrium in
which the principal’s payoff would be zero, so that we can replicate the arguments from
the previous case? The answer is no: there is no equilibrium that gives a payoff lower
than the Markov equilibrium, at least as ∆ → 0 (for fixed ∆ > 0, her payoff can be driven
slightly below the Markov equilibrium, by a vanishing margin that nonetheless plays a
key role in the analysis below). Intuitively, by successively making the offers associated
with the Markov equilibrium, the principal can secure this payoff. The details behind this
intuition are non-trivial, because the principal cannot commit to this sequence of offers,
and the agent’s behavior, given such an offer, depends on his beliefs regarding future
offers. So we must show that there are no beliefs he could entertain about future offers

13For any q, the lowest principal and agent payoffs converge pointwise to zero as ∆ → 0, but we can
obtain zero payoffs for small ∆ > 0 only on any interval of the form (q, 1). For example, if ϕ(q) < q < q,
then the agent’s payoff given q is al least c∆.

14For high-surplus, patient projects, for q ≥ q∗, the same arguments as above yield that there is a worst
equilibrium with a zero payoff for both players.
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that could deter the principal from making such an offer. Sections 6.6.2 and B.15 prove
that the limit inferior (as ∆ → 0) of the principal’s equilibrium payoff over all equilibria
is the limit payoff from the Markov equilibrium in that case:

Lemma 2 Fix ψ > 2. For all q ∈ I, the principal’s lowest equilibrium payoff converges
to the Markov (no-delay) equilibrium payoff, as ∆ → 0.

Having determined the principal’s lowest equilibrium payoff, we now turn to the agent’s
lowest equilibrium payoff. In such an equilibrium, it must be the case that the principal
is getting her lowest equilibrium payoff herself (otherwise, we could simply increase delay,
and threaten the principal with reversion to the Markov equilibrium in case she deviates;
this would yield a new equilibrium, with a lower payoff to the agent). Also, in such an
equilibrium, the agent must be indifferent between accepting or rejecting offers (otherwise,
by lowering the offer, we could construct an equilibrium with a lower payoff to the agent).

Therefore, we must identify the smallest payoff that the agent can get, subject to the
principal getting her lowest equilibrium payoff, and the agent being indifferent between
accepting and rejecting offers. This problem turns out to be remarkably tractable, as
explained below and summarized in Lemma 3. In short, there exists such a smallest
payoff. It is strictly below the agent’s payoff from the Markov equilibrium, but it is
positive.

Readers without any particular penchant for Riccati equations may skip the following
derivations without much loss. Let us denote here by vM , wM the payoff functions in
the Markov equilibrium, and by sM the corresponding share (as a function of q). Our
purpose, then, is to identify all other solutions (v, w, s, λ) to the differential equations
characterizing such an equilibrium, for which v = vM , and in particular, the one giving
the lowest possible value of w(q). Rewriting the differential equations (2) and (6) in terms
of (vM , w, s, λ), and taking into account the delay λ (we drop the argument of λ in what
follows), we get

0 = qpsπ − c− (rλ+ pq)vM(q)− pq(1− q)v′M(q),

and

0 = qpπ(1−s)−pq(1−q)w′(q)−(rλ+qp)w(q) = c−rλw(q)−pq(1−q)w′(q)+p(1−q)w(q).

Since sM solves the first equation for λ = 1, any alternative solution (w, s, λ) with λ > 1
must satisfy (by subtracting the first equation for (sM , 1) from the first equation for (s, λ))

(λ− 1)vM(q) = qpπ(s− sM).

Therefore, as is intuitive, s > sM if and only if λ > 1: delay allows the principal to
increase her share. We can solve the two equations for the agent’s payoff given the share
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s and then substitute into the equation for the principal’s payoff to get

rλ =
qpπ − 2c− pq(1− q)v′M(q)− pw(q)

vM (q)
− pq.

Inserting in the second equation for w and rearranging yields

q (1− q) vM (q)w′ (q) = w2 (q)+

(

vM (q) + q (1− q) v′M (q) +
2− (ψ + 2)q

σ

)

w (q)+
vM (q)

σ
.

(15)
Because a particular solution to this Riccati equation (namely wM) is known, it can be
solved.15 Here, this gives that the general solution is

w (q) = wM (q) +
vM (q)

ξ (q)
, (16)

and

−1 = q (1− q) ξ′ (q) +

(

1 +
2−(ψ+2)q

σ
+ 2wM (q)

vM (q)

)

ξ (q) . (17)

The factor q (1− q) suggests working with the log-likelihood ratio l = ln q
1−q

. Considering

(16), we might as well assume that ξ
(

q
)

= 0, for otherwise w′ (l) = w′
M (l), and we get

back the known solution w = wM . This gives the necessary boundary condition. We then
obtain

w(q) = wM(q)− vM(q)
exp

(

∫ l

l
h(υ)dυ

)

∫ l

l
exp

(

∫ υ

l
h(χ)dχ

)

dυ
, (18)

where l (and υ) are log likelihood ratios, and where

h (l) := 1 +

(

2− ψ+2
1+e−l

)

1
σ
+ 2wM (l)

vM (l)
.

To be clear, the Riccati equation admits two (and only two) solutions: wM and w as given
in (18). Let us study this latter function more in detail. We now use the expansions

vM (q) =
(ψ − 2) (ψ + 2)3

8ψ2σ

(

q − q
)2 c

r
+O

(

q − q
)3
, wM (q) =

(ψ + 2)2

2ψσ

(

q − q
) c

r
+O

(

q − q
)2
.

15It is well-known that, given a Riccati equation

w′ (q) = Q0 (q) +Q1 (q)w (q) +Q2 (q)w
2 (q) ,

for which a particular solution wM is known, the general solution is w (q) = wM (q) + g−1 (q) , where g
solves

g′ (q) + (Q1 (q) + 2Q2 (q)wM (q)) g (q) = −Q2 (q) .

We obtain (16)–(17) by applying this formula, and then changing variables to ξ (q) := vM (q) g (q).
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This confirms an earlier observation: as the belief gets close to q, payoffs go to zero, but
they do so for two reasons for the principal: the maximum duration of future interactions
vanishes (a fact that also applies to the agent), and the mark-up goes to zero. Hence, the
principal’s payoff is of the second order, while the agent’s is only of the first. Expanding
h(l), we can then solve for the slope of w at q, namely

w′
(

q
)

=
ψ2 − 4

4σψ
.16

Recall that ψ > 2, so that 0 < w′
(

q
)

< w′
M

(

q
)

. Again, the factor (ψ−2) should not come
as a surprise: as ψ → 2, the profit of the principal decreases, allowing her to credibly
delay funding, and reduce the agent’s payoff to compensate for this delay (so that her
profit remains constant); when ψ = 2, her profit is literally zero, and she can drive the
agent’s payoff to zero as well.

Of course, this derivation is merely suggestive of what happens in the discrete-time
game as frictions vanish. It remains to prove, in particular, that the candidate w < wM
is selected (rather than wM).17 This is done in Appendix B.1, which establishes that:

Lemma 3 When ψ > 2 and q ∈ I, the infimum over the agent’s equilibrium payoffs
converges (pointwise) to w, as given by (18), as ∆ → 0.

This solution satisfies w(q) < wM(q) for all relevant q < 1: the agent can get a lower
payoff than in the Markov equilibrium. Note that, since the principal also obtains her
lowest equilibrium payoff, it makes sense to refer to this payoff as the worst equilibrium
payoff in this case as well.

Two features of this solution are noteworthy. First, it is straightforward to verify that
for a high-surplus, patient project, i.e. when this derivation only holds for beliefs below
q∗, the delay associated with this worst equilibrium grows without bound as q ր q∗, and
so the agent’s lowest payoff tends to 0 (as does the principal’s, by definition of q∗). This
means that the worst equilibrium payoff is continuous at q∗, since we already know that
it gives both players a payoff of 0 above q∗.

16A simple expansion reveals that h (l) = 8
ψ−2

1
(l−l) +O(1), and defining y(l) := ξ(q),

−1 = y′ (l) +
8

ψ − 2

1

(l− l)
y′ (l) (l − l) +O(l − l)2, or y′ (l) = −

ψ − 2

ψ + 6
,

which, together with y (l) = 0, implies that y (l) = −ψ−2
ψ+6 (l− l)+O (l − l)

2
. Using the expansion for vM ,

it follows thatvM (l)
y(l) = − ψ+6

2(ψ+2)σ (l − l) +O (l − l)
2
, and the result follows from using w′

M (l) = σ−1.
17This relies critically on the multiplicity of (what we call recursive Markov) equilibrium payoffs in

the game with inertia, and in particular, the existence of equilibria with slightly lower payoffs. While
this multiplicity disappears as ∆ → 0, it is precisely what allows delay to build up as we consider higher
beliefs, in a way to generate a non-Markov equilibrium whose payoff converges to this lower value w.
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Figure 2: Functions wM (agent’s Markov equilibrium payoff, upper curve) and w (agent’s
lowest equilibrium payoff, lower curve), for ψ = 3, σ = 2 (high surplus, impatient project).

Second, for a high-surplus, impatient project, as q ր 1, the solution w(q) given by
Lemma 3 tends to one of two values, depending on parameters. These limiting values are
exactly those obtained for the model in case information is complete: q̄ = 1. That is, the
set of equilibrium payoffs for uncertain projects converges to the equilibrium payoff set
for q̄ = 1, discussed in Subsection 4.4.

Figure 2 shows wM and w for the case ψ = 3, σ = 2.

3.2.2 The Entire Set of (Limit) Equilibrium Payoffs

The previous section determined the worst equilibrium payoff (v, w) for both the prin-
cipal and the agent, given any prior q. As mentioned, this worst equilibrium payoff is
achieved simultaneously for both players. When this lowest payoff to the principal is pos-
itive, it is higher than her “minmax” payoff: if the agent never worked, the principal could
secure no more than zero. Nevertheless, unlike in repeated games, this lower payoff cannot
be approached in an equilibrium: because of the sequential nature of the extensive-form,
the principal can take advantage of the sequential rationality of the agent’s strategy to
secure v.

It remains to describe the entire set of equilibrium payoffs. This description relies on
the following two observations.

First, for a given promised payoff w of the agent, the highest equilibrium payoff to
the principal that is consistent with the agent getting w, if any, is obtained by front-
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loading effort as much as possible. That is, equilibrium must involve no delay for some
time, and then revert to as much delay as is consistent with equilibrium. Hence, play
switches from no delay to the worst equilibrium. Depending on the worst equilibrium,
this might mean full stop (for instance, if ψ < 2, but also if ψ > 2 and the belief at which
the switch occurs, which is determined by w, exceeds q∗), or it might mean reverting to
experimentation with delay (in the remaining cases). The initial phase in which there is
no delay might be nonempty even if the Markov equilibrium requires delay throughout. In
fact, if reversion occurs sufficiently early (w is sufficiently close to w), it is always possible
to start with no delay, no matter the parameters. Formally, Section B.2 proves:

Proposition 2 Fix q < 1 and w. The highest equilibrium payoff available to the principal
and consistent with the agent receiving payoff w, if any, is a non-Markov equilibrium
involving no delay until making a switch to the worst equilibrium for some belief q > q.

The principal’s favorite equilibrium, given q, is a non-Markov equilibrium that begins
with a period of no delay, until reaching some belief q > q, at which point it switches to
the worst equilibrium. As a result, as a function of the agent’s payoff, the upper boundary
of the payoff set, which gives the corresponding maximum payoff to the principal, is a
single-peaked function of the agent’s payoff. Given the prior belief, this boundary starts
at the payoff (v, w), and initially slopes upward in w as we increase the duration of the
initial no-delay phase. To identify the other extreme point, consider first the case in which
(v, w) = (0, 0). This is precisely the case in which, if there were no delay throughout (until
the belief reaches q), the principal’s payoff would be negative. Hence, this no-delay phase
must stop before the posterior belief reaches q, and its duration is just long enough for the
principal’s (ex ante) payoff to be zero. Hence, the boundary comes down to a zero payoff
to the principal, and her maximum payoff is achieved by some intermediate duration.
Consider now the case in which v > 0 (and so also w > 0). This occurs precisely when
no delay throughout (i.e., until the posterior reaches q) is consistent with the principal
getting a positive payoff; indeed, she then gets precisely v, by Lemma 2. This means that,
in this case as well, the boundary comes down eventually, with the other extreme point
yielding the same minimum payoff to the principal, who achieves her maximum payoff for
some intermediate duration in this case as well.

The second observation is that payoffs below this upper boundary, but consistent with
the principal getting at least her lowest equilibrium payoff, can be achieved in a very
simple manner. Because introducing delay at the beginning of the game is equivalent to
averaging the payoff obtained after this initial delay with a zero payoff vector, varying the
length of this initial delay, and hence the selected payoff vector on this upper boundary,
achieves any desired payoff. This provides us with the structure of a class of equilibrium
outcomes that is sufficient to span all equilibrium payoffs.

Proposition 3 Any equilibrium payoff can be achieved with an equilibrium whose out-
come features:
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1. An initial phase, during which the principal makes no offer;

2. An intermediate phase, featuring no delay;

3. A final phase, in which play reverts to the worst equilibrium.

Of course, any one or two of these phases may be empty in some equilibria. Observ-
able deviations (i.e. deviations by the principal) trigger reversion to the worst equilibrium,
while unobservable deviations (by the agent) are followed by optimal play given the prin-
cipal’s strategy.

In the process of our discussion, we have also argued that the favorite equilibrium of
the principal involves an initial phase of no delay that does not extend to the end of the
game. If (v, w) = 0, the switching belief can be solved in closed-form. Not surprisingly, it
does not coincide with the switching belief for the only Markov equilibrium in which we
start with no delay, and then switch to some delay (indeed, in this Markov equilibrium,
we revert to some delay, while in the best equilibrium for the principal, reversion is to
the full-stop equilibrium). In fact, it follows from this discussion that, unless the Markov
equilibrium specifies no delay until the belief reaches q, the Markov equilibrium is Pareto-
dominated by some non-Markov equilibrium.

3.3 Summary

We can summarize the findings that have emerged from our examination of equilib-
rium. First, the presence of the agent forces the principal to bear an agency cost, reflected
in the fact that every equilibrium abandons experimentation before the first-best policy
would do so. In addition, a dynamic agency cost arises out of the repeated relationship.
The higher the agent’s continuation payoff, the higher the principal’s cost of inducing
effort. This dynamic agency cost may make the agent so expensive that the principal can
earn a nonnegative payoff only by slowing the pace of experimentation in order to reduce
the future value of the relationship.

The nature of the Markov equilibria depend on the parameters of the problem. Equi-
libria without delay exist in some cases, but in others equilibrium requires either delay
for optimistic beliefs, or delay for pessimistic beliefs, or both. The principal’s preferences
over these equilibria can exhibit some intriguing non-monotonicities. The principal may
prefer a project with a lower initial probability of a success to a project with a higher
prior probability, or may prefer a project that generates a smaller potential surplus. In
each case, the seemingly surplus-reducing effect of this preference is overwhelmed by the
salutary effects of making it less expensive to create incentives for the agent.

There also exist non-Markov equilibria, which have a simple and striking structure.
The efficient non-Markov equilibria all front-load the agent’s effort. Such an equilibrium
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features a initial period without delay, after which a switch is made to the worst equilib-
rium possible. In some cases this worst equilibrium halts experimentation altogether, and
in other cases it features the maximal delay one can muster. The principal’s preferences
are clear when dealing with non-Markov equilibria—she always prefers a higher likelihood
that the project is good, eliminating the non-monotonicity of the Markov case. The prin-
cipal always reaps a higher payoff from the best non-Markov equilibrium than from a
Markov equilibrium. Moreover, non-Markov equilibria may make both agents better off
than the Markov equilibrium.

It is not too surprising that the principal can gain from a non-Markov equilibrium.
Front-loading effort on the strength of an impending switch to the worst (possibly null)
equilibrium reduces the agent’s future payoffs, and hence reduces the agent’s current
incentive cost. But the eventual switch appears to squander surplus, and it is less clear
how this can make both players better off. The cases in which both players benefit from
such front-loading are those in which the Markov equilibrium features some delay. Front-
loading effectively pushes the agent’s effort forward, coupling more intense initial effort
with the eventual switch to the undesirable equilibrium. It can be surplus-enhancing to
move effort forward, allowing both players to benefit.

4 Comparisons

4.1 Commitment

Suppose the principal could commit to her future behavior, i.e., could announce at the
beginning of the game a binding sequence of offers to be made to the agent. The familiar
result in sequential games is that commitment is valuable.

The arguments of Proposition 2 can be repeated to conclude that the commitment
solution features no delay until a threshold is reached at which experimentation ceases
altogether. The ability to commit thus does not increase the maximum payoff available to
the principal when dealing with low-surplus projects. Without commitment, there exists
an equilibrium providing a zero payoff to the principal, and hence there exists a full stop
equilibrium. This gives us the ability to construct equilibria delivering the commitment
solution, consisting of no delay until the posterior reaches an arbitrarily chosen threshold,
at which point experimentation ceases.

In the case of high-surplus projects, commitment is valuable. The principal’s maximal
payoff is achieved by eliciting no delay until a threshold value of q is reached at which
point the agents switch to the worst equilibrium. The latter still exhibits effort from the
agent, albeit with delay, and the principal would fare better ex ante from the commitment
to terminate experimentation altogether.

28



✻

✲
ψ

σ ψ = 2

ψ < σ

ψ > σ

ψ > 2 ψ < 2

Case 1 Case 3

No delay Delay for
low beliefs

Case 2 Case 4

Delay for
high beliefs

Delay for
all beliefs

High surplus Low surplus
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Case 3

Case 4

σ = ψ

Figure 3: Illustration of Markov equilibria for the model considered in this paper, in the
frictionless limits, in which the principal makes offers.

4.2 Powerless Principals

The principal has all of the bargaining power in our interaction. The primary modeling
difference between our analysis and that of Bergemann and Hege [1] is that their agent
has all of the bargaining power, making an offer to the principal in each period. How
do the two outcomes compare? Perhaps the most striking result is the possibility that
having the bargaining power might make the agent worse off.

We begin with a comparison of the “Markov” equilibria. Figures 3 and 4 illustrate
the outcomes for the two models. The qualitative features of these diagrams are similar,
though the details differ.

Now suppose the parameters are such that in either model, we are in Case 4, featuring
perpetual delay. The principal’s Markov-equilibrium payoff as a function of the posterior
is then identically zero, no matter who makes the offers, and the two cases then feature
identical specifications of delay and hence identical payoffs for the agent. If the principal
makes the offers, there are other, non-Markov equilibria that Pareto dominate the Markov
equilibrium. These equilibria use the prospect of a full-stop equilibrium to front-load the
agent’s effort, achieving efficiency gains that increase the agent’s payoffs. As we have
noted, the characterization of non-Markov equilibria when the agent makes offers remains
an open question. However, it is immediate that there is no full-stop equilibrium in
this case. The fact that the agent makes offers, coupled with the sequential rationality
constraint of the principal, ensures that experimentation can never case until the posterior
hits q. This limits the ability to front-load effort and hence limits the efficiency gains that
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Figure 4: Illustration of the outcomes described by Bergemann and Hege [1], in their
model in which the agent makes offers. To represent the function σ = 2 − 2p, we fix
π/c =: Π and then use the definitions σ = p/r and ψ = pΠ − 2 to write σ = 2 − 2p as
σ = 2− 2(ψ + 2)/Π.

one could achieve, raising the prospect that the agent might fare better when the principal
makes the offers.

4.3 Observable Effort

We now compare our findings to the case in which the agent’s effort choice is observable
by the principal. The most striking point of this comparison is that the ability to observe
the agent’s effort choice can make the principal worse off.

We assume that the agent’s effort choice is unverifiable, so that it cannot be contracted
upon. However, information remains symmetric, as the belief of the agent and of the
principal coincide at all times.

4.3.1 Markov Equilibria

We start with Markov equilibria. The state variable is the common belief that the
project is good. As before, let v(q) be the value to the principal, as a function of the
belief, and let w(q) be the agent’s value. If effort is exerted at time t, payoffs of the agent
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and of the principal must be given by, to the second order,

w (qt) = pqtπ(1− s(qt))∆ + (1− rλ(qt)∆)(1− pqt∆)w (qt+∆) (19)

≥ c∆+ (1− rλ(qt)∆)w (qt) , (20)

v (qt) = (pqtπs(qt)− c)∆ + (1− rλ(qt)∆)(1− pqt∆)v (qt+∆) .

Note the difference with the observable case, apparent from the comparison of the incentive
constraint given in (20) with that of (6): if the agent deviates when effort is observable,
his continuation payoff is still given by w (qt), as the public belief has not changed.

We focus on the frictionless limit (again, the frictionless game is not well-defined, and
what follows is the description of the unique limiting equilibrium outcome as the frictions
vanish). The incentive constraint for the agent must bind in a Markov equilibrium, since
otherwise the principal could increase her share while still eliciting effort. Using this
equality and taking the limit ∆ → 0 in the preceding expressions, we obtain

0 = pqπ(1− s(q))− (rλ(q) + pq)w(q)− pq(1− q)w′(q) = c− rλ(q)w(q), (21)

and
0 = pqπs(q)− c− (rλ(q) + pq)v(q)− pq(1− q)v′(q). (22)

As before, it must be that q ≥ q = 2c/(pπ), for otherwise it is not possible to give at
least a flow payoff of c to the agent, while securing a return c to the principal. We assume
throughout that q < 1 .

As in the case with unobservable effort, we have two types of behavior from which to
construct Markov equilibria:

- The principal earns a positive payoff (v(q) > 0), in which case there must be no
delay (λ(q) = 1).

- The principal delays funding (λ(q) > 1), in which case the principal’s payoff must
be zero (v(q) = 0).

Suppose first that that there is no delay, so that λ(q) = 1 identically over some interval.
Then we must have w(q) = c/r, since it is always a best response for the agent to shirk to
collect a payoff of c, and the attendant absence of belief revision ensures that the agent
can do so forever. We can then solve for s (q) from (21), and plugging into (22) gives that

pqπ − (2 + pq)c− (r + pq)v(q)− pq(1− q)v′(q) = 0,

which gives as general solution

v(q) =

[

q − 2 + q
ψ + 1

1 + σ
−K(1− q)

(

1− q

q

)
1
σ

]

c

r
, (23)
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for some constant K. Considering any maximum interval over which there is no delay, the
payoff v must be zero at its lower end (either experimentation stops altogether, or delay
starts there), so that v must be increasing for low enough beliefs within this interval. Yet
v′ > 0 only if K < 0, in which case v is convex, and so it is increasing and strictly positive
for all higher beliefs. Therefore, the interval over which λ = 1 and hence there is no delay
is either empty or of the type [q∗, 1]. We can rule out the case q∗ = q, because solving for
K from v(q) = 0 gives v′(q) < 0. Therefore, it must be the case that v = 0 and there is

delay for some non-empty interval
[

q, q∗
]

.
Alternatively, suppose that v = 0 identically over some interval. Then also v′ = 0,

and so, from (22), s (q) = c/(pqπ). From (21), λ (q) = c/w(q), and so, also from (21),

pqw(q) = pqπ − 2c− pq(1− q)w′(q),

whose solution is, given that w
(

q
)

= 0,

w(q) =

[

q(2 + ψ)− 2− 2(1− q)

(

ln
q

1− q
+ ln

ψ

2

)]

c

r
. (24)

It remains to determine q∗. Using value matching for the principal’s payoff at q∗ to solve
for K, value matching for w at q∗ then gives that

q∗ = 1−
1

1− 2
W−1(−ψ−σ

ψ
e−1−σ

2 )
ψ−σ

, (25)

where W−1 is the negative branch of the Lambert function.18 It is then immediate that
q∗ < 1 if and only if ψ > σ. The following proposition summarizes this discussion.
Appendix C presents the foundations for this result, including an analysis for the case in
which ∆ > 0 and a consideration of the limit ∆ → 0.

Proposition 4 The Markov equilibrium is unique, and is characterized by a value q∗ > q.

When q ∈
[

q, q∗
]

, equilibrium behavior features delay, with the agent’s payoff given by (24)
and zero payoff for the principal. When q ∈ [q∗, 1], the equilibrium behavior features no
delay, with the principal’s payoff given by (23) and positive for all q > q∗.

[4.1] If ψ > σ (an impatient project), then q∗ is given by (25).
[4.2] If ψ < σ (a patient project), q∗ = 1, and hence there is delay for all posterior

beliefs.

18The positive branch only admits a solution to the equation that is below q.
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4.3.2 Non-Markov Equilibria

Because the principal’s payoff in the Markov equilibrium is 0 for belief q ∈ [q, q∗], she
is willing to terminate experimentation at such a belief, giving the agent a zero payoff
as well. This is the analogue of the familiar “full-stop” equilibrium in the unobservable
effort case. If both players expect that the project will be stopped at some belief q on the
equilibrium path, there will be an equilibrium outcome featuring delay, and hence a zero
principal’s payoff, for all beliefs in some interval above this threshold, which allows us to
“roll back” and conclude that, for all beliefs, there exists a full-stop equilibrium in which
the project is immediately stopped. Therefore, the agent’s lowest equilibrium payoff is
zero.

The principal’s best equilibrium payoff is now clear. Unlike in the unobservable case,
there is no rent that the agent can secure by diverting the funds: any such deviation is
immediately punished, as the project is stopped. Therefore, it is best for the principal
that experimentation takes place for all beliefs above q, without any delay, while keeping
the agent at his lowest equilibrium payoff, i.e. 0. That is, λ(q) = 1 for all q ≥ q, and
literally (in the limit) s (q) = 1 as well, with v solving, for q ≥ q,

(r + pq)v(q) = pqπ − pq(1− q)v′(q),

as well as v(q) = 0. That is, for q ≥ q,

v(q) =

[

2 + ψ

1 + σ
q

(

1−

(

2(1− q)/q

ψ

)1+ 1
σ

)]

c

r
. (26)

We summarize this discussion in the following proposition. Appendix C again presents
foundations.

Proposition 5 The lowest equilibrium payoff of the agent is zero for all beliefs. The best
equilibrium for the principal involves experimentation without delay until q = q, and the
principal pays no more than the cost of experimentation. This maximum payoff is given
by (26).

The surplus from this efficient equilibrium can be divided arbitrarily. Because the
agent’s effort is observed and the principal’s lowest equilibrium payoff is zero, we can
ensure that the agent reject any out-of-equilibrium offers by assuming that acceptance
leads to termination. As a result, we can construct equilibria in which the agent receives
an arbitrarily large share of the surplus, with any attempt by the principal to induce
effort more cheaply leading to termination. In this way, it is possible to specify that the
entire surplus goes to the agent in equilibrium. This gives the entire Pareto-frontier of
equilibrium payoffs, and the convex hull of this frontier along with the zero payoff vector
gives the entire equilibrium payoff set.
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4.3.3 Comparison

One’s natural inclination is to think that it can only help the principal to observe the
agent’s effort. Indeed, one typically thinks of principal-agent problems as trivial when
effort can be observed. In this case, the principal may prefer to not observe effort. We
see this immediately in the ability to construct non-Markov equilibria that divide the
surplus arbitrarily. The ability to observe the agent’s effort may then be coupled with
an equilibrium in which the principal earns nothing, with the principal’s payoff bounded
away from zero when effort cannot be observed.

This comparison does not depend on constructing non-Markov equilibria. For patient
projects, the principal’s Markov equilibrium payoff under observable effort is zero, while
there are Markov equilibria (for high surplus projects) under unobservable effort featuring
a positive principal payoff. For impatient projects, the principal’s Markov equilibrium
payoff under unobservable effort is zero for pessimistic expectations, while it is positive
for a high surplus project with unobservable effort. In each case, the observability is
harmful for the principal.

4.4 The Case of q̄ = 1

We can compare our results with the case in which q = 1, so that the project is
known to be good. Appendix D provides the detailed calculations behind the following
discussion.

We first consider Markov equilibria. When q = 1, there is no learning, and hence
a Markov equilibrium generates a stationary outcome. The same actions are repeated
indefinitely, until the game is halted by a success. We find two types of Markov equilibria.
For impatient projects, identified by ψ > σ, the only Markov equilibrium features no delay
until a success is obtained. For patient projects, the Markov equilibrium entails continual
delay, with experimentation proceeding but at an attenuated pace, again until a success
occurs. The principal earns a positive payoff in the former case, and a zero payoff in the
latter.

When q = 1, the project is inherently stationary—a failure leaves the players facing
precisely the situation with which they started. One might then expect that the set of
equilibrium payoffs is exhausted by considering equilibria with stationary outcomes, even
if these outcomes are enforced by punishing nonstationary continuation equilibria. To
determine whether this is the case here, we must split the class of impatient projects into
two categories. We say that a project is very impatient if

ψ < 2σ + σ2.

In this case, the Markov equilibrium is the unique equilibrium, whether Markov or not.
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However, if we have a moderately impatient project, or

σ < ψ < 2σ + σ2,

then there are non-Markov equilibria with nonstationary outcomes that give the principal
a higher payoff than the Markov equilibrium. For patient projects, or ψ < σ, there are
equilibria with nonstationary outcomes that give both players a higher payoff than the
Markov equilibrium.

As is the case when q < 1, a simple class of equilibria spans the boundary of the set of
all (weak perfect Bayesian) equilibrium payoffs. An equilibrium in this class features no
delay for some initial segment of time, after which play switches to the worst equilibrium.
This worst equilibrium is the full stop equilibrium in the case of patient projects, and is an
equilibrium featuring delay and relatively low payoffs in the case of a moderately impatient
(but not very impatient) project. This is a stark illustration of the front-loading observed
in the case of projects not known to be good. When q < 1, the extremal equilibria feature
no delay until the posterior probability q has deteriorated sufficiently, at which point a
switch occurs to the worst equilibrium. When q = 1, play occurs without delay and
without belief revision, until switching to the worst equilibrium.

The benefits of the looming switch to the worst equilibrium are reaped up front by the
principal in the form of lower incentive costs for the agent. It is then no surprise that there
exist nonstationary equilibria of this type that provide higher payoffs to the principal than
the Markov equilibrium. Perhaps more surprising is that in the case of patient projects
there exist such equilibria that make both agents better off than the Markov equilibrium.
How can making the agent cheaper by reducing his continuation payoffs make the agent
better off? The key here is that the Markov equilibrium of a patient project features
perpetual delay. The nonstationarity front-loads the agents effort, coupling a period
without delay with an eventual termination of experimentation. This allows efficiency
gains from which both players can benefit.

5 Summary

Our basic finding in Section 3 was that that Markov and non-Markov equilibria differ
significantly in both structure and payoffs. In terms of structure, the non-Markov equilib-
ria that span the set of equilibrium payoffs share a simple common structure, front-loading
the agent’s effort into a period of relentless experimentation followed by a switch to re-
duced or abandoned effort. This again contrasts with Markov equilibria, which may call
for either front-loaded or back-loaded effort.

Front-loading again plays a key role in the comparisons offered in this section. A
principal endowed with commitment power would front-load effort, using her commit-
ment in the case of a high-surplus project to increase her payoffs by accentuating this
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front-loading. When effort is observable, Markov equilibria either feature front-loading
(impatient projects) or perpetual delay, while non-Markov equilibria eliminate delay en-
tirely and achieve the first-best outcome.

The principal may prefer (i.e., may earn a higher equilibrium payoff) when unable to
observe the agent’s effort, even if one restricts the ability to fortuitously select equilibria
by concentrating on Markov equilibria. Similarly, the agent may be better off when the
principal makes the offers (as here) than the agent does.

We view this model as potentially useful in examining a number of applications. Per-
haps our leading candidate would be the case of a venture capitalist who must advance
funds to an entrepreneur who is conducting experiments potentially capable of yielding a
valuable innovation. As summarized by Hall [9], the literature on venture capital empha-
sizes the importance of the following key features of our model: (i) the venture capitalist
cannot perfectly monitor the hidden actions of the agent, giving rise to moral hazard; (ii)
this in turn potentially gives rise to asymmetric information, as the agent’s information
is effectively hidden; (iii) there is learning over time about the potential of the project;19

and (iv) rates of return for the venture capitalist exceed those normally used for conven-
tional investment. The latter feature, which distinguishes our analysis from Bergemann
and Hege [1], is well-documented in the empirical literature (see, for instance, Blass and
Yosha [4]). This reflects the fact that funding for project development is scarce: tech-
nology managers often report that they have more projects they would like to undertake
than funds to spend on them.20 Our results resonate with a key empirical finding in the
literature: investors often wish to downscale or terminate projects that entrepreneurs are
anxious to continue.21

6 Foundations

This section develops the foundations for results presented in Section 3. We charac-
terize the set of equilibria for ∆ > 0 and then examine the limit as ∆ → 0.

19In the words of Hall [9, p. 411], “An important characteristic of uncertainty for the financing of
investment in innovation is the fact that as investments are made over time, new information arrives
which reduces or changes the uncertainty. The consequence of this fact is that the decision to invest in
any particular project is not a once and for all decision, but has to be reassessed throughout the life of the
project. In addition to making such investment a real option, the sequence of decisions complicates the
analysis by introducing dynamic elements into the interaction of the financier (either within or without
the firm) and the innovator.”

20See Peeters and van Pottelsberghe [12].
21See Cornelli and Yosha [5].
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6.1 Outline

Section 6.2 opens with a basic observation. Whether an agent facing an offer prefers
to work or shirk depends not only on the usual suspects, such as the offer and the players’
beliefs, but also on whether the agent is expected to work or shirk. We will find cases
in which the agent will find it optimal to work if expected to do so, and to shirk if so
expected. This will give rise to multiple equilibria. We will also find cases in which the
agent will prefer to work if expected to shirk, and to shirk if expected to work. This
will force us to work with mixed strategies (as it turns out eventually, off the equilibrium
path), and precludes the existence of Markov equilibria. These observations color all of
the subsequent analysis.

Section 6.3 establishes some preliminary results that are important in formulating the
problem in a manageable way, simplifying the types of beliefs we must consider and iden-
tifying the continuation payoffs for histories that will appear repeatedly in the analysis.
Section 6.4 introduces the solution concept of recursive Markov equilibrium, which we
conventionally refer to simply as Markov equilibrium.

Section 6.5 introduces an obvious candidate for a Markov equilibrium, involving no
delay, and establishes the conditions under which it is indeed an equilibrium. There are
other no-delay equilibria, and Section 6.6 characterizes the set of such equilibria. Section
6.7 characterizes the entire set of Markov equilibria and establishes a limiting result. As
∆ → 0, any sequence of equilibria converges to the behavior considered in Section 3. It is
this limiting uniqueness result that allows us to work in the convenient frictionless limit.

The extension of these results to non-Markov equilibria is for the most part straight-
forward. The details for those arguments that are not immediate are contained in the
proofs (Sections B.1 and B.2) of Lemma 3 and Proposition 2 (Section 3.2).

6.2 Expectations and the Agent’s Incentives

Throughout, let

ϕ(q) :=
q(1− p)

1− pq
. (27)

Then ϕ(q) is the posterior belief the project is good, given prior belief q and that the
agent undertook an experiment that ended in a failure. As will often be the case, we have
suppressed the period length ∆ in writing this expression.

In equilibrium, the principal and the agent share the same belief. Suppose we have
reached a period in which the principal and the agent both attach probability q to the
project being good. The principal offers share s. Will the agent work?

Let W (1q, q) be the expected value to the agent of a continuation equilibrium in which
the agent attaches probability q to the project being good, and the principal’s belief is
attaches a mass of probability one to belief q. If the equilibrium expectation is that the
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agent will work, then the agent will do so if

pqπ(1− s) + (1− pq)δW (1ϕ(q), ϕ(q)) ≥ c+ δW (1ϕ(q), q).

The left side is the value of working, including the current expected payoff pqπ(1−s) from
a success and the expected continuation payoff (1−pq)δW (1ϕ(q), ϕ(q)) from a failure. The
right side is the value of shirking, including the current payoff from expropriating c and
the continuation payoff δW (1ϕ(q), q), with the agent now being more optimistic than the
principal.

Let us suppose instead that the equilibrium expectation is that the agent will shirk.
Then the incentive constraint is given by

pqπ(1− s) + (1− pq)δW (1q, ϕ(q)) ≤ c+ δW (1q, q).

In each case, a larger agent share 1− s makes it more tempting for the agent to work.
Hence, in the first case there is a cutoff sW such that the agent will work for values s < sW

and shirk for values s > sW . In the second case, there is similarly a cutoff sS.
Now let us consider three possibilities. First, it might be that for every history,

sW = sS. In this case we can restrict attention to pure-strategy equilibria. The agent
would work whenever s falls short of the value sW = sS appropriate for the history in
question, and shirk whenever s exceeds sW = sS. The principal’s strategy would similarly
be pure, solving an optimization problem subject to agent’s incentive constraint. Finally,
the Markov equilibrium would be unique in this case. The Markov assumption precludes
constructing intertemporal incentives for the agent, and the principal would invariably
extract as much surplus as possible from the agent, consistent with the agent still working,
by setting s = sW = sS.

Section D, examining the case in which the project is known to be good (q = 1) and
so there is no learning, finds sW = sS. It is then no surprise that pure-strategy equilibria
exist, and that Markov equilibria are unique. Similarly, we have sW = sS in the case
when actions are observable, examined in Section 4.3. The key in both cases is that the
observed action (if any) and the outcome (failure) suffice to determine subsequent beliefs.

In contrast, when q < 1 and actions are unobserved, subsequent beliefs depend on
current expectations as to the agent’s actions. Section 6.5.4 shows that in this case,
sW = sS fails for almost all histories. Instead, a typical configuration is that sW > sS for
low values of q and sW < sS for large values of q (though depending on parameters the
latter interval may be empty).

Second, suppose we have a history at which sW > sS. For s ∈ (sS, sW ), the agent’s
optimal action depends on equilibrium expectations. The agent will prefer to work if
expected to work, and prefer to shirk if expected to shirk. This allows us to construct
multiple Markov equilibria, though the set of Markov equilibria converges to a unique
limiting equilibrium as ∆ → 0, described in Section 3.
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Third, suppose we have a history at which sW < sS. For s ∈ (sW , sS), the agent’s
optimal action again depends on equilibrium expectations. Here, however, the agent will
prefer to shirk if expected to work, and will prefer to work if expected to shirk. This will
preclude the construction of pure-strategy equilibria. Offers s ∈ (sS, sW ) will occur only
off the equilibrium path, so that we can still restrict attention to equilibria featuring pure
outcomes, but a complete specification of strategies (which is necessary to check that the
principal finds such offers unprofitable, verifying that such offers are indeed off-path) will
require mixing.

If the agent mixes, then not only will the principal and the agent subsequently have
different beliefs (because only the agent knows the outcome of the mixture), but the
principal’s belief will attach positive probability to multiple agent beliefs. The support of
the principal’s belief qP in any particular period will be a finite set, corresponding to the
finitely many histories of actions the agent can have taken, but the maximum number of
elements in this set grows with the passing of each period.

Appendix B.3 shows that cases in which sW < sS arise, and cases in which sW > sS

can arise, when the agent makes the offers instead of the principal, as in Bergemann and
Hege [1]. Hence, multiplicity and non-existence of Markov equilibria arise in that context
as well, as does the prospect of non-Markov equilibria support outcomes that cannot be
achieved by Markov equilibria.

6.3 Preliminaries

This section collects some results that simplify the principal’s problem.

6.3.1 The Horizon is Effectively Finite

There is in principle no limit on the number of experiments the principal might induce
the agent to conduct. However, there is an upper bound on the length of equilibrium
experimentation. Appendix B.4 proves:

Lemma 4 For any prior belief q and waiting time ∆, there is a finite T (q,∆) such that
there is no equilibrium attaching positive probability to an outcome in which the principal
makes more than T (q,∆) offers to the agent.

The intuition is straightforward. Every experiment pushes the posterior probability
that the project is good downward, while costing at least c. There is then a limit on how
many failures the principal will endure before becoming so pessimistic as to be unwilling
to fund further experimentation.

The advantage of this result is that it makes available backward-induction arguments.
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6.3.2 Two Beliefs are Enough

The current state of the project is described by a private belief qA for the agent, and
a public distribution qP over beliefs for the principal. The public belief qP potentially
attaches positive probability to a finite number of posterior probabilities that the project
is good, corresponding to the finite number of work/shirk combinations that the agent
can have implemented in the preceding periods. However, we can restrict attention to
rather simple instances of the public belief, attaching positive probability to at most two
beliefs. Section B.5 proves:

Lemma 5 Let {sn}
T
n=1 be a sequence of offers, made by the principal at times {tn}

T
n=1.

Let the agent play a best response to this sequence of offers, and let qP be the induced
public belief. Then for sufficiently small ∆, after any initial subsequence of offers {sn}

t
n=1

for t ≤ T , the induced belief qP attaches positive probability to at most two beliefs, given
by q and ϕ(q) for some q.

Notice that we make no assumptions as to the nature of the offers {sn}
T
n=1, and in

particular do not require these to be part of an equilibrium outcome. We use here only
the assumptions that the agent is playing a best response, and that the principal forms
expectations correctly. We rely on Lemma 4 in restricting attention to a finite sequence
of offers, which allows a backward-induction proof.

The key to proving Lemma 5 is to show that whenever an agent holding belief qA is
willing to work, any agent holding the more optimistic belief q̃A > qA must strictly prefer
to work. A more optimistic agent views a success as being more likely, and hence has
more to gain from working, making it intuitive that an optimistic agent prefers to work
whenever a pessimistic agent does. However, the result is not completely straightforward,
since a more optimistic agent also faces a brighter future following a failure, enhancing
the value of shirking. The proof verifies that the former effect is the more powerful.

6.3.3 The Value of an Optimistic Agent

Consider a special class of candidate equilibria, those in which the agent responds to
every offer along the equilibrium path by working. In the context of such an equilibrium,
the principal’s belief after any history in which the principal has made no deviations will
be of the form 1q for some q. The agent’s belief will duplicate q if the agent has similarly
made no deviations. If the agent instead shirks at least once, then the agent will hold a
different belief, say q̃. Section B.6 proves:

Lemma 6 In any equilibrium in which the agent is willing to work along the equilibrium
path,

∀q̃ ≥ q : W (1q, q̃) =
q̃

q
W (1q, q). (28)
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The intuition for this result comes in two parts. First, the candidate equilibrium calls
for the agent to always work. An agent who is more optimistic about success than the
principal (q̃ > q) will be all the more anxious to work, as we have seen in Lemma 5, and
hence the agent’s out-of-equilibrium behavior duplicates his equilibrium behavior.

Second, the agent’s higher beliefs then simply scale up all the success probabilities
involved in the agent’s expected payoff calculation, leading to the linear relationship given
by (28).

6.3.4 The Value of a Pessimistic Agent

We might expect the principal to offer the agent the minimal amount required to
induce the agent to work. Hence, a natural candidate for equilibrium behavior is that
in which not only does the agent respond to every offer along the equilibrium path by
working, but in each case is indifferent between working and shirking. In this context, we
can identify the value of a pessimistic agent. Section B.7 proves:

Lemma 7 In any equilibrium in which the agent is expected to work and is indifferent
between working and shirking along the equilibrium path,

W (1q, ϕ(q)) = c+ δW (1ϕ(q), ϕ(q)).

An agent characterized by ϕ(q) is “one failure more pessimistic” than an agent or
principal characterized by belief q or 1q. The implication is that such an agent shirks at
the next opportunity, at which point the agent and principal’s beliefs are aligned, giving
continuation value W (1ϕ(q), ϕ(q)).

6.4 The Equilibrium Concept: Recursive Markov Equilibria

We begin by defining an intuitive special case of the (weak perfect Bayesian satisfying
the no-signaling-what-you-don’t-know restriction) equilibrium, Markov equilibria. For a
fixed pair of strategies, we say that an offer is serious if it is prescribed by the principal’s
equilibrium strategy, and induces the agent to work with positive probability (according
to the agent’s equilibrium strategy). These are the offers that lead to a revision of the
principal’s belief.

The prescribed actions in a Markov equilibrium depend only on the posterior beliefs of
the agent and the principal, as well as the delay since the last serious offer. More precisely,
the strategy of the principal depends on the public posterior belief only—the distribution
of beliefs that she entertains about the agent’s private belief, derived via Bayes’ rule from
the public history of offers and the equilibrium strategies—and on the delay since the last
serious offer. The equilibria we consider are such that the principal makes another offer
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(accepted if the agent follows his equilibrium strategy) if and only if this delay exceeds
Λ(qP )∆ for some Λ(qP ) ≥ 1 (thus, Λ is part of the description of the strategy).

The agent’s strategy depends on this public belief, on his private belief that the project
is good (derived from the public history of offers and the agent’s private history of effort
choices), on the outstanding offer, and on the delay since the last serious offer. Public
and private beliefs coincide along the equilibrium path, but not necessarily off-path. Both
beliefs are relevant in determining the agent’s behavior and payoff—to identify the agent’s
optimal action, we must determine his payoff from deviating, at which point the beliefs
differ.

We call such equilibria Markov equilibria. One might think of restricting strategies in
a Markov equilibrium still further, allowing the principal’s actions to depend only on the
public belief qP and the agent’s actions to depend only this public belief, on his private
belief qA, and on the outstanding offer. In contrast, we have added one element of non-
stationarity—the dependence of the principal’s strategy on the delay since the last serious
offer. This is necessary if we are to think of our continuous-time game as the limit of its
discrete-time counterparts. In particular, in discrete time, the principal could conduct a
private randomization between making an offer and waiting one period. This introduces
an expected delay in the time until the principal makes her next offer, even while her
strategy depends only on the public belief. The deterministic delay in our continuous-
time model is the limiting counterpart of this expected delay. Our restriction to equilibria
featuring pure strategies on the equilibrium path thus allows us to capture the limits of
mixed equilibria from the corresponding discrete-time game.

Formally, a Markov equilibrium is an equilibrium σ =
(

σP , σA
)

in which, (i) for all hPt
and h′Pt′ such that t−sup

{

τ : hPt (τ) ∈ [0, 1]
}

= t′−sup
{

τ : h′Pt′ (τ) ∈ [0, 1]
}

and qP
(

hPt
)

=
qP
(

h′Pt′
)

, it holds that σP
(

hPt
)

= σP
(

h′Pt′
)

, and (ii) for all ht, h
′
t′ such that qP

(

hPt
)

=
qP
(

h′Pt′
)

and qA
(

hPt
)

= qA
(

h′Pt′
)

, it holds that σP (ht, s) = σP
(

h′Pt′ , s
)

for all outstanding
offer s ∈ [0, 1].

Unfortunately, Markov equilibria do not exist for all parameters, as the earlier discus-
sion in Section 6.2 foreshadowed. As mentioned, this is a common feature of extensive-
form games of incomplete information (see for instance Fudenberg, Levine and Tirole [7]
and Hellwig [10]). The problem is due to the fact that, for some “knife-edge” beliefs,
there exists multiple Markov equilibria. These beliefs, however, are endogenous, since
they depend on earlier decisions by players, and in turn these decisions depend on the
specific Markov equilibrium that is being selected at the later stage, so that the latter play
must “remember” the earlier decisions to select the appropriate continuation equilibrium.
In bargaining games, it suffices to include the last offer to recover existence (giving the
so-called weak Markov equilibria). Here, this is not enough.

We are accordingly led to the following recursive definition: a recursive Markov equi-
librium is a strategy profile σ such that:

(i) If, given ht, Markov equilibria exist, then σ|ht is a Markov equilibrium.
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(ii) If, given ht, there exists no Markov equilibrium, and ht′ is a continuation of ht, then

– if
(

qP
(

hPt
)

, qA (ht)
)

=
(

qP
(

hPt′
)

, qA (ht′)
)

(and, for the principal’s strategy,
the delay since the last serious offer is the same after both histories), then
σ|ht = σ|ht′ ;

– if instead
(

qP
(

hPt
)

, qA (ht)
)

6=
(

qP
(

hPt′
)

, qA (ht′)
)

, then σ|ht′ must be a recur-
sive Markov equilibrium.

In words, if beliefs do not change, continuation strategies remain the same; if they do
change, the continuation strategy must be a recursive Markov equilibrium.

Recursive Markov equilibria in which there is no randomization on the equilibrium
path are well-defined because (as we show in Section 6.5) Markov equilibria exist when
the public belief is low enough, from which we can work backward to construct recursive
Markov equilibria.22 By definition, recursive Markov equilibria coincide with Markov
equilibria whenever those exist, and it is not hard to see that our definition coincides with
weak Markov equilibrium in games in which those exist. We hereafter typically refer to a
recursive Markov equilibrium in which there is no randomization on the equilibrium path
simply as a Markov equilibrium. This is the class of equilibria that we shall characterize,
and whose outcomes converge to a unique limit as ∆ → 0.

6.5 A Candidate Markov Equilibrium: No Delay Principal Opti-

mum

We begin by considering a candidate Markov equilibrium. The principal makes an offer
to the agent immediately upon the expiration of each waiting period ∆ since the previous
offer, until the posterior falls below a threshold (in the event of continued failure), after
which no further experimentation occurs. The agent is indifferent between working and
shirking in each period, and responds to each offer by working. We refer this as a no-delay
equilibrium, since there is no feasible way to make offers more rapidly. Technically, these
strategies feature Λ(q) = 1 for all q. We will see in Section 6.6 that there may be multiple
no-delay Markov equilibria, but that the one introduced here maximizes the principal’s
payoff over the set of such equilibria.

6.5.1 The Strategies

We let q1 denote the final belief at which the principal makes a serious offer to the
agent. We then number beliefs and periods backwards from 1. From Bayes’ rule, we have
qτ−1 = ϕ(qτ ).

22The restriction to strategies in which there is no randomization on the equilibrium path ensures that
we can make the backward induction on degenerate public beliefs after all.
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The principal’s offer sτ at time τ must suffice to induce effort on the part of the agent,
and hence must satisfy

pqτπ(1− sτ ) + (1− pqτ )δW (1qτ−1, qτ−1) ≥ c+ δW (1qτ−1, qτ ) (29)

= c+ δ
qτ
qτ−1

W (1qτ−1, qτ−1). (30)

We assume in this candidate equilibrium that the principal invariably offers a share sτ
causing the incentive constraint (29)–(30) to hold with equality (returning to this assump-
tion in Section 6.6). In the last period, facing a public and private belief concentrated on
q1 and share s1, the agent’s incentive constraint is then

pq1π(1− s1) = c. (31)

Using (31) and then working backward via the equality versions of (29)–(30), we have
defined the on-path portion of our strategies for the candidate full-effort equilibrium.

6.5.2 The Costs of Agency

If our candidate strategies are to be an equilibrium, they must generate a nonnegative
payoff for the principal. The principal’s payoff in the final period (in which experimen-
tation takes place) is pq1πs1 − c. Using the incentive constraint (31), this is nonnegative
only if pq1π−2c ≥ 0. We can thus identify the failure boundary q, with the property that
the principal makes serious offers to the agent if and only if

q ≥ q =
2c

pπ
. (32)

Combining (27) with (30), we can write the agent’s incentive constraint as

pqτπ(1− sτ )− c ≥ p
qτ
qτ−1

W (1qτ−1, qτ−1). (33)

The principal’s share must at least cover the cost of her expenditure c, or pqτπsτ ≥ c.
Combining with (33), our proposed strategies are an equilibrium if and only if

pqτπ − 2c ≥ p
qτ
qτ−1

W (1qτ−1, qτ−1). (34)

The key observation in (34) is that as the agent’s continuation value becomes more lu-
crative, it becomes more expensive to provide incentives for the agent. Experimenting
exposes the agent to the risk that the project may be a success now, eliminating future
returns. Shirking now ensures an immediate payment of c (the diverted funds) plus the
prospect of future experimentation. The more lucrative the future, the more tempting it
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is to shirk, and hence the more expensive it is to induce effort. We thus have a “dynamic
agency cost.” From (32), a principal contracting with a myopic agent (i.e., an agent who
stubbornly persists in taking his future payoff to be zero) would induce full effort from the
agent until hitting the failure boundary q = 2c/pπ. The agent’s recognition of a valuable
future increases the cost of such effort, potentially making it impossible to sustain.

6.5.3 Positive Principal Payoffs?

Condition (34) may fail for some values qτ > q, in which case there is no way to satisfy
the incentive constraint given by (29) and still cover the principal’s experimentation cost.
Under these circumstances, our candidate strategies do not describe equilibrium behavior.

To identify conditions under which the principal’s payoff is positive, we can rearrange
the Bayesian updating expression given by (27) to obtain

1

qτ
= 1 +

1− q1
q1

(1− p)τ−1 (35)

To conserve on notation, let wτ be the agent’s payoff in period τ of the candidate equilib-
rium. Then let us introduce the variable ωτ := wτ/ (qτ c). Using the incentive constraint
(30), the agent’s payoff in the candidate Markov equilibrium solves

ωτ+1 = 1 +Q1β
τ + δωτ ,

where β = 1−p and Q1 = (1−q1)/q1. This elementary difference equation has as solution

ωτ =
1− (ω1 + 1)δτ

1− δ
+ βQ1

δτ − βτ

δ − β
−
δτ−1((1− δ)(Q1β + 1)− ω1)

1− δ
.

Similarly, we can let vτ be the principal’s payoff in period τ of the candidate equilibrium,
define ντ := vτ/ (qτc), and

ντ+1 = pπ/c− 2(1 +Q1β
τ+1) + δ[(1− p)ντ − pωτ ],

and so, after some algebra,

ντ =
1− βτ−1δτ−1

1− βδ
(ψ+1)−β2Q1

δτ−1 − βτ−1

δ − β
−
1− δτ−1

1− δ
(1+βτQ1)−δ

τ−1ω1+β
τ−1δτ−1(ν1+ω1),

(36)
(recalling that ψ := pπ/c− 2).

The sequence ντ can be written as a weighted sum of δn, βn and (δβ)n. It follows that
its second derivative (i.e. its second differences ντ+2 + ντ − 2ντ+1) can change signs at
most twice. It is also immediate that q1pπ − 2c = ν1 > ν0 = 0, so if we let

τ̃ = inf {τ > 1 : ντ < 0} ,
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then it follows that ν must be concave for some τ ∈ {0, . . . , τ̃}, unless τ̃ = ∞. It follows
that, considering increasing values of τ above τ̃ , either ν is concave throughout, or convex
and then concave, or concave, convex and then concave. Let τ̂ denote the lowest τ > τ̃
for which ντ > 0 for some τ , if there exists such a τ), i.e.,

τ̂ = min{τ > τ̃ : ντ > 0,∞}.

Then ν must have been convex for some value of k ∈ {τ̃ , τ̂}, and so above τ̂ , the sequence
ν is at most first positive, then negative. This argument establishes:

Lemma 8 The value ντ solving (36) is positive for low values of τ , then (possibly) nega-
tive, then (possibly) positive, then (possibly) negative.

Lemma 8 identifies some possibilities for vτ . We can specify more precisely the circum-
stances in which these various possibilities obtain by examining the limiting case of small
∆. Section B.8 proves:

Lemma 9
(9.1) The (pointwise) limit of ν (as ∆ → 0) has at most one inflection point, and the

limit is positive for q close to, but above q if ψ > 2 but not if ψ < 2. Hence, if ψ < 2,
qτ̃ → q.

(9.2) The (pointwise) limit of ν (as ∆ → 0) admits a root q∗ ∈
(

q, 1
)

when ψ > 2 and
σ > ψ.

(9.3) Because the second derivative of the limit of ντ at q = q is not zero, it is possible
that qτ̃ → q as ∆ → 0 (indeed, this does occur if ψ < 2), but then qτ̂ 9 q: if they exist,
the first two intervals cannot both “vanish” in the limit.

Combining Lemma (9.1) and Lemma (9.2) (and recalling that σ := p/r):

Corollary 1 For sufficiently small ∆, the no-delay principal-optimum strategies yield
positive principal payoffs, and hence potentially generate an equilibrium outcome, if ψ > 2
and ψ > σ, but do not constitute an equilibrium if either ψ < 2 or ψ < σ.

Section 6.5.5 completes the specification of the strategies, showing in the process that we
indeed have an equilibrium when ψ exceeds both 2 and σ, while Section 6.7 characterizes
Markov equilibria for other parameter values.
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6.5.4 The Agent’s Incentives

Let us assume that ψ > 2 and ψ > σ, so that our no-delay principal-optimum strate-
gies are a candidate for equilibrium. Define sW (q) to be the value of s that solves the
incentive constraint (30) with equality. Our candidate Markov equilibrium then calls for
the principal to offer share sW (q) in every period, with the agent working in response to
smaller values of s and shirking in response to larger values of s.

How does the agent respond to other values of s? This depends on the relative mag-
nitudes of sW and sS. Appendix B.9 proves the following:

Lemma 10 There exists a value q̃(∆) ≥ q such that

sS(q) ≤ sW (q) if q < q̃(∆),

sS(q) > sW (q) if q > q̃(∆).

The value of q̃(∆) remains bounded away from q as ∆ → 0. There exist parameter values
for which q̃(∆) < 1, and remains bounded below 1 as ∆ → 0.

6.5.5 Completing the Strategies

We now specify the strategies in our no-delay principal-optimum Markov equilibrium.
Let us start with the slightly simpler case in which, given the public history, the

principals’ belief is degenerate. Suppose the agents face posterior belief qτ , where τ
additional failures would give a posterior exceeding q, while τ + 1 additional failures
would give a posterior falling short of q. The principal’s strategy is straightforward.

Facing posterior qτ , the principal makes offer sW (qτ ). If we have sS(qτ ) < sW (qτ ), then
the agent’s strategy is similarly straightforward: in each period, along the equilibrium
path, the agent works if and only if s ≤ sW (qτ ).

Suppose sS(qτ ) > sW (qτ ). Then we specify strategies as:

- The agent works if s ≤ sW (qτ ). Play continues with the principal offering sW (ϕ(qτ ))
next period.

- The agent shirks if s ≥ sS(qτ ). Play continues with the principal offering sW (qτ )
next period.

- If s ∈ (sW (qτ ), s
S(qτ )), the agent mixes, with probability ρ(s, qτ ) of working. The

principal then enters the next period with mass on two possible agent types. The
principal induces both types to work with each of the next z(s, qτ ) ∈ {0, τ−1} offers,
in each case causing the subsequent period to be reached with qP attaching positive
probability to two agent beliefs. In the z(s, qτ ) + 1st period, the principal mixes
between causing only the more optimistic agent to work and causing both to work
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(attaching nonzero but possibly unitary probability to the former). If the latter is
the case, only the more optimistic agent is induced to work in period z(s, qτ ) + 2.
Thereafter the principal’s belief attaches positive probability to only a single agent
belief.

The first step in showing that this is an equilibrium is to characterize the mixture
ρ(s, qτ ), the period z(s, qτ ), and the principal’s mixture in that period. Sections B.10–
B.11 prove:

Lemma 11 There exists an agent mixture ρ(s, qτ ), a period z(s, qτ ), and a nonzero mix-
ture with which only the optimistic agent is induced to work in period z(s, qτ )+1, such that
(i) the agent is indifferent between working and shirking in response to offer s, making
the mixture ρ(s, qτ ) a best response for the agent, (ii) the principal prefers inducing only
the optimistic agent to work in period z(s)+1 or z(s)+2 to doing so in any other period,
and (iii) the principal either prefers to induce this outcome in period z(s, qτ ) + 1 if the
mixture in that period is unitary, or otherwise is indifferent between doing so in period
z(s, qτ ) + 1 and z(s, qτ ) + 2.

Next, we show that the result is a Markov equilibrium. Section B.12 proves:

Lemma 12 Let the principal’s belief be given by 1q for some q. For sufficiently small ∆,
any offer s ∈ (sW (q), sS(q)) gives the principal a lower payoff than does sW (q).

Let us now describe strategies off the equilibrium path. Given Lemma 5, we consider
a public history hPt that gives rise to a pair of beliefs q and q̃ = ϕ(q), along with a
probability µ attached to q. That is, the principal attaches probability µ to the agent
having private belief q, and 1−µ to the (slightly more pessimistic) belief q̃. As in section
6.2, we can associate to the beliefs q, q̃ two thresholds sW , s̃W , and sS, s̃S. By Lemma 5,
max{s̃W , s̃S} < min{sW , sS}. The principal offers either sW or s̃W , according to which
is more profitable; if they are equally profitable, she randomizes between those two so
as to vindicate the indifference between accepting and rejecting of the agent’s type who
randomized last along the history hPt .

Given an outstanding offer, there are four possibilities, depending on s̃W ≷ s̃S, and
sW ≷ sS.

- if s̃W < s̃S, and sW < sS:

1. if s < s̃W , then both types work;

2. if s ∈ (s̃W , s̃S), then type q̃ randomizes while type q works. The randomization
is such that the principal is indifferent between having both types and only the
optimistic type work in a later period in a way that allows her to randomize
between the two so as to make type q̃ indeed indifferent.
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3. if s ∈ [s̃S, sW ], type q̃ shirks while type q works;

4. if s ∈ (sW , sS), then type q randomizes while type q̃ shirks. The randomization
is such that the principal is indifferent between having both types and only the
optimistic type work in a later period in a way that allows her to randomize
between the two so as to make type q indeed indifferent.

5. if s ≥ sS, both types shirk.

- if s̃W < s̃S, yet sW ≥ sS:

1. if s < s̃W , then both types work;

2. if s ∈ (s̃W , s̃S), then type q̃ randomizes while type q works. The randomization
is such that the principal is indifferent between having both types and only the
optimistic type work in a later period in a way that allows her to randomize
between the two so as to make type q̃ indeed indifferent.

3. if s ∈ [s̃S, sW ), type q̃ shirks while type q works;

4. if s ≥ sW , both types shirk.

- if s̃W ≥ s̃S, yet sW < sS:

1. if s < s̃W , then both types work;

2. if s ∈ [s̃W , sW ], then type q̃ shirks while type q works;

3. if s ∈ (sW , sS), then type q randomizes while type q̃ shirks. The randomization
is such that the principal is indifferent between having both types and only the
optimistic type work in a later period in a way that allows her to randomize
between the two so as to make type q indeed indifferent;

4. if s ≥ sW , then both types shirk.

- if s̃W ≥ s̃S, and sW ≥ sS:

1. if s < s̃W , then both types accept;

2. if s ∈ [s̃W , sW ), then type q̃ shirk while type q works;

3. if s ≥ sW , then both types shirk.

This completes the description of equilibrium strategies. We then have to check whether
sequential rationality is satisfied off the equilibrium path. The key question here is whether
the principal would find one of s̃W or sW optimal. Section B.13 proves:

Lemma 13 Suppose qP attaches probability to two beliefs, q and q̃ = ϕ(q). Then the
optimal offer for the principal is one of s̃W or sW .
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6.5.6 Summary: No-Delay Principal-Optimum Markov Equilibrium

We have established:

Proposition 6 Let ψ > 2 and ψ > σ. Then for sufficiently small ∆, there exists a
Markov equilibrium in which, whenever q > 2c/pπ, the principal makes an offer at every
opportunity, each such offer makes the agent indifferent between working and shirking,
and the agent works.

6.6 Other No-Delay Markov Equilibria

We can identify a collection of additional no-delay Markov equilibria.

6.6.1 The Final Period

We begin be examining the final period, beginning with a posterior q1 featuring

ϕ(q1) < q =
2c

pπ
< q1.

Hence, one more failed experiment will make the principal too pessimistic to continue.
The payoffs in the no-delay principal-optimum Markov equilibrium are then

V (1q1, q1) = pq1π − 2c,

W (1q1, q1) = c.

These payoffs place an upper bound on the principal’s payoff in a no-delay equilibrium,
and a lower bound on the agent’s payoff in a no-delay equilibrium. Let q̃ be such that
q = ϕ(q̃). Section B.14 proves:

Lemma 14 There exists q̂ ∈ (q, q̃) such that for q1 ∈ [0, q̂], the range of principal payoffs
achievable in a no-delay Markov equilibrium (and in any no-delay equilibrium) is [0, pq1π−
2c]. For q1 ∈ [q̂, q̃), the range is [pq1π − 2−δp

1−δp
c, pq1π − 2c].

For q ∈ (q̂, q̃), we have 0 < pq1π − 2−δp
1−δp

c < pq1π − 2c. Hence, we see that in the final
period, there is a range of equilibrium payoffs for the principal. In addition, the principal’s
minimum equilibrium payoff is zero for some posteriors, but for some posteriors, the
principal’s payoff is strictly positive in the final period.
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6.6.2 Constructing the Set of No-Delay Equilibria

We can work backwards from the final period to construct the set of no-delay Markov
equilibria. In the course of doing so, beliefs will run through a set of posteriors {qτ}

∞
τ=1,

which we can take as fixed throughout. We will generate a range of equilibrium payoffs in
each period. There are potentially two degrees of freedom in constructing these equilibria
that fix the upper and lower bounds of the range—the choice of continuation payoffs and
the choice of current shares. To maximize the principal’s payoff, we choose the lowest
equilibrium continuation payoff for the agent and choose share sW . To minimize the
principal’s payoff, we choose the largest continuation payoff for the agent and share sS

if sS < sW . The latter choice will be available for small values of q, but may not be
available for large values of q. This procedure generates the entire set of no-delay Markov
equilibria, as long as the principal’s payoff remains positive.

If the principal’s payoff is positive, then the multiplicity of the principal’s payoff dis-
appears in the limit as ∆ → 0. Section B.15 proves:

Lemma 15 Let the no-delay principal-optimum strategies give the principal a positive
payoff for posteriors in some interval [q, q̃] (and hence constitute an equilibrium for any
q ∈ [q, q̃]). Then if q ∈ [q, q̃], as ∆ → 0, the lowest equilibrium payoff for the principal,
over all equilibria, is positive and converges to the principal’s payoff from the no-delay
principal-optimum Markov equilibrium.

6.7 The Set of Markov Equilibria

Now we characterize the full set of Markov equilibria. The cases yet to be addressed
are those in which either ψ < 2 or ψ < σ holds.

6.7.1 A Canonical Equilibrium

We construct a canonical Markov equilibrium. We refer to an event in which the
principal makes an offer as a period. The agent works in response to every offer, so
for each posterior, the number of periods before the posterior crosses the termination
threshold q is fixed. The length of time between periods is at least ∆, but will be longer
if there is delay. We work backward from period 1, the final period, as follows:

(1) Let V τ be the largest principal payoff generated in period τ under a no-delay equi-
librium. Let τ ′ be the first period, if any, in which V τ ′ < 0. Then for q ∈ [q, qτ ′−1],
there exists a no-delay equilibrium with Vτ ′−1 = 0 (see Lemma 16 below), and we
choose this as our canonical equilibrium.

(2) Working backwards from τ ′, we insert just enough delay at each period τ to ensure
that V τ , the largest payoff available to the principal at period τ , equals zero. We
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then set sτ to ensure Vτ = 0. We continue to do this until (possibly) reaching a
period τ ′′ at which, given Vτ ′′−1 = 0, a strictly positive principal payoff is available
at period τ ′′ without delay.

(3) Upon reaching such a period τ ′′, we set Vτ ′′−1 = 0, and then work backwards con-
structing no-delay strategies.

(4) This may continue until reaching a period τ ′′′ in which no delay ensures Vτ ′′′ < 0.
Then we choose the equilibria in periods {τ ′′, . . . , τ ′′′ − 1} so that Vτ ′′′−1 = 0, and
once again work backward with delay to set Vτ thereafter equal to zero.

We are thus alternating between periods in of no delay and positive principal payoffs
and periods of delay and zero principal payoffs. Lemma 8 ensures that the regimes must
come in the sequence described in our construction, and that we have identified the
complete range of possibilities for such sequences.

If this procedure is to be well defined, we must show that whenever our no-delay
principal-optimum construction reaches its first period τ with Vτ < 0, there is an equi-
librium with Vτ−1 = 0. Let V denote the smallest no-delay Markov equilibrium payoff to
the principal, and V the largest such payoff. Section B.16 proves:

Lemma 16 Fix a posterior q. Then, for sufficiently small ∆,

V (1ϕ(q), ϕ(q)) ≤ V (1q, q).

The implication of this is the set of principal’s payoffs for a given belief can never
jump across zero (as we vary beliefs). If the smallest payoff for the principal at ϕ(q) is
positive, it cannot be that the largest payoff at q is negative.

6.7.2 Characterizing the Canonical Equilibrium

The canonical construction gives us periods of no delay and positive payoffs for the
principal interspersed with periods of delay and zero payoffs for the principal. Section
6.5.3 has characterized cases involving no delay and a positive payoff for the principal.
Here, we examine delay.

The principal’s payoff must be zero if there is to be delay, and hence

pqτ+1πsτ+1 = c.

We then have

wτ+1 = pqτ+1 (1− sτ+1)π − c+ δ (1− p)
qτ+1

qτ
Λτ+1wτ

= c+ δΛτ+1
qτ+1

qτ
wτ .
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As before, let ωτ := wτ/ (cqτ ), giving

ωτ+1 =
pπ

c
−

1

qτ+1

+ δ (1− p) Λτ+1ωτ =
1

qτ+1

+ δΛτ+1ωτ ,

and so

δΛτ+1ωτ =
1

p

[

pπ

c
−

2

qτ+1

]

,

and hence

ωτ+1 =
1

qτ+1
+

1

p

[

pπ

c
−

2

qτ+1

]

,

and therefore

ωτ =
π

c
−

(

2

p
− 1

)

1

qτ
,

and also

Λτ+1 =

pπ
c
− 2

qτ+1

δ
[

pπ
c
− 2−p

qτ

] ,

so that

δΛτ =
ψ − 2l1β

τ

2 + ψ − (1 + β) (1 +Q1βτ−1)
,

as well as

ωτ =
2 + ψ − (1 + β) (1 +Q1β

τ)

1− β
.

Note that delay Λτ must be less than one. Rearranging the expression above, this
gives

qτ ≤
2− (2− δ) p

1−δ

ψ + 2− 2p
1−δ

=: q∗∗∆ →
2− σ

v + 2− 2σ
=: q∗∗.

Also, (Λτ+2 − Λτ+1)− (Λτ+1 − Λτ ) is positively proportional to

2β − ψ

1 + ψ − β − l1βτ+2 (2 + β)
,

whenever Λτ < 1. It follows that delay is decreasing in τ for q < q∗∗∆ (when ψ < 2, σ < ψ),
so that delay is well-defined and positive there. Conversely, delay is decreasing in τ for
q > q∗∆ (when ψ > 2, σ > ψ). Combined with the observations following the derivation of
the sequence ντ , we obtain that, depending on ψ ≶ 2, and ψ ≶ σ, four cases can occur.

Lemma 17 Given ψ and σ, there exists ∆̄ such that if ∆ < ∆̄, there exists an equilibrium
with
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1. No delay (for any q ∈ [q, 1] if ψ > σ, ψ > 2.

2. Delay if and only if q > q∗∆, where q∗∆ → q∗ (cf. Lemma 9.2)), if ψ < σ, ψ > 2.

3. No Delay for q ∈ [q, q̂∆], delay for q ∈ (q̂∆, q
∗∗
∆ ], and no delay if q > q∗∗∆ if ψ > σ,

ψ < 2, where q̂∆ → q, and q∗∗∆ → q∗∗.

4. No Delay for q ∈ [q, q̂∆], and delay for all q > q̂∆, if ψ < σ, ψ < 2, where again
q̂∆ → q.

6.7.3 Summary: Canonical Markov Equilibrium

We can summarize these results in the following proposition.

Proposition 7 As ∆ → 0, the canonical Markov equilibrium approaches a limit whose
form depends on the project’s parameters as follows:

• High Surplus, Patient Projects (ψ > 2 and ψ > σ): The principal makes an offer to
the agent at every opportunity, until either achieving a success or until the posterior
probability of a good project drops below q = 2c

pπ
. The principal’s payoff is positive

for all posteriors exceeding q.

• High Surplus, Impatient Projects (ψ > 2 and ψ < σ): The principal initially con-
tinually delays before making each offer to the agent, until the posterior probability
drops to a threshold q∗ > q. The principal subsequently makes offers with no delay,
until the posterior hits q. The principal’s expected payoff is zero for q > q∗ and
positive for q ∈ (q, q∗).

• Low Surplus, Patient Projects (ψ < 2 and ψ > σ): The principal initially makes
offers at every opportunity, enjoying a positive payoff, until the posterior drops to
a threshold q∗∗ > q, at which point the principal introduces delay and commands an
expected payoff of zero.

• Low Surplus, Impatient Projects (ψ < 2 and ψ < σ): Here the principal delays
before making each offer, for every posterior, with a zero expected payoff.

6.7.4 Limit Uniqueness

We complete the argument with a limiting result, with Section B.17 providing the
proof:

Lemma 18 The limiting payoff of any sequence of Markov equilibria, as ∆ approaches
zero, equals the limiting payoff of the canonical Markov equilibrium.
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A Appendix: The First-Best Policy

The optimal stopping time T solves qT = c/pπ. Up to second-order terms, we have

qt+∆ =
qt(1− p∆)

1− qtp∆
,

and hence, the posterior belief that the project is good evolves according to

q̇t = −pqt(1− qt),

with q0 = q̄. The principal’s belief at time t ≤ T is then

qt =

(

1 +
1− q̄

q̄
ept
)−1

,

Therefore, inserting in qT = c/pπ and solving, the stopping time is given by

T =
1

p

[

ln
(pπ

c
− 1
)

+ ln
q̄

1− q̄

]

.

B Appendix: Unobservable Effort

B.1 Proof of Lemma 3

B.1.1 The Agent’s Highest No-Delay Payoff

To find the agent’s lowest equilibrium payoff, we first need to solve explicitly for the
agent’s highest payoff wA across Markov equilibria without delay. Let {qτ}

∞
τ−1 be the

sequence of posteriors through which equilibrium beliefs will pass, with qτ−1 = ϕ(qτ ).
Section B.15.2 establishes that the agent’s highest payoff satisfies the recursion

wA(qτ ) =
1

1− δp
c+ δ

1− p

1− δp

qτ
qτ−1

wA(qτ−1),

for all values of q that are below some value bounded above q (uniformly in ∆). Let us
restrict attention for now to such values. In addition, in the last period (period 1), all the
surplus goes to the agent.

The solution to the sequence of beliefs qτ is given by (35). It is more convenient to
work with the value normalized by the belief, and so we define ωAτ := wAτ / (qτc) (where
wAτ := wA(qτ )). This gives

ωAτ+1 =
1 +Q1β

τ+1

1− δ + δβ
+

δβ

1− δ + δβ
ωAτ ,
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with ωA1 = B + 1 − Q1β, where B := 2(1 − q)/q, β = 1 − p, and Q1 := (1 − q1)/q1 is
the inverse likelihood ratio in the last period. Because it turns out to be irrelevant for
the limits, and simplifies expressions, we set q1 = q. Manipulating the difference equation
gives

ωAτ = βτ−1δτ−1 ((β − 2)δ + 1)(δ −B(1− δ)) + β(1− δ)Q1((β − 2)δ + 2)

(δ − 1)((β − 2)δ + 1)((β − 1)δ + 1)τ−1

+
(1− β)δ − (1− δ)−Q1(1− δ)βτ

(1− δ)((1− β)δ − (1− δ))
.

B.1.2 The Principal’s Lowest Payoff

The principal’s lowest payoff v (corresponding to the agent’s highest payoff) across all
Markov equilibria without delay, is given by the difference between total surplus and the
agent’s highest payoff. Given that we have already solved for the agent’s payoff, it is more
convenient to compute the surplus. Total surplus (normalized by c and qτ ) satisfies the
recursion

sτ+1 =
pπ

c
−

1

qτ+1

+ δ(1− p)sτ = B + 1−Q1β
n+1 + δβsτ ,

with s1 = ωA1 , as the agent gets all the surplus in the last period. This gives

sτ =
βτ [Q1(βδ − 1)− δτ (Q1(β − 2)δ +Q1 − δ + 1)] + (2Q1 + 1)(1− δ)

(1− δ)(1− βδ)
.

Section B.15.2 establishes that the principal’s payoff in any equilibrium, Markov or not,
must be at least the resulting payoff v.

B.1.3 The Agent’s Lowest Payoff

We now turn to the lowest payoff of the agent. Let us write w for what we will call the
interim value of the agent’s payoff, that is, the agent’s payoff given that the mandatory
waiting time ∆ since the last offer has passed, but before any additional, discretionary
delay (if any) has occurred. This discretionary delay cannot drive the principal’s payoff
below v. Accordingly, we peg the principal’s interim value to v. Working with the interim
values gives a lower bound to the principal’s ex post payoff, i.e., her payoff after delay,
so the principal also gets at least her lower bound at the point where she makes the offer
(and receives a higher payoff when on the verge of making an offer if there is additional
delay and v > 0). This lower bound will be tight, since the principal’s payoff is v after the
mandatory waiting period ∆ since the last offer has passed, and the principal has reached
the first point at which she can act.

We capture the possibility of discretionary delay by introducing a variable Λ(q) ≤ 1,
representing the additional discounting caused by such delay. We have Λ(q) = 1 if there
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is no discretionary delay, and otherwise Λ(q) < 1, in order to capture the reduction in
payoffs imposed by the delay until the offer is made. We then have, by definition of
interim values,

w(q) = Λ(q)

(

pqπ(1− s(q)) + δ(1− p)
q

q̃
w(q̃)

)

= Λ(q)

(

c+ δ
q

q̃
w(q̃)

)

,

where q̃ = ϕ(q) is the posterior belief, as well as

v(q) = Λ(q)

(

pq(q)πs− c+ δ(1− p)
q

q̃
v(q̃)

)

.

Combining,

v(q)/Λ(q) = pqπ − 2c+ δ
q

q̃
[(1− p)v(q̃)− pw(q̃)],

which can be solved for Λ(q). Hence, plugging back into the recursion for w,

w(q) =
v(q)

pqπ − 2c+ δ q
q̃
[(1− p)v(q̃)− pw(q̃)]

(

c+ δ
q

q̃
w(q̃)

)

.

This is a discrete-time Riccati equation that converges pointwise to the continuous-time
Riccati equation (15) of Section 3.2.1. The same Riccati equation obtains if we work
with the principal’s best Markov equilibrium without delay: the choice is irrelevant to the
evolution of this lowest payoff, but it is key to the boundary condition that determines the
solution to this Riccati equation. Because this boundary condition is at q, our restriction
to low beliefs (necessary to assert that the lower bound on the principal’s equilibrium
payoffs, wA, is actually an equilibrium payoff, as shown in Section B.15.2), is innocuous.

To complete the argument, we must show that the boundary condition at q selects
the lower of the two solutions identified Section 3.2.1. This requires a fine analysis of the
game with ∆ > 0. To this end, let us define ω(q) := w and (q)/(cq), ν(q) := v(q)/(cq)
(and also ντ , ωτ for q = qτ ). Rearranging the Riccati equation, we get

ωτ+1ωτ −
pπ/c− 2/qτ+1 + δ(1− p)ντ

δp
ωτ+1 +

ντ+1

p
ωτ +

1

δpqτ+1
ντ+1 = 0. (37)

We now must insert our explicit solution for ντ , given our formulas for sτ and ωAτ , namely,
ντ = sτ − ωAτ . Further, let a∆τ := ωτ∆/(qτ − q1), τ > 1. Note that, given τ , this is a
measure of the slope of ω at q1 → q. Inserting (a∆), we get that a∆τ+1 solves

a∆τ+1a
∆
τ −

pπ/c− 2/qτ+1 + δ(1− p)(sτ − ωAτ )∆

δp(qτ − q1)
a∆τ+1 +

(sτ+1 − ωAτ+1)∆

p(qτ+1 − q1)
a∆τ +

(sτ+1 − ωAτ+1)∆

δpqτ+1(qn − q1)(qτ+1 − q1)
= 0.
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Taking limits as ∆ → 0, this gives, for all τ ,

lim
∆→0

a∆τ =
τ(3 + τ)

(τ + 1)2
(Q1 − 1)(Q+ l1)

3

4Q2
1rσ

,

and so

lim
τ→∞

lim
∆→0

a∆τ = a∞ :=
(Q1 − 1)(Q1 + 1)3

4Q2
1rσ

.

Given the definition of ωτ , this implies that wτ∆/(qτ − q1) converges precisely to w′(q),
as given in Section 3.2.1, which was to be shown. For reference, if we compute the same
limit for aA,∆τ := lim∆→0w

A
τ ∆/(qτ − q1), we get

lim
τ→∞

lim
∆→0

a∆,Aτ = aA∞ :=
(Q1 + 1)3

Q1rσ
,

and we note that a∞ < aA∞, i.e. we have created some “slack” between our new lower
bound and the Markov equilibrium payoff (note that Q1 > 2 so Q1 − 1 > 0). One can
check that the same limit obtains with the Markov payoff (independently of the initial
condition ω1, ν1), i.e. aM∞ = limτ→0 lim∆→0 ωτ∆/(qτ − q1) = aA∞: that is, the averages of
the agent’s canonical (or highest) Markov payoff select the solution wM to the Riccati
equation in the continuous-time limit, as should be expected.

B.2 Proof of Proposition 2

Given w(q), we consider the value of v(q) that maximizes the principal’s payoff among
equilibrium payoffs {w(q), v(q)}. We simplify the argument by assuming the players
have access to a public randomization device, describing at the end of the proof the
modifications required if no such device is available.

We make use of the fact that we have a “worst equilibrium” that simultaneously delivers
the worst possible equilibrium payoffs to both the principal and the agent. Fix a value q,
an equilibrium agent payoff w(q), and an principal equilibrium payoff v(q). Then either
(i) (w(q), v(q)) can be written as a convex combination of the worst equilibrium payoff
and an equilibrium with payoffs (w̃(q), ṽ(q)) with the property that ṽ(q) maximizes the
principal’s payoff, conditional on the agent receiving at least w̃(q), or (ii), there is an
alternative equilibrium payoff (w(q), v̂(q)) with v̂(q) > ṽ(q). Since we are interested in
large payoffs for the principal, in the latter case we would transfer our attention to the
pair (w(q), v̂(q)). Hence, it suffices to direct attention to equilibria that can be written as
convex combination of the worst equilibrium and an equilibrium with payoffs (w̃(q), ṽ(q))
with the property that ṽ(q) maximizes the principal’s payoff, conditional on the agent
receiving at least w̃(q). Furthermore, the latter equilibrium must feature no delay in
making its first offer, since otherwise we could increase the principal’s payoff by eliminating
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the delay. Hence, we can restrict attention to sequences (x(q), s(q)), where, given posterior
q, the worst equilibrium (given the current posterior) is played with probability 1 − x(q)
(determined by a public randomization device); and if not, a share s(q) is offered in that
period that induces the agent to work.

B.2.1 A Preliminary Inequality

We fix a posterior probability and let w(q) and v(q) be equilibrium values, with w(q)
and v(q) being the values of the worst equilibrium given that posterior. Now, let ζ be
such that for any such posterior probability,

v(q)− v(q)

w(q)− w(q)
≤ ζ.

Our first step is to place an upper bound on ζ .
It is immediate that such a ζ exists, and in particular that ζ ≤ (pπ − 2c)/c. Any

equilibrium exertion of effort on the part of the agent creates a discounted surplus of
(pqπ − c)∆, where the discounting reflects the delay until the effort is exerted and the
probability that the interaction may terminate before reaching such effort. Of this surplus,
at least c∆ must go to the agent, since otherwise the agent’s incentive constraint is surely
violated. The ratio of principal to agent payoffs can then never exceed (pπ − 2c)/c.
However, we seek a tighter bound.

Fix a posterior q. We first note that

v(q) = x(q) [(pqsπ − c)∆ + δ(∆)(1− pq∆)[x(ϕ(q))v(ϕ(q)) + (1− x(ϕ(q)))v(ϕ(q))]]

+ (1− x(q))v(q),

w(q) = x(q) [pq(1− s)π∆+ δ(∆)(1− pq∆)[x(ϕ(q))w(ϕ(q)) + (1− x(ϕ(q)))w(ϕ(q))]]

+ (1− x(q))w(q)

≥ x(q) [c∆+ δ(∆)[x(ϕ(q))θw(ϕ(q)) + (1− x(ϕ(q)))θw(ϕ(q))]] + (1− x(q))w(q),

where ϕ(q) is the posterior belief obtained from q given a failure (cf. (27)). The inequality
is the agent’s incentive constraint and θ > 1 is given by

θ =
q

ϕ(q)
=

1− p∆q

1− p∆
,

and hence is the ratio of the current posterior to next period’s posterior, given a failure.
We have used here the fact that the continuation values, relevant for posterior ϕ(q), can
be written as convex combinations of equilibrium payoffs (w(ϕ(q)), v(ϕ(q))) and the worst
equilibrium payoffs (w(ϕ(q)), v(ϕ(q))). Note that in writing this convex combination, we
take w(ϕ(q)) and v(ϕ(q)) to be the interim values, i.e., values at the point at which the

5



posterior is ϕ(q) and precisely ∆ time has elapsed since the previous offer. The equilibrium
generating these values may yet entail some delay.

Let us simplify the notation by letting x(q) = x, v(q) = v, w(q) = w, v(q) = v,
w(q) = w, x(ϕ(q)) = x̃, v(ϕ(q)) = ṽ, w(ϕ(q)) = w̃, v(ϕ(q)) = ṽ, and w(ϕ(q)) = w̃, and
let us drop the explicit representation of ∆. Setting an equality in the agent’s incentive
constraint and rearranging gives

pqsπ = (pqπ − c) + δ(1− pq)[x̃w̃ + (1− x̃)w̃]− δ[x̃θw̃ + (1− x̃)θw̃].

Using this to eliminate the variable s from the value functions gives

v − v = x [(pqπ − 2c) + δ(1− pq)[x̃w̃ + (1− x̃)w̃]− δ[x̃θw̃ + (1− x̃)θw̃]

+ δ(1− pq)[x̃ṽ + (1− x̃)ṽ]− v] , (38)

w − w = x [c+ δ[x̃θw̃ + (1− x̃)θw̃]− w] . (39)

Dividing (38) by (39), we obtain

v − v

w − w
=

(pqπ − 2c) + [δ(1− pq)− δθ]x̃[w̃ − w̃] + [δ(1− pq)− δθ]w̃

c+ δθ[x̃(w̃ − w̃) + w̃]− w

+
δ(1− pq)x̃(ṽ − ṽ) + δ(1− pq)[ṽ − v]

c+ δθ[x̃(w̃ − w̃) + w̃]− w
.

Using the fact that ṽ− ṽ ≤ ζ(w̃− w̃), we can substitute and rearrange to obtain an upper
bound on ζ , or

ζ ≤
(pqπ − 2c) + (δ(1− pq)− δθ)(w̃ − w̃) + (δ(1− pq)− δθ)w̃ + δ(1− pq)ṽ − v

c+ δθx̃(w̃ − w̃) + δθw̃ − w − [δ(1− pq)x̃](w̃ − w̃)
.

We obtain an upper bound on the right side by setting w̃ − w̃ = 0, obtaining

ζ ≤
(pqπ − 2c) + (δ(1− pq)− δθ)w̃ + δ(1− pq)ṽ − v

c+ δθw̃ − w
.

B.2.2 Front-Loading Effort

We now show that it is impossible for x and x̃ to both be interior. Suppose they are.
Then we consider an increase in x and an accompanying decrease in x̃, effectively moving
effort forward. We keep w constant in the process, and show that the result is to increase
v, a contradiction.

First, we fix the constraint by differentiating (39) to find

dw

dx̃
=
dx

dx̃

w − w

x
+ δxθ(w̃ − w̃),

6



and hence, setting dw
dx̃

= 0,
dx

dx̃
= −δx2θ

w̃ − w̃

w − w
. (40)

Differentiating (38) and using (40), we have

dv

dx̃
=

dx

dx̃

v − v

x
+ δx ((1− pq − θ)[w̃ − w̃]− (1− pq)[ṽ − ṽ])

= −δxθ
w̃ − w̃

w − w
(v − v) + δx ((1− pq − θ)[w̃ − w̃]− (1− pq)[ṽ − ṽ]) .

It concludes the argument to show that this derivative is negative. Multiplying by w−w,
the requisite inequality is

(w − w) ((1− pq − θ)(w̃ − w̃) + (1− pq)(ṽ − ṽ))− (w̃ − w̃)(v − v)θ < 0.

Substituting for v− v and w−w from (38)–(39) and dropping the common factor x, this
is

[(1− pq − θ)(w̃ − w̃) + (1− pq)(ṽ − ṽ)] (c+ δ(x̃θw̃ + (1− x̃)θw̃)− w)

< (w̃ − w̃)θ [(1− δ)(pπ − 2c) + δ(1− pq − θ)[x̃w̃ + (1− x̃)w̃]

+ δ(1− pq)(x̃ṽ + (1− x̃)ṽ)− v] .

We can then note that the terms involving x̃ cancel, at which point the expression sim-
plifies to

(1− p− θ) + (1− p)
ṽ − ṽ

w̃ − w̃
< θ

(pπ − 2c) + (δ(1− pq)− δθ)w̃ + δ(1− pq)ṽ − v

c+ δθw̃ − w
,

for which, using the definition of ζ , it suffices that (1 − p − θ) + (1 − p)ζ < θζ , which is
immediate.

An implication of this result is that x(q) is interior for at most one value of q. This in
turn implies that the public randomization device is required only for one value of q. If
no public randomization device is available, we can construct an equilibrium in which no
values of x(q) are interior that approximates the equilibrium examined here. As ∆ → 0,
the public randomization device becomes unimportant and the approximation becomes
arbitrarily sharp.

B.3 sW vs. sS, Agent Offers

What if the agent makes the offers instead of the principal, as in Bergemann and
Hege [1]? The agent thus chooses the share st, but in doing so must respect the incentive
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constraint that it be optimal to undertake an experiment whenever experimental funding
is advanced.

Consider a posterior q1 with ϕ(q1) < q < q1, so that there will be only one more exper-
iment before beliefs become sufficiently pessimistic (ϕ(q) < q) as to halt experimentation.
If the agent is expected to work, the incentive constraint is

pq1π(1− s1) ≥ pq1π − c.

We can solve this for the threshold

pq1πs
W
1 = pq1π − c.

In equilibrium, the agent will push the principal to her participation constraint by setting
share s∗ solving

pq1πs
∗ = c.

Now suppose the agent faces share s1 and is expected to shirk, after which we come to the
next period with unchanged beliefs, at which point share s∗ is offered. Then the agent’s
incentive constraint is

c+ δpq1π(1− s∗) ≥ pq1π(1− s1) + δ(1− pq1)max{c, pϕ(q1)π(1− s∗)}.

We can use the definition of s∗ and rearrange to obtain

pq1πs
S
1 = (1− δ)(pq1π − c) + δ(1− pq1)max{c, pϕ(q1)π(1− s∗)}.

This suffices to give
sS1 < sW1 ,

as long as (1−pq1)max{c, pϕ(q1)π(1−s
∗)} < pq1π− c. The fact that c < pq1π− c follows

from q1 > q. Alternatively, we have

(1− pq1)pϕ(q1)π(1− s∗) = (1− p)pq1π(1− s∗) = (1− p)(pq1π − c) < pq1π − c.

We thus have a range of shares [sS1 , s
W
1 ] for which the agent will work if expected to do

so, and will shirk if expected to do so. Bergemann and Hege [1] choose the value of s1
that gives the principal a zero payoff. As long as this value falls in the interior of [sS1 , s

W
1 ],

as it will for q1 greater than but close to q, there will be multiple equilibria. This in turn
feeds into additional opportunities for multiplicity as we work backward from the final
period.23

23We have not taken account here of the opportunity Bergemann and Hege [1] allow for the principal
to advance partial funding, but this will not eliminate this phenomenon. Nor would competition among
principals.
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To establish the possibility of sS > sW , notice that in general the incentive constraint
when the agent is expected to work is

pqπ(1− s) + δ(1− pq)W (1ϕ(q), ϕ(q)) = c+ δW (1ϕ(q), q),

and the constraint when expected to shirk is

c+ δW (1q, q) = pqπ(1− s) + δ(1− pq)W (1q, ϕ(q)).

We can solve for

pqπsW = pqπ − c− δW (1ϕ(q), q) + δ(1− pq)W (1ϕ(q), ϕ(q)),

pqπsS = pqπ − c− δW (1q, q) + δ(1− pq)W (1q, ϕ(q)).

Hence, it suffices to show

(1− pq)W (1q, ϕ(q))−W (1q, q) > (1− pq)W (1ϕ(q), ϕ(q))−W (1ϕ(q), q),

or
W (1q, q)− (1− pq)W (1q, ϕ(q)) < W (1ϕ(q), q)− (1− pq)W (1ϕ(q), ϕ(q)).

Now fix c and fix p and r so that p/r = σ > 2 (and hence σ > 2 − 2p) and r < 1 − p.
Then fix a sequence of values {πn}

∞
n=1 and induced values of ψn with the property that

2 < ψn < σ for all n. This gives us a sequence of problems, each of which is a high surplus,
patient problem if the principal makes offers, and is a high-return, low-discount problem
if the agent makes offers. In either case, the resulting Markov equilibrium features no
delay for low beliefs and delay for high beliefs. Notice that the sequence of posteriors
through which beliefs will move, during the course of the no-delay phase, is fixed. We can
then choose the πn so that, for each πn there is an associated value qn that lies just on
the boundary of the delay versus no-delay region (when the agent makes offers), in the
sense that the agent’s incentive constraint when expected to work binds at qn. We then
examine

W (1qn, qn)− (1− pqn)W (1qn, ϕ(qn)) < W (1ϕ(qn), qn)− (1− pqn)W (1ϕ(qn), ϕ(qn)).

Because the agent’s incentive constraint binds at qn, we can write this as

c+δ
qn

ϕ(qn)
W (1ϕ(qn), ϕ(qn))−(1−pqn)W (1qn, ϕ(qn)) < W (1ϕ(qn), qn)−(1−pqn)W (1ϕ(qn), ϕ(qn)).

We potentially underestimate the second term on the right side, and hence obtain a
sufficient inequality for sS > sW , with the following:

c+δ
qn

ϕ(qn)
W (1ϕ(qn), ϕ(qn))−(1−pqn)[c+δW (1ϕ(qn), ϕ(qn))] < W (1ϕ(qn), qn)−(1−pqn)W (1ϕ(qn), ϕ(qn)).
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Now writing W (1ϕ(qn), ϕ(qn)) = W̃ , we note that c is added and subtracted on the left,
and then rearrange, to obtain

pqnc+ δ(1− pqn)W̃ < (1− δ)
qn

ϕ(qn)
W̃ − (1− pqn)W̃ ,

and hence

pqnc

1− δ
<

[

qn
ϕ(qn)

− (1− pqn)

]

W̃ =
qn

ϕ(qn)
[1− (1− p)]W̃ ,

or finally
ϕ(qn)c

1− δ
< W̃ . (41)

The proof of Lemma 10 in Section B.9 shows that if p < 1 − r, as maintained here, then
there will be an interval of values [q†, 1) for which this inequality holds, given that (i)
the principal makes offers, (ii) continuation play features no delay, and (iii) the principal
makes offer sW at every opportunity. We can then find a value πn and a value of q ∈ [q†, 1)
such that the agent’s incentive constraint binds at q when the agent makes offers and (41)
holds at q when the principal makes offers. But the agent’s payoff must if anything be
larger when the agent rather than the principal makes offers, since the agent will lower s
at every opportunity to reduce the principal’s payoff to zero, and hence (41) must hold
when the agent makes offers, giving the result.

B.4 Proof of Lemma 4

Fix a prior q and waiting time ∆, both hereafter to be omitted from the notation.
Notice first that if E

[

qP
]

< c
pπ

, every continuation equilibrium outcome must give the
principal a negative payoff. In particular, the total expected surplus under the first-best
policy is negative (cf. Section 2.3), and hence so must be the principal’s payoff.

Suppose the result is false. Then there exists sequences of integers {k(n)}∞n=1, times
t(n), strategy profiles σ(n), and histories hPt(n)(n) such that

1. each σ(n) is an equilibrium,

2. each history hPt(n)(n) arises with positive probability under equilibrium σn, has length

t(n), and features k(n) offers (and failures),

3. limn→∞ kn = ∞,

4. E

[

qP |hPt(n)(n), σ(n)
]

> c
pπ

,
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where E

[

qP |hPt(n)(n), σ(n)
]

denotes the principal’s expectation of the agent’s belief at

history hPt(n)(n) under equilibrium σ(n). This in turn implies that by taking a sub-
sequence and renumbering, we can construct sequences that preserve these properties
as well as choose sequences of integers κ′(n) and κ′′(n) such that κ′′(n) − κ′(n) > n,
1
n
> E

[

qP |hPt(n)|κ′(n), σ(n)
]

− E

[

qP |hPt(n)|κ′′(n), σ(n)
]

, and history hP (tn) features n offers

between periods κ′(n) and κ′′(n). Hence, we must be able to find equilibria with the
property that over arbitrarily long sequences of failures, beliefs change arbitrarily little.
However, this ensures that for sufficiently large n, the principal’s payoff upon reaching
history hPt(n)|κ′n must be negative. In particular, the probability that any single subsequent
offer made by the principal in this sequence induces effort is converging uniformly to zero

(since otherwise 1
n
> E

[

qP |hPt(n)|κ′(n), σ(n)
]

− E

[

qP |hPt(n)|κ′′(n), σ(n)
]

is impossible), while

every such offer incurs a cost of c. A negative expected payoff for the principal at history
hPt(n)|κ′n is a contradiction.

B.5 Proof of Lemma 5

The game begins with qA = q and with qP placing unitary probability on q. As long as
the agent chooses pure actions, the public belief qP continues to attach unitary probability
to a single belief. The first time the agent mixes between working and shirking, the public
belief subsequently puts positive probability on two posteriors, say q and ϕ(q).

Our method of proof is to argue that given any two such beliefs, if the agent charac-
terized by posterior ϕ(q) has a weak incentive to work, then the agent characterized by q
has a strict incentive to work. This ensures that qP never attaches positive probability to
more than two beliefs. In particular, once two such beliefs have arisen, in the subsequent
period either both are revised downward, with qP then again attaching positive probabil-
ity to two beliefs (one the Bayesian update of the other); or the smaller belief is subject
to no revision, in which case qP attaches positive probability to at most (the same) two
beliefs.

We work backward from the end of the game. Hence, let us renumber the sequence
of offers as s1, s2, . . ., where s1 is the last offer made, s2 the penultimate offer, and so on.
We let δτ be the discount factor relevant when sτ is offered. The magnitude of δτ will
depend on the time that elapses between offer sτ and offer sτ−1.

B.5.1 The Final Period

Suppose we are in the final period, with share s1 offered. Then it is obvious that if an
agent with belief q1 finds it optimal to work, so will any agent with belief q2 > q1.
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B.5.2 The Penultimate Period

Now suppose we in the penultimate period, facing share s2, and consider agents with
beliefs q1 and q2, with q0 = ϕ(q1) and q1 = ϕ(q2). Hence, q0 is the update of q1 and q1 is
the update of q2.

We argue that it is impossible that q1 would prefer to work and q2 to shirk, i.e., that
it is impossible that

pq1π(1− s2) + δ2(1− pq1)max{c, pq0π(1− s1)} ≥ c+ δ2max{c, pq1π(1− s1)},

pq2π(1− s2) + δ2(1− pq2)max{c, pq1π(1− s1)} ≤ c+ δ2max{c, pq2π(1− s1)}.

The value of s1 may be random. However, we will argue that for no value of s1 can these
constraints be satisfied. If so, then they cannot be satisfied on average. This suffices to
establish the result.

We consider four cases:

Case 1: c ≥ pq2π(1− s1). The incentive constraints are

pq1π(1− s2) + δ2(1− pq1)c ≥ c+ δ2c, (42)

pq2π(1− s2) + δ2(1− pq2)c ≤ c+ δ2c.

This requires

pq1π(1− s2) + δ2(1− pq1)c ≥ pq2π(1− s2) + δ2(1− pq2)c,

or
pq1[π(1− s2)− δ2c] ≥ pq2[π(1− s2)− δ2c].

Since π(1− s2)− δ2c > 0 (from (42)), this is a contradiction.

Case 2: c ∈ [pq1π(1− s1), pq2π(1− s2)]. The incentive constraints are

pq1π(1− s2) + δ2(1− pq1)c ≥ c+ δ2c,

pq2π(1− s2) + δ2(1− pq2)c ≤ c+ δ2pq2π(1− s1),

or

pq1π(1− s2) ≥ c + δ2c− δ2(1− pq1)c,

pq1π(1− s2) ≤
q1
q2
c+ δ2pq1π(1− s1)− δ2

q1
q2
(1− pq2)c.

Hence we need

c+ δ2c− δ2(1− pq1)c ≤
q1
q2
c + δ2pq1π(1− s1)− δ2

q1
q2
(1− pq2)c,
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or, removing some common terms,

c ≤
q1
q2
c+ δ2pq1π(1− s1)− δ2

q1
q2
c.

This is
q2c+ δ2q1c ≤ q1c+ δ2pq1π(1− s1)q2.

We overestimate the right side by writing

q2c+ δ2q1c ≤ q1c+ δ2q2c,

which is
(1− δ2)q2 ≤ (1− δ2)q1,

a contradiction.

Case 3: c ∈ [pq0π(1− s1), pq1π(1− s1)]. The incentive constraints are

pq1π(1− s2) + δ2(1− pq1)c ≥ c+ δ2pq1π(1− s1),

pq2π(1− s2) + δ2(1− pq2)pq1π(1− s1) ≤ c+ δ2pq2π(1− s1),

or

pq1π(1− s2) ≥ c+ δ2pq1π(1− s1)− δ2(1− pq1)c,

pq1π(1− s2) ≤
q1
q2
c+ δ2pq1π(1− s1)− δ2

q1
q2
(1− pq2)pq1π(1− s1).

Hence, we need

c + δ2pq1π(1− s1)− δ2(1− pq1)c ≤
q1
q2
c + δ2pq1π(1− s1)− δ2

q1
q2
(1− pq2)pq1π(1− s1),

or, eliminating common terms and multiplying by q2,

q2c− δ2(1− pq1)cq2 ≤ q1c− δ2q1(1− pq2)pq1π(1− s1).

We overestimate the right side by writing this as

q2c− δ2(1− pq1)cq2 ≤ q1c− δ2q1(1− pq2)c,

which is,
q2 − δ2q2 < q1 − δ2q1,

a contradiction.
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Case 4: c ≤ pq0π(1− s1). The incentive constraints are

pq1π(1− s2) + δ2(1− pq1)pq0π(1− s1) ≥ c+ δ2pq1π(1− s1),

pq2π(1− s2) + δ2(1− pq2)pq1π(1− s1) ≤ c+ δ2pq2π(1− s1),

or

pq1π(1− s2) ≥ c+ δ2pq1π(1− s1)− δ2(1− pq1)pq0π(1− s1),

pq1π(1− s2) ≤
q1
q2
c+ δ2pq1π(1− s1)− δ2

q1
q2
(1− pq2)pq1π(1− s1).

Hence, we need

c+δ2pq1π(1−s1)−δ2(1−pq1)pq0π(1−s1) ≤
q1
q2
c+δ2pq1π(1−s1)−δ2

q1
q2
(1−pq2)pq1π(1−s1),

or
q2c− q2δ2(1− pq1)pq0π(1− s1) ≤ q1c− δ2q1(1− pq2)pq1π(1− s1),

and hence

q2c+ δ2q1(1− pq2)pq1π(1− s1) ≤ q1c+ q2δ2(1− pq1)pq0π(1− s1).

Since q2c > q1c, it suffices for a contradiction to show

δ2q1(1− pq2)pq1π(1− s1) ≥ q2δ2(1− pq1)pq0π(1− s1),

or
q1(1− pq2)q1 ≤ q2(1− pq1)q0.

Using Bayes’ rule, this is
(1− p)q2q1 ≤ (1− p)q1q2,

which is obvious, and hence yields the contradiction.

B.5.3 The Induction Step

Now we examine the induction step. We suppose that we are facing offer sτ . The
induction hypothesis is that there is no future offer {s1, . . . , sτ−1} that induces an agent
to work while a more optimistic agent shirks.

Suppose that when making offer sτ , q
P attaches positive probability to two beliefs q1

and q2, with q1 being the belief reached from q2 via updating in the event of a failure. We
claim that it is impossible that q1 works while q2 shirks, i.e., that it is impossible that

pq1π(1− sτ ) + δ(1− pq1)W
0 ≥ c+ δW 1 (43)

pq2π(1− sτ ) + δ(1− pq2)W
1 ≤ c+ δW 2, (44)

14



where q0 is the belief reached from q1 via Bayesian updating after a failure, W 0 is the
continuation value of an agent with posterior q0 who faces the subsequent sequence of
offers, and W 1 and W 1 are analogous for priors q1 and q2. The sequence of shares offered
the agent may be random, in which case these are the appropriate expected values.

Rearranging, we need to show the impossibility of

pq1π(1− sτ ) ≥ c+ δτW
1 − δτ (1− pq1)W

0

pq1π(1− sτ ) ≤
q1
q2
c+ δτ

q1
q2
W 2 − δτ

q1
q2
(1− pq2)W

1.

Given that we have placed no restrictions on sτ , demonstrating this impossibility is equiv-
alent to showing (now phrasing things positively rather than seeking a contradiction)

c+ δW 1 − δτ (1− pq1)W
0 >

q1
q2
c+ δτ

q1
q2
W 2 − δτ

q1
q2
(1− pq2)W

1.

We can rewrite, using the updating rules, as

c−
q1
q2
c+ δτ

(

W 1 −
q1
q2
W 2

)

> δτ (1− p)
q1
q0

(

W 0 −
q0
q1
W 1

)

.

The terms W 0, W 1 are W 2 are sums of equal numbers of terms, one for each offer remain-
ing. Any given offer is common to the three sums, but the actions invoked by a given
offer may differ across the sums. By the induction hypothesis, the possible action config-
urations that might appear in any particular period of the continuation play generating
W 0, W 1 and W 2, respectively, offer are sss, ssw, sww, and www.

Now let us suppose that sss occurs in response to some future offer, at which point
continuation paths W 0, W 1, and W 2 have hit posterior beliefs q̃0, q̃1 and q̃2, respectively,
and that all previous periods have featured www. We argue that the contribution of this
future period to the inequality

δτ

(

W 1 −
q1
q2
W 2

)

≥ δτ (1− p)
q1
q0

(

W 0 −
q0
q1
W 1

)

satisfies this inequality. In particular, this contribution is (after eliminating some common
terms)

(1−pq1)(1−pq̃1)−
q1
q2
(1−pq1)(1−pq2) ≥ (1−p)

q1
q0
(1−pq̃1)(1−pq̃0)−(1−p)(1−pq1)(1−pq̃1).

Using the updating rule, this is

(1−pq1)(1−pq̃1)− (1−p)(1−pq1) ≥ (1−pq1)(1−pq̃1)(1−pq̃0)− (1−p)(1−pq1)(1−pq̃1).
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Deleting the common (1− pq1) gives

(1− pq̃1)− (1− p) ≥ (1− pq̃1)(1− pq̃0)− (1− p)(1− pq̃1).

Collecting terms, we have

1− pq̃1 ≥ (1− pq̃1)(1− pq̃0) + (1− p)pq̃1,

or
pq̃0(1− pq̃1) ≥ p(1− p)q̃1,

or
q̃0(1− pq̃1) ≥ (1− p)q̃1,

which holds as an equality, as a restatement of the updating rule.
This means that we can effectively remove from consideration any action profile sss

that appears before the first sww or ssw, replacing the play of sss by inaction and
an appropriately reduced discount factor to capture the passage of time from the offer
preceding the (removed) instance of sss to the following offer. We thus need only consider
paths of play featuring a succession of periods of www followed by sww, or a succession
of periods of www followed by a period of ssw (and then some continuation).

Consider the former. We now note that

W 1 ≥
q1
q2
W 2,

which follows from the fact that q1
q2
< 1 and the pessimistic agent can always mimic the

actions of the more optimistic agent. Hence, it suffices to show that

c−
q1
q2
c > δτ (1− p)

q1
q0

(

W 0 −
q0
q1
W 1

)

.

We focus on the worst case by taking δτ = 1, in which case it suffices to show a weak
inequality in the preceding relationship. We now claim

W 0 −
q0
q1
W 1 ≤ c−

q0
q1
c. (45)

Let us first consider the implications of this inequality. It implies that it suffices to
establish

c−
q1
q2
c ≥ (1− p)

q1
q0

(

c−
q0
q1
c

)

.

16



Successive simplifications give

1−
q1
q2

≥ (1− p)
q1
q0

− (1− p)

2−
1− p

1− pq2
≥ (1− pq1) + p

2− 2pq2 − 1 + p ≥ 1− pq1 − pq2 + p2q1q2 + p− p2q2

−pq2 ≥ p2q1q2 − p2q2 − pq1

q1 + pq2 ≥ q2 + pq1q2

1 + p
q2
q1

≥
q2
q1

+ pq2

1− pq2 ≥ (1− p)
q2
q1

= 1− pq2,

which obviously holds.
So, we need to establish (45). By assumption, the paths inducing W 0 and W 1 both

feature effort in response to offers sτ−1 through sτ̃ for some τ̃ . In responding to each
of these offers, the payoff under W 1 is precisely q1

q0
that of W 0, and hence these periods

contribute nothing to the difference W 0 − q0
q1
W 1. In the next period, W 0 shirks while

W 1 exerts effort. Letting Ŵ 0 and Ŵ 1 denote the continuation values beginning in period
τ̃ − 1, we can write (using the incentive constraint for the second relationship)

Ŵ 0 =
(

∏τ̃

s=τ−1
δs

)(

∏τ−τ̃

s=0
(1− pq−s)

)

(c+ δτ̃−1W̃ )

Ŵ 1 ≥
(

∏τ̃

s=τ−1
δs

)(

∏τ−τ̃

s=0
(1− pq1−s)

)

(

c+ δτ̃−1

q−(τ−τ̃ )

q−(τ−τ̃ )−1

W̃

)

,

where W̃ is the same in both cases. The contribution to the expression W 0 − q0
q1
W 1 given

by terms involving W̃ is then, for some constant K,

K

(

(1− pq−(τ−τ̃))− (1− pq1)
q−(τ−τ̃)

q−(τ−τ̃)−1

q0
q1

)

W̃ ,

which, using the rules for belief updating, equals zero. Hence, we have contributions to
the difference only from terms involving c. If we want to maximize the contribution to
the difference from these terms, we should examine cases in which this shirking happens
in the first period. This gives us an upper bound given by (45).

The remaining possibility to be considered is that we have a succession of periods of
www followed by ssw. Here, a direct calculation shows that (43)–(44) cannot both hold.
Consider the agent with belief q2. Our putative equilibrium behavior calls for this agent
to shirk in period τ , and then work through period τ̃ , and shirk in period τ̃ − 1. If (44)
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is to hold, it must hold when we consider the alternative course of action in which player
q2 works for in periods τ through τ̃ , and then shirks in period τ̃ − 1. Hence, if (44) is to
hold, we must have

c+ δτpq2π(1− sτ ) + δτδτ−1(1− p)pq2π(1− sτ−1) +

· · ·+
∏τ−τ̃

s=0
δτ−s(1− p)τ−τ̃pq2π(1− sτ̃ )

≥ pq2π(1− sτ ) + δτ−1(1− p)pq2π(1− sτ−1) +

· · ·+
∏τ−τ̃−1

s=0
δτ−s(1− p)τ−τ̃−1 +

∏τ−τ̃

s=0
δτ−s(1− p)τ−τ̃c.

Notice that no period after τ ′ − 1 enters these payoff calculations. The two paths under
consideration yield identical payoffs in later periods, and hence these periods can be
neglected.

Similarly, consider the player characterized by belief q1. In the putative equilibrium,
this player works for some number k of periods and then shirks. If (43) is to hold, it must
hold for the alternative continuation path in which player q1 first shirks and then works
for k periods. Again, these two paths lead to identical payoffs in periods beyond the first
k + 1. The requirement that (43) hold is then

c+ δτpq1π(1− sτ ) + δτδτ−1(1− p)pq1π(1− sτ−1) +

· · ·+
∏τ−τ ′

s=0
δτ−s(1− p)τ−τ

′

pq1π(1− sτ ′)

≥ pq1π(1− sτ ) + δτ−1(1− p)pq1π(1− sτ−1) +

· · ·+
∏τ−τ ′−1

s=0
δτ−s(1− p)τ−τ

′−1 +
∏τ−τ ′

s=0
δτ−s(1− p)τ−τ

′

c.

We can rewrite these as

c ≥ q2H,

c ≤ q1H,

for some H > 0. Since q2 > q1, this is a contradiction.

B.6 Proof of Lemma 6

We invoke a simple induction argument. To do this, let τ index the number of offers
still to be made along the equilibrium path, i.e., the number of failures that will be
endured until play ceases. Suppose we have reached the last offer s1 (and hence τ = 1)
of the game, and that (qP , qA) = (1q1, q1). In equilibrium, the agent’s value is then

W (1q1, q1) = (1− s1)q1pπ ≥ c,
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where the inequality is the incentive constraint that the agent want to work, devoid of
a continuation value in this case because there is no continuation. Now observe that if
the agent holds the private belief q̃ > q1, then again the agent will be asked to work one
period. Hence,

W (1q1, q̃) = pq̃π(1− s1)

=
q̃

q1
pq1π(1− s1)

=
q̃

q1
W (1q1, q1)

> c,

where the final inequality provides the (strict) incentive constraint, ensuring that the
agent will indeed work.

Now suppose we have reached a history in which, in equilibrium, there are τ periods
to go, with beliefs (1qτ , q̃) for qτ < q̃, and suppose that (28) holds for all periods τ̃ < τ .
Then we have

W (1qτ , q̃) = pq̃π(1− sτ ) + δτ (1− pq̃)W (1qτ−1, ϕ(q̃))

=
q̃

qτ

[

pqτπ(1− sτ ) + δτ (1− pq̃)
qτ
q̃

ϕ(q̃)

qτ−1
W (1qτ−1, qτ−1)

]

=
q̃

qτ

[

pqτπ(1− sτ ) + δτ (1− pq̃)
1− qτp

1− q̃p
W (1qτ−1, qτ−1)

]

=
q̃

qτ

[

pqτπ(1− sτ ) + δτ (1− pqτ )W (1qτ−1, qτ−1)
]

=
q̃

qτ
W (1qτ , qτ ),

where the second equality uses the induction hypothesis, the third invokes the definition of
the updating rule ϕ, the fourth rearranges terms, and the final equality uses the definition
of W .

This argument assumes that, given the equilibrium hypothesis that the agent will work
in every period, an agent who arrives in period τ with posterior q̃ > qτ will find it optimal
to work. This follows from Lemma 5.

B.7 Proof of Lemma 7

We offer an induction argument. Let qτ identify the belief when there are τ periods
to go, so that qτ−1 is derived from qτ via Bayesian updating (given a failure).

In the last period, we have

W (1q1, q0) = c = c+ δ1W (1q0, q0),
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since an agent will shirk in the last period if too pessimistic to work.
In the final two periods, we have the equilibrium payoffs

W (1q1, q1) = pq1π(1− s1)

= c,

W (1q2, q2) = pq2π(1− s2) + δ2(1− pq2)W (1q1, q1)

= pq2π(1− s2) + δ2(1− pq2)pq1π(1− s1)

= pq2π(1− s2) + δ2(1− pq2)c

= c+ δpq2π(1− s1),

where the final equality in each case is the incentive constraint. We then have

W (1q2, q1) = max

{

c+ δ2pq1π(1− s1) = c+ δ2c
pq1π(1− s2) + δ2(1− pq1)c,

where the first line is the value if the agent shirks in the current period, and the next line
is the value if the agent waits until the final period to shirk. (Never shirking is clearly
suboptimal, as is shirking in both periods.) We will have established the result (for the
case of the final two periods) if we show that the first of these is the larger, or

c+ δ2c ≥ pq1π(1− s2) + δ2(1− pq1)c.

We can eliminate a term δ2c from both sides to obtain the first equality in the following
and then use the incentive constraint for W (1q2, q2) for the latter:

c + δ2pq1c ≥
q1
q2
pq2π(1− s2)

=
q1
q2

[c+ δ2pq2π(1− s1)− δ2(1− pq2)c] .

This rearranges to

c+ δpq1c+ δ2(1− pq2)
q1
q2
c ≥

q1
q2
c + δ2pq1π(1− s1),

or, noting that the δ2pq1c terms on the left cancel and using the last-period incentive
constraint,

c + δ2
q1
q2
c ≥

q1
q2
c+ δ2c,

which reduces to
1 ≥

q1
q2
,
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providing the result.
Now we consider an arbitrary period τ , with the current belief being qτ , and with a

failure giving rise to the updated belief qτ−1, and a subsequent failure to the belief qτ−2.
We have

W (1qτ , qτ ) = pqτπ(1− sτ ) + δτ (1− pτqτ )W (1qτ−1, qτ−1)

= c+ δτ
qτ
qτ−1

W (qτ−1, qτ−1).

Then we have

W (1qτ , qτ−1) = max

{

c+ δτW (1qτ−1, qτ−1) = c+ δτ c+ δτδτ−1
qτ−1

qτ−2
W (1qτ−2, qτ−2)

pqτ−1π(1− sτ ) + δτ (1− pqτ−1)[c+ δτ−1W (1qτ−2, qτ−2)],

where the first line is the value if the agent shirks in the current period (with the second
equality in this line using the Markov hypothesis to substitute for W (1qτ−1, qτ−1)), and
the second line is the value if the agent does not shirk in this period. In this case, we use
the induction hypothesis, ensuring that the agent will shirk in the next period, allowing
us to write W (1qτ−1, qτ−2) = c+ δτ−1W (1qτ−2, qτ−2).

We show that the former is larger, or (writing Wτ−2 for W (1qτ−2, qτ−2))

c+ δτc+ δτδτ−1
qτ−1

qτ−2

Wτ−2 ≥ pqτ−1π(1− sτ ) + δτ (1− pqτ−1)c+ δτδτ−1(1− pqτ−1)Wτ−2.

We remove a term δτc from each side and use the incentive constraint for W (1qτ , qτ ) to
write this as

c+δτδτ−1
qτ−1

qτ−2
Wτ−2 ≥

qτ−1

qτ

[

c+ δτ
qτ
qτ−1

Wτ−1 − δτ (1− pqτ )Wτ−1

]

−δτpqτ−1c+δτδτ−1(1−pqτ−1)Wτ−2

(where Wτ−1 :=W (1qτ−1, qτ−1)). Now substituting for Wτ−1, this is

c+ δτδτ−1
qτ−1

qτ−2
Wτ−2 ≥

qτ−1

qτ
c +

qτ−1

qτ

[

δτ
qτ
qτ−1

− δτ (1− pqτ )

](

c + δτ−1
qτ−1

qτ−2
Wτ−2

)

− δτpqτ−1c+ δτδτ−1(1− pqτ−1)Wτ−2.

Expanding, this is

c+ δτδτ−1
qτ−1

qτ−1
Wτ−2 ≥

qτ−1

qτ
c+ δτc− δτ

qτ−1

qτ
(1− pqτ )c+ δτδτ−1

qτ−1

qτ−2
Wτ−2

−δτδτ−1
qτ−1

qτ

qτ−1

qτ−2

(1− pqτ )Wτ−2 − δτpqτ−1c+ δτδτ−1(1− pqτ−1)Wτ−2.
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Each side has a term δτδτ−1
qτ−1

qτ−2
Wτ−2 that can be eliminated, and the term δτpqτ−1c is

added and subtracted on the right, which can be eliminated, allowing us to move a δτ c
from the right to left and obtain

(1− δτ )c ≥
qτ−1

qτ
c− δτ

qτ−1

qτ
c− δτδτ−1

qτ−1

qτ

qτ−1

qτ−2

(1− pqτ )Wτ−2 + δτδτ−1(1− pqτ−1)Wτ−2.

This is

(1− δτ )c ≥ (1− δτ )c
qτ−1

qτ
+ δτδτ−1Wτ−2

[

(1− pqτ−1)−
qτ−1

qτ

qτ−1

qτ−2

(1− pqτ )

]

,

which is verified by noting that the term in brackets on the right is zero.

B.8 Proof of Lemma 9

We study the pointwise limit of vτ . To do so, we make a change of variable to write
the principal’s payoff v as a function of the current posterior qt. We have, to the second
order,

v(qt) = [qtps(qt)π − c]∆ + (1− r∆)(1− pqt∆)v(qt+∆).

The pointwise limit of this function (as ∆ → 0) is differentiable, so that it must solve

0 = (pqπ − c)− pq(1− s(q))π − (r + pq)v(q)− pq(1− q)v′(q) = 0. (46)

Similarly, whenever the agent is indifferent between shirking and not (as must be the case
in a Markov equilibrium), the on-path payoff to the agent, w(qt), must solve, to the second
order,

w(qt) = qtp(1− s(qt))π∆+ (1− r∆)(1− qtp∆)w(qt+∆)

= c∆+ (1− r∆)(w(qt+∆) + x(qt)∆),

where x(qt) is the marginal gain from t+∆ onward from not exerting effort at t (recalling
that effort is then optimal at all later dates, since the off-the-equilibrium path relative
optimism of the agent makes the agent more likely to accept the principal’s offer). Using
(28), we obtain

x(qt)∆ = w(qt+∆, qt)− w(qt+∆) =

(

qt
qt+∆

− 1

)

w(qt+∆),

or, in the limit, given the evolution of the belief qt under full effort,

x(qt)∆ = p(1− qt)w(qt)∆.
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Hence, the marginal gain is given, in the limit, by

x(qt) =

∫ T

t

e−
∫ u
t dτ (−q̇u)p(1− s(qu))πdu.

24

Inserting and taking limits, the agent’s payoff satisfies

0 = qpπ(1− s(q))− pq(1− q)w′(q)− (r + qp)w(q)

= c− rw(q)− pq(1− q)w′(q) + p(1− q)w(q). (47)

We now solve for the equilibrium payoffs for this case. Equation (47) reduces to

qtpπ(1− st) = (r + qtp)wt − ẇt and rwt − ẇt − c = p(1− qt)wt.

The second of these equations can be rewritten as

rw(q) + pq(1− q)w′(q)− c = p(1− q)w(q),

where w′ is the derivative of w. The solution to this differential equation is

w(q) =
pq − r

p− r

c

r
+ A(1− q)r/pq1−r/p, (48)

for some constant A. Let γ(q) = pqπ(1 − s) (where, with an abuse of notation, s is a
function of q) so the first equation writes

γ(q) = (r + pq)w(q) + pq(1− q)w′(q) =
p2q − r2

p− r

c

r
+ Ap(1− q)r/pq1−r/p, (49)

giving us the share s. Finally, using the previous equation to eliminate s, equation (46)
simplifies to

0 = pqπ − c− γ(q)− (r + pq)v(q)− pq(1− q)v′(q).

The solution to this differential equation is given by

v(q) =
pqπ

p+ r
+

2r2 − p2 + pr(1− 2q)

r(p2 − r2)
c+ (B(1− q)−A)

(

1− q

q

)r/p

, (50)

for some constant B. Note that the function v(q) given by (50) yields

v(1) =
ψ − σ

σ + 1

c

r
, (51)

24To understand the expression for x(qt), note that, at any later time u, the agent gets his share
(1 − s(qu)) of π with a probability that is increased by a factor −q̇(u), relative to what it would have
been had he not deviated. Of course, even if the project is good, it succeeds only at a rate p, and this
additional profit must be discounted.
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which is positive if and only if ψ > σ.25

We have thus solved for the payoffs to both agents (given by (48) and (50)), as well
as for the share s (given by 49)), over any interval of time featuring no delay. Note that
the function v has at most one inflection point in the unit interval, given, if any, by

(A−B)(p+ r)

2pA− (p+ r)B
,

and so it has at most three zeroes. Note also that, if the interval without delay includes
q, we can solve for the constants of integration A and B using v(q) = w(q) = 0, namely

A =
(σq − 1)

(

q

1−q

)
1
σ

q(1− σ)

c

r
and B =

[(ψ + 2)2(1 + σ)− 8σ(ψ + 1)]ψ−1−1/σ

4(1− σ2)

c

r
.

Plugging back into the value for v, we obtain that

v′(q) = 0, v′′(q) =
(ψ + 2)3(ψ − 2)

4σψ2

c

r
. (53)

From (53), v is positive or negative for q close to q according to whether v is convex
or concave at q; it is positive if

ψ > 2,

and negative if ψ < 2. From (9), v(1) is positive (and hence we can induce full effort
and avoid delay for high posteriors) if ψ > σ and negative if ψ < σ. Hence, when ψ > 2
and ψ < σ, ν must admit a root q∗ ∈ (q, 1). Finally, differentiating (50), we have that
v′′(q) 6= 0.

25We can obtain this result directly from (36). As τ → ∞, the initial conditions then become insignif-
icant and the principal’s payoff approaches

ψ + 1

1− (1− p)δ
(ψ + 1)−

1

1− δ
.

This payoff exceeds zero if
1− δ

1− (1− p)δ
(ψ + 1) > 1. (52)

Condition (52) is thus necessary for a no-delay Markov equilibrium, with the candidate equilibrium
strategies otherwise driving the principal’s payoff below zero for high prior values q.

Making the substitutions δ = 1− r∆ and then taking the limit as ∆ → 0, this rearranges to

ψ =
pπ − 2c

c
>
p

r
= σ.

Then a necessary condition for our candidate strategies to be an equilibrium is that ψ > σ.
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B.9 Proof of Lemma 10

Fix q and simplify the notation by writing sW (q) and qS(q) simply as sW and sS. We
can rearrange the constraints defining sW and sS to give

1

δ
[pqπ(1− sW )− c] =

q

ϕ(q)
W (1ϕ(q), ϕ(q))− (1− pq)W (1ϕ(q), ϕ(q))

1

δ
[pqπ(1− sS)− c] = W (1q, q)− (1− pq)W (1q, ϕ(q)).

The condition that sS < sW is equivalent to

W (1q, q)− (1− pq)W (1q, ϕ(q)) ≥
q

ϕ(q)
W (1ϕ(q), ϕ(q))− (1− pq)W (1ϕ(q), ϕ(q)).

Substituting for W (1q, q) from (30), using Lemma 7, and writing W (1ϕ(q), ϕ(q)) := W̃ ,
this is

c+ δ
q

ϕ(q)
W̃ − (1− pq)[c+ δW̃ ] ≥

q

ϕ(q)
W̃ − (1− pq)W̃ ,

or, noting that c is added and subtracted on the left and rearranging,

pqc+ δ(1− pq)W̃ ≥ (1− δ)
q

ϕ(q)
W̃ − (1− pq)W̃ ,

and hence
pqc

1− δ
≥

[

q

ϕ(q)
− (1− pq)

]

W̃ =
q

ϕ(q)
[1− (1− p)]W̃ ,

or finally
ϕ(q)c

1− δ
≥ W̃ . (54)

One case is immediate. Suppose we are in the penultimate period. Then W̃ = c, and
hence (54) becomes:26

ϕ(q)

1− δ
≥ 1.

For sufficiently small ∆, and hence large δ, this condition will hold.

26We could have derived this result directly. In the penultimate period, the relevant incentive con-
straints are

pqπ(1− sW ) + δ(1− pq)c = c+ δ
q

ϕ(q)
c

pqπ(1− sS) + δ(1− pq)[c+ δc] = c+ δ

[

c+ δ
q

ϕ(q)
c

]

.
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Returning to (54), think of the equilibrium sequence q1, q2, q3, . . . of posteriors, with
q1 being the smallest posterior larger than the termination boundary q, and with qτ−1

obtained from qτ via Bayes’ rule. Let us write Wτ := W (1qτ , qτ ), and ask when

Wτ ≤
qτc

1− δ
,

which will suffice for sS(qt) ≤ sW (qt). We have

Wτ = cqτ

[

1

qτ
+

δ

qτ−1
+

δ2

qτ−2
+

δ3

qτ−3
+ . . .+

δτ−1

q1

]

.

This allows us to construct the difference equations

Wτ = δ
qτ
qτ−1

Wτ−1 + c,

and
qτc

1− δ
=

qτ
qτ−1

(

qτ−1c

1− δ

)

.

Now, it suffices to show that sS < sW for all q to show that the difference equation
giving us Wτ lies everywhere below that for qτ c

1−δ
. It is useful to divide Wτ by qτ c

1−δ
(defining

Ξτ to be the ratio) to get

Ξτ = (1− δ)

[

1

qτ
+

δ

qτ−1

+
δ2

qτ−2

+
δ3

qτ−3

+ . . .+
δτ−1

q1

]

,

We rearrange to get

1

δc
[pqπ(1− sW )− c] =

q

ϕ(q)
− (1 − pq),

1

δc
[pqπ(1 − sS)− c] = 1 + δ

q

ϕ(q)
− (1 − pq)(1 + δ).

Then sS < sW if
q

ϕ(q)
− (1− pq) < 1 + δ

q

ϕ(q)
− (1− pq)(1 + δ).

This rearranges to

(1− δ)

[

q

ϕ(q)
− (1− pq)

]

< pq,

or

(1− δ)

[

q

ϕ(q)
−

q

ϕ(q)
(1− p)

]

< pq,

which is
ϕ(q)

1− δ
≥ 1.
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which in turn gives us a difference equation

Ξτ+1 = δΞτ + (1− δ)
1

qτ+1
= δΞτ + (1− δ)

(

1 +
1− q1
q1

(1− p)τ
)

,

with initial condition Ξ1 = 1−δ
q1

. We have sSτ+1 < sWτ+1 if Ξτ < 1. We know that
limτ→∞ Ξτ = 1, and also that if any τ gives Ξτ > 1, so do all subsequent τ .

Let us simplify the notation by letting (1− q1)/q1 = Q1 and then write

Ξτ+1 = δΞτ + (1− δ)(1 +Q1(1− p)τ ).

We can solve this by writing

Ξ1 = Ξ1

Ξ2 = δΞ1 + (1− δ)(1 +Q1(1− p))

Ξ3 = δ2Ξ1 + (1− δ)(δ + 1 + δQ1(1− p) +Q1(1− p)2)

Ξ4 = δ3Ξ1 + (1− δ)(δ2 + δ + 1 + δ2Q1(1− p) + δQ1(1− p)2 +Q1(1− p)3)

...

Ξτ = δτ−1Ξ1 + (1− δ)(1 + δ + . . .+ δτ−2 +Q1((1− p)τ−1 + δ(1− p)τ−2 + . . .+ δτ−2(1− p))).

We can simplify this result to

Ξτ =











δτ−1Ξ1 + 1− δτ−1 + (1− δ)(1− p)Q1δ
τ−2 1−( 1−p

δ )
τ−1

1− 1−p
δ

δ > 1− p,

δτ−1Ξ1 + 1− δτ−1 + (1− δ)(1− p)Q1(1− p)τ−2 1−(
δ

1−p)
τ−1

1− δ
1−p

δ < 1− p.

Suppose first that p < (1− δ). Then we have

Ξτ = δτ−1Ξ1 + 1− δτ−1 + (1− δ)Q1(1− p)τ−1
1−

(

δ
1−p

)τ−1

1− δ
1−p

= δτ−1Ξ1 + 1− δτ−1 + (1− δ)Q1(1− p)
(1− p)τ−1 − δτ−1

1− p− δ
.

For sS < sW , we need

1 ≥ δτ−1Ξ1 + 1− δτ−1 + (1− δ)Q1(1− p)
(1− p)τ−1 − δτ−1

1− p− δ
,

or, dividing by δτ−1,

1− Ξ1 ≥
(1− δ)Q1(1− p)

1− p− δ

[

(1− p)τ−1

δτ−1
− 1

]

.
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It is obvious that this will hold for small τ , where it reduces (for τ = 1) to 1 − Ξ1 ≥ 0.
But 1−p

δ
> 1, so that the left side grows without bound in τ , and so we will have sS > sW

for large τ .
We can take the limit as ∆ → 0 and write this as

1 ≥ Q1
r

r − p
(e(r−p)τ − 1).

This ensures that there is a lower interval of values of q for which sS(q) < sW (q), but also
a higher interval where this inequality is reversed.

Suppose instead that p > 1− δ? Then we have

Ξτ = δτ−1Ξ1 + 1− δτ−1 + (1− δ)(1− p)Q1δ
τ−21−

(

1−p
δ

)τ−1

1− 1−p
δ

(55)

= δτ−1Ξ1 + 1− δτ−1 + (1− δ)(1− p)Q1δ
τ−11−

(

1−p
δ

)τ−1

δ − (1− p)
. (56)

For sS < sW , we need, for all τ ,

1 ≥ δτ−1Ξ1 + 1− δτ−1 + (1− δ)(1− p)Q1δ
τ−11−

(

1−p
δ

)τ−1

δ − (1− p)
.

Dividing by δτ−1, this is

1− Ξ1 ≥ (1− δ)(1− p)Q1

1−
(

1−p
δ

)τ−1

δ − (1− p)
.

The problematic case is that in which τ gets arbitrarily large, giving

1− Ξ1 ≥ (1− δ)(1− p)l1
1

δ − (1− p)
.

This is

[δ − (1− p)]

(

1−
1− δ

q1

)

≥ (1− δ)(1− p)
1− q1
q1

.

To gain some insight here, multiply by q1 and look at short time periods, making this

∆(p− r)(q1 − r∆) ≥ r∆(1− p∆)(1− q1),

and hence, eliminating second-order terms

(p− r)q1 ≥ r(1− q1),

or
pq1 ≥ r.

If this inequality holds, we will always have sS < sW . If it fails, we will again have a lower
range of values of q with sS < sW , but an upper range where this inequality is reversed.
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B.10 Proof of Lemma 11: Agents

Suppose we are in period τ , and hence there will be τ − 1 additional belief revisions
before rendering the agents sufficiently pessimistic as to halt experimentation. Let z be
the period, if any, in which only the more optimistic agent is induced to work.

Suppose first that the principal always induces both agents to work. Then using the
definition of sW , the payoff to the agent from working, given by

pqτπ(1− sτ ) + δ(1− pqτ )W (1qτ−1, qτ−1),

falls short of the payoff from shirking, given by

c+ δ
qτ
qτ−1

W (1qτ−1, qτ−1),

for all s ∈ (sW , sS). On the other hand, suppose z = τ − 1, so that in the next period
using the definition of sS, the agent’s payoff from working, given by

pqτπ(1− s) + δ(1− pqτ )W (1qτ , qτ−1),

exceeds that from shirking, given by

c+ δW (1qτ , qτ ),

for all s ∈ (sW , sS). Fixing s, the payoff from working and the payoff from shirking
are each upper-hemicontinuous, convex-valued (using the ability of the principal to mix)
correspondences of z. There is accordingly for each s ∈ (sW , sS) a value of z and a
principal mixture that makes the agent indifferent.

B.11 Proof of Lemma 11: Principals

B.11.1 Outline

Suppose that the principal’s belief assigns positive probability to two types. By Lemma
5, these are types that differ by one belief revision. In this subsection, we argue that it
is optimal to have both types work for an initial number of periods, and then only one
type work for one period, so that the posterior belief is degenerate afterwards. Of course,
the first phase might be either empty or take the entire horizon until the principal finds
experimentation no longer profitable. And, crucially, there might be one period in which
the principal is indifferent between having only the optimistic type or both work. The
point is that the incentives to have both types work decrease over time (of course, once
beliefs are degenerate, the agent works again.)

We refer to the event in which only the optimistic type works as a merger, since
the public belief is degenerate afterwards. We consider three consecutive periods, and
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compare the relative value from merging in periods 0 and 1, with the relative value from
merging in periods 1 and 2.

Our strategy is the following. We show that, if the principal prefers to merge in the
third rather than in the second, she also prefers to merge in the second rather than the
first, and hence she waits until some point before merging. This requires deriving first
three payoffs for the principal, according to the period in which merger occurs. Then, we
must compute the differences of consecutive values, and then compare those differences.
In all three cases, since merger will have occurred within two periods, continuation payoffs
to both players will be the same.

B.11.2 The Value of Merging

Before computing the relative values, we must compute the values from merging in
each of the three periods. This requires solving a system of equations for the value of the
agent (as a function of his belief and period), and the value to the principal, for each of
the three cases.

Periods are labeled 0, 1, 2, which is identified by the first subscript in the notation. The
second subscript refers to the agent’s type: type k has belief qk, where q0 > q1 > q2 > q3.
So wtk refers to the agent’s payoff in period t with belief qk. In period 0, the principal
assigns probability µ to the agent having belief q0, and 1− µ to belief q1 = ϕ(q0).

1. Let v0 denote the value from merging in the first period (in period 0). In that case,

w00 = (1− s0) pq0π + δ (1− pq0)w11,

w00 = c+ δ
q0
q1
w11,

w11 = (1− s1) pq1π + δ (1− pq1)w22,

w11 = c+ δ
q1
q2
w22,

as well as

w22 = (1− s2) pq2π + δ (1− pq2)w3,

w22 = c+ δ
q2
q3
w3.

We can solve this system, and plug the solution for shares in the principal’s payoff.
As a function of the continuation payoff v3 (from the third period onward), this
value is given by (before substituting)

v0 = s0pq0µπ − c+ δ [1− pq0µ]×

(s1pq1π − c+ δ (1− pq1) (s2pq2π − c+ δ (1− pq2) v3)) .
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2. Consider the system of equations in which merging (of beliefs) occurs in the second
period. We have,

w12 = c+ δw22,

as well as

w11 = c + δ
q1
q2
w22,

w11 = (1− s1) pq1π + δ (1− pq1)w22,

and
w00 = (1− s0) pq0π + δ (1− pq0)w11,

w01 = (1− s0) pq1π + δ (1− pq1)w12,

w01 = c+ δw11,

and finally

w22 = (1− s2) pq2π + δ (1− pq2)w3,

w22 = c+ δ
q2
q3
w3.

Hence, the time-0 payoff to the principal from merging in the second period is

v1 = s0p (µq0 + (1− µ) q1) π − c + δ [1− p (µq0 + (1− µ) q1)] ·

[s1pq1µ1π − c+ δ (1− pq1µ1) (s2pq2π − c + δ (1− pq2) v3)] ,

where
µ1 :=

µq0
µq0 + (1− µ) q1

.

Of course, beliefs satisfy, for k = 0, 1, 2 :

qk+1 =
(1− p) qk
1− pqk

.

3. Finally, we consider the system in which two periods elapse before merging. This
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system is given by

w00 = (1− s0) pq0π + δ (1− pq0)w11,

w01 = (1− s0) pq1π + δ (1− pq1)w12,

w11 = (1− s1) pq1π + δ (1− pq1)w22,

w12 = (1− s1) pq2π + δ (1− pq2)w23,

w23 = c+ δw3,

w22 = c+ δ
q2
q3
w3,

w22 = (1− s2) pq2π + δ (1− pq2)w3,

w12 = c+ δw22,

w01 = c+ δw11,

and hence, solving this system, the payoff to the principal of this course of action is

v2 = s0p (q0µ+ q1 (1− µ)) π − c+ δ (1− p (q0µ+ q1 (1− µ))) ·

[s1p (q1µ1 + (1− µ1) q2) π − c+ δ (1− p (q1µ1 + (1− µ1) q2)) v] ,

where
v := µ2s2pq2π + δ (1− µ2pq2) v3,

and
µ2 :=

µ1q1
µ1q1 + (1− µ1) q2

.

Note that the (unknown) continuation payoffs v3, w3 after the third period are the same
in all cases, as merging has occurred by then.

B.11.3 The Relative Value of Merging: Intuition

As mentioned, we are interested in the relationship between the differences

∆1 := v1 − v0, ∆2 := v2 − v1.

We need the result for a fixed (if arbitrarily small) ∆ > 0. However, because the argument
is extremely tedious (see Section B.11.4), the reader might prefer to skip it, and we first
provide a simpler suggestive argument that holds in the limit, as ∆ → 0.

We argue that ∆1 < 0 implies ∆2 < 0. This will be an easy consequence of the claim
that ∆1 = 0 implies ∆2 < 0.

Let us take limits: c→ c∆, p→ p∆, δ → 1− r∆, and of course ∆ → 0. Fix µ. We get

∆2 = (1− µ) [r (pq1π − c)− µ (1− q0) p [c+ p (w3 + q0v3 − q0π)]] ∆
2 +

pγ1∆
3 + o

(

∆3
)

,
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where (letting q := q0, w := w3 and v := v3 for notational simplicity),

γ1 := (3 (1 + q)− 2µ (2 + q)) rc− r (1− µ) (2q (2 + q) π − 3µ (1− q) (w + qv)) p+

µ (1− µ) (1− q) p [(1 + 5q) c− 3pq ((1 + q)π − 2w − (1 + q) v)] ,

and

∆2 = (1− µ) [r (pqπ − c)− µ (1− q) p [c+ p (w + qv − qπ)]] ∆2 +

pγ2∆
3 + o

(

∆3
)

,

where

γ2 := (4 + 5q − µ (7− µ+ q (2 + µ))) rc−

r (1− µ) (qπ (7− µ+ q (2 + µ))− 2µ (1− q) (w + qv)) p+

µ (1− µ) (1− q) p [(3 + 4q) c+ (2w − q ((5 + 2q)π − 2qv − 5 (w + v)))] .

These expressions might be positive or negative, depending (among other things) on v, w.
Note that there is no first-order term, which should not be surprising, given that we are
considering differences. Note also that the second-order term is identical, which means
we must look at the third-order term, namely γ2 vs. γ1.

We will solve for the value of µ for which ∆1 = 0, and plug it in our expression for
∆2, showing that ∆2 < 0, and hence ∆2 < ∆1. The general result will then follow from
monotonicity of these expressions in µ.

Note that γ1 > 0 for µ = 0, and γ1 < 0 for µ = 1. It is not hard to show that ∆1 is
monotone in µ, so that there exists at most one solution µ ∈ [0, 1] to ∆1 = 0. It is also
easy to see that µ→ 1 as ∆ → 0. We claim that this solution must be given by

µ = 1− κ∆+ o (∆) ,

for some κ to be defined. Indeed, plugging in such an expression into ∆1 and solving for
the root gives us

κ =
(1− q) rcp

r (pqπ − c)− p (1− q) (c+ p (w + qv − qπ))
.

For our claim to make sense, we must check that κ > 0 (so that our formula gives us a
well-defined probability).

Claim B.1 It holds that κ > 0.

Proof of claim: We have to consider different cases. Throughout, we conserve on clutter
by normalizing c to 1.
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First, consider the high surplus, impatient case, in which a > 4 and a− σ > 2 (where
a := pπ > 2). We insert the closed-form formulas for v, w to get

κ =
1− σ2

(1− q) q2σ2 (a2 + σ (8− a (8− a)))
(

2(1−q)
q(a−2)

)1+ 1
σ

− 2B

,

where

B := 1 + σ − q
[

σ
(

1 + 3σ − 2qσ + 2 (1− q)2 σ
)

+ a (1− σ)
(

1 + σ
(

2− q + σ (1− q)2
))]

.

We use the Bernoulli inequality to bound the term
(

2(1−q)
q(a−2)

)
1
σ

that appears in the denom-

inator, noting that the (upper or lower) bound it provides (according to whether σ ≶ 1)
gives us a lower bound to µ, given that the numerator changes signs at σ = 1 as well.
The resulting expression is positive if and only if

S0 (σ) := a3q
(

2 + σ
(

3 + q2 (σ − 1) + σ (1− 2q)
))

− 2a2
(

1 + σ + 4q + σq
(

9− 5q + (1− q)2
))

− 8− 8σ (2− q) + 8a (1 + q) (1 + σ (2− q)) > 0.

We claim that S0 is increasing. First, it is convex, as its second derivative is

2 (a− 2) a2 (1− q)2 q > 0.

Second, its first derivative, evaluated at 0, equals

4 (a− 1) (a− 2)2

a
+ 3 (a− 2)3 q̃ + 4 (a− 2) aq̃2 − a3q̃3,

where q̃ = q − q. This is positive for all q̃ < 1 − a if it is positive for q̃ = 1 − a, and for
q̃ = 1− a, we obtain an expression which is increasing in a and equal to 0, for a = 2 –so,
positive everywhere.

We are left to claim that S0 (0) > 0. But

S0 (0) = 2 (2− a)2 (aq − 1) > 0,

since q > q = 2/a. This establishes that κ > 0 in case 1.
Next, suppose we have a high surplus, patient project. Note that nothing in our

previous analysis hinged on patience, so the claim is true for q < q∗. So we can focus on
the case in which the principal’s profit is zero. In that case, we know that

v = 0, w = qπ −
2c

p
,
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and inserting into κ, we get

κ =
(1− q) rσ

aq − 1 + (1− q) σ
> 0.

This also applies to the other cases whenever there is zero profit to the principal. This
establishes that κ > 0 in case 2.

We are left with the case of low surplus and impatience, when the belief is such
that the principal’s payoff is positive, i.e. q > q∗∗. Using the boundary conditions
w (q∗∗) = q∗∗π − 2c

p
, v (q∗∗) = 0, and our formula for q∗∗, we can solve for the two

differential equations that give v, w and plugging into κ gives that κ is of the sign of

aq − 1 +
σ (1− q)

1− σ2
[q (1− (1− q)σ) (a (1− σ) + 2σ)− 1− σ + C] ,

where

C := (1− q) qσ (a+ (a− 6) σ)

(

1− q

q

σ − 2

a− 2− σ

)
1
σ

.

Again, we note that using Bernoulli’s inequality, applied to C, provides us a lower bound
to this expression whether or not σ is less than one. Simplifying gives us the following
expression:

S1 (q) := aq−1+
(1− q)σ (2 + a2q2 + σ (8q − 7− 4q (1− q)σ) + a (1 + σ + 2q (σ − 2− 2qσ)))

(a− 2− σ) (1 + σ)
.

First, we have

S ′′′
1 (q) = −

6 (a− 2σ)2 σ

(a− 2− σ) (1 + σ)
< 0.

Next,

S ′′
1 (q

∗∗) =
2 (a− 2σ) σ

σ + 1
> 0,

while

S ′′
1 (1) = −

4 (a− 2σ)σ

σ + 1
< 0.

Hence, S ′′ is first convex, then concave. Note that

S1 (q
∗∗) =

a− σ2

a− 2σ
> 0,

and
S1 (1) = a− 1 > 0,
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and finally that
S ′
1 (q

∗∗) = a− σ > 0.

Hence, S1 (q) > 0 for all q ∈ [q∗∗, 1], and we are done with this case as well.
We have now verified that κ > 0 in all cases, and that our expansion for the root µ of

∆1 is valid. End of the proof of claim.

We now can come back to our comparison between ∆1 and ∆2. Plugging in our formula
for κ (and hence µ) into ∆2, we get

∆2 = − (1− q) rcp∆3 + o
(

∆3
)

< 0.

Because ∆2 is also monotone in µ, it follows that, more generally,

∆1 < 0 =⇒ ∆2 < 0,

which establishes “concavity:” if the principal is indifferent between merging and not in
some period, she strictly prefers to merge after, and strictly prefers to keep beliefs separate
before, for all ∆ > 0 small enough.

B.11.4 The Relative Value of Merging: Formal Analysis

The remainder of this section provides a formal analysis for fixed (non-vanishing)
∆ > 0. The strategy of proof is exactly the same: setting ∆1 = 0, solving for one of the
“parameters” (in this case, v), and showing that ∆2 < 0 for that value. Unfortunately,
as mentioned, the analysis is significantly more tedious. In what follows, we drop the
reference to ∆, keeping in mind that it is fixed once and for all, to a value that is such
that δ = exp(−r∆) ≥ 2/3, and p∆ ≤ 1/2.
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Now, using the formulas for payoffs, ∆1 ∝ A1 − A2, where

A1 := p(µ− 1)
(

π(p− 1)
3
q
(

p(q − 1)µ
(

pq
(

(p− 1)
2
δ
2
− p + 2

)

− 1
)

+ (p − 1)(δ − 1)((p − 2)pq + 1)
)

− p(q − 1)δ
3
µ(p((p− 3)p + 3)q − 1)

(

(p− 1)
3
qv + p((p− 3)p + 3)qw − w

))

,

and

A2 := c(p−1)((p−2)pq+1)
(

p
2
(q − 1)δ

2
(µ− 1)µ(((p− 2)p + 2)q − 1) − δ(pq − 1)

(

p
2
(q − 1)

2
µ
2
+ (p− 1)µ(p(q − 2) + 1) + (p− 1)

2
)

+ (pq − 1)(p(q − 2)µ + p + µ − 1)(p(q − 1)µ + p− 1)
)

.

It holds that ∆1 is decreasing in v: its derivative w.r.t. v is

−δ
3
(p− 1)

3
p
2
(q − 1)q(µ − 1)µ(p((p − 3)p + 3)q − 1) ≤ 0.

Similarly, ∆2 is decreasing in v, as the second derivative is

δ
2
(p− 1)

5
p
2
(q − 1)q(µ − 1)µ(pq(p((q − 1)µ + 1) − 2) + 1) ≤ 0.

Hence, it suffices to solve for v such that ∆1 = 0 and show that ∆2 ≤ 0 for that value of v. Solving gives v = (A4 + A5)/A3, where

A3 := −(p− 1)
3
p
2
(q − 1)qδ

3
(µ− 1)µ(p((p − 3)p + 3)q − 1),

and
A4 := −p(µ− 1)

(

π(p− 1)
3
q
(

p(q − 1)µ
(

pq
(

(p− 1)
2
δ
2
− p + 2

)

− 1
)

+ (p− 1)(δ − 1)((p− 2)pq + 1)
)

− p(q − 1)wδ
3
µ(p((p− 3)p + 3)q − 1)

2
)

,

and

A5 := c(p−1)((p−2)pq+1)
(

p
2
(q − 1)δ

2
(µ− 1)µ(((p− 2)p + 2)q − 1) − δ(pq − 1)

(

p
2
(q − 1)

2
µ
2
+ (p− 1)µ(p(q − 2) + 1) + (p− 1)

2
)

+ (pq − 1)(p(q − 2)µ + p + µ − 1)(p(q − 1)µ + p− 1)
)

.

We now insert the value of v in ∆2 and get that ∆2 = ∆∗ := δ−1
δ(p((p−3)p+3)q−1)

(B1 + c((p− 2)pq + 1)(B2 + δB3)), with

B1 := π(p− 1)
5
pq(1 − µ)(pq(p(q − 1)µ + p − 2) + 1)

(

(p− 1)δ
(

p
(

(q − 1)µ
(

(p− 2)
2
pq − 1

)

+ (p− 1)((p − 3)p + 3)q − 1
)

+ 1
)

+ ((p− 2)pq + 1)(p(−qµ + µ − 1) + 1)
)

,

and
B2 := (p− 1)

3
(pq − 1)(p(q − 2)µ + p + µ− 1)(p(q − 1)µ + p− 1)(pq(p(q − 1)µ + p− 2) + 1),

and finally B3 = C1 + C2 + C3 + C4, with

C1 := p
3
(q − 1)

2
µ
3
(

(p− 2)
2
pq − 1

) (

p
(

((p − 3)p + 3)q
2
+ (p((p− 5)p + 10) − 9)q − p + 2

)

+ q
)

,

as well as

C2 := (1−p)p(q−1)µ
2
(

p
(

p
(

p(p(p(p((p− 9)p + 34) − 69) + 75) − 35)q
3
− (p− 2)(p(p(p(p(3p − 19) + 53) − 74) + 44) + 2)q

2
+ (p− 2)(p(p + 2)(2p − 5) + 24)q − 3p + 3

)

+ 6q + 4
)

− 1
)

,

and

C3 := (p−1)
2
µ
(

p
(

p
(

p(p(p(p((15 − 2p)p − 49) + 85) − 79) + 31)q
3
+ (p(p(p(p(p(3p− 23) + 78) − 139) + 128) − 39) − 11)q

2
− p(p(p(p + 2) − 21) + 50)q + 2p + 38q + 1

)

− 3q − 5
)

+ 1
)

,

and finally

C4 := −(p− 1)
4
(p((p− 3)p + 3)q − 1)

2
.
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We normalize throughout c to 1. We now note that

d∆∗

dπ
= (p− 1)

5
pq(1 − µ)(pq(p(q − 1)µ + p− 2) + 1)

(

(p− 1)δ
(

p
(

(q − 1)µ
(

(p− 2)
2
pq − 1

)

+ (p− 1)((p− 3)p + 3)q − 1
)

+ 1
)

+ ((p− 2)pq + 1)(p(−qµ + µ− 1) + 1)
)

,

which is always negative. To see this, note that (p − 1)5pq(1 − µ)(pq(p(q − 1)µ + p − 2) + 1) < 0. The last factor appearing in d∆∗

dπ
is linear in µ, with coefficient equal to

p(q − 1)((p− 2)pq(d(p− 2)(p− 1) − 1) + d(−p) + d− 1) > 0, i.e., it is increasing in µ; yet at µ = 0 it equals (p− 1)(δ(p− 1)(p((p− 3)p + 3)q − 1) − (p− 2)pq − 1) > 0, and so it is
positive for all µ ∈ [0, 1].

To check that ∆∗ ≤ 0, it thus suffices to consider the case in which π = 2/(pq). We also note that ∆∗ = ∆∗(δ) is linear in δ, and so it suffices to consider the two extreme
cases δ = 1 and δ = 2/3. In the former case, we get ∆∗(1) = D1 + p((p− 2)pq + 1)(D2 +D3 +D4 +D5), where

D1 := 2(p − 1)
5
p(1 − µ)(pq(p(q − 1)µ + p− 2) + 1)(p((q − 1)µ((p − 2)((p− 3)p + 1)q − 1) + (p− 2)((p − 3)p + 3)q − 1) + q + 1),

and
D2 := p

3
(q − 1)

2
µ
3
(

p((p− 3)p((p − 3)p + 7) + 11)q
3
+ (p(p(p(p((p− 9)p + 32) − 63) + 70) − 35) + 1)q

2
− (p − 4)((p− 2)(p − 1)p + 1)q + p− 2

)

,

and

D3 := (1−p)p(q−1)µ
2
(

p
(

p(p(p(p((p− 9)p + 31) − 59) + 64) − 31)q
3
+ (p(p(p(p((25 − 3p)p − 86) + 164) − 177) + 84) + 2)q

2
+ (p(p(2(p − 5)p + 13) + 14) − 31)q − 5p + 8

)

+ 3q
)

,

as well as
D4 := (p− 1)

4
(q(p(−((p− 3)p((p − 3)p + 5) + 7)q + p− 2) + 3) − 1),

and finally

D5 := −(p− 1)
2
µ
(

p
(

p(p(p(p(p(2p− 15) + 46) − 74) + 66) − 26)q
3
+ (p(p(p(p((23 − 3p)p− 74) + 126) − 119) + 44) + 6)q

2
+ (p(p((p − 2)p− 2) + 23) − 25)q − 5p + 6

)

+ 2q
)

.

It is a matter of tedious algebra to show that this polynomial function is always negative for p ≤ 1/2. Here are the details. First, we show that ∆∗(1) is concave in q. As d2∆∗(1)/dq2

is equal to

−2(1 − p)
6
p
2
(

µ
3
(p− 3)(p− 1)p

2
+ µ

2
((p− 4)(p − 3)(p− 1)p + 1) + µ(p(p((13 − 3p)p− 18) + 4) + 2) + p(p((p− 6)p + 14) − 16) + 9

)

≤ 0

(leaving aside the negative factor −2(1 − p)6p2, the remainder is decreasing in p, yet positive at p = 1/2), at q = 1, it is enough to show that its third derivative, ∆(3)(1) is positive

(so that d2∆∗(1)/dq2 is increasing.) In turn, because ∆(3)(1), evaluated at 1, equals

−6(1 − p)
4
p
3
(

(p− 2)(p − 1)p((p − 4)p + 2)µ
3
− (p − 1)(p((p− 2)p(3p − 5) + 6) − 6)µ

2
+ p(p(p((p − 9)p + 31) − 58) + 62)µ + p(p(p((p− 8)p + 26) − 43) + 37) − 14(2µ + 1)

)

≥ 0,

(leaving aside the negative factor −6(1 − p)4p3, this is decreasing in µ and increasing in p, yet negative at (µ, p) = (0, 1/2)), it suffices to argue that the fourth derivative w.r.t. q,

∆(4)(1), is negative. To show this, we argue that ∆(5)(1) is positive, yet ∆(4)(1), evaluated at 1, is

24(1 − p)
2
p
4
µ
(

(p− 1)
2
(

p
4
− 3p

3
+ 6p − 3

)

µ
2
+ p

(

p
(

p
(

p
3
− 4p

2
+ p + 30

)

− 82
)

+ 85
)

µ + p(p(p(p((19 − 2p)p− 76) + 166) − 214) + 158) − 31µ − 52
)

≤ 0.

(Leaving aside the positive factor 24(1 − p)2p4µ, this is decreasing in µ and increasing in p, yet negative at (p, µ) = (1/2, 0)). In turn, to show that ∆(5)(1) ≥ 0, we note that the
sixth derivative is

720(p − 2)p
6
((p− 3)p((p− 3)p + 7) + 11)µ

3
≤ 0,

and that, evaluated at 1, the fifth derivative is

120(p − 1)p
5
µ
2
(p(p(p(p(p(p(µ− 1) − 6µ + 11) + 12µ − 49) − 2µ + 121) − 2(12µ + 91)) + 29µ + 159) − 9µ − 62) ≥ 0.
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(Leaving aside the negative factor 120(p − 1)p5µ2, this is increasing in p and negative at p = 1/2). Having shown that ∆∗(1) is concave in q, we note that d∆∗(1)/dq evaluated at
q = 1, is

(1 − p)
8
p
(

1 − p
(

µ
2
(2(p− 3)p + 3) + µ

(

−p
2
+ p + 3

)

− (p− 2)
2
))

≥ 0,

(leaving aside the positive factor (1 − p)8p, the last factor is decreasing in µ and equals (1 − p)2 at µ = 1), so it is increasing in q. Yet it is equal to −(1 − µ)(2 − p)p(1 − p)10 < 0
at q = 1, so it is negative everywhere.

Similarly, for δ = 2/3, we get ∆∗(2/3) = E1 + ((p− 2)pq + 1)(E2 + 2/3(E3 + E4 + E5)), where

E1 := −
2

3
(µ − 1)(p− 1)

5
(pq(p(µ(q − 1) + 1) − 2) + 1)(p(µ(q − 1)((p− 2)(2(p − 3)p + 1)pq − 2p− 1) + (p− 1)(2(p − 4)p + 9)pq − 2p + 1) + 1),

E2 := (p− 1)
3
(pq − 1)(µ(p(q − 2) + 1) + p− 1)(p(µ(q − 1) + 1) − 1)(pq(p(µ(q − 1) + 1) − 2) + 1),

E3 := µ
3
p
3
(q − 1)

2
(

(p− 2)
2
pq − 1

) (

p
(

((p− 3)p + 3)q
2
+ (p((p− 5)p + 10) − 9)q − p + 2

)

+ q
)

− (p− 1)
4
(p((p− 3)p + 3)q − 1)

2
,

E4 := (1−p)p(q−1)µ
2
(

p
(

p
(

p(p(p(p((p− 9)p + 34) − 69) + 75) − 35)q
3
− (p− 2)(p(p(p(p(3p − 19) + 53) − 74) + 44) + 2)q

2
+ (p− 2)(p(p + 2)(2p − 5) + 24)q − 3p + 3

)

+ 6q + 4
)

− 1
)

,

and

E5 := (p−1)
2
µ
(

p
(

p
(

p(p(p(p((15 − 2p)p− 49) + 85) − 79) + 31)q
3
+ (p(p(p(p(p(3p − 23) + 78) − 139) + 128) − 39) − 11)q

2
− p(p(p(p + 2) − 21) + 50)q + 2p + 38q + 1

)

− 3q − 5
)

+ 1
)

.

Again, it is tedious but straightforward to show that this is negative provided p ≤ 1/2 (the steps are the same, consisting in showing that the derivatives w.r.t. q alternate in sign).
The case in which there is delay is dealt with similarly (solving for w from ∆1 = 0, inserting into ∆2 and showing it is negative).
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B.12 Proof of Lemma 12

Let periods be numbered beginning with 0, with subsequent periods numbered 1, 2, . . .
Suppose the principal makes an offer s ∈ (sW , sS) in period 0, facing agent belief q0. The
agent mixes between working and shirking. The principal then makes offers that induce
both the optimistic and pessimistic agent to work, until reaching period t, in which only
the optimistic agent works. The agents’ beliefs are then “merged,” after which both agents
work in each period. We argue that this gives the principal a lower payoff than does sW .

If the principal makes the equilibrium offer sW in period 0, she receives

V (1q0, q0) = pq0πs
W − c+ δ(1− pq0)V (1q1 , q1).

If the principal instead makes offer s ∈ (sW , sS) and the agent shirks, then the principal’s
payoff is

−c+ δṼ ,

for some continuation payoff Ṽ that satisfies

Ṽ ≤ V (1q0, q0).

The latter inequality follows from the observations that the (i) continuation payoffs
V (1q0, q0) and Ṽ are both generated by continuation paths under which the principal
makes some number T of offers, to posteriors q0, q1, . . . , qT−1, (ii) along both continuation
paths, the agent works in every period, (iii) the principal’s offers under continuation paths
V (1q0, q0) and Ṽ from the t-th period on are identical under the two paths, and (iv) for
the first t − 1 periods, during the first t − 1 period, the outcome generating payoff Ṽ
faces an additional set of constraints not imposed on V (1q0, q0), namely that the more
pessimistic agent also be willing to work.

Hence, the principal’s payoff is lower under s if the agent shirks. Suppose instead
the principal offers s and the agent works. We again need to show that this generates
a lower payoff for the principal than offering sW . The continuation paths following sW

and s generate identical outcomes over the periods 1, . . . , t − 1. The path following sW

then continues with payoff V (1qt, qt), while the path following s delays this payoff by one
period of shirking. Hence, we need to show that

pq0πs+ δt
∏t−1

τ=0
(1− pqτ )(−c+ δV (1qt, qt)) < pq0πs

W + δt
∏t−1

τ=0
(1− pqτ )V (1qt , qt),

or

pq0π(s− sW ) < δt
∏t−1

τ=0
(1− pqτ )[c+ (1− δ)V (1qt, qt)].

We consider the worst case in terms of satisfying this inequality, namely that in which
V (1qt, qt) = 0, and hence we need

pq0π(s− sW ) < δt
∏t−1

τ=0
(1− pqτ )c. (57)
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In response to offer sW , the agent is indifferent between shirking and working. We let
Wt denote the continuation payoff received by the agent after period t, along the Markov-
equilibrium path. We letW1,t−1 identify the payoffs collected by the agent between periods
1 and t− 1 (inclusive), along this equilibrium path. Then the condition for the agent to
be indifferent is

pq0π(1−s
W )+δ(1−pq0)

[

W1,t−1 + δt−1
∏t−1

τ=1
(1− pqτ )Wt

]

= c+δ
q0
q1

[

W1,t−1 + δt−1
∏t−1

τ=1
(1− pqτ )Wt

]

.

(58)
Under offer s, a working agent receives payoff

pq0π(1− s) + δ(1− pq0)
[

W1,t−1 + δt−1
∏t−1

τ=1
(1− pqτ )(c+ δWt)

]

,

while a shirking agent receives

c+ δ
q0
q1
W1,t−1 + δt

∏t−2

τ=0
(1− pqτ )Wt−1. (59)

We can use (58) to rewrite the payoff (59) of a shirking agent as

pq0π(1− sW ) + δ(1− pq0)
[

W1,t−1 + δt−1
∏t−1

τ=1
(1− pqτ )Wt

]

− δ
q0
q1
δt−1

∏t−1

τ=1
(1− pqτ )Wt + δt

∏t−2

τ=0
(1− pqτ )Wt−1.

The condition that the agent be indifferent between shirking and working, after offer
s, is then

− pq0πs+ δ(1− pq0)
[

δt−1
∏t−1

τ=1
(1− pqτ )c+ δt

∏t−1

τ=1
(1− pqτ )Wt

]

=− pq0πs
W + δ(1− pq0)δ

t−1
∏t−1

τ=1
(1− pqτ )Wt − δ

q0
q1
δt−1

∏t−1

τ=1
(1− pqτ )W

t + δt
∏t−2

τ=0
(1− pqτ )Wt−1.

We can rewrite this as

pq0π(s− sW ) = δt
∏t−1

τ=0
(1− pqτ )c+ δt+1

∏t−1

τ=0
(1− pqτ )Wt − δt

∏t−1

τ=0
(1− pqτ )Wt

+ δt
q0
q1

∏t−1

τ=1
(1− pqτ )Wt − δt

∏t−2

τ=0
(1− pqτ )Wt−1.

Hence, to establish the result, we need to show that

δt+1
∏t−1

τ=0
(1−pqτ )Wt−δ

t
∏t−1

τ=0
(1−pqτ )Wt+δ

t q0
q1

∏t−1

τ=1
(1−pqτ )Wt−δ

t
∏t−2

τ=0
(1−pqτ )Wt−1 < 0.

Eliminating some common terns, this is

δWt −Wt +
q0
q1

1

1− pq0
Wt −

Wt−1

1− pqt−1

< 0.
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Successive manipulations now give

δWt −Wt +
Wt

1− p
−

Wt−1

1− pqt−1
< 0,

1− pqt−1

1− p
Wt −

(

c+ δ
qt−1

qt
Wt

)

< (1− δ)(1− pqt−1)Wt,

qt−1

qt
Wt − δ

qt−1

qt
Wt < c+ (1− δ)(1− pqt−1)Wt,

(1− δ)
qt−1

qt
Wt < c+ (1− δ)(1− pqt−1)Wt,

(1− δ)

(

qt−1

qt
− (1− pqt−1)

)

Wt < c,

(1− δ)
qt−1

qt

(

1−
qt
qt−1

(1− pqt−1)

)

Wt < c,

(1− δ)
qt−1

qt
pWt < c,

which holds for small ∆.

B.13 Proof of Lemma 13

We have four cases to consider.
First, if s̃S ≤ s̃W and sS ≤ sW , the result is immediate. The agents do not mix in

these circumstances, and the optimality of the principal’s strategy follows from the fact
that the agent whose belief is (q̃) (alternatively, q) shirks if and only if the offer falls short
of s̃W (or sW ).

Second, Suppose s̃S ≥ s̃W and sS ≤ sW . Then we need to consider offers in (s̃W , s̃S).
The argument follows that of the fourth case below.

Third, suppose s̃S ≤ s̃W and sS ≥ sW . We must then consider offers in (sW , sS). Here,
the result is straightforward. For any such offer, the agent believing q̃ shirks. The payoff
and the continuation play, if the agent believes q̃, is then independent of the current offer,
and we can condition on the event that the agent believes q. Here, Lemma 10 uses only
the information that this agent is indifferent between working and shirking to show that,
no matter what the agent’s action, the principal receives a lower payoff than would be
the case under offer sW .

We thus have the case s̃S ≥ s̃W and sS ≥ sW . An argument identical to that of the
preceding case addresses offers s ∈ (sW , sS). This allows us to focus attention on the case
s ∈ (s̃W , s̃S). Here, the q̃ agent mixes between working and shirking, while the q agent
works. If the agent happens to have belief q̃, then the proof of Lemma 10 applies to ensure
that the principal is better off with offer s̃W than s, whether the agent shirks or works.
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If the agent is type q, then we need to establish the counterpart of (57), or

pq−1π(s− s̃W ) < δt
∏t−2

τ=−1
(1− pqτ )c,

where we take q = q−1 and q̃ = q0. The information we have available is that the agent
believing q̃ = q0 is indifferent, or

pq0π(s− sW ) = δt
∏t−1

τ=0
(1− pqτ )c+ δt+1

∏t−1

τ=0
(1− pqτ )Wt − δt

∏t−1

τ=0
(1− pqτ )Wt

+ δt
q0
q1

∏t−1

τ=1
(1− pqτ )Wt − δt

∏t−2

τ=0
(1− pqτ )Wt−1.

Hence, to establish the result, we need to show that

δt+1
∏t−1

τ=0
(1− pqτ )Wt − δt

∏t−1

τ=0
(1− pqτ )Wt + δt

q0
q1

∏t−1

τ=1
(1− pqτ )Wt − δt

∏t−2

τ=0
(1− pqτ )Wt−1

<
q0
q−1

δt
∏t−2

τ=−1
(1− pqτ )c− δt

∏t−1

τ=0
(1− pqτ )c.

Eliminating some common terms, this is

δWt −Wt +
q0
q1

1

1− pq0
Wt −

Wt−1

1− pqt−1

< c

(

q0
q−1

1− pq−1

1− pqt−1

− 1

)

.

Successive manipulations now give

δWt −Wt +
Wt

1− p
−

Wt−1

1− pqt−1

< c

(

1− p

1− pqt−1

− 1

)

,

1− pqt−1

1− p
Wt −

(

c+ δ
qt−1

qt
Wt

)

− (1− δ)(1− pqt−1)Wt < cp(qt−1 − 1),

qt−1

qt
Wt − δ

qt−1

qt
Wt − c− (1− δ)(1− pqt−1)Wt < cp(qt−1 − 1),

(1− δ)
qt−1

qt
Wt − c− (1− δ)(1− pqt−1)Wt < cp(qt−1 − 1),

(1− δ)

(

qt−1

qt
− (1− pqt−1)

)

Wt − c < cp(qt−1 − 1),

(1− δ)
qt−1

qt

(

1−
qt
qt−1

(1− pqt−1)

)

Wt − c < cp(qt−1 − 1),

(1− δ)
qt−1

qt
pWt − c < cp(qt−1 − 1),

which holds for small ∆.
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B.14 Proof of Lemma 14

We now examine the smallest payoff available to the principal in the final period of a
no-delay equilibrium. The task is to minimize s1. To do this, we assume that should the
agent choose a larger value of s1, the agent is expected to shirk. We are thus identifying
the value sS, via the following constraint:

c + δpq1π(1− s0) ≥ pq1π(1− s0) + δ(1− pq1)max{c, pq0π(1− s0)}.

The Markov restriction will require setting s0 = s1. Notice, however, that if we are
allowed to set these separately, then minimizing s1 is achieved by minimizing s0. Hence,
the minimum final-period principal payoff, over all no-delay equilibria, can be achieved
by a Markov equilibrium. Hence, we can write

c+ δpq1π(1− s) ≥ pq1π(1− s) + δ(1− pq1)max{c, pq0π(1− s)}. (60)

We now argue that for q1 sufficiently close to q, we can set the principal’s payoff equal
to zero. This requires showing that s with pq1πs = c can satisfy the incentive constraint
(60). First, we notice that for q1 close to q, we have c > pq0π(1 − s).27 Hence, using
pq1πs = c, from (60) we need to show

(2− δ)c ≥ (1− δ)pq1π + δ(1− pq1)c,

or
2(1− δ)c ≥ (1− δ)(pq1π − c).

But for q1 sufficiently close to q, we have pq1π− c arbitrarily close to c, giving the result.
Hence, for q1 ∈ [q, q̂] for some q̂, the principal’s lowest Markov equilibrium payoff is 0.
Now let us examine values of q1 large enough that q0 is very close to q. Here, we have

c < pq0π(1 − s).28 We now show that we cannot reduce the principal’s payoff to zero in

27We need to show c > pq0π(1− s), or c > q0
q1
pq1π(1− s) = q0

q1
(pq1π− c) (using pq1πs− c). For q1 very

close to q, this is c ≥ q0
q1
(2c− c), which holds.

28Using the fact that q0 is set at its upper limit if q and hence pq0π = 2c, we have

c ≤ pq0π(1− s)

=
q0
q1
pq1π(1− s)

= pq0π −
q0
q1
c

= 2c−
q0
q1
c.
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this case. This is equivalent to showing that we cannot satisfy (60) with pq1πs = c, or
equivalently that it is impossible that (with subsequent simplifications)

c+ δpq1π(1− s) ≥ pq1π(1− s) + δ(1− pq1)pq0π(1− s),

(2− δ)c ≥ (1− δ)pq1π + δ(1− pq1)pq0π(1− s),

(2− δ)c ≥ (1− δ)
q1
q0
2c+ δ(1− pq1)(2c−

q0
q1
c),

−δ ≥ −δ
q1
q0
2 + δ(1− pq1)(2−

q0
q1
),

−δ ≥ −δ
q1
q0
2 + δ

(

2(1− p)
q1
q0

− q1

)

,

−δq0 ≥ −2δq1 + 2δ(1− p)q1 − δq0q1,

−δq0 ≥ −2δpq1 − δq0q1,

δq0 ≤ 2δpq1 + δq0q1,

which fails for small ∆ (and hence small p).
To calculate the principal’s minimum payoff over the region [q̂, q̃), we note that the

principal’s payoff is given by pq1πs− c for the lowest value of s, which satisfies the agent’s
incentive constraint, given by

c+ δpq1π(1− s) = pq1π(1− s) + δ(1− pq1)pq0π(1− s).

Successive manipulations give

c = (1− δ)pq1π(1− s) + δ(1− pq1)pq0π(1− s),

c = (1− δ)pq1π(1− s) + δ(1− pq1)pq0π(1− s),

c = (1− δ)pq1π(1− s) + δ(1− pq1)
q0
q1
pq1π(1− s),

c = pq1π(1− s)[(1− δ) + δ(1− p)],

and hence
pq1πs = pq1π −

c

1− δp
,

with a principal’s payoff of

pq1π −
2− δp

1− δp
c.

B.15 Proof of Lemma 15

Fix a posterior q. LetW ∗(1q, q) be the agent’s value in the no-delay principal-optimum
Markov equilibrium, given that the agent holds belief q and the principal holds a degener-
ate belief concentrated on the value q. We seek a lower bound on the principal’s payoff in

45



any equilibrium. The strategy of proof is to note that one feasible option for the principal
is to induce the agent to work in every period. Then we ask what is the most expensive
such a strategy could be for the principal, or equivalently, what is the largest equilibrium
payoff for the agent in an equilibrium in which the agent works in every period? We
denote this payoff by W (1q, q). The principal’s payoff in the corresponding equilibrium
poses a lower bound on the principal’s equilibrium payoff.

We compare this bound on the principal’s equilibrium payoff with the principal’s payoff
in the no-delay principal-optimum Markov equilibrium. Since the total surplus is fixed
by the convention that the agent works in every period, we can do this by comparing the
agent’s payoff in the two equilibria. In particular, for any q we

- construct an equilibrium in which the agent always works, giving the agent payoff
W (1q, q),

- show W (1q, q) ≤W ∗(1q, q),

- show that W (1q, q) converges to W ∗(1q, q) as ∆ gets small.

This gives us a lower bound on the principal’s payoff that is tight (since we have an
equilibrium achieving the payoff) and that converges to the Markov payoff as ∆ gets
small. Notice that W (1q, q) is also an upper bound on the agent’s payoff. The equilibrium
we construct maximizes the surplus and gives the principal her lowest payoff. Any other
equilibrium must feature a (weakly) higher payoff for the principal and a (weakly) smaller
payoff to the agent, and hence can only decrease the agent’s payoff.

Let τ(∆, q), typically written simply as τ , be the number of failed experiments required
to push the posterior expectation below the threshold q for abandoning the project. We
then denote the corresponding posteriors by qτ , qτ−1, . . . , q1, with qτ = q and with q1
satisfying

(1− p)q1
1− pq1

< q =
2c

pπ
.

Hence, if an experiment is undertaken at posterior q1, no further experimentation will
occur.

B.15.1 The No-Delay Principal-Optimum Markov Equilibrium

We start with the no-delay principal-optimum Markov equilibrium. In the last period,
we have

W ∗(1q1, q1) = c.
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In general, we have

W ∗(1qτ , qτ ) = pqτπ(1− sτ ) + δ(1− pqτ )W (1qτ−1, qτ−1)

= c+ δ
qτ
qτ−1

W ∗(1qτ−1, qτ−1),

where the second equality is the incentive constraint. Using this second equality to iterate,
we have

W ∗(1qτ , qτ ) = c+ δ
qτ
qτ−1

W ∗(1qτ−1, qτ−1)

= c+ δ
qτ
qτ−1

(

c+ δ
qτ−1

qτ−2

W ∗(1qτ−2, qτ−2)

)

= c+ δ
qτ
qτ−1

c + δ2
qτ
qτ−2

W ∗(1qτ−2, qτ−2)

= c+ δ
qτ
qτ−1

c + δ2
qτ
qτ−2

c + δ3
qτ
qτ−3

W ∗(1qτ−3, qτ−3)

...
...

= cqτ

[

1

qτ
+

δ

qτ−1
+

δ2

qτ−2
+

δ3

qτ−3
+ · · ·+

δτ−2

q2

]

+ δτ−1 qτ
q1
W ∗(1q1, q1)

= cqτ

[

1

qτ
+

δ

qτ−1
+

δ2

qτ−2
+

δ3

qτ−3
+ · · ·+

δτ−2

q2
+
δτ−1

q1

]

. (61)

B.15.2 The Bound

We now ask what would be the most the principal would have to pay each period,
in order to get the agent to work, and what would be the agent’s resulting payoff. We
proceed recursively. First, we set

W (1q1, q1) ∈ [c, pq1π − c].

This is simply the statement that in the final period, the payoff of the agent is bounded
by the Markov payoff and the entire surplus.

There are two possibilities for the largest amount the principal must pay the agent to
work. First, it may be that the agent is indifferent between working and shirking, and
any larger value of s induces the agent to shirk. In this case, we can write the agent’s
incentive constraint as

pqπ(1− sW ) + δ(1− pq)W (1qτ−1, qτ−1) = c + δ
qτ
qτ−1

W (1qτ−1, qτ−1),
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and hence the agents’ maximum value as

W (1qτ , qτ ) = c+ δ
qτ
qτ−1

W (1qτ−1, qτ−1).

Alternatively, it may be that the agent’s incentive constraint is slack and the agent
strictly prefers to work. If the agent strictly prefers to work, why doesn’t the principal
increase s to some s + ε? The equilibrium presumption is that if the principal does so,
the agent shirks, consuming the advance c and prompting no belief revision. For this to
be suboptimal, it must be that

c+ δW (1qτ , qτ ) ≥ (1− (sτ + ε))pqτπ + δ(1− pqτ )W (1qτ , qτ−1).

Since this must hold for every ε > 0, it must hold for the limiting case of ε = 0 (the
most stringent form of the inequality). We can also focus on the case in which this
constraint holds with equality, since this will fix the bound on sτ . Hence, the relevant
agent’s incentive constraint is then

c+ δW (1qτ , qτ ) = (1− sSτ )pqτπ + δ(1− pqτ )W (1qτ , qτ−1). (62)

We can rearrange (62) to obtain

pqτπs
S
τ = pqτπ − c− δw(qτ , qτ ) + δ(1− pq)W (1qτ , qτ−1).

How small can we make sSτ ? The tools we have for doing this are the continuation payoffs
W (1qτ , qτ ) and W (1qτ , qτ−1). We would like to make the former as large as possible, and
the latter as small as possible. However, these are not independent. A lower bound on
the latter is given by the fact that

W (1qτ , qτ−1) ≥
qτ−1

qτ
W (1qτ , qτ ),

since a pessimistic agent can always duplicate the actions of a more optimistic agent.
Hence, no matter what choice we make for W (1qτ , qτ ), the smallest we can make sτ is the
solution to

pqτπs
S
τ = pqτπ − c− δW (1qτ , qτ ) + δ(1− pq)

qτ−1

qτ
W (1qτ , qτ ).

We can reformulate this condition as

pqτπs
S
τ = pqτπ − c− δ

(

1− (1− pq)
qτ−1

qτ

)

W (1qτ , qτ ).

Now it is apparent that we want to make W (1qτ , qτ ) as large as possible.

48



We claim that an upper bound on W (1qτ , qτ ) is W (1qτ , qτ ), the largest bound available
to the agent when the agent always works. Suppose we have an alternative candidate equi-
librium giving the agent a larger payoff. Then the equilibrium must involve some delay,
and hence must involve a smaller surplus than the equilibrium giving payoff W (1qτ , qτ ).
It must then involve a smaller payoff from the principal than the payoff the principal
receives from the most expensive way of inducing the agent to always work. But since the
principal has the option of always inducing the agent to work, the candidate equilibrium
cannot be an equilibrium. Instead, the principal would induce work, earning a higher
payoff even if this must be done in its most expensive way.

Hence, we have

pqτπs
S
τ = pqτπ − c− δ

(

1− (1− pq)
qτ−1

qτ

)

W (1qτ , qτ ).

We can then calculate

W (1qτ , qτ ) = (1− sSτ )pqτπ + δ(1− pqτ )W (1qτ−1, qτ−1)

≥ c + δ

(

(1− (1− pq)
qτ−1

qτ

)

W (1qτ , qτ ) + δ(1− pq)W (1qτ−1, qτ−1)

= c + δpW (1qτ , qτ ) + δ(1− pq)W (1qτ−1, qτ−1)

=
1

1− δp
c+ δ

1− pq

1− δp
W (1qτ−1, qτ−1)

=
1

1− δp
c+ δ

1− p

1− δp

qτ
qτ−1

W (1qτ−1, qτ−1).

Combining these calculations, an upper bound on the agent’s payoff is given by the
solution to the difference equation

W (1qτ , qτ ) = max

{

c,
1

1− δp
c

}

+max

{

δ
qτ
qτ−1

, δ
1− p

1− δp

qτ
qτ−1

}

W (1qt−1, qτ−1).

Taking the maximum in each case, we can write

W (1qτ , qτ ) =
1

1− δp
c + δ

qτ
qτ−1

W (1qτ−1, qτ−1)

:= B + AτW (1qτ−1, qτ−1).
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We now solve for

W (1qτ , qτ ) = AτW (1qτ−1, qτ−1) + B

= AτAτ−1W (1qτ−2, qτ−2) + AτB +B

= AτAτ−1Aτ−2W (1qτ−3, qτ−3) + AτAτ−1B + AτB +B

= AτAτ−1Aτ−2Aτ−3W (1qτ−4, qτ−4) + AτAτ−1Aτ−2B + AτAτ−1B + AτB +B

...
...

= Aτ · · ·A2W (1q1, q1)

+ Aτ · · ·A3B

+ Aτ · · ·A4B

...

+ AτAτ−1B

+ AτB

+B. (63)

Now we compare (61) and (63), holding fixed the posterior q that comprises our point
of departure, but allowing ∆ to approach zero and hence τ(∆) to grow large. The final
term in the equilibrium payoff W ∗(1qτ(∆)

, qτ(∆)) given by (61) is

δ(∆)τ(∆)−1 qτ(∆)

q1
W ∗(1q1, q1) = δ(∆)τ(∆)−1 qτ(∆)

q1
c∆,

while our bound (63) has as its corresponding term

Aτ(∆) · · ·A2W (1q1, q1) ≤ δ(∆)τ(∆)−1 qτ(∆)

q1
W (1q1, q1) = δ(∆)τ(∆)−1 qτ(∆)

q1
(q1pπ − c)∆.

We then note that both terms approach zero as does ∆. The sum of the remaining terms
comprising W ∗(1qτ(∆)

, qτ(∆)) in (61) is given by cqτ(∆)∆ times

1

qτ(∆)

+
δ(∆)

qτ(∆)−1

+
δ(∆)2

qτ(∆)−2

+
δ(∆)3

qτ(∆)−3

+ · · ·+
δ(∆)τ(∆)−2

q2
.

Under our bound, the corresponding term in (63) is cqτ(∆)∆ times

1

1− δ(∆)p∆

[

1

qτ(∆)

+
δ(∆)

qτ(∆)−1

+
δ(∆)2

qτ(∆)−2

+
δ(∆)3

qτ(∆)−3

+ · · ·+
δ(∆)τ(∆)−2

q2

]

.
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But 1
1−δ(∆)p∆

→ 1 as time periods get short, while the common term is bounded, and

hence lim∆→0W (1q, q) ≤W ∗(1q, q), giving the result.
We now show that for an interval [q, q̃] of priors and for sufficiently small ∆, the upper

bound we have calculated on the agent’s payoff is tight. The requirement on the interval
of priors is that it be such that sS < sW , which we know is the case for a lower interval
that remains nondegenerate as ∆ → 0.

We used one approximation in the course of constructing the bound on the agent’s
payoff, namely that

W (1qτ , qτ−1) ≥
qτ−1

qτ
W (1qτ , qτ ).

It thus suffices to show that this is an equality for the range of priors in question. To
do this, it suffices to show that a pessimistic agent (one with posterior qτ−1) will work
in every period, given that the principal’s current belief is qτ , and given the equilibrium
that we have constructed, involving offer sS in every period. Notice that we know a
pessimistic agent will not do so when the share offered in every period is sW . In that
case, the pessimistic agent shirks at first opportunity and then has a belief matching the
degenerate belief of the principal. However, we are now assuming that share sS is offered
in each period, which is more generous to the agent, making work more attractive.

We argue by induction. Suppose the last period has been reached, meaning that the
principal is characterized by a belief q1. On the equilibrium path, the principal offers share
sS, which induces the agent to work. We must show that this offer also induces work from
an agent characterized by belief q0 = ϕ(q1) to work. From the incentive constraint fixing
sS, we have

pq1π(1− sS) = c+ δpq1π(1− sS)− δ(1− pq1)W (1q1, q0). (64)

We need to show
pq0π(1− sS) ≥ c, (65)

which suffices for an agent characterized by prior q0 to work. From (64), we have

pq1π(1− sS) =
c

1− δ
−
δ(1− pq1)

1− δ
W (1q1, q0).

Using this in (65), we need to show

q0
q1

c

1− δ
−
q0
q1

δ(1− pq1)

1− δ
max{pq0π(1− sS), c} ≥ c.

We suppose that the pessimistic agent shirks and show that this inequality holds, con-
tradicting the supposition that the agent shirks and establishing the result. Taking
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max{pq0π(1 − sS), c} = c, using the updating rule and deleting the common factor c,
we have

q0
q1

1

1− δ
−

δ

1− δ
(1− p) ≥ 1.

A successive series of manipulations gives

q0
q1

− δ(1− p) ≥ 1− δ,

q0
q1

≥ 1− δp,

1− p ≥ (1− δp)(1− pq1),

1− p ≥ 1− δp− pq1 + δp2q1,

δp+ pq1 ≥ p+ δp2q1,

δ + q1 ≥ 1 + pδq1,

which holds for sufficiently small ∆.
Now we turn to the induction step. We consider a belief qτ and the associated more

pessimistic belief qτ−1 = ϕ(qτ ). The induction hypothesis is that

W (1qτ−1, qτ−2) =
qτ−2

qτ−1
W (1qτ−1, qτ−1).

We know, from the definition of sS, that

pqτπ(1− sS) = c+ δW (qτ , qτ )− δ(1− pqτ )W (1qτ , qτ−1).

Using the equilibrium definition of W (qτ , qτ ), this is

pqτπ(1−s
S) = c+δ[pqτπ(1−s

S)+δ(1−pqτ)W (1qτ−1, qτ−1)]−δ(1−pqτ)W (1qτ , qτ−1). (66)

Our goal is to show that an agent who is one step more pessimistic would prefer to work,
or

pqτ−1π(1− sS) + δ(1− pqτ−1)W (1qτ−1, qτ−2) ≥ c + δW (1qτ−1, qτ−1). (67)

We can reformulate (66) to obtain

pqτπ(1− sS) =
c

1− δ
+

δ

1− δ
(1− pqτ )W (1qτ−1, qτ−1)−

δ

1− δ
(1− pqτ )W (1qτ , qτ−1),

and then multiply by qτ−1

qτ
and insert in (67) to obtain

qτ−1

qτ

c

1− δ
+
qτ−1

qτ

δ

1− δ
(1− pqτ )W (1qτ−1, qτ−1)−

qτ−1

qτ

δ

1− δ
(1− pqτ )W (1qτ , qτ−1)

≥ c + δW (1qτ−1, qτ−1)− δ(1− pqτ−1)W (1qτ−1, qτ−2).
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We use the induction hypothesis to rewrite W (1qτ−1, qτ−2) as qτ−2

qτ−1
W (1qτ−1, qτ−1). It then

suffices to assume that the payoff W (1qτ , qτ−1) is generated by a path of play that begins
with a shirk, yielding a contradiction that establishes the result. This allows us to rewrite
the preceding inequality as

qτ−1

qτ

c

1− δ
+
qτ−1

qτ

δ

1− δ
(1− pqτ )W (1qτ−1, qτ−1)−

qτ−1

qτ

δ

1− δ
(1− pqτ )[c+ δW (1qτ−1, qτ−1)]

≥ c+ δW (1qτ−1, qτ−1)− δ(1− pqτ−1)
qτ−2

qτ−1
W (1qτ−1, qτ−1).

Using the updating rules, we can write this as

qτ−1

qτ

c

1− δ
+

δ

1− δ
(1− p)W (1qτ−1, qτ−1)−

δ

1− δ
(1− p)c−

δ2

1− δ
(1− p)W (1qτ−1, qτ−1)

≥ c+ δW (1qτ−1, qτ−1)− δ(1− p)W (1qτ−1, qτ−1).

Regrouping terms and applying successive simplifications gives

c

[

qτ−1

qτ

1

1− δ
−

δ

1− δ
(1− p)− 1

]

≥ W (1qτ−1, qτ−1)

[

p−
δ(1− p)

1− δ
+

δ2

1− δ
(1− p)

]

,

c

[

1− p

1− pqτ
− δ(1− p)− (1− δ)

]

≥ W (1qτ−1, qτ−1)
[

p(1− δ)− δ(1− p) + δ2(1− p)
]

,

c [(1− p)− (1− δp)(1− pqτ )] ≥ W (1qτ−1, qτ−1)
[

p− δ + δ2(1− p)
]

(1− pqτ ),

c
[

1− p− (1− δp− pqτ + δp2qτ )
]

≥ W (1qτ−1, qτ−1)
[

p− δ + δ2 − δ2p
]

(1− pqτ ),

c
[

−p+ δp+ pqτ − δp2qτ
]

≥ W (1qτ−1, qτ−1)
[

p− δ + δ2 − δ2p
]

(1− pqτ ),

c [δ + qτ − 1− δpqτ ] ≥ W (1qτ−1, qτ−1)

[

1− δ2 −
δ(1− δ)

p

]

(1− pqτ ).

As ∆ → 0, the coefficient on c on the left side approaches qτ . On the right side, (1− pqτ )
approaches 1, and the coefficient onW (1qτ−1, qτ−1) approaches − r

p
, ensuring the inequality.

B.16 Proof of Lemma 16

Let V (1qτ−1, qτ−1) be the smallest principal payoff available from a no-delay Markov
path of play, given the common belief qτ−1, and let V (1qτ , qτ ) be the largest such payoff,
given the common belief qτ , with qτ−1 = ϕ(qτ ). We need to show that V (1qτ−1, qτ−1) ≤
V (1qτ , qτ ).

Let Sτ be the surplus available at posterior qτ and St−1 be the surplus available at
posterior qτ−1. Let, conserving on notation, W τ be the smallest agent payoff from a no-
delay path of play, given common belief qτ , and let W τ−1 be the largest agent no-delay
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payoff given belief qτ−1. Then we need to show

Sτ −W τ ≥ Sτ−1 −W τ−1.

A sequence of manipulations gives the equivalent statements:

(pqτπ − c) + δ(1− pqτ )Sτ−1 ≥ Sτ−1 −W τ−1 +W τ ,

(pqτπ − c) + δ(1− pqτ )Sτ−1 ≥ Sτ−1 −W τ−1 + c+ δ
qτ
qτ−1

W τ−1,

pqτπ − 2c

1− δ(1− pqτ )
≥ Sτ−1 −

W τ−1 − δ qτ
qτ−1

W τ−1

1− δ(1− pqτ )
.

We have pqτπ−2c
1−δ(1−pqτ )

≥ Sτ−1 −W τ−1, since the left side is the payoff the principal would
receive if the principal had to pay only c in each period and if failures did not diminish
the posterior, and hence it suffices to show

W τ−1 − δ qτ
qτ−1

W τ−1

1− δ(1− pqτ )W τ−1

≤ 1 + ε,

for some ε > 0. Another sequence of manipulations gives

1− δ
qτ
qτ−1

W τ−1

W τ−1

≤ (1− δ(1− pqτ ))(1 + ε),

1− δ
qτ
qτ−1

W τ−1

W τ−1

≤ 1− δ(1− pqτ ) + ε(1− δ(1− pqτ )),

δ
1− pqτ
1− p

W τ−1

W τ−1

≥ δ(1− pqτ )− ε(1− δ(1− pqτ )),

W τ−1

(1− p)W τ−1

≥ 1− ε
1− δ(1− pqτ )

δ(1− pqτ )
,

W τ−1

W τ−1

≥ (1− p)− ε(1− p)
1− δ(1− pqτ )

δ(1− pqτ )
.

In the course of proving Lemma 15, we have derived an expression for W τ−1 and an upper
bound on W τ−1, and we can insert these to obtain

k1∆+ Z

k2∆+ Z
1−δp

≥ (1− p)− ε
1− δ(1− pqτ )

δ(1− pqτ )
,

where we will later need that k1 = θc and k2 = θ(pq1π − c), and we need to know about
θ and Z only that if we fix a posterior q and let ∆ get small (holding q constant, so that
the number of revisions following q grows), θ and Z are bounded away from zero. Every
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term r and p should also be multiplied by ∆, but we omit these to improve readability.
Now we manipulate to give

(1− δp)(k1∆+ Z)

(1− δp)k2∆+ Z
≥ (1− p)− ε(1− p)

1− δ(1− pqτ )

δ(1− pqτ )
,

δ(1− pq)(1− δp)(k1∆+ Z) ≥ (1− p)(1− pq)δ[(1− δp)k2∆+ Z],

− ε(1− p)(1− δ(1− pq))[(1− δp)k2∆+ Z],

(1− r)(1− pq)(1− (1− r)p)(k1∆+ Z) ≥ (1− p)(1− pq)(1− r)[(1− (1− r)p)k2∆+ Z],

− ε(1− p)(1− (1− r)(1− pq))[(1− (1− r)p)k2∆+ Z],

(1− r)(1− pq)(1− p+ pr)(k1∆+ Z) ≥ (1− p)(1− pq)(1− r)[(1− p+ pr)k2∆+ Z],

− ε(1− p)(r + pq − rpq)[(1− p+ pr)k2∆+ Z].

To evaluate this inequality, we first examine the terms involving ∆0, which give us simply
Z ≥ Z, which obviously holds with equality. Hence, we examine terms involving ∆1,
finding

−r∆− pqZ − pZ + k1∆ ≥ −pZ − pqZ − rZ + k2∆− εrZ − εpqZ.

Hence, we need to show (using the definitions of k1 and k2 to obtain the second inequality)

k1∆ ≥ k2∆− εZ(r + pq),

θc ≥ θ(pq1π − c)− εZ(r + pq),

εZ(r + pq) ≥ θ(pq1π − 2c),

εZ(r + pq) ≥ 2θc(
q1
q
− 1),

εZ
(r + pq)

c
≥ 2θ(

q1
q
− 1).

We now note that the left side is constant in ∆, while the right side approaches zero as
does ∆, giving the result.

B.17 Proof of Lemma 18

For the case of ψ > 2 and ψ > σ, in which there is no delay, this result already follows
from Lemma 15. Lemma 15 also ensures this is the case for beliefs q < q∗ when ψ > 2 and
ψ < σ (delay for high beliefs). It is a straightforward adaptation of Lemma 2, requiring
only a substitution of the appropriate initial conditions, to show that this is the case for
q > q∗∗ when ψ < 2 and ψ > σ (delay for low beliefs). We thus need to consider periods
of delay.
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We begin with the following preliminary result. Suppose we have an equilibrium and
a period τ with values vτ−1 > 0 and vτ = 0. We bound the amount of delay we can
introduce between periods τ1 and τ . We fix the continuation behavior prescribed by
this equilibrium, and then introduce delay between periods τ + 1 and τ , with the total
discounting being these periods given by Λδ(∆). We show that as ∆ → 0, Λ approaches
1.

Suppose that ∆ time has passed since the offer was made that caused the belief to be
revised from qτ+1 to qτ . The principal is supposed to wait an additional period of time
equivalent to discount factor Λ, and we have an equilibrium only if the principal does not
find it profitable to “jump” this waiting time.

We consider two cases. Suppose first that sWτ ≥ sSτ . We need to formulate the incentive
constraint for qτ . If sτ = sWτ , as would be the case if the continuation equilibrium were
the no-delay principal-optimum equilibrium, the incentive constraint is

pqτπ(1− sτ ) + δτ (1− pqτ )wτ−1 = c+ δτ
qτ
qτ−1

wτ−1.

However, we have chosen the continuation equilibrium to be such that vτ = 0, which may
not be the no-delay principal-optimum equilibrium, and may call for sτ ∈ [sSτ , s

W
τ ). Then

there is some ε such that

pqτπ(1− sτ ) + δτ (1− pqτ )wτ−1 = c + δτ
qτ
qτ−1

wτ−1 + ε,

where ε is nonnegative and bounded (for example, by pqτπ − 2c).
Consider what happens if the principal makes an offer sτ + ε. The equilibrium calls

for the agent to reject this offer, conditional on being expected to reject the offer. If the
agent were to accept the offer, it would be profitable for the principal to make it, since the
Markov assumption would then force the continuation of the equilibrium play appropriate
for belief qτ−1, and the principal would have reached this continuation play more quickly
and via a slightly more lucrative offer than the equilibrium prescription. We must allow
ε to be arbitrarily small, and hence must show that the agent must find it at least weakly
profitable to reject sτ if made, given that such a rejection is expected. Hence, it must be
that

c+ Λwτ ≥ pqτπ(1− sτ ) + Λ(1− pqτ )[c+ δwτ−1].

Using the incentive constraint in the latter, this is

c+ Λwτ ≥ c+ δτ
qτ
qτ−1

wτ−1 − δτ (1− pqτ )wτ−1 + Λ(1− pqτ )c+ Λ(1− pqτ )δτwτ−1] + ε.

Eliminating c from each side, substituting for wτ , and rearranging, this is

Λc+ δτΛθτwτ−1 + Λε ≥ δτθτwτ−1 − δτ (1− p)θτwτ−1 + Λ(1− p)θτc+ δτΛ(1− p)θτwτ−1,
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where θτ :=
qτ
qτ−1

. A series of successive rearrangements now gives

Λc[1− (1− p)θτ ] ≥ θτwτ−1[δτ − δτ (1− p) + δτΛ(1− p)− δτΛ] + (1− Λ)ε,

Λcpqτ ≥ θτwτ−1(δτp− δτpΛ) + (1− Λ)ε,

Λcqτ ≥ θτwτ−1δτ (1− Λ) + (1− Λ)
ε

p
,

Λ

1− Λ
≥

δτθτwτ−1

cqτ
+

ε

pdqτ
.

As ∆ → 0, as long as δτ (∆) does not approach zero, the first term on the right side grows
without bound, while the second remains nonnegative. This ensures that Λ converges to
1 as ∆ → 0.

For the second case, suppose that sWτ ≤ sSτ . Here, we must ensure that the agent at
least weakly prefers to reject an offer s′′τ , conditional on being expected to reject. It is
then immediate that Λ ≥ δ(∆). The value s′′τ is is by definition a value that makes the
agent just indifferent between accepting and rejecting, given that a rejection is expected
and that there is delay δ(∆) until the next offer. Should the equilibrium strategies, after
the offer that prompted the belief reduction from qτ+1 to qτ and after a waiting time
of length ∆, prescribe further discounting of length exceeding δ(∆), then the agent will
strictly prefer to accept offer s′′τ immediately, which would be profitable for the principal
and hence would disrupt the equilibrium.

This in turn allows us to show the following. Fix a posterior q and consider an
equilibrium in which v(q) = 0. Fix ε > 0 and suppose that continuing with the maximal
no-delay program backward from q gives vq+ε < 0. Then for sufficiently small ∆, there
exists a q′ ∈ (q, q + ε] with vq′ = 0. To show this, number periods so that q occurs at
period 0 and q + ε at period T . We will be interested in the case in which ∆ gets small,
and so T will depend on ∆. The value v at the posterior ϕ(q) will either be positive, in
which case there is no delay between q and ϕ(q) and hence δ0 = δ(∆), or the value v at
posterior ϕ(q) will equal zero, in which case δ0 is set by the need to set v(q) = 0. In either
case, δ0 will remain bounded as ∆ → 0.

Suppose the claim fails and hence the principal’s payoff is positive over the interval
[q, q + ε]. Then over this interval, there can be delay only in period 1, and hence we can
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write

wT = c

+δT θT c

+δT δT−1θT θT−1c

+δT δT−1δT−2θT θT−1θT−2c
...

+δT δT−1δT−2 · · · δ1Λ1θT θT−1θT−2 · · · θ1c

= c

+δ(∆)θT c

+(δ(∆))2θT θT−1c

+(δ(∆))3θT θT−1θT−2c
...

+(δ(∆))T−1Λ1θT θT−1θT−2 · · · θ1c.

But as ∆ gets small, Λ1 → 1, and this agent payoff approaches the agent’s payoff
under the maximal full-effort construction. The latter payoff ensures that the principal
earns a negative payoff at q + ε, a contradiction.

Now consider an interval of beliefs [q′, q′′] over which the canonical Markov equilib-
rium features a zero principal payoff. The preceding result ensures that for any Markov
equilibrium, the set of posteriors at which the principal receives a zero payoff becomes
dense in [q′, q′′] as ∆ gets small. A continuity argument then ensures that all equilibrium
payoffs converge to the limiting payoffs.

C Appendix: Observable Effort

We prove here the results for the observable case.

C.1 Proof of Proposition 4

We fix ∆ > 0, and then suppress the notation for ∆, writing simply δ for δ(∆) = e−r∆.
To capture the effects of delay, we write δΛ(q) for the effective discounting that elapses
before the principal makes an offer at belief q. If the principal undertakes no delay, making
the offer as soon as ∆ length of time has passed since the previous offer, then Λ(q) = 1.
Delay gives rise to values of Λ(q) < 1.

We start with the Markov equilibria. As in Bergemann and Hege [1], these raise no
issue of existence with observable effort. The usual arguments yield that the agent is
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either offered no contract, or works on the equilibrium path whenever offered a contract,
in which case he is indifferent between doing so or not. We use the same notation as for
the unobservable case: v is the principal’s payoff, w is the agent’s, s is the share, and so
on. So the agent’s payoff satisfies

w(q) = pqπ(1− s) + δΛ(ϕ(q))(1− pq)w(ϕ(q)) = c + δΛ(q)w(q), (68)

while the principal’s payoff solves

v(q) = pqπs− c + δΛ(ϕ(q))(1− pq)v(ϕ(q)). (69)

If the project is terminated after one more failure, the values are

w(q) = pqπ(1− s) = c+ δΛ(q)w(q), v(q) = pqπs− c, (70)

and so, because the principal is only willing to delay if her payoff is zero, in the last period,
combining the equations in (70), either

Λ(q) = 1, v(q) = pqπ −
2− δ

1− δ
c,

or

v (q) = 0, Λ(q) =
pqπ − 2c

δ(pqπ − c)
.

The first case requires v(q) ≥ 0 i.e. q ≥ 2−δ
1−δ

c
pπ

, while the second requires Λ(q) ≥ 0 i.e.

q ≥ 2c/(pπ) —a lower threshold. It thus follows that the equilibrium is such that no offer
is made for q ≤ q := 2c/(pπ), and delay for beliefs q above, but sufficiently close to, q.

We shall argue that, at least along any equilibrium path, there is first no-delay, and
then delay. Let us define as usual the sequence of posterior beliefs, for all n ≥ 0,

qτ =

(

1 +
1− q

q
(1− p)τ

)−1

, (71)

a sequence of beliefs such that, given qτ , the effort of an agent takes us to belief qτ−1 (note
that q0 = q). Let Iτ := [qτ , qτ+1). Fix a Markov equilibrium, and define q̂ := inf{q|v(q) >
0} (set q̂ = 1 if there is no q ≤ 1 for which v(q) > 0) and define τ̂ such that q̂ ∈ Iτ̂ . We
know that q̂ > q. We have, for τ = 0,

w(q) = pqπ − c,

and, from (68), for τ = 1, . . . , τ̂ − 1, q ∈ Iτ , q̃ = ϕ(q),

w(q) = pqπ − c+ (1− pq)
w(q̃)− c

δw(q̃)
δw(q̃)

= pq(π + c)− 2c+ (1− pq)w(q̃), (72)
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where the first equality uses w(q̃) = c+ δΛ(q̃)w(q̃) to solve for Λ(q̃). The solution to this
difference equation is

w(q) = π + c−
2q0c+ (1− p)τ (p (1− pq0)π + 2c (p (τ + 1)− (τp + 1) q0))

p ((1− q0) (1− p)τ + q0)
. (73)

Taking derivatives, w′ (q) is positively proportional to

γ(τ) := 2c (1− p)τ+1 +
(

1− (1− p)τ+1) pπ + 2c ((τ + 1) p− 1) .

Because this expression is independent of q, it means, in particular, that the sign of w is
constant over each interval Iτ . To evaluate its sign, note that

γ(τ + 1)− γ(τ) = 2pc
(

1− (1− p)τ+1)+ p2 (1− p)τ+1 π > 0,

so that, if w is increasing on Iτ , it is also increasing on Iτ+1. Because it is increasing on
I0, it is increasing on each interval.

Consider now some q̆ arbitrarily close to q̂ such that v(q̆) > 0. Then Λ(q̆) = 1, and
so w(q̆) = c/(1 − δ). Note that, because v(q̃) = 0, we can write, for all for all beliefs
q ∈ Iτ̂ ∩ [q̆, 1], using (69) first, and then (68),

v(q) = pqπ − c− pq(1− s)π = pqπ − c+ δ(1− pq)Λ(q̃)w(q̃)− w(q).

The term pqπ−c+δ(1−pq)Λ(q̃)w(q̃) must be increasing in q: it is precisely the definition
of w(q) in the sequence studied above.29 The last term, −w(q), is minimized at q̆, since
it equals −c/(1 − δ) there. Therefore, v must be also strictly positive for all beliefs
q ∈ Iτ̂ ∩ [q̆, 1], and both v, w must be continuous at q̂. This means that (τ̂ , q̂) are such
that, for some q0 ∈ I0, (73) holds with w(q̂) = c/(1 − δ). Note that (72) gives that, for
q = q̂,

c

1− δ
= pq̂π − 2c+ pq̂c + (1− pq̂)w(q̃),

and so, since w(q̃) < c/(1− δ), δpq̂c < (1− δ)(pq̂π − 2c), or equivalently

((1− δ)pπ − δpc)q̂ > 2(1− δ)c,

which implies that, at the very least, pπ− δpc/(1− δ) > 0 (from which it is apparent that
the existence of such a q̂ < 1 only holds for some parameters). Consider now the belief q
such that q̃ = q̂. If Λ(q) = 1, then, solving for s(q) by using w(q) = w(q̃) = c/(1− δ), we
get

v(q)

1− q
= pqπ − 2c−

δpqc

1− δ
+ δ

v(q̃)

1− q̃
.

29Of course, this is not the value of the agent at q, since now Λ = 1.
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Because, as we have seen, pπ − δpc/(1− δ) > 0, the term pqπ − 2c− δpqc
1−δ

is increasing in
q, and since it is non-negative at q̂, it is strictly positive at q. Therefore, v(q) > 0, and it
is clear that there cannot be delay at q, because Λ(q) < 1 would imply a higher value of
s(q), and thus v(q) would still be strictly positive. Indeed, this argument applies to any q
for which q̃ ≥ q̂ and w(q̃) = c/(1− δ). This implies that, for any sequence of beliefs that
can be obtained from Bayes’ rule after strings of failures, the equilibrium must be such
that v is first strictly positive (when the belief is high enough, and the prior might not be
enough to begin with), after which v = 0 and there is delay until the belief drops below
q at which point the project is abandoned.

This does not, however, imply that v(q) = 0 if and only if q < q̂. The discreteness of
the problem does not rule out multiple solutions to (73). It remains to show that all such
solutions converge to the same belief as period length shrinks. Replace p, c, 1− δ by p∆,
c∆ and r∆ respectively, and let κ = τ∆. Taking limits in (73), we obtain that the value
of κ for which Λ (q) = 1, i.e. w(q) = c/(1− δ), solves

eκrσ = (1 +
σ

2
+ κrσ)

ψ

ψ − σ
, (74)

so all solutions q̂ converge to the same solution q∗ as ∆ → 0. Taking the same limits in
(71), the corresponding belief threshold q∗ solves

eκrσ =
ψ

2

q∗

1− q∗
.

Substituting into (74), and solving, gives that

q∗ = 1−
1

1− 2
W−1(−ψ−σ

ψ
e−1−σ

2 )
ψ−σ

,

where W−1 is the negative branch of the Lambert function (the positive branch only
admits a solution to the equation that is below q). Then q∗ < 1 if and only if ξ > 1 + σ.

Otherwise, as ∆ → 0, v(q) = 0 for all q ∈
[

q, 1
]

.

C.2 Proof of Proposition 5

Let us assume throughout that

1− δ ≤
1

pπ
c
− 1

,

which is automatically satisfied as ∆ → 0, since the left side is approximately r∆, while
the right side converges to the positive constant 1/(1 + ψ).
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We start by arguing that equilibria in which the principal makes zero profits exist
for every q < 1. If such an equilibrium exists, then there is a “full-stop” equilibrium in
which the project is terminated at this belief, i.e. the principal offers no contract, with
the threat that doing otherwise would lead to reversion to the equilibrium in which the
principal makes zero profits. Let q̃ denote the infimum over values of q for which such an
equilibrium does not exist. From the analysis of Markov equilibria, we know that q̃ > q.
Consider some q above q̃ for which it does not exist, and such that a failure leads to a
belief strictly below q̃. That is, we can specify that the game terminates after a failure. To
see whether there exists an equilibrium in which the principal makes zero profits starting
at q, we solve (70), which gives as necessary and sufficient condition that

Λ(q) =
pqπ − 2c

δ(pqπ − c)
∈ [0, 1],

which follows from our assumption on δ. This is the desired contradiction: a full-stop
equilibrium exists for all values of q.

The best equilibrium for the principal, then, obtains if cheating by the agent is threat-
ened by termination. Setting Λ(q) = 1 is then optimal, unless it is best to terminate the
project. The agent prefers to work at the last stage (and thus, at all stages) if and only if

pqπ(1− s) ≥ c,

so that the seller’s payoff at the last stage is

v (q) = pqπ − 2c, and s (q) = 1−
c

pqπ
,

and so the project is terminated as soon as the posterior belief drops below q = 2c/(pπ).
More generally, the values are obtained from solving

w(q) = pq(1− s)π + δ(1− pq)w(ϕ(q)) = c, v(q) = pqsπ − c+ δ(1− pq)v(ϕ(q)),

from which we get

v(q)

1− q
=
pq(π − δc)− (2− δ)c

1− q
+ δ

v(ϕ(q))

1− ϕ(q)
, (75)

except when q ∈ I0, when v(q) = pqπ − 2c, and so it is optimal to terminate as soon as
the belief drops below q. Equation (75) is straightforward to solve explicitly, and taking
limits gives the value given by (26).

D Appendix: Good Projects

This appendix examines the case in which the project is known to be good (q = 1).
We fix ∆ > 0, but omit ∆ from the notation whenever we can do so without confusion.
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D.1 The First-Best Policy

The value of conducting an experiment is given by

V = pπ − c+ δ(1− p)V

=
(pπ − c)

1− δ(1− p)
.

The optimal action is to experiment if and only if V ≥ 0, or

p ≥
c

π
. (76)

The first-best strategy thus either never conducts any experiments, or relentlessly conducts
experiments until a success is realized, depending on whether p < c/π or p > c/π.

D.2 Stationary No-Delay Equilibrium: Impatient Projects

We first investigate Markov equilibria. We begin with a candidate equilibrium in which
the principal extends funding at every opportunity, and the agent exerts effort in each
case. If the principal offers share s, she receives an expected payoff in each period of

pπs− c.

The agent’s payoff solves, by the principle of optimality,

W = max{c+ δW, pπ(1− s) + δ(1− p)W}

= max

{

c

1− δ
,
pπ(1− s)

1− δ(1− p)

}

. (77)

Such an equilibrium will exist if and only if the principal finds it optimal to fund the
project and the agent finds it optimal to work, or

pπs ≥ c,

pπ(1− s)

1− δ(1− p)
≥

c

1− δ
.

Combining and rearranging, this is equivalent to

p ·min{(1− δ)πs, (1− δ)π(1− s)− δc} ≥ (1− δ)c.

There is some value of s ∈ [0, 1] rendering the second term in the minimum positive, a
necessary condition for the agent to work, only if (1 − δ)π > δc. If this is the case, then
since the arguments of the minimum vary in opposite directions with respect to s, the

63



lowest value of p or lowest ratio π/c for which such an equilibrium exists is attained when
the two terms are equal, that is, when

s =
1

2

(

1− δ
c

(1− δ)π

)

, (78)

in which case the constraint reduces to

π

c
≥

2

p
+

δ

1− δ
, (79)

which implies (1−δ)π > δc. Hence, necessary and sufficient conditions for the existence of
a full-effort stationary equilibrium are that the players be sufficiently impatient to satisfy
(79). Taking the limit as ∆ → 0, the constraint given by (79) becomes

ψ > σ, (80)

which we have deemed impatient projects.
The principal will choose s to make the agent indifferent between working and shirking,

giving equality of the two terms in (77) and hence an agent payoff of W ∗ = c/(1−δ). This
is expected—by always shirking, the agent can secure a payoff of c. In a Markov equilib-
rium, this must also be his unique equilibrium payoff, since the principal has no incentive
to offer him more than the minimal share that induces him to work (the continuation play
being independent of current behavior).

The total surplus S of the project satisfies

S = pπ − c+ δ(1− p)S, or S =
(pπ − c)

1− δ(1− p)
.

The principal’s payoff is then

(pπ − c)

1− δ(1− p)
−

c

1− δ
=

(1− δ)(pπ − 2c)− δpc

(1− δ)(1− δ(1− p))
=: V ∗,

which, in the limit as ∆ → 0, is positive if and only if ψ > σ.

D.3 Markov Equilibria for Other Parameters

D.3.1 Patient Projects: Delay

It is straightforward that there is no equilibrium with experimentation if pπ− 2c < 0.
We accordingly consider the remaining case in which

2

p
<

π

c
<

2

p
+

δ

1− δ
,
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or, in the limit as ∆ → 0,
0 < ψ < σ,

giving a patient project.
We now have an equilibrium with delay. The principal waits ∆Ψ time between offers,

with Ψ ≥ 1. The agent exerts effort at each opportunity, but is indifferent between doing
so and shirking, and so his payoff is ∆(c+ δ(∆Ψ)c+ δ(∆Ψ)2c+ · · · = c∆

1−δ(∆Ψ)
.30

The principal is indifferent in each period between offering the contract s < 1 and
delaying such an offer, and so it must be that she just breaks even: psπ = c. On the other
hand, since the agent is indifferent between shirking and not, we must have

c∆+ δ(∆Ψ)
c∆

1− δ(∆Ψ)
= p∆(1− s)π + δ(∆Ψ)(1− p∆)

c∆

1 − δ(∆Ψ)
.

Using s = c/pπ, this gives
∆δ(∆Ψ)

1− δ(∆Ψ)
=
π

c
−

2

p
.

Using the approximation δ(∆Ψ) = 1− r∆Ψ (for small ∆), in the limit as ∆ → 0, we have

1

Ψ
= r

(

π

c
−

2

p

)

.

Delay is thus zero (i.e., Ψ = 1) when π
c
= 2

p
+ 1

r
, and increases without bound as ψ

approaches zero.
The payoff of the principal in this equilibrium is 0, and the agent’s payoff is

W =
pπ − 2c

δp
.

We now have completed the characterization of Markov equilibria, yielding payoffs
that are summarized in Figure 5.

D.4 Non-Markov Equilibria

We now extend our analysis to a characterization of all equilibria. We first find equilib-
ria with stationary outcomes backed up by the threat of out-of-equilibrium punishments,
and then use these to construct a family of equilibria with nonstationary outcomes.

Our first step is the following lemma, proved in Appendix D.5.1.

Lemma 19 The agent’s equilibrium payoff never exceeds c
1−δ

.

30More formally, the agent’s strategy specifies that he works if and only if s ≥ c/(pπ).
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✲

✻

2
p
+ δ(∆)

1−δ(∆)
≈ 2

p
+ 1

r
2
p

V,W

c∆
1−δ

π
c

0

V

W

Figure 5: Payoffs from the Markov equilibrium of a project known to be good (q = 1), as
a function of the “benefit-cost” ratio π/c, fixing c (so that we can identify c on the vertical
axis). Both players obviously earn zero in the null equilibrium of an unprofitable project.
The principal’s payoff is fixed at zero for patient projects, while the agent’s increases as
does π. The agent’s payoff is fixed at c∆/(1 − δ(∆)) for impatient projects, while the
principal’s payoff increases in π.

D.4.1 Impatient Projects

Suppose first that π
c
≥ 2

p
+ δ

1−δ
. Section D.2 established that there then exists a Markov

equilibrium in which the agent always works on the equilibrium path, with payoffs

(W ∗, V ∗) :=

(

c

1− δ
,
(1− δ)(pπ − 2c)− δpc

(1− δ)(1− δ(1− p))

)

.

It is immediate that V ∗ puts a lower bound on the principal’s payoff in any equilibrium.
In particular, the share s offered by the principal in this equilibrium necessarily induces
the agent to work, since it does so when the agent expects his maximum continuation
payoff of W ∗ (cf. Lemma 19), and hence when it is hardest to motivate the agent. By
continually offering this share, the principal can then be assured of payoff V ∗.

We begin our search for additional equilibrium payoffs by constructing a family of
potential equilibria with stationary equilibrium paths. We assume that after making an
offer, the principal waits a length of time ∆Ψ until making the next offer, where Ψ ≥ 1.

Why doesn’t the principal make an offer to the agent as soon as possible? Doing so
prompts an immediate switch to the full-effort equilibrium with payoffs (W ∗, V ∗) (with
the agent shirking unless offered a share at least as large as in the full-effort equilibrium).
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We will then have an equilibrium as long as the principal’s payoff exceeds V ∗/δ((Ψ−1)∆),
ensuring that the principal would rather wait an additional length of time (Ψ − 1)∆ to
continue along the equilibrium path, rather than switch immediately to the full-effort
equilibrium.

The agent is indifferent between working and shirking, whenever offered a nontrivial
contract, and so his payoff is c∆ + δ(∆Ψ)c∆ + · · · = c∆

1−δ(∆Ψ)
. Using this continuation

value, the agent’s incentive constraint is

p(1− s)π∆+ δ(∆Ψ)(1− p∆)
c∆

1− δ(∆Ψ)
= c∆+ δ(∆Ψ)

c∆

1− δ(∆Ψ)
,

or

(pπ − 2c)∆− δ(∆Ψ)p∆
c∆

1− δ(∆Ψ)
= (pπs− c)∆.

Using this for the second equality, the principal’s value is then

V = (psπ − c)∆ + δ(∆Ψ)(1− p)V

= (pπ − 2c)∆− δ(∆Ψ)p∆
c∆

1− δ(∆Ψ)
+ δ(∆Ψ)(1− p∆)V

=
(1− δ(∆Ψ))(pπ − 2c)∆− δ(∆Ψ)pc∆2

(1− δ(∆Ψ))(1− δ(∆Ψ)(1− p∆))
.

This gives us a value for the principal that equals V ∗ when Ψ = 1, in which case we
have simply duplicated the stationary full-effort equilibrium. However, these strategies
may give equilibria with a higher payoff to the principal, and a lower payoff to the agent,
when Ψ > 1. In particular, as we increase Ψ, we decrease both the total surplus and the
rent that the agent can guarantee by shirking. This implies that the principal might be
better off slowing down the project from Ψ = 1, if the cost of the rent is large relative
to the profitability of the project, i.e., if π/c is relatively low. Indeed, this returns us
to the intuition behind the existence of Markov equilibria with delay for low-discount
projects, where π/c is too low for the existence of an equilibrium with Ψ = 1: by slowing
down the project, the cost of providing incentives to the agent is decreased, and hence
the principal’s payoff might increase.31

Let V (Ψ) denote the principal’s payoff as a function of Ψ. We have limΨ→∞ V (Ψ) = 0,
giving the expected result that there is no payoff when no effort is invested. Are there
any values for which V (Ψ) > V (1)? The function V (·) is concave, and the function

31We were considering Markov equilibria when examining patient projects, and hence the optimality
of delay required that the principal be indifferent between offering a contract and not offering one, which
in turn implied that the principal’s payoff was fixed at zero. Here, we are using the nonstationary threat
of a punishment to payoff V ∗ to enforce the delay, and hence the principal need not be indifferent and
can earn a positive payoff.
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V (Ψ) = V (1) admits a unique root Ψ† > 1 if its derivative at 1 is positive. It is most
convenient to examine the limiting case in which ∆ → 0, allowing us to write

V =
rΨ(pπ − 2c)− pc

rΨ(rΨ+ p)

and then to note that the resulting derivative in Ψ has numerator equal to

rΨ(rΨ+ p)(pπ − 2c)− [rΨ(pπ − 2c)− pc](2r2Ψ+ rp).

Taking Ψ = 1, this is positive if

r(r + p)(pπ − 2c) > [r(pπ − 2c)](2r + p)

which simplifies to
π

c
<

2

p
+

1

r

(

2 +
p

r

)

.

We must then split our analysis of impatient projects into two cases. If π/c is large
(i.e., π

c
> 2

p
+ 1

r

(

2 + p
r

)

), then V (Ψ) < V ∗ for all Ψ > 1. Therefore, our search for
non-Markov equilibria has not yet turned up any additional equilibria. Indeed, Lemma
(20) shows that there are no other equilibria in this case. Alternatively, if π/c is not
too large (2

p
+ 1

r
≤ π

c
< 2

p
+ 1

r

(

2 + p
r

)

), then as the delay factor Ψ rises above unity,
the principal’s payoff initially increases. We have then potentially constructed an entire
family of stationary-outcome equilibria, one for each value Ψ ∈ [1,Ψ†] (recalling again
that V is concave).32 These nonstationary (but stationary-outcome) equilibria give the
agent a payoff less than W ∗ = c/(1− δ) and the principal a payoff larger than V ∗.

The following lemma, proven in Appendix D.5.2, states that these equilibria yield the
lowest equilibrium payoff to the agent.

Lemma 20
[20.1] [Very Impatient Projects] If

π

c
≥

2

p
+

δ

1− δ

(

2 +
δ

1− δ
p

)

,

then the lowest equilibrium payoff W to the agent is given by W ∗ = c
1−δ

. Hence, there is
then a unique equilibrium with payoffs (W ∗, V ∗).

[20.2] [Moderately Impatient Projects] If

2

p
+

δ

1− δ
≤

π

c
<

2

p
+

δ

1− δ

(

2 +
δ

1− δ
p

)

,

then the infimum over equilibrium payoffs to the agent (as ∆ → 0) is given by W (Ψ†) =
V ∗

δp
≤ c

1−δ
.

32We have an equilibrium for each Ψ ∈ [1,Ψ†] satisfying the incentive constraint δ(Ψ−1)∆V (Ψ) ≥ V ∗.
As ∆ → 0, the set of such z converges to the entire interval [1,Ψ†].
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In the latter case, the limit of the equilibria giving the agent his lowest equilibrium
payoff, as ∆ → 0, sets Ψ = Ψ† and gives the principal payoff V ∗, and so gives both players
their lowest equilibrium payoff. To summarize these relationships, it is convenient let

(W (Ψ†), V ∗) = (W (Ψ†), V (Ψ†)) := (W,V ).

We have now established (W ∗, V ∗) as the unique equilibrium payoffs for very impatient
projects. For moderately impatient projects, we have bounded the principal’s payoff below
by V and bounded the agent’s payoff below by W and above by W ∗.

To characterize the complete set of equilibrium payoffs for moderately impatient
projects, we must consider equilibria with nonstationary outcomes. Appendix D.5.3 es-
tablishes the following technical lemma:

Lemma 21 Let the parameters satisfy 2
p
+ δ

1−δ
≤ π

c
< 2

p
+ δ

1−δ

(

2 + δ
1−δ

p
)

and let (W,V )
be an arbitrary equilibrium payoff. Then

V − V

W −W
≤

δp

1− δ
=

V

W
.

The geometric interpretation of this lemma is immediate: the ratio of the principal’s
to the agent’s payoff is maximized by the limiting worst payoffs (W,V ).

Any equilibrium payoff can be achieved by an equilibrium in which, in the first period,
the equilibrium delivering the worst equilibrium payoff to the agent is played with some
probability 1 − x0, and an extremal equilibrium (i.e, an equilibrium with payoffs on the
boundary of the set of equilibrium payoffs) is played with probability x0.

33 If the former
equilibrium is chosen, subsequent play continues with that equilibrium. If the latter
equilibrium is chosen, then the next period again features a randomization attaching
probability 1− x1 to an equilibrium featuring the worst possible payoff to the agent and
attaching probability x1 to an extremal equilibrium. Continuing in this way, we can
characterize an equilibrium giving payoffs (W0, V0) as a sequence {xt, (Wt, Vt)}

∞
t=0, where

xt is the probability that an equilibrium with the extremal payoffs (Wt, Vt) is chosen in
period t, conditional on no previous mixture having chosen the equilibrium with the worst
equilibrium payoffs to the agent.

Given W , consider the supremum over values of V among equilibrium payoffs, and
say that the resulting payoff (W,V ) is on the frontier of the equilibrium payoff set. Our
goal is to characterize this frontier. If (W0, V0) is on the frontier, it sacrifices no gener-
ality to assume that in each of the equilibria yielding payoffs (Wt, Vt) (in the sequence

33Because the set of equilibrium payoffs is bounded and convex, any equilibrium payoff can be written
as a convex combination of two extreme payoffs. One of these extreme payoffs can be chosen freely, and
hence can be taken to feature the worst equilibrium payoff.
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{xt, (Wt, Vt)}
∞
t=0), the principal offers a contract to the agent without delay.34 In addition,

we can assume that each such equilibrium calls for the principal to offer some share st
to the agent that induces the agent to work.35 Using Lemma 21, Appendix D.5.4 proves
the following, completing our characterization of the equilibrium frontier in the case of
an impatient project:

Lemma 22 In an equilibrium whose payoff is on the frontier of the equilibrium payoff set,
it cannot be that both xt ∈ (0, 1) and xt+1 ∈ (0, 1). More precisely, xt is weakly decreasing
in t, and there is at most one value of t for which xt is in (0, 1).

This lemma tells us that the equilibria on the frontier can be described as follows:
for some T ∈ N ∪ {∞} periods, the project is funded without delay by the principal,
and the agent exerts effort, being indifferent between doing so or not. From period T
onward, an equilibrium giving the agent his worst payoff is played. We have already seen
the two extreme points of this family: if T = ∞, there is never any delay, resulting in
the payoff pair (W ∗, V ∗). If T = 0, the worst equilibrium is obtained. For very impatient
projects, all these equilibria are equivalent (since the no-delay equilibrium is then the
worst equilibrium), and only the payoff vector (W ∗, V ∗) is obtained. For moderately
impatient projects, however, this defines a sequence of points (one for each possible value
of T ), the convex hull of which defines the set of all equilibrium payoffs. Any payoff in
this set can be achieved by an equilibrium that randomizes in the initial period between
the worst equilibrium, and an equilibrium on the frontier.

This result in turn leads to a concise characterization of the set of equilibrium payoffs,
in the limit as ∆ → 0. In particular, as ∆ → 0, the set of equilibrium payoffs converges
to a set bounded below by the line segment connecting the payoffs (W,V ) and (W ∗, V ) =
(W ∗, V ∗), and bounded above by a payoff frontier characterized by Lemma 22. This set
of payoffs is illustrated in the two right panels of Figure 6. An analytical determination
of the set of equilibrium payoffs is provided in Section D.4.3, for the convenient case in
which the length of a time period ∆ is arbitrarily small.

34If the principal delays, we can view the resulting equilibrium payoff as a convex combination of
two payoffs, one (denoted by (W ′

t , V
′
t )) corresponding to the case in which a contract is offered and one

corresponding to offering no contract. But the latter is an interior payoff of the form (δ(W ′′
t , V

′′
t )), given

by δ times the accompanying continuation payoff (W ′′
t , V

′′
t ). We can then replace (Wt, Vt) by a convex

combination of (W ′
t , V

′
t ) and (W ′′

t , V
′′
t ), to obtain a payoff of the form (Wt, V

†
t ), with V †

t > Vt. Because
Wt us unchanged, none of the incentives in previous periods are altered ensuring that we still have an
equilibrium. Because the principal’s payoff Vt has increased, so has V0, contradicting the supposition
that the latter was on the payoff frontier.

35Should the principal be called upon to offer a contract that induces the agent to shirk, it is a straight-
forward calculation that it increases the principal’s payoff, while holding that of the agent constant, to
increase the share st just enough to make the agent indifferent between working and shirking, and to
have the agent work, again ensuring that (W,V ) is not extreme.
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D.4.2 Patient Projects

Consider now the case in which

2

p
≤

π

c
<

2

p
+

δ

1− δ
.

The Markov equilibria in this region involve a zero payoff for the principal. This means, in
particular, that we can construct an equilibrium in which both players’ payoff is zero: on
the equilibrium path, the principal makes no offer to the agent; if she ever deviates, both
players play the stationary equilibrium from that point on, which for those parameters
also yields zero profit to the principal. Since this equilibrium gives both players a payoff
of zero, it is trivially the worst equilibrium.

Lemma 22 is valid here as well,36 and so the equilibrium payoffs on the frontier are
again obtained by considering the strategy profiles indexed by some integer T such that
the project is funded for the first T periods, and effort is exerted (the agent being in-
different doing so), after which the worst equilibrium is played. Unlike in the case of an
impatient project, we now have a constraint on T . In particular, as T → ∞, the value
to the principal of this strategy profile becomes negative. Since the value must remain
nonnegative in equilibrium, this defines an upper bound on the values of T that are con-
sistent with equilibrium. While the sequence of such payoffs can be easily computed, and
the upper bound implicitly defined, the analysis is once again crisper when we consider
the continuous-time limit ∆ → 0, as in Section D.4.3. The set of equilibrium payoffs is
illustrated on the second panel of Figure 6.

D.4.3 Characterization of Equilibrium Payoffs

Sections D.4.1–D.4.2 characterize the set of equilibrium payoffs. However, this charac-
terization is not easy to use, as the difference equations describing the boundaries of the
equilibrium payoff set are rather unwieldy. We consider here the limit of these difference
equations, and hence of the payoff set, as we let the length ∆ of a period tend to 0.

Given an equilibrium in which there is no delay the agent invariably exerts effort, the
value Vt at time t to the principal solves (up to terms of order ∆2 or higher)

Vt = pπst∆− c∆+ (1− (r + p)∆)(Vt + V̇t∆),

or, in the limit as ∆ → 0,

0 = pπst − c− (r + p)v(t) + v̇(t), (81)

36In this range of parameters, W = V = 0, and upon inserting these values, the proof of Lemma 22
continues to hold. From (86), the counterpart of Lemma 21 in this case is V

W
≤ pπ−2c

c
.
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where st is the share to the principal in case of success, and v̇ is the time derivative of v
(whose differentiability is easy to derive from the difference equations). Similarly, if the
agent is indifferent between exerting effort or not, we must have (up to terms of order ∆2

or higher)

Wt = pπ(1− st)∆ + (1− (r + p)∆)(Wt + Ẇt∆) = c∆+ (1− r∆)(Wt + Ẇt∆),

where Wt is the agent’s continuation payoff from time t onwards. In the limit as ∆ → 0,
this gives

0 = pπ(1− st)− (r + p)wt + ẇt = c− rw(t) + ẇt. (82)

We may use these formulae to obtain closed-forms in the limit for the boundaries of the
payoff sets described above.

Let us first ignore the terminal condition and study the stationary case in which
v̇t = ẇt = 0 for all t. Then

wt = w∗ :=
c

r
, vt = v∗ :=

ψ − σ

σ + 1

c

r
,

which are positive provided ψ ≥ σ. If instead ψ < σ, the principal’s payoff is zero in
the unique stationary equilibrium. It is easy to check that if in addition ψ < 0, it is not
possible to have the agent exert effort in any equilibrium, and the unique equilibrium
payoff vector is (0, 0). This provides us with two of the relevant boundaries, between
unprofitable and patient projects, and between patient and moderately impatient projects.
The derivation of the boundary between moderately impatient and very impatient projects
is more involved, and available along with the proof of Proposition 8 in Section D.5.5.

Proposition 8 The set of equilibrium payoffs for a project that is known to be good
(q = 1), in the limit as period length becomes short, is given by:

• Unprofitable Projects (ψ < 0). No effort can be induced, and the unique equilib-
rium payoff is (w, v) = (0, 0).

• Patient Projects (0 < ψ < σ). The set of equilibrium payoffs is given by the pairs
(w, v), where w ∈ [0, w†], and

0 ≤ v ≤
ψ + 1

σ + 1

[

1−
(

1−
w

c

)σ+1
]

c

r
− w,

where w† is the unique positive value for which the upper extremity of this interval
is equal to zero. In the equilibria achieving payoffs on the frontier, there is no delay,
and the agent always exerts effort, until some time T < ∞ at which funding stops
altogether. Such equilibria exist for all T below some parameter-dependent threshold
T .
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• Moderately Impatient Projects (σ < ψ < σ(σ + 2)). The set of equilibrium
payoffs is given by the pairs (w, v), for w ∈ [w, c

r
], and

v∗ ≤ v ≤
c

r

(

ψ + 1

σ + 1
+
ψ − ψσ − 2σ

ψ − σ2 − 2σ

(

ψ − σ2

σ2 + σ

)−σ
(

1−
rw

c

)σ+1 c

r

)

− w,

where v∗ = ψ−σ
σ+1

c
r

and w = v∗/σ. In the equilibria achieving payoffs on the frontier,
there is no delay, and the agent exerts effort, until some time T ≤ ∞ from which
point on there is delay, with continuation payoff (w, v∗).

• Very Impatient Projects (ψ > σ(σ+2)). The unique equilibrium payoff involves
no delay and the agent exerting effort: (w, v) = (w∗, v∗) =

(

c
r
, ψ−σ
σ+1

c
r

)

.

D.4.4 Summary

Figure 6 summarizes our characterization of the set of equilibrium payoffs, for the
limiting case as ∆ → 0. In each case, the Markov equilibrium puts a lower bound on the
principal’s payoff. For either very impatient or (of course) unprofitable projects, there
are no other equilibria. It is not particularly surprising that, for moderately impatient
projects, there are equilibria with stationary outcomes backed up by out-of-equilibrium
punishments that increase the principal’s payoff. The principal has a commitment prob-
lem, preferring to reduce the costs of current incentives by reducing the pace and hence
the value of continued experimentation. The punishments supporting the equilibrium
path in the case of moderately impatient projects effectively provide such commitment
power, allowing the principal to increase her payoff at the expense of the agent. It is
somewhat more surprising that for patient and moderately impatient projects the prin-
cipal’s payoff is maximized by an equilibrium whose outcome is nonstationary, coupling
an initial period of no delay with a future in which there is either delay or the project
is altogether. Moreover, in the case of a patient project, such equilibria can increase the
payoffs of both agents.

D.5 Proofs

D.5.1 Proof of Lemma 19

Let W be the agent’s maximal equilibrium payoff. We can restrict attention to cases
in which the principal has offered a contract to the agent, and in which the agent works.37

37If c/(1 − δ) is an upper bound on the agent’s payoff conditional on a contract being offered, then it
must also be an upper bound on an equilibrium path in which a contract is offered only after some delay.
Next, if a contract is offered and the agent shirks, then we have W = c+ δW , giving W = c

1−δ .

73



0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.6 0.7 0.8 0.9 1.0

0.52

0.54

0.56

0.58

0.60

0.62

0.2 0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

2.0

2.5

3.0

Figure 6: Set of equilibrium payoffs for a project that is known to be good (q = 1), for the
limiting case of arbitrarily short time periods ( ∆ → 0). We measure the agent’s payoff w
on the horizontal axis and the principal’s payoff v on the vertical axis. To obtain concrete
results, we set c/r = p/r = 1 and, from left to right, (pπ−c)/c = 0 (unprofitable project),
(pπ − c)/c = 3/2 (patient project), (pπ − c)/c = 3 (moderately impatient project), and
(pπ − c)/c = 7 (very impatient project). The point in each case identifies the payoffs of
Markov equilibria. The dotted line in the case of a moderately impatient project identifies
the payoffs of the equilibria with stationary outcomes, and the shaded areas identify the
sets of equilibrium payoffs. Note that neither axis in the third panel starts at 0.

We first note that a lower bound on the principal’s payoff is provided by always
choosing that value sW satisfying (and hence inducing the agent to work, no matter how
lucrative a continuation value the agent expects)

pπ(1− sW ) + δ(1− p)W = c+ δW,

which we can rearrange to give

pπsW − c = −δpW + pπ − 2c,

and hence a principal payoff of

psWπ − c

1− δ(1− p)
=
pπ − 2c− δpW

1− δ(1− p)
.

We can then characterize W as the solution to the maximization problem:

W = max
s,W,V

pπ(1− s) + δ(1− p)W

s.t. W ≥ c+ δW,

W ≥W,

psπ − c+ δ(1− p)V ≥
pπ − 2c− δpW

1− δ(1− p)
,

V +W ≤
pπ − c

1− δ(1− p)
,
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where the first constraint is the agent’s incentive constraint, the second establishes W
as the largest agent payoff, the third imposes the lower bound on the principal’s payoff,
and the final constraint imposes feasibility. Notice that if the first constraint binds, then
(using the second constraint) we immediately have W ≤ c

1−δ
, and so we may drop the first

constraint. Next, the final constraint will surely bind (otherwise we can decrease s and
increase V so as to preserve the penultimate constraint while increasing the objective),
allowing us to write

W = max
s,W

pπ(1− s) + δ(1− p)W

s.t. W ≥W

pπs− c+ δ(1− p)

[

pπ − c

1− δ(1− p)
−W

]

=
pπ − 2c− δpW

1− δ(1− p)
.

Now notice that the objective and the final constraint involve identical linear tradeoffs of
s versus W . We can thus assume that W = W , allowing us to write the problem as

W = max
s
pπ(1− s) + δ(1− p)W (83)

s.t. pπs− c+ δ(1− p)

[

pπ − c

1− δ(1− p)
−W

]

=
pπ − 2c− δpW

1− δ(1− p)
. (84)

We now show that this implies W = c/(1 − δ). From (83), we have (letting s∗ be the
maximizer, subtracting c from both sides, and rearranging)

pπs∗ − c = pπ + δ(1− p)W −W − c.

Now using (84), we can write this as

pπ − 2c− δpW

1− δ(1− p)
− δ(1− p)

[

pπ − c

1− δ(1− p)
−W

]

= pπ + δ(1− p)W −W − c,

or, isolating W ,

W

[

δp

1− δ(1− p)
− 1

]

=
pπ − 2c

1− δ(1− p)
− δ(1− p)

pπ − c

1− δ(1− p)
− [pπ − c],

or (simplifying the left side and multiplying by −1),

(1− δ)W

1− δ(1− p)
= (pπ − c) +

δ(1− p)(pπ − c)

1− δ(1− p)
−

pπ − 2c

1− δ(1− p)
,

or

W =
[1− δ(1− p)](pπ − c) + δ(1− p)(pπ − c)− (pπ − 2c)

1− δ
=

c

1− δ
.
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D.5.2 Proof of Lemma 20

We consider an artificial game in which the principal is free of sequential rationality
constraints. The principal names, at the beginning of the game, a pair of sequence {tn}

∞
n=0

and {sn}
∞
n=0 such that, barring a success, the principal makes an offer sn at time tn. To

preserve feasibility, we must have tn+1 − tn ≥ ∆, with strict inequality if there is delay.
The principal’s objective is to minimize the agent’s payoff subject to the constraints that
the agent be willing to exert effort in response to any offer, and that the principal’s payoff
in the continuation game starting at each period is at least V ∗. We show that the bounds
on the agent’s payoff given by c

1−δ
(if Ψ† < 1) and V ∗

δp
(if Ψ† > 1) apply to this artificial

game. The bounds must then also hold in the original game. Since we have equilibria of
the original game whose payoffs approach (as ∆ → 0) the proposed payoff in each case,
this establishes the result.

First, we note that t0 = 0, since otherwise the principal could increase her payoff by
eliminating the initial delay without compromising the constraints. Next, each offer sn
must cause the agent’s incentive constraint to bind. Suppose to the contrary that at some
time tn the agent’s incentive constraint holds with strict inequality. Then replacing the
offer sn with the (larger) value s∗n that causes the agent’s constraint to bind, while leaving
continuation play unaffected, preserves the agent’s incentives (since the continuation value
of every previous period is decreased, this only strengthens the incentives in previous
periods) while increasing the principal’s and reducing the agent’s payoff, a contradiction.

Let W be the agent’s minimum equilibrium payoff. Because the agent’s incentive
constraint always binds, W must equal the expected payoff from persistent shirking, and
hence is given by

W = c
∑∞

n=0
e−δtn . (85)

Notice that the continuation payoff faced by the agent at each time tn must be at least
W , since otherwise W is not the lowest equilibrium payoff possible for the agent. Next,
we claim that each such continuation payoff equals W . If this is not the case for some
tn, then we can construct an alternative equilibrium featuring the same sequence of times
and offers for n = {0, . . . , tn−1}, and then continues with an equilibrium in the resulting
continuation game that gives payoff W . Because the continuation value at time tn has
been reduced, this allows us to reduce the first-period value s0 while still preserving all of
the agent’s incentive constraints. The resulting lower first-period payoff and lower con-
tinuation value decrease the agent’s payoff (and increase the principal’s), a contradiction.
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Using (85), this in turn implies that

W

c
=

∑∞

n=0
e−δtn

= 1 +
∑∞

n=1
e−δtn

= 1 + e−δt1
∑∞

n=1
e−δ(tn−t1)

= 1 + e−δt1
W

c
,

where the final equality uses the fact that the agent’s continuation value at t1 is W . We
can repeat this exercise from the point of view of time t1, giving

W

c
=

∑∞

n=1
e−δ(tn−t1)

= 1 + e−δ(t2−t1)
∑∞

n=2
e−δ(tn−t2)

= 1 + e−δ(t2−t1)
W

c
.

We can conclude in this fashion, concluding that there exists some Ψ such that for all
n ≥ 1,

tn − tn−1 = Ψ∆.

However, we have characterized the equilibria that feature such a constant value of Ψ,
finding that the only such equilibrium gives payoff W ∗ = c

1−δ
when Ψ† < 1 and that the

agent’s lowest payoff from such an equilibrium is V ∗

δp
if Ψ† > 1.

D.5.3 Proof of Lemma 21

We consider an equilibrium with payoffs (W0, V0). We are interested in an upper
bound on the ratio V0−V

W0−W
, which we denote by ζ . It suffices to consider an equilibrium in

which a period-0 mixture with probability (1− x0) prompts the players to continue with
equilibrium payoffs (W,V ), and with probability x0 calls for a current contract s, followed
by a period-1 mixture attaching probability 1 − x1 between continuation payoffs (W,V )
and probability x1 to continuation play with payoffs (W1, V1), and so on. In addition, we
can assume that any contract offered to the agent induces the agent to work.38 Hence,

38Any such contract is part of an extreme equilibrium. Suppose we have a contract that does not
induce effort, and hence gives payoffs −c+ δV and c+ δW to the principal and agent, respectively, for
some continuation payoffs (W,V ). There exists an alternative equilibrium with the same continuation
payoffs, but in which the principal induces effort by offering a share s satisfying

c+ δW = (1− s)pπ + δ(1− p)W.
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we have

V0 = x0 [pπs− c+ δ(1− p)[x1V1 + (1− x1)V ]] + (1− x0)V

W0 = x0 [pπ(1− s) + δ(1− p)[x1W1 + (1− x1)W ]] + (1− x0)W

≥ x0 [c+ δ[x1W1 + (1− x1)W ]] + (1− x0)W,

where the inequality is the agent’s incentive constraint. Setting an equality in the incentive
constraint, we can solve for

pπs = pπ − c− δp[x1W1 + (1− x1)W ].

Using this to eliminate the share s from the principal’s payoff, and returning to the agent’s
binding incentive constraint, we obtain

V0 − V = x0 [pπ − 2c− δp[x1W1 + (1− x1)W ] + δ(1− p)[x1V1 + (1− x1)V ]− V ]

W0 −W = x0 [c+ δ[x1W1 + (1− x1)W ]−W ]

and hence

ζ :=
V0 − V

W0 −W
=
pπ − 2c− δp[x1(W1 −W ) +W ] + δ(1− p)[x1(V1 − V ) + V ]− V

c + δ[x1(W1 −W ) +W ]−W
.

We obtain an upper bound on this expression by first taking V1−V = ζ(W1−W ) on the
right side and then rearranging to obtain

ζ ≤
pπ − 2c− δp[x1(W1 −W ) +W ] + (1− δ)V

c+ δ[x1p(W1 −W ) +W ]−W
.

We now note that W1 − W appears negatively in the numerator and positively in the
denominator, so that an upper bound on ζ is obtained by setting W1 −W = 0 on the
right side, giving

ζ ≤
pπ − 2c− δpW − (1− δ(1− p))V

c− (1− δ)W
=

δp

1− δ
, (86)

where the final equality is obtained by using W = 1−δ
δp
V to eliminate W , and then sim-

plifying.

Solving this expression gives pπ−c−δpW = pπs, and hence a principal payoff of pπ−2c−δpW+δ(1−p)V .
It is then a contradiction to our hypothesis that we are dealing with an extreme equilibrium, hence
establishing the result, to show that this latter payoff exceeds −c+ δV , or pπ− 2c− δpW + δ(1− p)V >
−c+ δV , which is pπ − c > δp(W + V ), or

pπ − c

δp
> V +W.

The left side is an upper bound on the value of the project without an agency problem, giving the result.
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D.5.4 Proof of Lemma 22

We assume that x0, x1 ∈ (0, 1) and establish a contradiction. Using the incentive
constraint, we can write

W0 = x0 [c+ δ[x1W1 + (1− x1)W ]] + (1− x0)W

V0 = x0 [pπ − 2c− δp[x1W1 + (1− x1)W ] + δ(1− p)[x1V1 + (1− x1)V ]− (1− x0)V ] .

We now identify the rates at which we could decrease x1 and increase x0 while preserving
the valueW0. Thinking of x0 as a function of x1, we can take a derivative of this expression
for W0 to find

dW0

dx1
=
dx0
dx1

W0 −W

x0
+ δx0(W1 −W ) = 0,

and then solve for
dx0
dx1

= δx20
W1 −W

W0 −W
.

Now let us differentiate V0 to find to find

dV0
dx1

=
dx0
dx1

V0 − V

x0
+ δx0[(1− p)(V1 − V )− p(W1 −W )]

= −δx0
W1 −W

W0 −W
(V0 − V ) + δx0[(1− p)(V1 − V )− p(W1 −W )].

It is a contradiction to show that this derivative is negative, since then we could increase
the principal’s payoff, while preserving the agent’s by decreasing x1. Eliminating the term
δx0 and multiplying by W0 −W > 0, we have

[(1− p)(V1 − V )− p(W1 −W )](W0 −W )− (V0 − V )(W1 −W ) ≤ 0.

We now substitute for W0 −W and V0 − V to obtain

[(1− p)(V1 − V )− p(W1 −W )]x0 [c + δ[x1W1 + (1− x1)W ]−W ]

− x0 [pπ − 2c− δp[x1W
′
1 + (1− x1)W ] + δ(1− p)[x1V

′
1 + (1− x1)V ]− V ] (W1 −W )

≤ 0.

Deleting the common factor x0 and canceling terms, this is

[(1− p)(V1 − V )− p(W1 −W )] [c− (1− δ)W ]

− [pπ − 2c− δpW + δ(1− p)V − V ] (W1 −W ) ≤ 0.

Rearranging, we have

(1− p)(V1 − V )− p(W1 −W )

W1 −W
≤
pπ − 2c− δpW − (1− δ(1− p))V

c− (1− δ)W
,

which follows immediately from the inequality in (86) from the proof of Lemma 21.
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D.5.5 Proof of Proposition 8

The two differential equations (81)–(82) have as solutions, for some C1, C2 ∈ R,

w(t) =
c

r
+ C1e

rt, and v(t) =
ψ − σ

σ + 1

c

r
− C1e

rt + (C1 + C2)e
r(1+σ)t.

If 0 < ψ < σ (the case of a patient project), then, since the first term of the principal’s
payoff is strictly negative, it must be that either C1, or C1 + C2 is nonzero. Since the
solution must be bounded, this implies, as expected, that effort cannot be supported
(without delay) indefinitely. If effort stops at time T , then, since w(T ) = 0, C1e

rT =
−c/r, and C2 is then obtained from v(T ) = 0. Eliminating T then yields the following
relationship between v(0) and w(0), written simply as v and w:

v =
ψ + 1

σ + 1

[

1−
(

1−
rw

c

)σ+1
]

c

r
− w.

We let w† denote the unique strictly positive root of the previous expression. If w ∈ [0, w†],
then v ≥ 0, and these are the values that can be obtained for times T for which the
principal’s payoff is positive. This yields the result for patient projects. For reference, the
Markov equilibrium in this region is given by (w, v) = (ψ

σ
c
r
, 0).

Now consider impatient projects, or ψ > σ, so that the principal’s payoff in the
stationary full-effort equilibrium is positive. We need to describe the equilibrium payoffs
of potential stationary-outcome equilibria with delay. We encompass delay in the discount
rate. That is, players discount future payoffs at rate rλ, for λ ≥ 1. The payoffs to the
agent and principal, under such a constant rate, are

w =
c

rλ
, v =

λψ − σ

σ + λ

c

rλ
.

There exists at most one value of λ > 1 for which the principal’s payoff is equal to that
obtained for λ = 1, namely

λ =
σ(σ + 1)

ψ − σ
,

which is larger than one if and only if ψ < σ(σ + 2). As before, if ψ > σ(σ + 2), then we
have the case of a very impatient project, for which there is no other equilibrium payoff
than the Markov payoff (w∗, v∗).

Let us then focus on moderately patient projects for which

ψ ∈ (σ, σ(σ + 2)),

in which case λ > 1, so that there exists an equilibrium in which constant funding is
provided, but at a slower rate than possible. The agent’s payoff in this equilibrium is

w =
c

rλ
=

ψ − σ

σ(σ + 1)

c

r
.
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We may now solve the differential equations with boundary condition v(T ) = v∗, w(T ) = w
for an arbitrary T ≥ 0. Eliminating T gives the following relationship between v = v(0)
and w = w(0):

v =
c

r

(

ψ + 1

σ + 1
+
ψ − ψσ − 2σ

ψ − σ2 − 2σ

(

ψ − σ2

σ2 + σ

)−σ
(

1−
rw

c

)σ+1 c

r

)

− w,

completing the results for moderately impatient projects.

81


