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Abstract

Myerson’s classic result provides a full description of how a seller can maximize

revenue when selling a single item. We address the question of revenue maximiza-

tion in the simplest possible multi-item setting: two items and a single buyer who

has independently distributed values for the items, and an additive valuation. In

general, the revenue achievable from selling two independent items may be strictly

higher than the sum of the revenues obtainable by selling each of them separately.

In fact, the structure of optimal (i.e., revenue-maximizing) mechanisms for two

items even in this simple setting is not understood.

In this paper we obtain approximate revenue optimization results using two

simple auctions: that of selling the items separately, and that of selling them as a

single bundle. Our main results (which are of a “direct sum” variety, and apply

to any distributions) are as follows. Selling the items separately guarantees at

least half the revenue of the optimal auction; for identically distributed items, this

becomes at least 73% of the optimal revenue.

For the case of k > 2 items, we show that selling separately guarantees at least

a c/ log2 k fraction of the optimal revenue; for identically distributed items, the

bundling auction yields at least a c/ log k fraction of the optimal revenue.
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1 Introduction

Suppose that you have one item to sell to a single buyer whose willingness to pay is

unknown to you but is distributed according to a known prior (given by a cumulative

distribution F ). If you offer to sell it for a price p then the probability that the buyer

will buy is1 1 − F (p), and your revenue will be p · (1 − F (p)). The seller will choose a

price p∗ that maximizes this expression.

This problem is exactly the classical monopolist pricing problem, but looking at it

from an auction point of view, one may ask whether there are mechanisms for selling

the item that yield a higher revenue. Such mechanisms could be indirect, could offer

different prices for different probabilities of getting the item, and perhaps others. Yet,

Myerson’s characterization of optimal auctions (Myerson [1981]) concludes that the take-

it-or-leave-it offer at the above price p∗ yields the optimal revenue among all mechanisms.

Even more, Myerson’s result also applies when there are multiple buyers, in which case

p∗ would be the reserve price in a second price auction.

Now suppose that you have two (different) items that you want to sell to a single

buyer. Furthermore, let us consider the simplest case where the buyer’s values for the

items are independently and identically distributed according to F (“i.i.d.-F” for short),

and furthermore that his valuation is additive: if the value for the first item is x and for

the second is y, then the value for the bundle – i.e., getting both items – is2 x + y. It

would seem that since the two items are completely independent from each other, then

the best we should be able to do is to sell each of them separately in the optimal way,

and thus extract exactly twice the revenue we would make from a single item. Yet this

turns out to be false.

Example: Consider the distribution taking values 1 and 2, each with probability 1/2.

Let us first look at selling a single item optimally: the seller can either choose to price it

at 1, selling always3 and getting a revenue of 1, or choose to price the item at 2, selling it

with probability 1/2, still obtaining an expected revenue of 1, and so the optimal revenue

for a single item is 1. Now consider the following mechanism for selling both items:

bundle them together, and sell the bundle for price 3. The probability that the sum of

the buyer’s values for the two items is at least 3 is 3/4, and so the revenue is 3 ·3/4 = 2.25

– larger than 2, which is obtained by selling them separately.

However, that is not always so: bundling may sometimes be worse than selling the

1Assume for simplicity that the distribution is continuous.
2Our buyer’s demand is not limited to one item (which is the case in some of the existing literature;

see below).
3Since we want to maximize revenue we can always assume without loss of generality that ties are

broken in a way that maximizes revenue; this can always be achieved by appropriate small perturbations.
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items separately. For the distribution taking values 0 and 1, each with probability 1/2,

selling the bundle can yield at most a revenue of 3/4, and this is less than twice the

single-item revenue of 1/2. In some other cases neither selling separately nor bundling

is optimal. For the distribution that takes values 0, 1 and 2, each with probability 1/3,

the unique optimal auction turns out to offer to the buyer the choice between any single

item at price 2, and the bundle of both items at a “discount” price of 3. This auction

gets revenue of 13/9 revenue, which is larger than the revenue of 4/3 obtained from

either selling the two items separately, or from selling them as a single bundle. A similar

situation happens for the uniform distribution on [0, 1], for which neither bundling nor

selling separately is optimal (Manelli and Vincent [2006]). In yet other cases the optimal

mechanism is not even deterministic and must offer lotteries for the items. This happens

in the following example from Hart and Reny [2011]4: Let F be the distribution which

takes values 1, 2 and 4, with probabilities 1/6, 1/2, 1/3, respectively. It turns out that

the unique optimal mechanism offers the buyer the choice between buying any one good

with probability 1/2 for a price of 1, and buying the bundle of both goods (surely) for a

price of 4; any deterministic mechanism has a strictly lower revenue.

So, it is not clear what optimal mechanisms for selling two items look like, and in-

deed characterizations of optimal auctions even for this simple case are not known. We

shorty describe some of the previous work on these type of issues. McAfee and McMillan

[1988] identify cases where the optimal mechanism is deterministic. However, Thanas-

soulis [2004] and Manelli and Vincent [2006] found a technical error in the paper and

exhibit counter-examples. These last two papers contain good surveys of the work within

economic theory, with more recent analysis by Fang and Norman [2006], Jehiel et al.

[2007], Hart and Reny [2010], Hart and Reny [2011], Lev [2011]. In the last few years

algorithmic work on these types of topics was carried out. One line of work (e.g. Briest

et al. [2010] and Cai et al. [2012]) shows that for discrete distributions the optimal auction

can be found by linear programming in rather general settings. This is certainly true in

our simple setting where the direct representation of the auction constraints provides a

polynomial size linear program. Thus we emphasize that the difficulty in our case is not

computational, but is rather that of characterization and understanding the results of the

explicit computations: this is certainly so for continuous distributions, but also for dis-

crete ones.5 Another line of work in computer science (Chawla et al. [2007], Chawla et al.

4Previous examples where randomization helps appear in Manelli and Vincent [2006], Manelli and
Vincent [2007] and Thanassoulis [2004], but these require interdependent distributions of values, rather
than independent and identically distributed values.

5If we limit ourselves to deterministic auctions (and discrete distributions), finding the optimal one
is easy computationally in the case of one buyer (just enumerate), in contrast to the general case of
multiple buyers with correlated values for which computational complexity difficulty has been established
by Papadimitriou and Pierrakos [2011].
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[2010a], Chawla et al. [2010b], Daskalakis and Weinberg [2011]) attempts approximating

the optimal revenue by simple mechanisms. This was done for various settings, especially

unit-demand settings and some generalizations. One conclusion from this line of work

is that for many subclasses of distributions (such as those with monotone hazard rate)

various simple mechanisms can extract a constant fraction of the expected value of the

items6. This is true in our simple setting, where for such distributions selling the items

separately provides a constant fraction of the expected value and thus of the optimal

revenue.

The current paper may be viewed as continuing this tradition of approximating the

optimal revenue with simple auctions. It may also be viewed as studying the extent

to which auctions can gain revenue by doing things that appear less “natural” (such as

pricing lotteries whose outcomes are the items; of course, the better our understanding

becomes, the more things we may consider as natural.) We study two very simple and

natural auctions that we show do give good approximations: the first simple auction is

to sell the items separately and independently, and the second simple auction is to sell all

items together as a bundle. We emphasize that our results hold for arbitrary distributions

and we do not make any assumptions (such as monotone hazard rate).7 In particular, our

approximations to the optimal revenue also hold when the expected value of the items is

arbitrarily (even infinitely) larger than the optimal revenue.

We will denote by Rev(F) ≡ Revk(F) the optimal revenue obtainable from selling,

to a single buyer (with an additive valuation), k items whose valuation is distributed

according to a (k-dimensional joint) distribution F . This revenue is well understood only

for the special case of one item (k = 1), i.e., for a one-dimensional F , in which case it is

obtained by selling at the Myerson price (i.e., Rev1(F ) = supp≥0p · (1− F (p)). The first

three theorems below relate the revenue obtainable from selling multiple independent

items optimally (which is not well understood) to the revenue obtainable by selling each

of them separately (which is well understood).

Our first and main result shows that while selling two independent items separately

need not be optimal, it is not far from optimal and always yields at least half of the optimal

revenue. We do not know of any easier proof that provides any constant approximation

bound.8

6In our setting ths is true even more generally, for instance whenever the ratio between the median
and the expectation is bounded, which happens in particular when the tail of the distribution is “thinner”
than x−α for α > 1.

7One may argue that there is no need for uniform approximation results on the ground that the seller
knows the distribution of the buyer’s valuation. However, as we have shown above, that does not help
finding the optimal auction (even for simple distributions) – whereas the approximations are always easy
and simple (as they use only optimal prices for one-dimensional distributions).

8There is an easy proof for the special case of deterministic auctions, which we leave as an exercise
to the reader. It does not seem that this type of easy proof can be extended to general auctions since it
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The joint distribution of two items distributed independently according to F1 and F2,

respectively, is denoted by F1 × F2.

Theorem 1 For every one-dimensional distributions F1 and F2,

Rev1(F1) + Rev1(F2) ≥
1

2
· Rev2(F1 × F2).

This result is quite robust and generalizes to auctions with multiple buyers, using

either the Dominant-Strategy or the Bayes-Nash notions of implementation. It also gen-

eralizes to multi-dimensional distributions, i.e., to cases of selling two collections of items,

and even to more general mechanism design settings (see Theorems 20 and 30).9 How-

ever, as we show in a companion paper Hart and Nisan [2012], such a result does not hold

when the values for the items are allowed to be correlated: there exists a joint distribution

of item values such that the revenue obtainable from each item separately is finite, but

selling the items optimally yields infinite revenue.

For the special case of two identically distributed items (one-dimensional and single

buyer), i.e., F1 = F2, we get a tighter result.

Theorem 2 For every one-dimensional distribution F ,

Rev1(F ) + Rev1(F ) ≥ e

e + 1
· Rev2(F × F ).

Thus, for two independent items, each distributed according to F , taking the optimal

Myerson price for a single item distributed according to F and offering the buyer to choose

which items to buy at that price per item (none, either one, or both), is guaranteed to

yield at least 73% of the optimal revenue for the two items. This holds for any distribution

F (and recall that, in general, we do not know what that optimal revenue is; in contrast,

the Myerson price is well-defined and immediate to determine).

There is a small gap between this bound of e/(e+1) = 0.73... and the best separation

that we have with a gap of of 0.78... (see Corollary 29). We conjecture that the latter is

in fact the tight bound.

We next consider the case of more than two items. It turns out that, as the number

of items grows, the ratio between the revenue obtainable from selling them optimally to

that obtainable by selling them separately is unbounded. In fact, we present an example

showing that the ratio may be as large as O(log k) (see Lemma 8). Our main positive

would apply also to interdependent item values in which case, as we show in a companion paper Hart and
Nisan [2012], there is no finite bound relating the two-item revenue to that of selling them separately.

9However, we have not been able to generalize these decomposition results to multiple buyers and
multiple items simultaneously.
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result for the case of multiple items is a bound on this gap in terms of the number of

items. When the k items are independent and distributed according to F1, ..., Fk, we

write F1 × · · · × Fk for their product joint distribution.

Theorem 3 There exists a constant c > 0 such that for every integer k ≥ 2 and every

one-dimensional distributions F1, ..., Fk,

Rev1(F1) + · · · + Rev1(Fk) ≥
c

log2 k
· Revk(F1 × · · · × Fk).

We then consider the other simple single-dimensional auction, the bundling auction,

which offers a single price for the bundle of all items.10 We ask how well it can approx-

imate the optimal revenue. We first observe that, in general, the bundling auction may

do much worse and only yield a revenue that is a factor of almost k times lower than that

of the optimal auction (see Example 15; moreover, we show in Lemma 14 that this is

tight up to a constant factor). However, when the items are independent and identically

distributed, then the bundling auction does much better. It is well known (Armstrong

[1999], Bakos and Brynjolfsson [1999]) that for every fixed distribution F , as the number

of items distributed independently according to F approaches infinity, the bundling auc-

tion approaches the optimal one (for completeness we provide a short proof in Appendix

5.) This, however, requires k to grow as F remains fixed. On the other hand, we show

that this is not true uniformly over F : for every large enough k, there are distributions

where the bundling auction on k items extracts less than 57% of the optimal revenue

(Example 19). Our main result for the bundling auction is that in this case it extracts

a logarithmic (in the number of items k) fraction of the optimal revenue. We do not

know whether the loss is in fact bounded by a constant fraction. Since the distribution of

the sum of k independent and identically distributed according to F items is the k-times

convolution F ∗ · · · ∗ F , our result is:

Theorem 4 There exists a constant c > 0 such that for every integer k ≥ 2 and every

one-dimensional distribution F ,

Rev1(F ∗ · · · ∗ F
︸ ︷︷ ︸

k

) ≥ c

log k
· Revk(F × · · · × F

︸ ︷︷ ︸

k

).

Many problems are left open. From the general point of view, the characterization

of the optimal auction is still mostly open, despite the many partial results in the cited

papers. In particular, it is open to fully characterize when selling separately is optimal;

10By Myerson’s result, this is indeed the optimal mechanism for selling the bundle.
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when the bundling auction is optimal11; or when are deterministic auctions optimal. More

specifically, regarding our approximation results, gaps remain between our lower bounds

and upper bounds.

The structure of the paper is as follows. In Section 2 we present our notations and

the preliminary setup. Section 3 studies the relations between the bundling auction and

selling separately; these relations are not only interesting in their own right, but are then

also used as part of the general analysis and provide us with most of the examples that

we have for gaps in revenue. Section 4 studies the case of two items, gives the main

decomposition theorem together with a few extensions; Section 5 gives our results for

more than two items. Several proofs are postponed to appendices. Finally, Appendix

5 provides a table summarizing our bounds on the revenue gaps between the separate

auction and the optimal auction, and between the bundling auction and the optimal

auction.

2 Notation and Preliminaries

2.1 Mechanisms

A mechanism for selling k items specifies a (possibly randomized) protocol for interaction

between a seller (who has no private information and commits to the mechanism) and a

buyer who has a private valuation for the items. The outcome of the mechanism is an

allocation specifying the probability of getting each of the k items and an (expected)12

payment that the buyer gives to the seller. We will use the following notations:

• Buyer valuation: x = (x1, . . . , xk) where xi ≥ 0 denotes the value of the buyer

for getting item i.

• Allocation: q = (q1, . . . , qk) ∈ [0, 1]k, where qi = qi(x) denotes the probability

that item i is allocated to the buyer when his valuation is x (alternatively, one may

interpret qi as the fractional quantity of item i that the buyer gets).

• Seller revenue: s = s(x) denotes the expected payment13 that the seller receives

from the buyer when the buyer’s valuation is x.

11We do show that this is the case for a class of distributions that decrease not too slowly; see Theorem
28.

12We only consider risk-neutral agents.
13In the literature this is also called transfer, cost, price, revenue, and denoted by p, t, c, etc. We

hope that using the mnemonic s for the Seller’s final payoff and b for the Buyer’s final payoff will avoid
confusion.
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• Buyer utility: b = b(x) denotes the utility of the buyer when his valuation is x,

i.e., b(x) =
∑

i xiqi(x) − s(x) = x · q(x) − s(x).

We will be discussing mechanisms that are:

• IR – (Ex-post) Individually Rational: b(x) ≥ 0 for all x.

• IC – Incentive Compatible: For all x, x′:
∑

i xiqi(x)−s(x) ≥ ∑

i xiqi(x
′)−s(x′).

The IC requirement simply captures the notion that the buyer acts strategically in the

mechanism. Since we are discussing a single buyer, this is in a simple decision-theoretic

sense and in particular there is no distinction between the domainant strategy and the

Bayes-Nash implementation notions.

The following lemma gives well known and easily proven equivalent conditions for

incentive compatibility.

Lemma 5 The following three definitions are equivalent for a mechanism with b(x) =

x · q(x) − s(x) =
∑

i xiqi(x) − s(x):

1. The mechanism is IC.

2. The allocation q is weakly monotone, in the sense that for all x, x′ we have (x −
x′) · (q(x) − q(x′)) ≥ 0, and the payment to the seller satisfies x′ · (q(x) − q(x′)) ≤
s(x) − s(x′) ≤ x · (q(x) − q(x′)) for all x, x′.

3. The buyer’s utility b is a convex function of x and for all x the allocation q(x) is

a subgradient of b at x, i.e., for all x′ we have b(x′) − b(x) ≥ q(x) · (x′ − x). In

particular b is differentiable almost everywhere and there qi(x) = ∂b(x)/∂xi.

Proof. • 1 implies 2: The RHS of the second part is the IC constraint for x, the LHS is

the IC constraint for x′, and the whole second part directly implies the first part.

• 2 implies 1: Conversely, the RHS of the second part is exactly the IC constraint for

x.

• 1 implies 3: By IC, b(x) = supx′ x · q(x′) − s(x′) is a supremum of linear functions

of x and is thus convex. For the second part, b(x′) − b(x) − q(x) · (x′ − x) = x′ · q(x′) +

s(x) − s(x′) − x′ · q(x) ≥ 0, where the inequality is exactly the IC constraint for x′.

• 3 implies 1: Conversely, as in the previous line, the subgradient property at x is

exactly equivalent to the IC constraint for x′.

Note that this in particular implies that any convex function b with 0 ≤ ∂b(x)/∂xi ≤ 1

for all i defines an incentive compatible mechanism by setting qi(x) = ∂b(x)/∂xi (at non-

differentiability points take q to be an arbitrary subgradient of b) and s(x) = x·q(x)−b(x).
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When x1, . . . , xk are distributed according to the joint cumulative distribution function

F on14
R

k
+, the expected revenue of the mechanism given by b is

R(b;F) = Ex∼F(s(x)) =

∫

· · ·
∫

(
k∑

i=1

xi
∂b(x)

∂xi

− b(x)

)

dF(x1, . . . , xk).

Thus we want to maximize this expression over all convex functions b with 0 ≤
∂b(x)/∂xi ≤ 1 for all i. We can also assume

• NPT – No Positive Transfers: s(x) ≥ 0 for all x.

This is without loss of generality as any mechanism can be converted to an NPT one,

with the revenue only increasing.15 This in particular implies that b(0) = 0 without loss

of generality (as it follows from IR+NPT).

2.2 Revenue

For a cumulative distribution F on R
k
+ (for k ≥ 1), we consider the optimal revenue

obtainable from selling k items to a (single, additive) buyer whose valuation for the k

items is jointly distributed according to F :

• Rev(F) ≡ Revk(F) is the maximal revenue obtainable by any incentive compatible

and individually rational mechanism.

• SRev(F) is the maximal revenue obtainable by selling each item separately.

• BRev(F) is the maximal revenue obtainable by bundling all items together.

Thus, Rev(F) = supbR(b;F) where b ranges over all convex functions with 0 ≤
∂b(x)/∂xi ≤ 1 for all i and b(0) = 0. It will be often convenient to use random variables

rather than distributions, and thus we use Rev(X) and Rev(F) interchangeably when

the buyer’s valuation is a random variable X = (X1, . . . , Xk) with values in R
k
+ distributed

according to F . In this case we have SRev(X) = Rev(X1) + · · · + Rev(Xk) and

BRev(X) = Rev(X1 + · · · + Xk).

This paper will only deal with independently distributed item values, that is, F =

F1 ×· · ·×Fk, where Fi is the distribution of item16 i. We have17 SRev(F) = Rev(F1)+

14We write this as x = (x1, . . . , xk) ∼ F . We use F for multi-dimensional distributions and F for
one-dimensional distributions.

15For each x with s(x) < 0 redefine q(x) and s(x) as q(x′) and s(x′) for x′ that maximizes
∑

i
xiqi(x

′)−
s(x′) over those x′ with s(x′) ≥ 0.

16As these are cumulative distribution functions, we have F(x1, . . . , xk) = F1(x1) · . . . · Fk(xk).
17The formula for SRev holds without independence, with Fi the i-th marginal distribution of F .
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· · ·+Rev(Fk) and BRev(F) = Rev(F1∗· · ·∗Fk), where * denotes convolution. Our com-

panion paper Hart and Nisan [2012] studies general distributions F , i.e., interdependent

values.

For k = 1 we have Myerson’s characterization of the optimal revenue:

Rev1(X) = SRev(X) = BRev(X) = sup
p≥0

p · P(X ≥ p)

(which also equals supp≥0 p · P(X > p) = supp≥0 p · (1 − F (p))).

Note that for any k, both the separate revenue SRev and the bundling revenue BRev

require solving only one-dimensional problems; by Myerson’s characterization, the former

is given by k item prices p1, . . . , pk, and the latter by one price p̄ for all items together.

3 Warm up: Selling Separately vs. Bundling

In this section we analyze the gaps between the two simple auctions: bundling and selling

the items separately. Not only are these comparisons interesting in their own right, but

they will be used as part of our general analysis, and will also provide the largest lower

bounds we have on the approximation ratios of these two auctions relative to the optimal

revenue.

We start with a particular distribution which will turn out to be key to our analysis.

We then prove upper bounds on the bundling revenue in terms of the separate revenue,

and finally we prove upper bounds on the separate revenue in terms of the bundling

revenue.

3.1 The Equal-Revenue Distribution

We introduce the distribution which we will show is extremal in the sense of maximizing

the ratio between the bundling auction revenue and the separate auction revenue.

Let us denote by ER – the equal-revenue distribution – the distribution with density

function f(x) = x−2 for x ≥ 1; its cumulative distribution function is thus F (x) = 1−x−1

for x ≥ 1 (and for x < 1 we have f(x) = 0 and F (x) = 0). (This is also called the Pareto

distribution with parameter α = 1.) It is easy to see that, on one hand, Rev1(ER) = 1

and, moreover, this revenue is obtained by choosing any price p ≥ 1. On the other hand

its expected value is infinite: E(ER) =
∫ ∞

1
x · x−2dx = ∞. We start with a computation

of the distribution of the weighted sum of two ER distributions.
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Lemma 6 Let X1, X2 be18 i.i.d.-ER and α, β > 0. Then 19

P(αX1 + βX2 ≥ z) =
αβ

z2
log

(

1 +
z2 − (α + β)z

αβ

)

+
α + β

z

for z ≥ α + β, and P(αX1 + βX2 ≥ z) = 1 for z ≤ α + β.

Proof. Let Z = αX1 + βX2. For z ≤ α + β we have P(Z ≥ z) = 1 since Xi ≥ 1. For

z > α + β we get

P(Z ≥ z) =

∫

f(x)

(

1 − F

(
z − αx

β

))

dx

=

∫ (z−β)/α

1

1

x2

β

z − αx
dt +

∫ ∞

(z−β)/α

1

x2
1 dt

=
β

z

[
α

z
log x − α

z
log

( z

α
− x

)

− 1

x

](z−β)/α

1

+
α

z − β

=
αβ

z2

(

log

(
z

β
− 1

)

+ log
( z

α
− 1

))

− αβ

z(z − β)
+

β

z
+

α

z − β

=
αβ

z2
log

(

1 +
z2 − (α + β)z

αβ

)

+
α + β

z
.

We can now calculate the revenue obtainable from bundling several independent ER

items.

Lemma 7 BRev(ER×ER) = 2.5569... , where 2.5569... = 2(w+1) with w the solution

of 20 wew = 1/e.

Remark. We will see below (Corollary 29) that bundling is optimal here, and so 2.5569...

is in fact the optimal revenue for two i.i.d.-ER items.

Proof. Using Lemma 6 with α = β = 1 yields p · P(X1 + X2 ≥ p) = p−1 log(1 + p2 −
2p) + 2 = 2p−1 log(p − 1) + 2, which attains its maximum of 2w + 2 at p = 1 + 1/w.

Lemma 8 There exist constants c1, c2 > 0 such that for all k ≥ 2,

c1k log k ≤ BRev(ER×k) ≤ c2k log k.

18For a one-dimensional distribution F , “i.i.d.-F” refers to a collection of independent random variables
each distributed according to F .

19log denotes natural logarithm.
20Thus w = W (1/e) where W is the so-called “Lambert-W” function.
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In particular, this shows that selling separately may yield, as k increases, an arbitrarily

small proportion of the optimal revenue: Rev(ER×k) ≥ BRev(ER×k) ≥ c1k log k =

c1 log k · SRev(ER×k).

Proof. Let X be a random variable with distribution ER; for M ≥ 1 let XM :=

min{X,M} be X truncated at M . It is immediate to compute E(XM) = log M + 1 andVar(XM) ≤ 2M .

• Lower bound : Let X1, . . . , Xk be i.i.d.-ER; for every p,M > 0 we have Rev(
∑

i Xi) ≥
p · P (

∑

i Xi ≥ p) ≥ p · P
(∑

i X
M
i ≥ p

)
.

When M = k log k and p = (k log k)/2 we get (kE(XM) − p)/
√

kVar(XM) ≥
√

log k/8, so p is at least
√

log k/8 standard deviations below the mean of
∑k

i=1 XM
i .

Therefore, by Chebyshev’s inequality, P(
∑k

i=1 XM
i ≥ p) ≥ 1 − 8/ log k ≥ 1/2 for all k

large enough, and then Rev(
∑k

i=1 Xi) ≥ p · 1/2 = k log k/4.

• Upper bound : We need to bound supp≥0 p · P(
∑k

i=1 Xi ≥ p). If p ≤ 6k log k then

p · P(
∑k

i=1 Xi ≥ p) ≤ p ≤ 6k log k.

If p ≥ 6k log k then (take M = p)

p · P
(

k∑

i=1

Xi ≥ p

)

≤ p · P
(

k∑

i=1

Xp
i ≥ p

)

+ p · P (Xi > p for some 1 ≤ i ≤ k) . (1)

The second term is at most p · k · (1 − F (p)) = k (since F (p) = 1 − 1/p). To estimate

the first term, we again use Chebyshev’s inequality. When k is large enough we have

p/(k(log p + 1)) ≤ 2 (recall that p ≥ 6k log k), and so p is at least
√

p/(8k) standard

deviations above the mean of
∑k

i=1 Xp
i . Thus p · P(

∑k
i=1 Xp

i ≥ p) ≤ p · (8k)/p = 8k, and

so p · P(
∑k

i=1 Xi ≥ p) ≤ 9k (recall (1)).

Altogether, Rev(
∑k

i=1 Xi) ≤ max{6k log k, 9k} = 6k log k for all k large enough.

Remark. A more precise analysis, based on the “Generalized Central Limit Theorem,”21

shows that BRev(ER×k)/(k log k) converges to 1 as k → ∞. Indeed, when Xi are i.i.d.-

ER, the sequence (
∑k

i=1 Xi − bk)/ak with ak = kπ/2 and bk = k log k + Θ(k) converges

in distribution to the Cauchy distribution as k → ∞. Since Rev1(Cauchy) can be shown

to be bounded (by 1/π), it follows that Rev(
∑k

i=1 Xi) = k log k + Θ(k).

3.2 Upper Bounds on the Bundling Revenue

It turns out that the equal revenue distribution exhibits the largest possible ratio between

the bundling auction and selling separately. This is a simple corollary from the fact that

the equal revenue distribution has the heaviest possible tail.

21See, e.g., Zaliapin et al. [2005].
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Let X and Y be one-dimensional random variables. We say that X is (first-order)

stochastically dominated by Y if for every real p we have P(X ≥ p) ≤ P(Y ≥ p). Thus,

Y gets higher values than X.

Lemma 9 If a one-dimensional X is stochastically dominated by a one-dimensional Y

then Rev1(X) ≤ Rev1(Y ).

Proof. Rev(X) = supp p · P(X ≥ p) ≤ supp p · P(Y ≥ p) = Rev(Y ) (by Myerson’s

characterization).

It should be noted that this monotonicity of the revenue with respect to stochastic

dominance does not hold when there are two or more items Hart and Reny [2011].

Lemma 10 For every one-dimensional X and every r > 0: Rev1(X) ≤ r if and only if

X is stochastically dominated by22 r · ER.

Proof. By Myerson’s characterization, Rev(X) ≤ r if and only if for every p we have

P(X ≥ p) ≤ r/p ; but r/p is precisely the probability that r · ER is at least p.

We will thus need to consider sums of “scaled” versions of ER, i.e., linear combinations

of independent ER random variables. What we will see next is that equalizing the scaling

factors yields stochastic domination.

Lemma 11 Let X1, X2 be i.i.d.-ER and let α, β, a′, β′ > 0 satisfy α + β = α′ + β′. If 23

αβ ≤ α′β′ then αX1 + βX2 is stochastically dominated by α′X1 + β′X2.

Proof. Let Z = αX1 + βX2 and Z ′ = α′X1 + β′X2, and put γ = α + β = α′ + β′. Using

Lemma 6, for z ≤ γ we have P(Z ≥ z) = P(Z ′ ≥ z) = 1, and for z > γ we get

P(Z ≥ z) =
αβ

z2
log

(

1 +
z2 − γz

αβ

)

+
γ

z

≤ α′β′

z2
log

(

1 +
z2 − γz

α′β′

)

+
γ

z
= P(Z ′ ≥ z),

since t log(1 + 1/t) is increasing in t for t > 0, and αβ/(z2 − γz) ≤ α′β′/(z2 − γz) by our

assumption that αβ ≤ α′β′ together with z > γ.

We note the following useful fact: if for every i, Xi is stochastically dominated by Yi,

then X1 + · · · + Xk is stochastically dominated by24 Y1 + · · · + Yk.

22We slightly abuse the notation and write r · ER for a random variable r · Y when Y is distributed
according to ER.

23Equivalently, |α − β| ≥ |α′ − β′|.
24Think of all the random variables being defined on the same probability space and satisfying Xi ≤ Yi

pointwise (which can be obtained by the so-called “coupling” construction), and then
∑

Xi ≤
∑

Yi is
immediate.
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Corollary 12 Let Xi be i.i.d.-ER and αi > 0. Then
∑k

i=1 αiXi is stochastically domi-

nated by
∑k

i=1 ᾱXi, where ᾱ = (
∑k

i=1 αi)/k.

Proof. If, say, α1 < ᾱ < α2, then the previous lemma implies that α1X1 + α2X2 is

stochastically dominated by ᾱX1 + α′
2X2 ,where α′

2 = α1 + α2 − ᾱ, and so
∑k

i=1 αiXi is

stochastically dominated by ᾱX1 + α′
2X2 +

∑k
i=3 αiXi. Continue in the same way until

all coefficients become ᾱ.

We can now provide our upper bounds on the bundling revenues.

Lemma 13 (i) For every one-dimensional distributions F1, F2,

BRev(F1 × F2) ≤ 1.278... · (Rev(F1) + Rev(F2)) = 1.278... · SRev(F1 × F2),

where 1.278... = w + 1 with w the solution of wew = 1/e.

(ii) There exists a constant c > 0 such that for every k ≥ 2 and every one-dimensional

distributions F1, . . . , Fk,

BRev(F1 × · · · × Fk) ≤ c log k ·
k∑

i=1

Rev(Fi) = c log k · SRev(F1 × · · · × Fk).

Proof. Let Xi be distributed according to Fi, and denote ri = Rev(Fi), so Xi is

stochastically dominated by riYi where Yi is distributed according to ER (see Lemma

10). Assume that the Xi are independent, and also that the Yi are independent. Then

X1 + · · ·+Xk is stochastically dominated by r1Y1 + · · ·+ rkYk. By Corollary 12 the latter

is stochastically dominated by r̄Y1 + · · · + r̄Yk where r̄ = (
∑

i ri)/k = (
∑

i Rev(Fi))/k.

Therefore BRev(F1×· · ·×Fk) ≤ r̄BRev(ER×k), and the results (i) and (ii) follow from

Lemmas 7 and 8 respectively.

3.3 Lower Bounds on the Bundling Revenue

In general, the bundling revenue obtainable from items that are independently distributed

according to different distributions may be significantly smaller than the separate revenue.

Lemma 14 For every integer k ≥ 1 and every one-dimensional distributions F1, . . . , Fk,

BRev(F1 × · · · × Fk) ≥
1

k
·

k∑

i=1

Rev(F i) =
1

k
· SRev(F1 × · · · × Fk).

Proof. For every i we have Rev(Fi) ≤ BRev(F1 × · · · × Fk), and so
∑

i Rev(Fi) ≤
k · BRev(F1 × · · · × Fk).
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This is tight:

Example 15 BRev(F1 × · · · × Fk) = (1/k + ǫ) · SRev(F1 × · · · × Fk) :

Take a large M and let Fi have support {0,M i} with P(M i) = M−i. Then Rev(F i) = 1

and so SRev(F 1×· · ·×F k) = k, while BRev(F 1×· · ·×F k) is easily seen to be at most

maxi M
i · (M−i + · · · + M−k) ≤ 1 + 1/(M − 1).

However, when the items are distributed according to identical distributions, the

bundling revenue cannot be much smaller than the separate revenue, and this is the case

that the rest of this section deals with.

Lemma 16 For every one-dimensional distribution F ,

BRev(F × F ) ≥ 4

3
· Rev(F ) =

2

3
· SRev(F × F ).

Proof. Let X be distributed according to F ; let p be the optimal Myerson price for X and

q = P(X ≥ p), so Rev(F ) = pq. If q ≤ 2/3 then the bundling auction can offer a price of

p and the probability that the bundle will be sold is at least the probability that one of

the items by itself has value p, which happens with probability 2q−q2 = q(2−q) ≥ 4q/3,

so the revenue will be at least 4q/3 · p = (4/3)Rev(F ). On the other hand, if q ≥ 2/3

then the bundling auction can offer price 2p, and the probability that it will be accepted

is at least the probability that both items will get value of at least p, i.e. q2. The revenue

will be 2q2p ≥ (4/3)qp = (4/3)Rev(F ).

This bound is tight:

Example 17 BRev(F × F ) = (2/3) · SRev(F × F ) :

Let F have support {0, 1} with P(1) = 2/3, then Rev(F ) = 2/3 while BRev(F × F ) =

8/9 (which is obtained both at price 1 and at price 2).25

We write F ∗k for the k-times convolution of F ; this is the distribution of the sum of

k i.i.d. random variables each distributed according to F .

Lemma 18 For every integer k ≥ 1 and every one-dimensional distribution F ,

BRev(F×k) = Rev(F ∗k) ≥ 1

4
k · Rev(F ) =

1

4
· SRev(F×k).

25It can be checked that the optimal revenue is attained here by the separate auction, i.e., Rev(F×F ) =
SRev(F × F ) = 4/3.
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Proof. Let X be distributed according to F ; let p be the optimal Myerson price for X

and q = P(X ≥ p), so Rev(F ) = pq. We separate between two cases. If qk ≤ 1 then the

bundling auction can offer price p and, using inclusion-exclusion, the probability that it

will be taken is bounded from below by kq −
(

k
2

)
q2 ≥ kq/2 so the revenue will be at least

kqp/2 ≥ k · Rev(F )/2. If qk ≥ 1 then we can offer price p⌊qk⌋. Since the median in a

Binomial(k, q) distribution is known to be at least ⌊qk⌋, the probability that the buyer

will buy is at least 1/2. The revenue will be at least p⌊qk⌋/2 ≥ kqp/4 = k · Rev(F )/4.

We have not attempted optimizing this constant 1/4, which can be easily improved.

The largest gap that we know of is the following example where the bundling revenue is

less than 57% than that of selling the items separately, and applies to all large enough k.

We suspect that this is in fact the maximal possible gap.

Example 19 For every k large enough, a one-dimensional distribution F such that

BRev(F×k)/SRev(F×k) ≤ 0.57 :

Take a large k and consider the distribution F on {0, 1} with P(1) = c/k where c =

1.256... is the solution of 1 − e−c = 2(1 − (c + 1)e−c), so the revenue from selling a

single item is c/k. The bundling auction should clearly offer an integral price. If it

offers price 1 then the probability of selling is 1 − (1 − c/k)k ≈ 1 − e−c = 0.715...,

which is also the expected revenue. If it offers price 2 then the probability of selling is

1− (1− c/k)k − k(c/k)(1− c/k)k−1 ≈ 1− (c + 1)e−c and the revenue is twice that, again

0.715.... If it offers price 3 then the probability of selling is 1 − (1 − c/k)k − k(c/k)(1 −
c/k)k−1 −

(
k
2

)
(c/k)2(1 − c/k)k−2 ≈ 1 − (1 + c + c2/2)e−c ≈ 0.13..., and the revenue is

three times higher, which is less than 0.715. For higher integral prices t the probability

of selling is bounded from above by ct/t!, the revenue is t times that, and is even smaller.

Thus BRev(F×k)/SRev(F×k) ≈ 0.715/1.256 ≤ 0.57 for all k large enough.

4 Two Items

Our main result is an “approximate direct sum” theorem. While the main interest, as

stated in Theorem 1, is for selling two independent items, we will state and prove in the

next section a more general result that applies to two independent sets of items.

4.1 The Main Decomposition Result

In this section X is a k1-dimensional nonnegative random variable and Y is a k2-dimensional

nonnegative random variable (with k1, k2 ≥ 1). While we will assume that the vectors X
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and Y are independent, we allow for arbitrary interdependence among the coordinates of

X, and the same for the coordinates of Y .

Theorem 20 (Generalization of Theorem 1) Let X and Y be multi-dimensional ran-

dom variables. If X and Y are independent then

Rev(X,Y ) ≤ 2 · (Rev(X) + Rev(Y )).

The proof of this theorem is divided into a series of lemmas. The main insights are

the “Marginal Mechanism” (Lemma 21) and the “Smaller Value” (Lemma 25).

The first attempt in bounding the revenue from two items, is to fix one of them

and look at the induced marginal mechanism on the second. Let us use the notation

Val(X) = E(
∑

i Xi) =
∑

i E(Xi), the expected total sum of values, for multi-dimensional

X’s (for one-dimensional X this is Val(X) = E(X).)

Lemma 21 (Marginal Mechanism) Let X and Y be multi-dimensional random vari-

ables (here X and Y may be dependent). Then

Rev(X,Y ) ≤ Val(Y ) + EY [Rev(X|Y )],

where (X|Y ) denotes the conditional distribution of X given Y .

Proof. Take a mechanism that obtains the optimal revenue from (X,Y ), and fix some

value of y = (y1, . . . , yk2
). The induced mechanism on the X-items, which are distributed

according to (X|Y = y), is IC and IR, but also hands out quantities of the Y items. If we

modify it so that instead of allocating yj with probability qj = qj(x, y), it pays back to

the buyer an additional money amount of qjyj, we are left with an IC and IR mechanism

for the X items. The revenue of this mechanism is that of the original mechanism

conditioned on Y = y minus the expected value of
∑

j qjyj, which is bounded from above

by
∑

j yj. Now take expectation over the values y of Y to get Ey∼Y [Rev(X|Y = y)] ≥
Rev(X,Y ) − Val(Y ).

Remark. When X and Y are independent then (X|Y = y) = X for every y and thus

Rev(X,Y ) ≤ Val(Y ) + Rev(X).

Unfortunately this does not suffice to get good bounds since it is entirely possible

for Val(Y ) to be infinite even when Rev(Y ) is finite (as happens, e.g., for the equal-

revenue distribution ER.) To effectively use the marginal mechanism lemma we will have

to carefully cut up the domain of (X,Y ), bound the value of one of the items in each

of these sub-domains, and then stitch the results together. We will use Z to denote an
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arbitrary multi-dimensional nonnegative random variable, but the reader may want to

think of it as (X,Y ).

Lemma 22 (Sub-Domain Restriction) Let Z be a multi-dimensional random vari-

able and let S be a set of values of 26 Z. Then

Rev(1Z∈SZ) ≤ Rev(Z).

Proof. The optimal mechanism for 1Z∈SZ will extract at least as much from Z. This

follows directly from an optimal mechanism having No Positive Transfers (see the end of

Section 2.1).

Lemma 23 (Sub-Domain Stitching) Let Z be a multi-dimensional random variable

and let S, T be two sets of values of Z such that S ∪ T contains the support of Z. Then

Rev(1Z∈SZ) + Rev(1z∈T Z) ≥ Rev(Z).

Proof. Take the optimal mechanism for Z. Rev(Z) is the revenue extracted by this

mechanism, which is at most the sum of what is extracted on S and on T . If you

take the same mechanism and run it on the random variable 1Z∈SZ, it will extract the

same amount on S as it extracted from Z on S, and similarly for T which contains the

complement of S.

Our trick will be to choose S so that we are able to bound Val(1(X,Y )∈SY ). This will

suffice since the marginal mechanism lemma actually implies:

Lemma 24 (Marginal Mechanism on Sub-Domain) Let X and Y be multi-dimensional

random variables, and let S be a set of values of (X,Y ). If X and Y are independent

then

Rev(1(X,Y )∈S · (X,Y )) ≤ Val(1(X,Y )∈SY ) + Rev(X).

Proof. For every y let Sy = {x|(x, y) ∈ S}. Note that Rev(1(X,Y )∈S · (X,Y )) =

Rev(1(X,Y )∈SX,1(X,Y )∈SY ), and Rev(1(X,Y )∈SX|Y = y) = Rev(1X∈Sy
X). The Marginal

Mechanism Lemma 21 then yields Rev(1(X,Y )∈S·(X,Y )) ≤ Val(1(X,Y )∈SY )+Ey[Rev(1X∈Sy
X)],

and by the Sub-Domain Restriction Lemma 22 Rev(1X∈Sy
X) ≤ Rev(X) for every y.

We first deal with the case of two items, i.e. one-dimensional X and Y . The set of

values S for which we bound Val(1(X,Y )∈SY ) will be the set {Y ≤ X}.
26If Z is a k-dimensional random variable, then S is a (measurable) subset of R

k
+. We use the notation1Z∈S for the indicator random variable which takes the value 1 when Z ∈ S and 0 otherwise.
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Lemma 25 (Smaller Value) Let X and Y be one-dimensional random variables. If X

and Y are independent then

E(1Y ≤XY ) ≤ Rev(X).

Proof. A possible mechanism for X that yields revenue of Val(1Y ≤XY ) is the following:

choose a random y according to Y and offer this as the price. The expected revenue of

this mechanism is Ey∼Y (y · P(X ≥ y)) = Ey∼Y (E(Y 1Y ≤X |Y = y)) = E(Y 1Y ≤X), so this

is a lower bound on Rev(X).

We can now conclude the proof of Theorem 1, which is the special case of Theorem

20 when X and Y are one-dimensional.

Proof of Theorem 20 – one-dimensional case. Using the Sub-Domain Stitch-

ing Lemma 23, we will cut the space as follows: Rev(X,Y ) ≤ Rev(1Y ≤X(X,Y )) +

Rev(1X≤Y (X,Y )). By the Marginal Mechanism on Sub-Domain Lemma 24, the first

term is bounded by E(1Y ≤XY ) + Rev(X) ≤ 2Rev(X), where the inequality uses the

Smaller Value Lemma 25. The second term is bounded similarly.

The multi-dimensional case is almost identical. The Smaller Value Lemma 25 be-

comes:

Lemma 26 Let X and Y be multi-dimensional random variables. If X and Y are inde-

pendent then

Val(1∑

j Yj≤
∑

i Xi
Y ) ≤ BRev(X).

Proof. Apply Lemma 25 to the one-dimensional random variables
∑

i Xi and
∑

j Yj,

and recall that Rev(
∑

i Xi) = BRev(X).

From this we get a slightly stronger version of Theorem 20 for multi-dimensional

variables (which will be used in Section 5 to get bounds for any fixed number of items).

Theorem 27 Let X and Y be multi-dimensional random variables. If X and Y are

independent then

Rev(X,Y ) ≤ Rev(X) + Rev(Y ) + BRev(X) + BRev(Y ).

Proof. The proof is almost identical to that of the main theorem. We will cut the space

by Rev(X,Y ) ≤ Rev(1∑

j Yj≤
∑

i Xi
· (X,Y ))+Rev(1∑

j Yj≥
∑

i Xi
· (X,Y )), and bound the

first term by Val(1∑

j Yj+Rev(X)≤
∑

i Xi
Y ) ≤ BRev(X) + Rev(X) using Lemmas 24 and

26. The second term is bounded similarly.
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Proof of Theorem 20 – multi-dimensional case. Use the previous theorem and

BRev ≤ Rev.

Remark. The decomposition of this section holds in more general setups than the

totally additive valuation of this paper (where the value to the buyer of the outcome q ∈
[0, 1]k is

∑

i qixi). Indeed, consider an abstract mechanism design problem with a set of

alternatives A, valuated by the buyer according to a function v : A → R+ (known to him,

whereas the seller only knows that the function v is drawn from a certain distribution).

If the set of alternatives A is in fact a product A = A1 × A2 with the valuation additive

between the two sets, i.e., v(a1, a2) = v1(a1) + v2(a2), with v1 distributed according

to X and v2 acording to Y , then Theorem 20 holds as stated. The proof now uses

Val(Y ) = E(supa2∈A2
v2(a2)) (which, in our case, where A2 = [0, 1]k2 and v2(q) =

∑

j qjyj,

is indeed Val(Y ) = E(
∑

j Yj) since supq v2(q) =
∑

j yj ).

4.2 A Tighter Result for Two I.I.D. Items

For the special case of two independent and identically distributed items we have a tighter

result, namely Theorem 2 stated in the Introduction. The proof is more technical and is

relegated to Appendix 1.

4.3 A Class of Distributions Where Bundling Is Optimal

For some special cases we are able to fully characterize the optimal auction for two items.

We will show that bundling is optimal for distributions whose density function decreases

fast enough; this includes the equal-revenue distribution.

Theorem 28 Let F be a one-dimensional cumulative distribution function with density

function f . Assume that there is a > 0 such that for x < a we have f(x) = 0 and for

x > a the function f(x) is differentiable and satisfies

xf ′(x) +
3

2
f(x) ≤ 0. (2)

Then bundling is optimal for two items: Rev(F × F ) = BRev(F × F ).

Theorem 28 is proved in Appendix 2. Condition (2) is equivalent to
(
x3/2f(x)

)′ ≤ 0,

i.e., x3/2f(x) is nonincreasing in x (the support of F is thus either a finite interval [a,A],

or the half-line [a,∞)). When f(x) = cx−γ, (2) holds whenever γ ≥ 3/2. In particular,

ER satisfies (2); thus, by Lemma 7, we have:

Corollary 29 Rev(ER × ER) = BRev(ER × ER) = 2.5569... .
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Thus SRev(ER×ER)/Rev(ER×ER) = 2/2.559... = 0.78..., which the largest gap

we have obtained between the separate auction and the optimal one.

4.4 Multiple Buyers

Up to now we dealt a single buyer, but it turns out that the main decomposition result

generalizes to the case of multiple buyers. We consider selling the two items (with a

single unit of each) to n buyers, where buyer j’s valuation for the first item is Xj, and for

the second item is Y j (with Xj + Y j being the value for getting both). Let the auction

allocate the first item to buyer j with probability qj
1, and the second item with probability

qj
2; of course, here

∑n
j=1 qj

1 ≤ 1 and
∑n

j=1 qj
2 ≤ 1.

Unlike the simple decision-theoretic problem facing the single buyer, we now have a

multi-person game among the buyers. Thus, we consider two main notions of incentive

compatibility: dominant-strategy IC and Bayes-Nash IC. Our result below applies equally

well to both notions, and with an identical proof.

For either one of these notions, we denote by Rev[n](X,Y ) the revenue that is obtain-

able by the optimal auction. Similarly, selling the two items separately yields a maximal

revenue of SRev
[n](X,Y ) = Rev

[n](X) + Rev
[n](Y ).

We allow the values of the different buyers for each single item to be arbitrarily

correlated; however, we assume that independence between the two items.

Theorem 30 Let X = (X1, . . . , Xn) ∈ R
n
+ be the values of the first item to the n buyers,

and let Y = (Y 1, . . . , Y n) ∈ R
n
+ be the values of the second item to the n buyers. If X

and Y are independent then

Rev
[n](X) + Rev

[n](Y ) ≥ 1

2
· Rev

[n](X,Y ),

where Rev[n] is taken throughout either with respect to dominant-strategy implementation,

or with respect to Bayes-Nash implementation.

Thus selling the two items separately yields at least half the maximal revenue, i.e.,

SRev[n](X,Y ) ≥ (1/2) · Rev[n](X,Y ).

The proof of Theorem 30 is almost identical to the proof of the Theorem 20 and

is spelled out in Appendix 3 (we also point out there why we could not extend it to

multiple buyers and more than 2 items). We emphasize that the proof does not use the

characterization of the optimal revenue for a single item and n buyers (just like the proof

of Theorem 20 did not use Myerson’s characterization for one buyer).
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5 More Than Two Items

The multi-dimensional decomposition results of Section 4.1 can be used recursively, by

viewing k items as two sets of k/2 items each. Using Theorem 20 we can prove by

induction that Rev(F1 × · · · × Fk) ≤ k
∑k

i=1 Rev(Fi), as follows: Rev(F1 × · · · ×
Fk) ≤ 2(Rev(F1 × · · · × Fk/2) + Rev(Fk/2+1 × · · · × Fk)) ≤ 2(k/2

∑k/2
i=1 Rev(Fi) +

k/2
∑k

i=k/2+1 Rev(Fi)) = k
∑k

i=1 Rev(Fi), where the first inequality is by Theorem 20,

and the second by the induction hypothesis.

However, using the stronger statement of Theorem 27, as well as the relations we have

shown between the bundling revenue and the separate revenue, will give us the better

bound of c log2 k (instead of k) of Theorem 3, stated in the Introduction.

Proof of Theorem 3. Assume first that k ≥ 2 is a power of 2, and we will prove by

induction that Rev(F1 × · · · ×Fk) ≤ c log2(2k)
∑k

i=1 Rev(Fi), where c is the constant of

Lemma 13. By applying Theorem 27 to (F1 × · · · × Fk/2) × (Fk/2+1 × · · · × Fk) we get

Rev(F1 × · · · × Fk) ≤ BRev(F1 × · · · × Fk/2) + BRev(Fk/2+1 × · · · × Fk)

+Rev(F1 × · · · × Fk/2) + Rev(Fk/2+1 × · · · × Fk). (3)

Using Lemma 13 on each of the BRev terms, their sum is bounded by c log k
∑k

i=1 Rev(Fi).

Using the induction hypothesis on each of the Rev terms, their sum is bounded by

c log2 k
∑k

i=1 Rev(Fi). Now log k + log2 k ≤ log2(2k), and so the coefficient of each

Rev(Fi) is at most c log2(2k) as required.

When 2m−1 < k < 2m we can pad to 2m with items that have value identically zero,

and so do not contribute anything to the revenue. This at most doubles k.

As we have seen in Example 15, the bundling auction may, in contrast, extract only

1/k fraction of the optimal revenue. This we can show is tight.

Lemma 31 There exists a constant c > 0 such that for every k ≥ 2 and every one-

dimensional distributions F1, ..., Fk,

BRev(F1 × · · · × Fk) ≥
c

k
· Rev(F1 × · · · × Fk).

Proof. For k a power of two, we use as in the previous proof the decomposition of (3)

to obtain by induction Rev(F1 × · · · × Fk) ≤ (3k − 2)BRev(F1 × · · · × Fk), where the

induction step uses the fact that the bundled revenue from a subset of the items is at

most the bundled revenue from all of them. Again, when k is not a power of 2 we can

pad to the next power of 2 with items that have value identically zero, which at most

doubles k.
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However, for identically distributed items the bundling auction does much better, and

in fact we can prove a tighter result, with log k instead of k : Theorem 4, stated in the

Introduction.

Proof of Theorem 4. For k ≥ 2 a power of two we apply Theorem 27 inductively

to obtain: Rev(F×k) ≤ 2BRev(F×(k/2)) + 4BRev(F×(k/4)) + . . .+ (k/2)BRev(F×2) +

k BRev(F ) + k Rev(F ). Each of the log2 k + 1 terms in this sum is of the form

(k/m)BRev(F×m) = (k/m)Rev(F ∗m) and is thus bounded from above, using Lemma

18 applied to the distribution F ∗m, by 4Rev(F ∗k) = 4BRev(F×k). Altogether we have

Rev(F×k) ≤ 4(log2 k + 1)BRev(F×k).

When 2m−1 < k < 2m we have Rev(F×k) ≤ Rev(F×2m

) ≤ 4(log2 2m+1)BRev(F×2m

) ≤
4(log2 k + 2) · 2 · 1.3 ·BRev(F×2m−1

) ≤ 4(log2 k + 2) · 2 · 1.3 ·BRev(F×k) (we have used

Lemma 13 with F1 = F2 = F ∗2m−1

and 1 + w ≤ 1.3).
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Appendix 1: A Tighter Bound for Two Items

In this appendix we prove Theorem 2 which is stated in the Introduction (see also Section

4.2), which says that selling two i.i.d. items separately yields at least e/(e + 1) = 0.73...

of the optimal revenue.

Proof of Theorem 2. Let X and Y be i.i.d.-F . Without loss of generality we will

restrict ourselves to symmetric mechanisms, i.e., b such that b(x, y) = b(y, x) (indeed: if

b(x, y) is optimal, then so are b̂(x, y) := b(y, x) and their average b̄(x, y) := (b(x, y) +

b̂(x, y))/2, which is symmetric). Put R := Rev(X) = Rev(Y ) = supt≥0 t · F̄ (t), where

F̄ (t) := P(X ≥ t) = limu→t+(1 − F (u)).

Define ϕ(x) := q1(x, x) = q2(x, x)(= bx(x, x)) and Φ(x) := b(x, x)/2, then Φ(x) =
∫ x

0
ϕ(t) dt (recall that b(0, 0) = 0 by IR and NPT).

We will consider the two regions X ≥ Y and Y ≥ X separately; by symmetry, the

expected revenue in the two regions is the same, and so it suffices to show that

E(s(X,Y )1X≥Y ) ≤
(

1 +
1

e

)

R.

As in Lemma 21, fix y and define a mechanism (q̃y, s̃y) for X by q̃y(x) := q1(x, y) and

s̃y(x) := s(x, y) − yq2(x, y) for every x; note that the buyer’s payoff is b̃y(x) = b(x, y).

The mechanism (q̃y, s̃y) is IC and IR for X, since (q, s) was IC and IR for (X,Y ). Now

apply the mechanism (q̃y, s̃y) to the random variable X conditional on [X ≥ y], which

we write Xy for short. Since Xy ≥ y we have b̃y(Xy) = b(Xy, y) ≥ b(y, y) = 2Φ(y) and

q̃y(Xy) = q1(Xy, y) ≥ q1(y, y) = ϕ(y), and so applying Lemma 32 below to Xy yields

E(s̃y(X)|X ≥ y) = E(s̃y(Xy)) ≤ (1 − ϕ(y))Rev(Xy) + yϕ(y) − 2Φ(y). (4)
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Since P(Xy ≥ t) = P(X ≥ t)/P(X ≥ y) = F̄ (t)/F̄ (y) for all t ≥ y, we get

Rev(Xy) = sup
z≥0

z · P(Xy ≥ z) = sup
z≥y

z · F̄ (z)

F̄ (y)
≤ sup

z≥0
z · F̄ (z)

F̄ (y)
=

R

F̄ (y)
.

Multiply (4) by P(X ≥ y) = F̄ (y) to get

E(s̃y(X)1X≥y) ≤ (1 − ϕ(y))R + (yϕ(y) − 2Φ(y))F̄ (y),

and then take expectation over Y = y :

E(s̃Y (X)1X≥Y ) ≤ RE(1 − ϕ(Y )) + E((Y ϕ(Y ) − 2Φ(Y )1X≥Y ).

Since s(x, y) = s̃y(x) + yq2(x, y) ≤ s̃y(x) + yq2(x, x) = s̃y(x) + yϕ(x) (use y ≥ 0 and the

monotonicity of q2(x, y) in y), we finally get

E(s(X,Y )1X≥Y ) = E(s̃Y (X)1X≥Y ) + E(Y φ(X)1X≥Y )

≤ R − RE(ϕ(Y )) + E(W1X≥Y ), (5)

where

W := Y ϕ(X) + Y ϕ(Y ) − 2Φ(Y ).

The expression (5) is affine in ϕ (recall that Φ(x) =
∫ x

0
ϕ(s) ds), and ϕ is a nonde-

creasing function with values in [0, 1]. The set of such functions ϕ is the closed convex hull

of the functions ϕ(x) = 1[t,∞)(x) for t ≥ 0. Therefore, in order to bound (5), it suffices

to consider these extreme functions.

When ϕ(x) = 1[t,∞)(x) we get Φ(x) = max{x − t, 0} and

W =







2Y − 2(Y − t) = 2t, if X ≥ Y ≥ t,

Y − 0 = Y, if X ≥ t > Y,

0, if t > X ≥ Y.

Thus

E(1X≥Y ) = 2tP(X ≥ Y ≥ t) + E(Y 1X≥t>Y )

= tP(X ≥ t)P(Y ≥ t) + P(X ≥ t)E(Y 1t>Y )

= P(X ≥ t)E(min{Y, t}) = F̄ (t)E(min{Y, t})

(we have used the fact that X,Y are i.i.d., and min{Y, t} = t1Y ≥t + Y 1t>Y ). Together
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with E(ϕ(Y )) = P(Y ≥ t) = F̄ (t), (5) becomes

R − RF̄ (t) + F̄ (t)E(min{Y, t}) = R + F̄ (t) (E(min{Y, t}) − R) . (6)

Let r(t) denote the expression in (6). When t ≤ R we have E(min{Y, t}) ≤ R, and so

r(t) ≤ R. When t > R we have

E(min{Y, t}) =

∫ ∞

0

P(min{Y, t} ≥ u) du =

∫ t

0

P(Y ≥ u) du

=

∫ t

0

F̄ (u) du ≤
∫ R

0

1 du +

∫ t

R

R

u
du = R + R log

(
t

R

)

,

where we have used F̄ (u) ≤ min{R/u, 1} (which follows from R = supu≥0 uF̄ (u)). There-

fore in this case

r(t) ≤ R +
R

t

(

R + R log

(
t

R

)

− R

)

= R

(

1 +
log τ

τ

)

,

where τ := t/R > 1. Since maxτ≥1 τ−1 log τ = 1/e (attained at τ = e), it follows that

r(t) ≤ (1 + 1/e)R for all t > R, and thus also for all t ≥ 0. Recalling (5) and (6)

therefore yields E(s(X,Y )1X≥Y ) ≤ (1 + 1/e)R, and so E(s(X,Y )) ≤ 2(1 + 1/e)R =

(1 + 1/e) · SRev(F × F ).

Lemma 32 Let X be a one-dimensional random variable whose support is included in

[x0,∞) for some x0 ≥ 0, and let b0 ≥ 0 and 0 ≤ q0 ≤ 1 be given. Then the maximal

revenue the seller can obtain from X subject to guaranteeing to the buyer a payoff of at

least b0 and a probability of getting the item of at least q0 (i.e., b(x) ≥ b0 and q(x) ≥ q0

for all x ≥ x0) is

(1 − q0)Rev(X) + q0x0 − b0.

Proof. A mechanism satisfying these constraints is plainly seen to correspond to a one-

dimensional convex function b with q0 ≤ b′(x) ≤ 1 and b(x0) = b0. When q0 < 1 (if

q0 = 1 the result is immediate) put b̃(x) := (b(x) − q0(x − x0) − b0)/(1 − q0), then b̃

is a convex function with 0 ≤ b̃(x) ≤ 1 and b̃(x0) = 0, and so Rev(F ) ≥ R(b̃; F ) =

(R(b; F ) − q0x0 + b0)/(1 − q0).

Appendix 2: When Bundling Is Optimal

In this appendix we prove Theorem 28 which is stated in Section 4.3: for two i.i.d. items,

if the one-item value distribution satisfies condition (2), then bundling is optimal.
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Proof of Theorem 28. Let b correspond to a two-dimensional IC and IR mechanism;

assume without loss of generality that b is symmetric, i.e., b(x, y) = b(y, x) (cf. the proof

of Theorem 2 in Appendix 1 above). Thus E(s) = E(xbx + yby − b) = E(2xbx − b), and so

R(b, F × F ) =

∫ ∞

a

∫ ∞

a

(2xbx(x, y) − b(x, y)) f(x) dx f(y) dy = sup
M>a

rM(b),

where

rM(b) :=

∫ M

a

∫ M

a

(2xbx(x, y) − b(x, y)) f(x) dx f(y) dy. (7)

For each y we integrate by parts the 2xbx(x, y)f(x) term:

∫ M

a

2bx(x, y)xf(x) dx = [2b(x, y)xf(x)]Ma −
∫ M

a

2b(x, y) (f(x) + xf ′(x)) dx

= 2b(M, y)Mf(M) − 2b(a, y)af(a)

−
∫ M

a

2b(x, y) (f(x) + xf ′(x)) dx.

Substituting this in (7) yields

rM(b) = 2Mf(M)

∫ M

a

b(M, y)f(y) dy − 2af(a)

∫ M

a

b(a, y)f(y) dy

+2

∫ M

a

∫ M

a

b(x, y)

(

−3

2
f(x) − xf ′(x)

)

f(y) dx dy.

Define b̃(x, y) := b(x + y − a, a) = b(a, x + y − a) for every (x, y) with x, y ≥ a, then

b̃ is a convex function on [a,∞) × [a,∞) with 0 ≤ b̃x, b̃y ≤ 1, and so it corresponds to

a two-dimensional IC & IR mechanism. Moreover, since b is convex we have for every

x, y ≥ a

b(x, y) ≤ λ b(x + y − a, a) + (1 − λ) b(a, x + y − a) = b̃(x, y).,

where λ = (x − a)/(x + y − 2a). Therefore replacing b with b̃ can only increase rM ,

i.e., rM(b) ≤ rM(b̃); indeed, in the first and third terms the coefficients of b(x, y) are

nonnegative (recall our assumption (2)); and in the second term, b(a, y) = b̃(a, y). Hence

R(b, F × F ) = supM rM(b) ≤ supM rM(b̃) = R(b̃, F × F ).

It only remains to observe that b̃(x, y) is a function of x + y, and so it corresponds

to a bundled mechanism. Formally, put β(t) := b̃(t − a, a), then β : [2a,∞) → R+ is a

one-dimensional convex function with 0 ≤ β′(t) ≤ 1. For all x, y ≥ a with x + y = t we

have b̃(x, y) = β(t) and xb̃x(x, y)+yb̃y(x, y)− b̃(x, y) = tβ′(t)−β(t), and so R(b̃, F ×F ) =

R(β, F ∗ F ) ≤ Rev(F ∗ F ) = BRev(F × F ).
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Appendix 3: Multiple Buyers

We prove here Theorem 30 (see Section 4.4): selling separately two independent items to

n buyers yields at least one half of the optimal revenue.

Let Xmax = max1≤j≤n Xj and Y max = max1≤j≤n Y j be the highest values for the two

items. Define Val[n](X) = E(Xmax) and Val[n](Y ) = E(Y max) (these are the values

obtained by always allocating each item to the highest-value buyer).

We proceed along the same lines as the proof of Theorem 20 in Section 4.1. In the

lemmas below, X and Y are independent n-dimensional random variables, Z is a 2n-

dimensional random variable (for instance, (X,Y )), and S and T are sets of values of

Z.

Lemma 33 Rev[n](X,Y ) ≤ Val[n](Y ) + Rev[n](X).

Proof. The proof is similar to the case of a single buyer (Lemma 21), except that the

amount of money we need to return to compensate for the y’s is exactly Val[n](Y ) since

if each buyer j gets qj
2 units (or probability) of the y item then we have

∑

j qj
2 ≤ 1 and

thus
∑

j qj
2y

j ≤ ymax. We emphasize that if the original mechanism for (X,Y ) was a

dominant-strategy mechanism, so will be the conditional-on-y mechanism for X; and the

same for Bayes-Nash mechanisms.

Lemma 34 Rev[n](1Z∈S · Z) ≤ Rev[n](Z).

The proof is identical to the case n = 1 (Lemma 22).

Lemma 35 If S∪T contains the support of Z then Rev[n](1Z∈S ·Z)+Rev[n](1Z∈T ·Z) ≥
Rev[n](Z).

The proof is identical to the case n = 1 (Lemma 23).

Lemma 36 Rev[n](1(X,Y )∈S · (X,Y )) ≤ Val[n](1(X,Y )∈S · Y ) + Rev[n](X).

The proof is identical to the case n = 1 (Lemma 24).

The set according to which we will cut our space will be the following one:

Lemma 37 Val[n](1Y max≤Xmax · Y ) ≤ Rev[n](X).

Proof. Here is a possible mechanism for X: choose a random y = (y1, . . . , yn) according

to Y and offer ymax as the take-it-or-leave-it price to the buyers sequentially (the first

one in lexicographic order to accept gets it). The expected revenue of this mechanism is

exactly Val[n](1Y max≤Xmax · Y ) so this is a lower bound on Rev[n](X).
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We can now complete our proof.

Proof of Theorem 30. Using lemma 35 we cut the space into two parts, Rev[n](X,Y ) ≤
Rev

[n](1Y max≤Xmax ·(X,Y ))+Rev
[n](1Xmax≤Y max ·(X,Y )), and bound the revenue in each

one. By Lemma 36, the revenue on the first part is bounded by Val[n](1Y max≤Xmax ·Y ) +

Rev[n](X) which using Lemma 37 is bounded from above by 2Rev[n](X). The revenue

in the second part is bounded similarly by 2Rev[n](Y ).

Remark. The problem when trying to extend this method to more than 2 items is that

when Y is a set of items we do not have a “Smaller Value” counterpart to Lemma 37

(recall also Lemma 25).

Appendix 4: Many I.I.D. Items

It turns out that when the items are independent and identically distributed, and their

number k tends to infinity, then the bundling revenue approaches the optimal revenue.

Even more, essentially all the buyer’s surplus can be extracted by the bundling auction.

The logic is quite simple: the law of large numbers tells us that there is almost no

uncertainty about the sum of many i.i.d. random variables, and so the seller essentially

knows this sum and may ask for it as the bundle price. For completeness we state this

result and provide a short proof, which also covers the case where the expectation E(F )

is infinite.

Theorem 38 (Armstrong [1999], Bakos and Brynjolfsson [1999]) For every one-

dimensional distribution F ,

lim
k→∞

BRev(F×k)

k
= lim

k→∞

Rev(F×k)

k
= E(F ).

Proof. We always have BRev(F×k) ≤ Rev(F×k) ≤ k E(F ) (the second inequality

follows from NPT). Let us first assume that our distribution F has finite expectation

and finite variance. In this case if we charge price (1 − ǫ)k E(F ) for the bundle then

by Chebyshev’s inequality the probability that the bundle will not be bought is at mostVar(F )/(ǫ2
E(F )

√
k), where Var(F ) is the variance of F , and this goes to zero as k

increases.

If the expectation or variance are infinite, then just consider the truncated distribution

where values above a certain M are replaced by M , which certainly has finite expectation

and variance. We can choose the finite M so as to get the expectation of the truncated

30



distribution as close as we desire to the original one (including as high as we desire, if

the original distribution has infinite expectation).

Despite the apparent strength of this theorem, it does not provide any approximation

guarantees for any fixed value of k. In particular, for k = 2 we have already seen an

example where the bundling auction gets only 2/3 of the revenue of selling the items

separately (Example 17), and for every large enough k we have seen an example where

the bundling auction’s revenue is less than 57% than that of selling the items separately

(Example 19); of course, as a fraction of the optimal revenue this can only be smaller.

The results of Section 4 provide approximation bounds for each fixed k.

Appendix 5: Summary of Approximation Results

The table below summarizes the approximation results of this paper. The four main

results are in bold, and the arrows [→ ] and [← ] indicate that the result in that box is

a special case of the one in the next box to the right or left, respectively.

F = F1 × F2 F × F F1 × · · · × Fk F×k

∀F SRev(F)

Rev(F)
≥ 1

2

e

e + 1
≈ 0.73 Ω

(
1

log2k

)

Ω

(
1

log2 k

)

[Th 1] [Th 2] [Th 3] [← ]

∃F SRev(F)

Rev(F)
≤ 1

1 + w
≈ 0.78

1

1 + w
≈ 0.78 O

(
1

log k

)

O

(
1

log k

)

[→ ] [Co 29] [→ ] [Le 8]

∀F BRev(F)

Rev(F)
≥ 1

2
· 1

2
=

1

4

2

3
· e

e + 1
Ω

(
1

k

)

Ω

(
1

logk

)

[Th 1 + Le 14] [Th 2 + Le 16] [Le 31] [Th 4]

∃F BRev(F)

Rev(F)
≤ 1

2
+ ε

2

3

1

k
+ ε ≈ 0.57 + o(1)

[Ex 15] [Ex 17] [Ex 15] [Ex 19]
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