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Abstract. We define the class of two-player zero-sum games with payoffs having mild

discontinuities, which in applications typically stem from how ties are resolved. For games in

this class we establish sufficient conditions for existence of a value of the game and minimax

or Nash equilibrium strategies for the players. We prove first that if all discontinuities favor

one player then a value exists and that player has a minimax strategy. Then we establish

that a general property called payoff approachability implies that the value results from

an equilibrium. We prove further that this property implies that every modification of the

discontinuities yields the same value; in particular, for every modification, epsilon-equilibria

exist.
We apply these results to models of elections in which two candidates propose policies

and a candidate wins election if a weighted majority of voters prefer his policy. We provide

tie-breaking rules and assumptions on voters’ preferences sufficient to imply payoff approach-

ability, hence existence of equilibria, and each other tie-breaking rule yields the same value

and has epsilon-equilibria. These conclusions are also derived for the special case of Colonel

Blotto games in which each candidate allocates his available resources among several con-

stituencies and the assumption on voters’ preferences is that a candidate gets votes from

those constituencies allocated more resources than his opponent offers. Moreover, for the

case of simple-majority rule we prove existence of an equilibrium that has zero probability

of ties.

1. Introduction

Following Downs [5], studies of elections often use models in which two candidates compete

for votes via the policies they propose. Each candidate’s sole objective is to obtain a majority

of votes, where each voter will cast her vote for the candidate whose policy she prefers.

Because only one candidate can win a majority of votes, such models induce zero-sum games

between the candidates. However, because outcomes depend on how voters resolve ties

between candidates’ policies, the candidates’ payoffs are discontinuous functions of their

policies. A major hindrance to studies of such models has been a lack of sufficient conditions

for existence of a value of the game, and existence of minimax or equilibrium strategies for
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the candidates.1 Here we establish such conditions for a large class of games, and then apply

them to models in which a candidate must win a weighted- or simple-majority of votes to

win election.

Section 2 defines the class of two-player zero-sum games with payoffs with mild discon-

tinuities, as specified by Assumption 2.1, and establishes two general existence theorems.2

Section 3 and 4 apply these theorems to voting games in which the winner is determined

by majority rule. These games typically have mild discontinuities at strategy profiles where

voters indifferent between the policies proposed by the candidates are pivotal in determining

the outcome of the election.3

The general results in Section 2 consider two cases. First we show that if discontinuities

invariably favor one player then a value exists and that player has a minimax strategy that

assures him at least the value for any strategy of his opponent. This case arises in applications

when one candidate wins all ties among voters. Next we identify a general property called

payoff approachability that implies the condition called ‘better-reply security’ by Reny [14].

This condition implies that the players have equilibrium strategies that yield the value.

Moreover, we show that in games satisfying payoff approachability this remains the value

for every modification of payoffs at discontinuities.

In the applications to models of elections, therefore, we show that the value exists and

is independent of tie-breaking rules by verifying that payoff approachability is satisfied by

a particular rule that is convenient for the verification. In several cases this is not the

standard tie-breaking rule that resolves each tie by tossing a fair coin. Nevertheless, this

method suffices to obtain the general result—for every tie-breaking rule, the value exists,

and therefore, for every ε > 0, each candidate has a strategy that assures a payoff within ε

of the value, and an ε-equilibrium exists.

Section 3 applies these results to models of elections. If one candidate wins all ties then

the value exists and that candidate has a minimax strategy. For another tie-breaking rule

that is symmetric, we identify assumptions on voters’ preferences sufficient to imply payoff

1In a two-player zero-sum game, minimax and maximin payoffs are defined in terms of infimum and
supremum operators applied to a player’s payoffs, and when these two payoffs are the same the game is said
to have a (unique) value. If equilibrium strategies exist then the value is player 1’s equilibrium payoff. A
maximin strategy for player 1 is a strategy that assures him at least the value, and a minimax strategy for
player 2 is one that holds player 1’s payoff down to the value. More generally, whenever the value exists each
player has an ε-optimal strategy for every ε > 0, and a profile of these strategies is an ε-equilibrium.

2Other than Dasgupta and Maskin [3] and Parthasarathy [12], who focus on discontinuities along well-
behaved curves with zero measure, the prior literature has not restricted the set of strategies where payoffs
are discontinuous and therefore must allow for pervasive discontinuities.

3Although other games of economic interest, such as auctions and Bertrand-style competition between
duopolists, have payoffs with mild discontinuities, we do not address them here because typically the payoffs
are not zero-sum.
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approachability and thus better-reply security, ensuring that the candidates have equilibrium

strategies that yield the value, and any other tie-breaking rule yields the same value. These

assumptions are satisfied by generic preferences if the number of voters does not exceed one

plus the dimension of the space of policies.

Section 4 obtains stronger results for the special case of majority-rule ‘Colonel Blotto’

games, which are often used to model election campaigns and lobbying.4 In these games

a candidate’s policy allocates his available resources among several constituencies, each of

which votes for the candidate offering more. Initially we consider versions in which the winner

is the candidate obtaining a weighted majority of votes. As in Section 3, such a game has a

value when one of the candidates wins all ties, and this candidate has a minimax strategy.

To address other cases we provide a tie-breaking rule that implies payoff approachability.

Applying our general results to games with this tie-breaking rule shows that the candidates

have equilibrium strategies that yield the value, and games with any other tie-breaking rule

inherit this value. Next we strengthen this result for the special case that the winner is the

candidate obtaining a simple majority of votes. We show that the value results from an

equilibrium that has zero probability of ties.

2. General Existence Theorems

We study two-player zero-sum games with the following general features. In each game,

the two players are labeled by i = 1 and 2. Given a player i, let j be the other player. For

each player i, his set Xi of pure strategies is a compact metric space and his set Σi of mixed

strategies is the set of Borel probability measures on Xi endowed with the weak-∗ topology.5

Since Xi is a compact metric space, so is Σi. Let δxi
∈ Σi denote the point mass on xi ∈ Xi.

Let X = X1 × X2 and Σ = Σ1 × Σ2 denote the sets of profiles of players’ pure and

mixed strategies. Player i’s payoff function from pure strategies is πi : X → [−1,+1], where

π1 + π2 = 0, and it is extended to the expected payoff from mixed strategies via πi(σ1, σ2) =

Eσ1,σ2 [πi(x1, x2)] for each profile (σ1, σ2) ∈ Σ.6 Recall that when (σn
1 , σ

n
2 ) → (σ1, σ2), the

4The moniker Colonel Blotto stems from the paper by Gross and Wagner [9], but studies of such games
date to work in 1921 by Borel; cf. Borel [2]. Most analyses of such games assume that each player’s objective
is to maximize the number of votes won, as in Roberson [15], rather than winning a majority of votes as
assumed here.

5It is sufficient that the strategy sets be compact Hausdorff spaces. Metrizability is assumed to simplify
the exposition of the proofs by allowing us to use sequences rather than nets. See Remark 2.10(5) for more
on this.

6Of course, the restriction to [−1,+1] as the range is without loss. All that we require is that each πi

is bounded. But even this is unnecessary, since in the unbounded case the transformation eπi−1
1+eπi

yields a

bounded payoff function with range [−1,+1], with the convention that if the value is ±1 after the transfor-
mation then it is ±∞ in the original version.
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corresponding product measure σn
1 ⊗ σn

2 converges to σ1 ⊗ σ2. So Eσ1,σ2 [f(x1, x2)] is upper

semi-continuous (u.s.c.) if f : X → R is u.s.c., and l.s.c. if f is l.s.c.

Let D ⊂ X be the subset consisting of those pure-strategy profiles at which π1 and π2 are

discontinuous. We focus on games for which D is not empty, although we do not assume

it explicitly. For each player i and his pure strategy xi ∈ Xi, let D(xi) ⊂ Xj be the cross-

section of D at xi, i.e. the set of xj such that (xi, xj) ∈ D. Say that a pure strategy xi ∈ Xi

of player i is a point of continuity against the other player j’s mixed strategy σj ∈ Σj if σj

assigns zero probability to the cross section D(xi). At such a pair of strategies, player i’s

expected payoff πi(xi, σj) is independent of how payoffs are determined at profiles in D(xi).

The phrase “point of continuity” is justified by Lemma 2.3 below. The class of games with

mild discontinuities consists of those that satisfy the following assumption.

Assumption 2.1 (Mild Discontinuities).

(1) The set D of pure-strategy profiles at which payoffs are discontinuous is closed.7

(2) For each player j the set {σj ∈ Σj | σj(D(xi)) = 0 ∀xi ∈ Xi } is dense in Σj.

(3) For each mixed strategy σj of a player j the set {xi ∈ Xi | σj(D(xi)) = 0 } is dense

in Xi.

Conditions (1) and (3) of Assumption 2.1 are relatively easy to check, as we show in the

examples studied later. The following sufficient condition for Assumption 2.1(2), which is

satisfied in many typical games, is also readily verifiable.

Lemma 2.2. Suppose Xj is (homeomorphic to) the closure of an open subset of a Euclidean

space. Condition (2) of Assumption 2.1 holds if for each xi ∈ Xi, D(xi) has Lebesgue

measure zero in Xj.

Proof. For each xj and each integer n, let µn
xj

be the uniform distribution over the ball

of radius 1/n around xj in Xj. Then µn
xj

is absolutely continuous with respect to the

Lebesgue measure on Xj. Hence every xi is a point a continuity against µn
xj
, since D(xi)

has Lebesgue measure zero in Xj for each xi. Convex combinations of the µn
xj
’s are also

absolutely continuous, so each xi is a point of continuity against every σn
j in the convex hull

Σn
j of the set of {µn

xj
}xj∈Xj

. Let Σ∗
j be the union over n of Σn

j and note that Σ∗
j ⊂ { σj ∈

Σj | σj(D(xi)) = 0 ∀xi ∈ Xi }. Observe that for each µj ∈ Σj with finite support there

exists a sequence {σk
j } ⊂ Σ∗

j with σk
j → µj. It follows that Σf

j ⊂ Cl(Σ∗
j), where Σf

j is the

set of mixed strategies with finite support and Cl(·) denotes closure. As Cl(Σf
j ) = Σj, we

have Cl(Σ∗
j) = Σj, and the result follows. �

7This assumption can be eliminated by using throughout the closures of D and each D(xi).
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We consider a basic game and the corresponding family of games that differ only in their

payoffs at profiles in D, which in applications correspond to the possible resolutions of ties.

Represent the basic game as G(π) where π1 = π and π2 = −π. Variants of this basic game

are parameterized by the set Π of payoff functions π′ : X → [−1, 1] such that π′(x) = π(x)

for all x /∈ D. Thus the family of games is {G(π′) | π′ ∈ Π}.

Lemma 2.3. If σj(D(xi)) = 0 then player i’s payoff function π′
i is continuous at (δxi

, σj) ∈
Σi × Σj.

Proof. Let π+
i and π−

i be u.s.c. and l.s.c. payoff functions in Π defined as follows: both

functions agree with π on X \ D but π+
i (x) = 1, and π−

i (x) = −1 for all x ∈ D. That π+
i

and π−
i are u.s.c. and l.s.c., respectively, follows from the assumption that D is closed. Let

(σn
i , σ

n
j ) be a sequence converging to (δxi

, σj). By the properties of the weak-∗ topology:

π+
i (δxi

, σj) > lim sup
n

π+
i (σ

n
i , σ

n
j ) > lim sup

n
π′
i(σ

n
i , σ

n
j )

and

lim inf
n

π′
i(σ

n
i , σ

n
j ) > lim inf

n
π−
i (σ

n
i , σ

n
j ) > π−

i (δxi
, σj) .

Because σj(D(xi)) = 0, π+
i and π−

i coincide with π′
i at (δxi

, σj), so the above inequalities are

equalities, and the lemma follows. �

For each payoff function π′ ∈ Π, player 1’s maximin and minimax values are

v(π′) = sup
σ1∈Σ1

inf
x2∈X2

π′(σ1, x2) and v(π′) = inf
σ2∈Σ2

sup
x1∈X1

π′(x1, σ2) ,

where necessarily v(π′) 6 v(π′). If v(π′) = v(π′) ≡ v∗(π′) then v∗(π′) is called the value of

the game G(π′) to player 1.

2.1. The Case That One Player Wins All Ties. Of particular interest are the two

games G(π+) and G(π−), as in the proof of Lemma 2.3. In the game G(π+), π+
1 (x) = +1,

and in G(π−), π−
1 (x) = −1, for each profile x ∈ D. In applications these correspond to the

two cases that one player wins all ties. The following theorem establishes existence of values

for these games.

Theorem 2.4. If π′ = π+ or π′ = π− then the value v∗(π′) exists. Moreover, in the game

G(π+) player 1 has a minimax strategy, and in the game G(π−) player 2 has a minimax

strategy.

Proof. We prove the theorem only for π+ since the other case is similar. By Assumption

2.1(2) let Σ̃2 be a dense set of strategies σ2 such that σ2(D(x1)) = 0 for all x1 ∈ X1. We
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can assume without loss of generality that Σ̃2 is a countable set: indeed, for each positive

integer k, take a covering of Σ2 by a finite number of balls of radius 1/k, pick a point in

each of these balls that belongs to Σ̃2 and then take the countable union (over k) of these

finite sets. Let Σ̃1
2 ⊂ Σ̃2

2 ⊂ · · · be an increasing sequence of subsets of Σ̃2 such that each Σ̃n
2

is a finite set and ∪nΣ̃
n
2 = Σ̃2. For each n let Σn

2 be the convex hull of Σ̃n
2 . Σ

n
2 is a compact

convex subset of Σ2 for each n. Also, for each n and σn
2 ∈ Σn

2 , σ
n
2 (D(x1)) = 0 for all x1 ∈ X1;

in particular, π+ is continuous at each (x1, σ
n
2 ) by Lemma 2.3.

Define a perturbed game Gn as follows. The strategy set of player 1 is Σ1 and the strategy

set of player 2 is Σn
2 . The payoff function is the restriction of π+ to Σ1×Σn

2 . The payoffs are

clearly continuous and bilinear so the game Gn has a value, say vn, and each player i has an

equilibrium strategy σn
i that assures this value.

Take a convergent subsequence of equilibria (σn
1 , σ

n
2 ) and associated values vn converging

to, say, (σ∗
1, σ

∗
2) and v∗ as n → ∞. We show first that π+(σ∗

1, x2) > v∗ for all x2. Indeed,

otherwise there exists some x2 such that π+(σ∗
1, x2) < v∗. In this case, we claim that we

can assume without loss of generality that x2 is a point of continuity against σ∗
1. To prove

this claim, start with the given x2 and first decompose σ∗
1 into an average of two strategies

σc
1 and σd

1 where x2 is a point of continuity against σc
1 and σd

1(D(x2)) = 1. By Lemma

2.3, limxk
2→x2

π+(σc
1, x

k
2) = π+(σc

1, x2). Moreover, π+(σd
1 , x2) = 1 > π+(σd

1 , x
′
2) for all x′

2.

Therefore, for all x′
2 sufficiently close to x2, π

+(σ∗
1, x

′
2) < v∗. By Assumption 2.1(3) we can

now choose a point x′
2 close to x2 such that it is a point of continuity against σ∗

1 and also

π+(σ∗
1, x

′
2) < v∗. Thus, the claim is proved and we can assume that x2 itself is a point of

continuity against σ∗
1.

Because π+ is continuous at (σ∗
1, δx2), pick ε > 0 and a neighborhood U = U1 × U2

of (σ∗
1, δx2) such that for all (τ1, τ2) ∈ U , π+(τ1, τ2) < v∗ − ε. For all large n, σn

1 ∈ Un,

and because Σ̃2 is dense in Σ2, there exists N and σ2 ∈ Σ̃N
j that belongs to U2 and thus

π+(σn, σ2) < v∗ − ε for all large n. But, as the sequence Σ̃n
j is increasing, we have that for

all n > N , σ2 belongs to Σn
j and thus, π+(σn, σ2) > vn, which is impossible as vn converges

to v∗ and as we just saw π+(σn, σ2) < v∗ − ε for all large n. Thus π+(σ∗
1, x2) > v∗ for all x2,

which implies that v∗ 6 v(π+). On the other hand, observe that σn
2 is a feasible strategy in

G(π+) for player 2 that holds player 1’s payoff down to vn. Therefore, vn > v(π+) for all n,

which implies that v∗ > v(π+). Putting the two inequalities together shows that the game

G(π+) has a value and that this value equals v∗. Moreover the fact that π+(σ∗
1, x2) > v∗ for

all x2 ∈ X2 implies that σ∗
1 is a minimax strategy. �
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Remark 2.5. Let π̃+ be defined by π̃+(x) = supxn→x lim supxn π(xn) where the sup is over

all sequences in X \D converging to x, and π̃− is defined analogously. Let Π (resp. Π) be

the set of u.s.c. (l.s.c.) functions in Π that majorize (minorize) π̃+ (resp. π̃−). The minimax

strategy of player 1 (resp. player 2) in π+ (resp. π−) that we computed above is a minimax

strategy in each of these games in Π (resp. Π). Also, the value v∗ is the value of each game

in Π (similarly, the value of π− is the value of each game in Π).

2.2. A Sufficient Condition for Existence of an Equilibrium. A game that has a value

has an ε-equilibrium σε for every ε > 0. Also, if it has a value and player i has a minimax

strategy σ∗
i , then for every ε > 0, σε

i can be chosen to be σ∗
i . While Theorem 2.4 shows

that two variants of a game have a value, ideally one wants an existence result that does not

depend on how ties are resolved. To obtain such a result, we invoke the following sufficient

condition.8

Definition 2.6 (Payoff Approachability). A payoff function π̃ ∈ Π is said to satisfy payoff

approachability if for each player i, his pure strategy xi ∈ Xi, and the other’s mixed strategy

σj ∈ Σj,

π̃i(xi, σj) 6 sup
xn
i →xi

lim sup
n

π̃i(x
n
i , σj) ,

where the supremum is over all sequences {xn
i } ⊂ Xi converging to xi for which each pure

strategy xn
i in the sequence is a point of continuity against σj.

Payoff-approachability requires that a player’s payoff cannot be more than the limit of

what he can get from nearby points of continuity against any strategy of his opponent.9 In

the applications to voting games we specify tie-breaking rules and assumptions on voters’

preferences sufficient to imply payoff approachability.

Theorem 2.7. If there exists a payoff function π̃ ∈ Π satisfying payoff approachability then:

(1) G(π̃) has an equilibrium that yields the value v∗(π̃).

(2) For each ε > 0, each player i has a strategy σε
j that is ε-optimal in G(π̃) and such

that σε
j (D(xi)) = 0 for all xi ∈ Xi.

(3) For each payoff function π′ ∈ Π, the value v∗(π′) exists and is the same as v∗(π̃).

8Observe that for any payoff function π′, v∗(π−) = v(π−) 6 v(π′) 6 v(π′) 6 v(π+) = v∗(π+), so the value
is independent of π′ iff v∗(π−) = v∗(π+). Payoff-approachability ensures this last equality.

9We use the name payoff approachability to distinguish it from Blackwell’s [1] definition for repeated
games of approachability of a subset of the players’ pairs of possible long-run average payoffs, which requires
that for some mixed strategy of one player and any mixed strategy of the other player, eventually the
resulting sequence of time-average payoffs is arbitrarily close to the set with arbitrarily high probability.
The restriction to nearby points that are points of continuity against σj implies that we could have used πn

instead of π̃n in the right-hand side of the above inequality.
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Proof. We divide the proof into intermediate steps. First we prove part (1).

Lemma 2.8. The game G(π̃) has an equilibrium and thus has a value v∗(π̃).

Proof of Lemma. We show that G(π̃) satisfies better-reply security, and then existence fol-

lows from Reny [14, Corollary 5.2].10 The players’ payoff functions are reciprocally upper

semi-continuous because the game is zero-sum, so it remains to show that the game is payoff

secure (Reny [14, Definition, p. 1033]). For this, fix a mixed-strategy profile (σ1, σ2). For

each player i, take a pure strategy xi in the support of σi such that π̃i(xi, σj) > π̃i(σi, σj).

By payoff approachability, for each ε > 0 there exists a point yi close to xi such that yi

is a point of continuity against σj and π̃i(yi, σj) > π̃i(xi, σj) − ε/2. Then, by Lemma 2.3,

there exists a neighborhood U ε
j of σj such that for each τj ∈ U ε

j , π̃i(yi, τj) > π̃i(xi, σj) − ε,

as required. �

Lemma 2.9. Consider a sequence of games G(π̃n), where π̃n is the restriction of π̃ to

strategies in Σn
1 ×Σn

2 ⊂ Σ, and each sequence Σn
i converges to Σi in the Hausdorff topology

on compact subsets of Σi. If each game G(π̃n) has an equilibrium σn and a value vn, then

vn converges to v∗(π̃) and every limit point of σn is an equilibrium of G(π̃).

Proof of Lemma. Take a convergent subsequence of equilibria σn and associated values vn of

G(π̃n) converging to say σ∗ and v∗. We show that v∗ = v∗(π̃) and that σ∗ is an equilibrium

of G(π̃), which proves the result. Fix a point x1 for player 1 that is a point of continuity

of σ∗
2. Fix ε > 0. Applying Lemma 2.3, there exists a neighborhood of U1 × U2 of (δx1 , σ

∗
2)

such that π̃(σ) > π̃(x1, σ
∗
2) − ε for all σ ∈ U1 × U2. Since the strategy sets Σn

i converge to

Σ, for all large n, there exists a strategy τn1 ∈ Σn
1 ∩ U1. Also, σn

2 belongs to U2 for large

n. For such large n, as σn
2 is an optimal strategy in G(π̃n), vn > π̃n(τn1 , σ

n
2 ), and thus

π̃(x1, σ
∗
2)− ε 6 π̃(τn1 , σ

n
2 ) 6 vn, which implies that π̃(x1, σ

∗
2) 6 ε+ v∗. Because ε is arbitrary,

we conclude that π̃(x1, σ
∗
2) 6 v∗ for any x1 that is a point of continuity against σ∗

2. Applying

payoff approachability to player 1’s payoffs shows that π(x1, σ
∗
2) 6 v∗ for all x1 ∈ X1 and

thus that v∗ > v∗(π̃). A similar argument with the roles of the players reversed shows that

v∗ 6 v∗(π̃) and thus v∗ = v∗(π̃) as required. As shown above, π̃(x1, σ
∗
2) 6 v∗ for all x1 and

v∗ = v∗(π̃). Thus σ∗
2 is an optimal strategy for player 2 in G(π̃). Likewise, σ∗

1 is optimal for

player 1. Hence σ∗ is a Nash equilibrium of G(π̃). �

Now we conclude the proof of the other parts of the theorem. We show that player 2 has

a strategy as specified in part (2) of the theorem and that v(π′) 6 v∗(π̃) for all π′ ∈ Π. A

10One can show further that G(π̃) satisfies the conditions in Duggan [6] that are stronger than better-reply
security.
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similar argument for player 1 completes the proof. As in the proof of Theorem 2.4, consider

the perturbed games Gn where the strategies of player 2 are restricted to Σn
2 . The strategy

sets converge to the strategy sets in G(π̃) and thus Lemma 2.9 applies. Take a convergent

subsequence of equilibria (σn
1 , σ

n
2 ) and associated values vn converging to (σ∗

1, σ
∗
2) and v∗.

From Lemma 2.9 we know that v∗ = v∗(π̃).

For each ε > 0, choose n such that vn 6 v∗(π̃)+ε. Since vn is the value of Gn, π(x1, σ
n
2 ) 6

vn 6 v∗(π̃) + ε for all x1. By construction, σn
2 (D(x1)) = 0 for all x1, and σn

2 satisfies the

properties specified in part (2) of the theorem. Also, observe that since σn
2 (D(xi)) = 0 for all

xi, no matter how payoffs are defined on D, the strategy σn
2 holds player 1 down to v∗(π̃)+ε,

i.e. v(π′) 6 v∗(π̃) + ε for all π′. Since ε is arbitrary, v(π′) 6 v∗(π̃), as was to be shown. �

Remark 2.10.

(1) Although part (3) establishes that if some payoff function π̃ ∈ Π satisfies payoff

approachability then for every π′ ∈ Π the game G(π′) has a value v(π′) = v(π̃), it

need not be that in G(π′) a player has a minimax strategy, or if he does then it could

depend on the tie-breaking rule; see Remark 4.5 below for an example. Nevertheless,

the above proof establishes that for each ε > 0 player 1 has a strategy that assures

at least v∗(π′)− ε regardless of the tie-breaking rule.

Even if no payoff function in Π satisfies payoff approachability, it is still possible

that for every payoff function π′ ∈ Π the game G(π′) has an equilibrium and a value,

but the value depends on the tie-breaking rule. An example is the “diagonal game”

at the end of Section 2.3 below.

(2) Observe that by Lemma 2.9 the strategy profile σ∗ constructed in the second part of

the proof of Theorem 2.7 by invoking Lemma 2.9 is actually an equilibrium of G(π̃).

Thus part (1) can be viewed as a corollary to this part.11

(3) In some applications, some strategies may be (weakly) dominated and payoff ap-

proachability seems irrelevant for these profiles. The hypothesis of Theorem 2.7 can

be weakened as follows. Suppose each player i has a compact subset X∗
i of Xi such

that for each xi /∈ Xi, there exists X∗
i ∈ Xi such that π̃i(x

∗
i , σj) > π̃i(xi, σj) for

all σj. Then for the conclusion of Theorem 2.7 to hold it is sufficient that payoff

approachability holds for all xi ∈ X∗
i for each i.

11Obtaining part (1) thus as a corollary of Lemma 2.9 relies only on perturbation methods. We present
the proof of part (1) separately, using better-reply security, to relate our results to previous literature on
existence of equilibria in discontinuous games.
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(4) If payoff approachability holds just for just one player i, in the sense that it holds for

all (xi, σj) for fixed i and j, then the game has a value and player j has a minimax

strategy. For instance, this happens in the games π+ for i = 2 and π− for i = 1.

(5) If we had simply assumed that each Xi is a compact Hausdorff space then we could

not have used the sequence Σ̃1
j ⊂ Σ̃2

j ⊂ · · · to construct a sequence of perturbed

games. Rather, we would have needed a net { Σ̃α
j } where the index α would be a

collection of neighborhoods {U(xj) }xj∈Xj
and Σ̃α

j would be a finite subset of mixed

strategies, one per open subset in a finite subcover of the collection. We would

then use the corresponding net of perturbed games and the argument would proceed

analogously.

From Lemma 2.9 we obtain the following corollary about finite approximations. Recall

that every two-player zero-sum game with finite sets of pure strategies has a value obtained

from equilibrium strategies that can be computed by linear programming.

Corollary 2.11. Suppose that there exists a payoff function π̃ ∈ Π satisfying payoff ap-

proachability. Consider a sequence of finite games G(π̃n), where π̃n is the restriction of π̃ to

profiles in the finite set Σn
1 × Σn

2 ⊂ Σ, and each sequence Σn
i converges Σi in the Hausdorff

topology on closed subsets. Then the sequence v∗(π̃n) of values of G(π̃n) converges to v∗(π̃).

We conclude this subsection with a sufficient condition for a payoff function π̃ to satisfy

payoff approachability. The simplification achieved by this result is that in a class of games,

which includes our subsequent applications, it is enough to check whether payoff approacha-

bility holds against mixed strategies with finite support. More precisely, if a payoff function

satisfies condition (1) of Proposition 2.12 below, then payoff approachability is equivalent to

condition (2).

Proposition 2.12. A payoff function π̃ ∈ Π satisfies payoff approachability if:

(1) For each i, xi, D(xi) can be partitioned into finitely many Borel-measurable subsets

D1(xi), . . . , D
n(xi) such that for each 1 6 l 6 n:

(a) π̃i(xi, ·) is constant on Dl(xi).

(b) For each closed Al ( Dl(xi), π̃i(yi, ·) is constant on Al for an open and dense set

of yi’s in a neighborhood U of xi.

(2) The condition in Definition 2.6 of payoff approachability holds for i, xi and σj where

the support of σj is finite and contained in D(xi).

Proof. Suppose that the conditions of the theorem are satisfied by a payoff function π̃. We

show that π̃ satisfies payoff approachability. Fix (xi, σj). We can decompose σj into an
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average of two strategies, σc
j and σd

j , where σc
j(D(xi)) = 0 and σd

j (D(xi)) = 1. For every

sequence xn
i → xi, we have that π̃i(x

n
i , σ

c
j) → π̃i(xi, σ

c
j) as in Lemma 2.3. Thus the condition

of Definition 2.6 is really about the property of π̃i(xi, σ
d
j ) and we can therefore assume

without loss of generality that σj = σd
j , i.e. xi is a point of discontinuity against every pure

strategy in the support of σj.

Fix ε > 0. For each l choose a closed subset Al of Dl(xi) such that σj(A) > 1− ε, where

A = ∪l A
l. Let τj be the conditional distribution over A. It is sufficient to find a point

yi in the ε-ball around xi such that yi is a point of continuity against σj and π̃i(xi, τj) 6
π̃i(yi, τj) + ε. Indeed, using the fact that π̃i(xi, xj) 6 π̃i(yi, xj) + 2 for all xj, this implies

that π̃i(xi, σj)− π̃i(yi, σj) 6 (1− ε)ε+ 2ε, which proves the result.

Pick a point xl
j in each Al and define a mixed strategy τ̃j as follows: τ̃j(x

l
j) = τj(A

l). The

strategy τ̃j has finite support by construction and also because π̃i(xi, ·) is constant on each

Al by virtue of condition (1a), π̃i(xi, τj) = π̃i(xi, τ̃j). By condition (1b), we can choose a

neighborhood U contained in the ε-ball around xi such that π̃i(yi, ·) is constant on each Al

for an open and dense set of yi’s in U . By condition (2), there exists ỹi in U such ỹi is a point

of continuity against τ̃j and π̃i(xi, τ̃j) 6 π̃i(ỹi, τ̃j) + ε/2. Because ỹi is a point of continuity

against τ̃j and using condition (1b) and Assumption 2.1(3) for σj, there exists a point yi in

U such that: (i) π̃i(yi, ·) is constant on each Al; (ii) yi is a point of continuity against σj;

(iii) π̃i(ỹi, τ̃j) 6 π̃i(yi, τ̃j) + ε/2. By (i), π̃i(yi, τj) = π̃i(yi, τ̃j). Assembling these inequalities

and equalities,

π̃i(xi, τj) = π̃i(xi, τ̃j) 6 π̃i(ỹi, τ̃j) + ε/2 6 π̃i(yi, τ̃j) + ε = π̃i(yi, τj) + ε,

which completes the proof. �

2.3. Relation to Reny’s Conditions. Theorem 2.4 adds to the literature on sufficient

conditions for existence of equilibria. To see this consider the following game: the sets of

pure strategies are X1 = X2 = [0, 1] and player 1’s payoff is

π1(x1, x2) =

 x1 if x1 < x2

1− x1 if x1 > x2

1 if x1 = x2

The set D is the diagonal x1 = x2, and this is the π+ version, where player 1 gets +1 on

D. Consider the profile (δ1/2, δ1/2) with associated profile of payoff limits (1/2,−1/2). It is

not an equilibrium, as player 2 gets −1 and could get −1/2 by any x2 ̸= 1/2. Better-reply

security fails: If σ1 is a strategy of player 1, we can choose a point x2(ε) in the interval

(1/2 − ε, 1/2) that is a point of continuity against σ1. It is easily checked that player 1’s

payoff is less than 1/2 + ε from the profile (σ1, x2(ε)). Likewise, against δ1/2, player 2 gets
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−1 for x2 = 1/2 and −1/2 for any x2 ̸= 1/2, so π2(δ1/2, σ2) 6 −1/2 for all σ2 ∈ Σ2. Thus no

strategy of either player can secure strictly more than the corresponding payoff limit. Yet

Theorem 2.4 establishes existence of a value and of a minimax strategy for player 1. (It is

directly verified that the value of the game is 1/2, σ1 = δ1/2 is a minimax strategy for player

1, and (σ1, σ2), with σ1 = δ1/2 and σ2 = (1/2)δ0 + (1/2)δ1, is an equilibrium.) See Section 4

for another example.

On the other hand, the direction taken by Theorem 2.7 is evidently a specialization of

better-reply security. To illustrate, first note that its proof fails in the standard example of

a zero-sum game without a value due to Sion and Wolfe [18]. This is so because this game

violates payoff approachability. To see this formally, recall that in that game, there are two

players, with strategy sets X1 = X2 = [0, 1]. Player 1’s payoff is

π1(x1, x2) =

 −1 if x1 < x2 < x1 + 1/2
0 if x1 = x2 or x2 = x1 + 1/2
1 otherwise

If we take x1 = 0 and σ2 = δ1/2 then π1(x1, σ2) = 0, while π1(x
n
1 , σ2) = −1 when we take a

sequence of points of continuity. A similar situation holds for x1 = 1 = σ2. The fundamental

problem is that these are boundary points for player 1 and one can approach such a point

from only one side.

By the same logic, there is no payoff function π̃ ∈ Π satisfying payoff approachability. In

fact, payoff approachability forces π̃1(1, 1) = −1, as π1(x
n
1 , 1) = −1 for all sequences xn

1 → 1,

and also −π̃1(1, 1) = π̃2(1, 1) = −1, as π2(1, x
n
2 ) = −1 for all sequences xn

2 → 1. This applies

even to the better-reply secure “diagonal game” for which π1 equals to −1 if x2 > x1, 1 if

x1 > x2, and 0 if x1 = x2. More generally, such a game has a pure-strategy equilibrium

(x1, x2) = (1, 1) yielding the value v ∈ [−1,+1] when π1 = v on the diagonal x1 = x2.

Because the value v depends on the tie-breaking rule that specifies v, there cannot exist a

payoff function π̃ ∈ Π satisfying payoff approachability.

3. Models of Elections

In this section we address models of elections, as in Downs [5]. Each candidate proposes

a policy and gets votes from those voters who prefer his policy to the policy proposed by

the other candidate. First we apply Theorem 2.4 to conclude that if one candidate, say the

incumbent, wins all ties then a value exists and the incumbent has a minimax strategy that

ensures this value. Then, invoking assumptions on voters’ preferences, we show that payoff

approachability is satisfied for a specified tie-breaking rule. Therefore, Theorem 2.7 implies



COMPETITION FOR A MAJORITY 13

existence of an equilibrium that yields the value, and this is also the value for any other

tie-breaking rule (so there exists an ε-equilibrium for every ε > 0).12

3.1. Formulation. The game G is specified as follows. Two candidates compete in an

election for the votes of K voters, where K > 2, by choosing a policy from a set P of

feasible policies. Specifically, each candidate i’s set Xi of feasible policies is a subset of P

and X = X1×X2.
13 Each voter presumably votes for the candidate whose policy she prefers.

If voter k chooses candidate i then i gets wk votes, where each 0 < wk < 1/2 and
∑

k wk = 1.

A candidate who gets more than half the votes wins the election and receives the payoff

+1, and the loser receives the payoff −1. In the case of a draw, in which the candidates

get equal numbers of votes, their payoffs are both zero. As in Section 2, the payoff function

of candidate i is πi : X → [−1,+1], which can depend on how voters choose between tied

policies.

We represent voter k’s preferences by a utility function uk : P → R. We impose the

following assumptions on the policy space and the preferences of voters.

Assumption 3.1 (Basic Assumptions).

(1) The policy space P is (homeomorphic to) a compact subset of a Euclidean space such

that it is the closure of its interior, and for each candidate i, his set Xi of feasible

pure strategies is the closure of an open subset of P .

(2) Each voter’s utility function is continuous, and each indifference curve has zero

Lebesgue measure in P .

Lemma 3.2. The game G satisfies Assumption 2.1.

Proof. The set D of points of discontinuity is the set of strategy profiles (x1, x2) such that∑
k:uk(xi)>uk(xj)

wk 6 1/2 for each candidate i, with the inequality being strict for at least

one i. This set is obviously closed in X, so Assumption 2.1(1) is satisfied. For each policy

xi, the cross-section D(xi) of D is contained in the intersection of Xj with a finite union of

indifference sets in P , one for each voter, each of which is a closed set of Lebesgue measure

zero in P , so Assumption 2.1(2) is satisfied using Lemma 2.2. For any given mixed strategy

σj, the marginal distribution on the utility values of voter k has at most countably many

12Plott [13] shows that an equilibrium in pure strategies exists only if voters have highly non-generic
utility functions. Duggan [6] shows that an equilibrium exists in the case of three voters and the standard
tie-breaking rule. Duggan and Jackson [8] show that an equilibrium exists under more general assumptions,
but they rely on endogenous tie-breaking as in Simon and Zame [17].

13Typically, symmetry is imposed in such models by assuming that X1 = X2, but our results do not
require this assumption. We apply this more general formulation to asymmetric Colonel Blotto games in
Section 4.
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atoms. Because each indifference curve is closed and has Lebesgue measure zero in P , the

set of policies of candidate i that are not points of continuity against σj is contained in

the intersection of Xi with a countable union of closed sets of measure zero. Therefore

Assumption 2.1(3) is satisfied. �

3.2. The Case That One Candidate Wins All Ties. Theorem 2.4 implies that if one

candidate wins all ties then a value exists and that candidate has a minimax strategy that

ensures at least the value.

3.3. Existence of an Equilibrium. Now we provide assumptions on voters’ preferences

and their strategy sets, and a tie-breaking rule, that imply payoff approachability and thus

the existence of an equilibrium.

Our first assumption assures a unique winner when there are no ties; see Remark 3.11 for

why this assumption matters. For simple majority games, this assumption (which would say

that the number of voters is odd) can be omitted; see the next subsection.

Assumption 3.3. For each subset L of voters,
∑

k∈L wk ̸= 1/2.

Say that a subset of voters L is a minimal subset of voters for whom xi is Pareto optimal

if: (i) xi is Pareto optimal for voters in L among the policies in Xi; and (ii) there does not

exist a strict subset of L for whom it is Pareto optimal. For each policy xi ∈ Xi, let K(xi) be

the set of voters for whom xi is an ideal policy in Xi, i.e. xi maximizes uk over Xi. Obviously

each voter in K(xi) is a singleton minimal set for whom xi is optimal among policies in Xi.

Assumption 3.4 (Diversity of Preferences). For each candidate i and policy xi ∈ Xi:

(1) The policy xi is Pareto optimal in Xi.
14

(2) For each minimal subset L of voters for whom the policy xi is Pareto optimal, each

voter k ∈ L, and each neighborhood V of xi, there exists a policy yi in V such

that uk′(xi) < uk′(yi) for every voter k′ in K \ K(xi) other than voter k, while

uk′(xi) > uk′(yi) for all voters k
′ ∈ K(xi) ∪ {k}.

Observe that there exists at most one minimal subset L of K \K(xi) for whom xi is Pareto

optimal if the assumption is satisfied. Moreover there exists one iff K(xi) is empty. Thus

define K∗(xi) to be K(xi) if the latter is nonempty and otherwise the unique minimal subset

L of K for which xi is optimal.15

14See Remark 3.10 for a discussion of how to relax this assumption.
15If we had assumed that the ideal policies of voters are all different, then each xi has a unique minimal

subset of voters for whom xi is Pareto optimal. We do not impose this assumption because models with linear
preferences over a convex set could admit the robust possibility that the same policy is ideal for multiple
voters.
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Given a policy xi ∈ Xi, for every neighborhood V (xi) of xi, and every k ∈ K∗(xi), from As-

sumption 3.4 we can choose a policy yi(V (xi), k) ∈ V (xi) such that uk′(xi) < uk′(yi(V (xi), k))

if k′ ̸= k and belongs to K \ K(xi); and uk′(xi) > uk′(yi(V (xi), k)) otherwise. To simplify

notation, we will use yki to denote yi(V (xi), k).

If x = (x1, x2) ∈ D then for each i, define Li(x) as the set of voters k such that uk(xi) >

uk(xj), and L0(x) as the set of voters k such that uk(xi) = uk(xj); L
∗
i (x) ≡ K∗(xi) ∩ L0(x);

and Li(x) = K(xi) ∩ L0(x). For all sufficiently small neighborhoods V (xi) of xi, for each

yi ∈ V (xi), uk(yi) > uk(xj) for all k ∈ Li(x) and uk(yi) < uk(xj) for all k ∈ Lj(x).

Observe that by construction the payoffs are then well-defined without ties for (yki , xj) for

each k ∈ K∗(xi). Thus, by Assumption 3.3, πi(y
k
i , xj) is ±1.

We now introduce our next assumption. Suppose x ∈ D and that either Li(xi) is nonempty

or |L∗
i (x)| > 2. Let l∗i (x) be a voter in L∗

i (x) with wl∗i (x)
6 wk′ for all k

′ ∈ L∗
i (x). For each

i, let V (xi) be a neighborhood of xi such that for all yi ∈ V (xi), uk(yi) > uk(xj) for all

k ∈ Li(x) and uk(yi) < uk(xj) for all k ∈ Lj(x).

Assumption 3.5 (Relationship Between Candidates’ Strategy Sets). If candidate i’s policy

y
l∗i (x)
i loses to the policy xj then for each k ∈ K∗(xj), candidate j’s policy ykj beats xi.

This assumption depends on the neighborhoods only to the extent that voters who are not

indifferent between xi and xj treat policies in the two neighborhoods the same way. Hence

if it holds for some pair of neighborhoods then it holds for all smaller neighborhoods.

Assumptions 3.4 and 3.5 are not restrictive if the dimension N of the policy space P is at

least K−1. We show later that Colonel Blotto games satisfy these assumptions. For another

example, if the voters have Euclidean preferences, say uk(p) = −∥p− ak∥ where ak ∈ RN is

voter k’s ideal policy, then the Pareto set is the convex hull of the ak’s. If N > K − 1, and

all the ideal policies are extreme points of the Pareto set, then the assumptions are satisfied

if both players have this Pareto set as their strategy set. More generally suppose that P

is a convex set and the utility functions are differentiable and strictly quasi-concave. Then

generically in the space of such preferences, the rank of the matrix of gradients at a Pareto

optimal policy is K − 1 and Assumption 3.4 holds. If xi is an ideal policy of a voter k (and

then the only voter, because of the rank condition on the matrix of gradients), then Li(x) is

nonempty iff xi = xj and then Assumption 3.5 holds vacuously as yki beats xj. On the other

hand if L∗
i (x) has at least two voters, and y

l∗i (x)
i loses to xj, then it must be that candidate

i needs all the voters in L0(x) to win: y
l∗i (x)
i loses for the tied voter in l∗i (x) with the least

vote and wins for all other tied voters, and yet it loses to xj, so candidate j needs just one
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of the tied voters to win the election. And, for each k ∈ K∗(xj), it is simple to find a ykj that

achieves that much, given that Assumption 3.4 holds. So Assumption 3.5 holds as well.

The following example illustrates the ideas involved.

Example 3.6. There are 4 voters and the dimension of the police space is 3. So K = 4 and

N = 3. Voter k’s utility function is uk(x) = −
∑3

n=1(xn − akn)
2, where the ideal points are

a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 0) and a4 = (0, 0, 1). The space of policies P is the

tetrahedron obtained as the convex hull in R3 of the ideal points. Observe that this is the set

of Pareto optimal policies, which we assume to be the set of strategies for both candidates.

It is simple to come up with weights, e.g. w1 = .11, w2 = .2, w3 = .29 and w4 = .4, to satisfy

Assumption 3.3. For a given policy xi ∈ P , the minimal subset L of voters for which xi is

Pareto optimal is given by the voters whose ideal points span the face at which xi lies. For

instance, for a, b > 0 with a+b < 1, L = {1, 2} if xi = (a, 1−a, 0); L = {1, 4} if xi = (a, 0, 0);

L = {1, 2, 4} if xi = (a, b, 0); and L = {1, 2, 3, 4} if xi is in the interior of P . K(xi) = {k}
if xi = ak and it is empty for policies not equal to an ideal point. Assumption 3.4 is easily

verified: if xi = ak, then L = {k} and moving to the interior of P we find the required yi; if

xi belongs to the face spanned by voters including voter k, then the required yi for voter k

(denoted yki ) is found by moving to the interior of P away from ak.

Consider x ∈ D given by xi = (1/4, 1/4, 0) and xj = (1/4, 0, 1/4). Then Li(x) = {2},
Lj(x) = {4} and L0(x) = {1, 3}. Also K∗(xi) = {1, 2, 3} and K∗(xj) = {1, 3, 4}, so L∗

i (x) =

L∗
j(x) = {1, 3}. Hence l∗i (x) = l∗j (x) = {1}.

Observe that y
l∗i (x)
i loses voter 1 (because l∗i (x) = {1}), wins voter 3 and does not change

the other two voters (relative to xj – so 2 still prefers i’s policy y
l∗i (x)
i over xj, whereas 4 prefers

xj over y
l∗i (x)
i ). Given the weights specified above, y

l∗i (x)
i loses to xj, as it gets .2 + .29 = .49

votes, whereas xj gets .51 votes. To illustrate Assumption 3.5, we must show that ykj beats

xi for k = 1, 3, 4. It is obvious for k = 4, as u4(xj) > u4(xi), V (xj) is chosen so that this

inequality is preserved for all yj ∈ V (xj), and y4j wins the tied voters 1 and 2. For k = 3,

y3j loses voter 3, wins voter 1 and does not change the other two voters (relative to xi), so it

gets .11 + .4 = .51 votes and beats xi. Likewise for k = 1, as now y1j wins voter 3, so it gets

.29 votes on top of the .4 votes already obtained from voter 4.

The tie-breaking rule is specified in terms of the implied payoff function π̃ ∈ Π.

Definition 3.7 (Tie-Breaking Rule T ). Suppose the profile x is in D.
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(T1) For each i, let V (xi) be as in Assumption 3.5. If for some i, Li(x) is nonempty

or L∗
i (x) has at least two voters, and if y

l∗i (x)
i loses to xj, then π̃i(xi, xj) = −1 and

π̃j(xi, xj) = +1.

(T2) In all other cases, π̃i(xi, xj) = 0 for each candidate i.16

As above, when y
l∗i (x)
i loses to xj, candidate j is in a very advantageous situation. For

instance, at the pair (xi, xj) described in Example 3.6, candidate j has .4 votes already,

and capturing any of the two tied voters (1 and 3) would suffice for j to win the election,

whereas candidate i has to get the votes from both voters 1 and 3 to win the election. In

such situations, the tie-breaking rule T awards the election to j. This tie-breaking rule has

the following convenient property.

Lemma 3.8. The payoff function π̃ induced by rule T satisfies condition (1) of Proposition

2.12.

Proof. We can partition D(xi) into a finite number of subsets, each indexed by a triple

(L0, L1, L2) where, as above, candidate i gets the votes of Li and there are ties in L0. These

sets are further decomposed by whether (T1) or (T2) applies, which proves (1a). To prove

property (1b), fix a closed subset AL of one of the elements of this partition with index

(L0, L1, L2). Then there exists ε > 0 such that for each xj ∈ AL, |uk(xi)−uk(xj)| > ε for all

k /∈ L0. Choose a ball V around xi such that |uk(xi)−uk(yi)| < ε for all yi ∈ V . Then π̃(yi, ·)
is constant on AL for an open and dense subset of V , i.e. those yi’s for which uk(xi) ̸= uk(yi)

for all k ∈ L0, which verifies condition (1b). �

Theorem 3.9. The game G(π̃) has an equilibrium and its value is the same as the value of

G(π′) for all π′ ∈ Π.

Proof. We check that π̃ satisfies payoff approachability for an arbitrary profile (xi, σj) and

then apply Theorem 2.7.

By the above lemma and Proposition 2.12, we can assume that σj has finite support, say

x1
j , . . . , x

n
j . Choose ε̄ > 0 such that for all xl

j in the support of σj, and each k, |uk(xi) −
uk(x

l
j)| > ε̄ if uk(xi) ̸= uk(x

l
j). Fix a neighborhood V (xi) of xi such that |uk(xi)−uk(x

′
i)| < ε̄

for all x′
i ∈ V (xi). By our choice of ε̄, V (xi) is one of the neighborhoods that could be used

in defining the tie-breaking rule. (In particular, for each k there are no ties between yki and

the xl
j’s and the former is a point of continuity against σj.) We show that there exists some

k such that π̃i(y
k
i , σj) > π̃i(xi, σj), which proves payoff approachability.

16We could also use fair coin tosses for each tied voter.
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For each k ∈ K∗(xi), π̃i(y
k
i , xj) = π̃i(xi, xj) = 1 if (T1) resolves the tie between xi and xj

in favor of i, and π̃i(y
k
i , xj) > −1 = π̃i(xi, xj) if (T1) resolves the ties in favor of j. Therefore,

if (T1) applies to every xl
j then we are done. Otherwise, let X̂j be the set of xj such that

(T2) applies to (xi, xj) and let σ̂j be the conditional distribution over X̂j. We now show

that there exists k such that π̃i(y
k
i , σ̂j) > 0 = π̃i(xi, σ̂j), which finishes the proof.

If K(xi) is nonempty then π̃i(y
k
i , xj) = 1 for each k ∈ K(x) and each xj in X̂j: indeed

this is obviously true if Li(xi, xj) = ∅ since yki would win each of the ties in L0; if Li(xi, xj)

is nonempty, this is true since otherwise (T1) applies. Therefore, we are done in this case.

Suppose K(xi) is empty. Consider the policy yi ≡ yi(V (xi), k
∗), where k∗ minimizes

wk over K∗(xi). If k∗ /∈ L∗
i (xi, xj) for some xj in X̂j, then obviously π̃i(yi, xj) = +1; if

k∗ ∈ L∗
i (xi, xj) and L∗

i (xi, xj) has at least two voters, then too π̃i(yi, xj) = +1, since (T1)

would apply otherwise. Thus among the policies in X̂j, yi beats every xl
j except, possibly, the

subset Âj of those xj’s in X̂j for which L∗
i (xi, xj) is just the singleton k∗. If the probability

of this subset under σ̂j is no more than half, then π̃i(yi, σ̂j) > 0 and we are done.

Finally, suppose that the probability of Âj under σ̂j is greater than half. Observe that

K∗(xi) contains some other voter, say k̃, since we have assumed that K(xi) is empty. As we

argued above, for any k ∈ K∗(xi), y
k
i beats any xj that xi beats under (T1) and does at least

as well when xi loses because of (T1). On the set X̂j we now have that yi(V (xi), k̃) beats

every policy in Âj, which has a probability at least half, and thus it gets a weakly higher

payoff against σ̂j than xi, which completes the proof. �

Remark 3.10. Suppose Xi includes policies that are not optimal in Xi. Let X
∗
i be the set

of optimal policies in Xi. If our assumptions hold on the sets X∗
i then our results apply

to obtain existence of a value over X∗
1 × X∗

2 . We could specify payoffs at ties involving

non-optimal points to extend this to an equilibrium over the bigger strategy space. But

even simpler, the game over X inherits the value from the game over X∗: for each ε, our

perturbation technique yields for each player i an ε-optimal strategy σε
i that assigns zero

probability to any voter’s indifference curves—indeed, this follows if we use for the restricted

strategy sets, the sets identified by the proof of Lemma 2.2 which have the property that

each element of these sets assigns zero probability to cross-sections. The same strategy is

ε-optimal in X.

Remark 3.11. A key feature of the tie-breaking rule T is (T1). When it is invoked to

resolve a tie between xi and xj, it ensures that each player can achieve the payoff from

the tie by all choices of the form yki . Indeed, if it is resolved in i’s favor, it is guaranteed
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by Assumption 3.5. On the other hand, if it is resolved against i, then it is obvious. The

assumption that there are no draws (Assumption 3.3) means that πi(y
k
i , xj) ̸= 0. If we allow

this possibility, complications can arise. For simplicity suppose L∗
i (x) = L∗

j(x) = L0(x) and

this set contains two voters with unequal weights. It could be that πi(y
l∗i (x)
i , xj) = 0 for i but

πi(y
k
i , xj) = −1 for the other voter k in L∗

i (x). Thus, if we set πi(xi, xj) > −1, the strategy yki
cannot guarantee this payoff. On the other hand if πi(xi, xj) = −1, then j cannot guarantee

payoff +1 with the strategy ykj . The problem here is the combination of the possibility that

the game could end in a draw (each candidate gets half of the votes) with the fact that it is

a weighted-majority game.

Remark 3.12. Payoff-approachability can fail whenK > N+1. For example, suppose there

are seven voters and the policy space of each candidate is the set of lotteries over three out-

comes o1, o2, o3 ∈ P , so K = 7 and N = 2. The seven voters’ utilities (uk(o1), uk(o2), uk(o3))

for the three outcomes are (1, .6, 0), (1, .5, 0), (1, 0, .6), (0, 1, .6), (.6, 1, 0), (.6, 0, 1), and

(0, .6, 1), and for each voter his expected utility is linear, uk(p) =
∑

ℓ uk(oℓ)pℓ. Payoff-

approachability is violated at the profile where both candidates offer the policy that yields

o1 for sure. However, that profile is an equilibrium.

3.4. Simple-Majority Games. For the case of simple-majority games we specify a slightly

different tie-breaking rule that implies the same result even if the number of voters is even.

We use the notation from the previous section, except that each wk = 1/K.

Obviously, Assumption 3.3 cannot hold when the number of voters is even, so it is dropped.

Assumption 3.4 on diversity of preferences remains the same. Assumption 3.5 relating strat-

egy sets has to be changed. In the following assumption and definition, we retain the notation

from the previous subsection.

Assumption 3.13 (Relationship Between Candidates’ Strategy Sets—The Simple-Majority

Version). Fix x = (xi, xj) ∈ D.

(1) If Li(x) is nonempty then |L0(x)| > 2.

(2) If L∗
i (x) is nonempty and |L0(x)| > 2 then:

(a) If πi(y
k
i , xj) = 0 for some (and then all) k ∈ L∗

i (x), then for all k ∈ K∗(xj),

πj(y
k
j , xi) ∈ { 0, 1 } and in fact equals +1 if |L0(x)| > 3.

(b) If πi(y
k
i , xj) = −1 for some (and then all) k ∈ L∗

i (x), then for all k ∈ K∗(xj),

πj(y
k
j , xi) = +1.

Example 3.14. In the setting of Example 3.6, set the weights to wk = 1/4 for every k.

Condition (1) of Assumption 3.13 holds because Li(x) is nonempty iff xi = xj and then
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|L0(x)| = K > 3. Condition (2)(a) is illustrated by the policy pair (xi, xj) described in

Example 3.6: in fact πi(y
k
i , xj) = 0 for k = 1, 3, as y1i (resp. y3i ) wins voter 3 (resp. 1) and

loses voter 1 (resp. 3), so each such policy gets 2/4 votes against xj. So we must show that

πj(y
k
j , xi) > 0 for k = 1, 3, 4. And this is true, as it is equal to zero for k = 1, 3 (both y1j and

y3j win one and lose one of the tied voters, so each gets 2/4 votes against xi) and it is equal

to +1 for k = 4, as y4j wins both tied voters 1 and 3 and retains voter 4, so j gets 3/4 votes

against xi.

Example 3.15. To illustrate the second part of condition (2)(a), modify Example 3.6 by

adding two voters and two dimensions, K = 6, N = 5, continuing with Euclidean preferences

having ideal points a1 = (1, 0, 0, 0, 0), a2 = (0, 1, 0, 0, 0), a3 = (0, 0, 0, 0, 0), a4 = (0, 0, 1, 0, 0),

a5 = (0, 0, 0, 1, 0) and a6 = (0, 0, 1, 0, 1). Again the strategy sets are the Pareto set, the

convex hull of the ideal policies. For simple majority rule, the weights are wk = 1/6 for

every k. Consider xi = (1/4, 1/4, 0, 0, 0) and xj = (1/4, 0, 1/4, 0, 0). Now L0(x) = {1, 3, 5},
Li(x) = {2} and Lj(x) = {4, 6}. We have πi(y

k
i , xj) = 0 for k ∈ {1, 3} = L∗

i (x), as y
1
i (resp.

y3i ) wins voters 3 and 5 (resp. 1 and 5) and loses voter 1 (resp. 3), totaling 3/6 votes from

voters 2, 3 and 5 (resp. 1, 2 and 5). We must show that πj(y
k
j , xi) = +1 for k = 1, 3, 4, and

this follows because ykj for k = 1, 3, 4, wins at least two of the tied voters and retains voters

4 and 6 (relative to xi), so j gets at least 4/6 votes.

Example 3.16. To illustrate condition (2)(b) of Assumption 3.13, again modify Example

3.6, but now add only one voter and one dimension (K = 5, N = 4), with ideal policies

a1 = (1, 0, 0, 0), a2 = (0, 1, 0, 0), a3 = (0, 0, 0, 0), a4 = (0, 0, 1, 0), and a5 = (0, 0, 1, 1), and

wk = 1/5 for all k. For the pair xi = (1/4, 1/4, 0, 0) and xj = (1/4, 0, 1/4, 0), we have

L0(x) = {1, 3}, Li(x) = {2}, and Lj(x) = {4, 5}. Now πi(y
k
i , xj) = −1 for k = 1, 2, for the

same reason as above, as xj retains voters 4 and 5 and wins one more voter (voter 1 for

k = 1 and voter 3 for k = 3), so it gets 3/5 votes relative to yki . So we have to verify that

πj(y
k
j , xi) = +1 for k = 1, 3, 4. This follows, as ykj for k = 1, 3, 4 wins at least one voter, plus

voters 4 and 5 that are already won (relative to xi).

Again, the tie-breaking rule is specified in terms of the implied payoff function π̃ ∈ Π.

Definition 3.17 (Modified Tie-Breaking Rule T S). Suppose x ∈ D.

(T1) For each i, let V (xi) be as in Assumption 3.13. Suppose for some i, L∗
i (x) is nonempty

and L0(x) has at least two voters. For this i:

(a) If π̃i(y
k
i , xj) = 0 for some k ∈ L∗

i (x), then π̃i(xi, xj) is zero if |L0(x)| = 2 and −1

if |L0(x)| > 3.
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(b) If π̃i(y
k
i , xj) = −1 for some k ∈ L∗

i (x), then π̃i(xi, xj) = −1.

(T2) Suppose L∗
i (x) is empty for each i or L0(x) = { k } for some k. If

∑
k′∈Lj(x)wk′ = 1/2,

then π̃i(xi, xj) = −1/2.

(T3) In all other cases, π̃i(xi, xj) = 0 for each i.17

The rule T S differs from the rule T used in the previous subsection only in that provisions

(T1)(a) and (T2) are added—and the condition that L∗
i (x) has at least two voters if Li(x) is

empty, when invoking (T1), is relaxed—to accommodate the fact that with an even number

of voters the game could end in a draw. Without these changes, T S is the same as T .

From Example 3.16 we see that provision (T1)(b) is analogous to provision (T1) of tie-

breaking rule T : candidate j is in a very advantageous situation when π̃i(y
k
i , xj) = −1 for all

k ∈ L∗
i (x), as winning a single one of the tied voters guarantees a victory, whereas candidate

i has to win all of the tied voters. In such a situation, T S awards the election to j. Provision

(T1)(a) handles draws: from Example 3.14, we see that πi(y
k
i , xj) = 0 and |L0(x)| = 2 for

all k ∈ L∗
i (x) is a symmetric situation, so the rule T S declares it a draw; from Example 3.15

we see that candidate j is in an advantageous situation when πi(y
k
i , xj) = 0 and |L0(x)| > 3

for all k ∈ L∗
i (x), as j has the upper hand in the non-tied battles, so T S awards the election

to j.

Example 3.18. Return to the setting of Example 3.14. Consider the pair (xi, xj) with xi =

(0, 0, 0) and xj in the intersection of 1’s indifference surface and the face spanned by voters 1,

2 and 4, in such a way that voter 4 prefers xj to xi (for instance, xj = (3−
√
5

4
, 1
2
,
√
5−1
4

)). Then

L0(x) = {1} and Lj(x) = {2, 4}, so the premise of condition (T2) of the rule T S applies, and

the rule then says that π̃i(xi, xj) = −1/2. We see that candidate j is in a stronger position

because he has already secured 2/4 votes. But y1j loses voter 1, so it fails to beat xi. The

relatively stronger position of candidate j is then captured by awarding the election to him

with probability 3/4 rather than 1/2.

The tie-breaking rule T S also satisfies payoff approachability. To prove this, as in Sub-

section 3.3, it is easy to show that the payoff function π̃ satisfies condition 1 of Proposition

2.12 and thus it is sufficient to show that payoff approachability is satisfied by (xi, σj) where

σj has finite support in D(xi). This property is verified by Lemma A.1 in the Appendix.

Hence, π̃ satisfies payoff approachability and we have the following theorem.

Theorem 3.19. The game G(π̃) has an equilibrium and its value is the value of every variant

G(π′) with π′ ∈ Π.

17Again, we could use fair coin tosses for each tied voter.
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4. Majority Games of Resource Allocation

This section addresses a special case of the formulation and results in Sections 2 and

3. The two players compete for votes in several constituencies, called battlegrounds. The

winner of the game is again the player who wins more votes. The key feature now is that

a player wins a battle if he allocates more of his available resources to that battle than his

opponent does. Thus the game is a majority-rule version of a Colonel Blotto game.18

4.1. Formulation. The game G is a weighted-majority game specified as follows. Each

player i has an amount Ri of a resource that he allocates among the battles. Assume

that R1 > R2 > 0 and that the number of battles is an integer K > 2. A pure strategy

xi = (xi,k)k=1,...,K for player i allocates a nonnegative amount xi,k of his resource to battle

k. Thus his set of pure strategies is Xi ≡ { xi ∈ RK
+ |

∑K
k=1 xi,k = Ri }. For each profile

x ≡ (x1, x2) ∈ X1 × X2 ≡ X of pure strategies for the two players, player i wins battle k,

and the other player j loses, if xi,k > xj,k. If xi,k = xj,k then a tie-breaking rule determines

the winner of battle k.

For each battle k, the winner of the battle obtains wk votes, where 0 < wk < 1/2 and∑
k wk = 1. We assume that

∑
k∈L wk ̸= 1/2 for each subset L ofK, except when we consider

simple-majority games.19 Player i wins the game and gets payoff +1 if
∑

k∈Wi
wk > 1/2,

where Wi is the set of battles he wins; similarly, he loses and gets payoff −1 if
∑

k∈Wi
wk <

1/2. The players’ payoffs are both zero if both win 1/2 votes.20 Thus, if there are no tied

battles or the resolutions of ties are inconsequential, then a player’s payoff is either +1 if

he wins a weighted majority of votes, or −1 if he loses. If resolutions of tied battles affect

the outcome of the game then his expected payoff is some number in the interval [−1,+1].

Either way, player i’s payoff function is πi : X → [−1,+1], and π1(x) + π2(x) = 0 for every

profile x ∈ X.

18Duggan [7] proves existence of an equilibrium of this game for the case of simple-majority rule and
symmetric resources. The other literature on Colonel Blotto games assumes that each player maximizes the
number of battles won, rather than winning a majority. This case is sometimes interpreted as relevant to
plurality rule but the connection is not exact when the number of battles exceeds three. This literature
culminates in the article by Roberson [15], who provides a complete analysis of such games, and in Hart [10]
for the case that resources are allocated in discrete amounts.

19This assumption is not needed if we consider the case where one player wins all ties.
20Our results, except those in Section 4.2 for simple-majority games, go through if we use a plurality

rule, so that player i’s payoff is
∑

k∈Wi
wk. This makes the game a constant-sum game that is strategically

equivalent to a zero-sum game. In fact the proofs are simpler since then we can work with the standard
tie-breaking rule in which the winner of each tied battle is chosen by the toss of a fair coin. For more general
non-constant-sum games our basic existence theorem—which shows the existence of an equilibrium for the
game G(π̃) when it satisfies payoff approachability—goes through; such games are studied by Kvasov [11],
Roberson [15] and Kvasov and Roberson [16].
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This model is a special case of those in Section 3. The policy space P is the union of X1

and X2. Each battleground represents a voter whose utility function is uk(xi) = xi,k.
21

The following theorem extends a result obtained by Duggan [7], who proves existence of an

equilibrium for simple-majority rule with symmetric resources and the standard tie-breaking

rule.

Theorem 4.1. If the tie-breaking rule is T (or T S in the case of simple majority) then the

game has an equilibrium that yields the value, and any other tie-breaking rule yields the

same value.

Proof. We verify the assumptions stated in Sections 3.3 and 3.4 and apply Theorems 3.9

and 3.19, respectively. Assumption 3.3 is stated in the formulation. To check the other

assumptions, remark first that K∗(xi) is the set of battles whose coordinates are positive.

In particular, K(xi) is a singleton for a vertex (the voter corresponding to the battlefield

getting all the resources) and empty elsewhere. With this feature, Assumption 3.4 is easily

verified. In fact, for each coordinate that is positive, we can reduce it by an arbitrarily small

amount and assign a strictly higher amount to all other battlefields.

Regarding Assumption 3.5, suppose xi is tied with xj, L
∗
i (x) is nonempty, with |L∗

i (x)| > 2

if xi is not a vertex, and y
l∗i (x)
i loses to xj. Since L∗

i (x) is nonempty, if xi is a vertex then it

must be that L0(x) contains this one non-zero coordinate of player i. Moreover, i = 2 and

R2 < R1: indeed as j must assign Ri to this battlefield as well, Rj > Ri, but if Rj = Ri, then

xi = xj and y
l∗i (x)
i would beat xj. Since Rj > Ri, xj is not a vertex, i.e. K∗(xj) has at least

two nonzero coordinates. As a result, each ykj beats xi on all coordinates except possibly for

the one corresponding to the vertex, and thus it wins the game (recall that wk < 1/2 for all

k).

If xi is not a vertex then L∗
i (x) has at least two elements. When y

l∗i (x)
i loses to xj it means

that j could win the game by winning any of the battles in L∗
i (x). Since L

∗
i (x) equals L

∗
j(x)

and has at least two non-zero coordinates, every ykj would accomplish this as it would reduce

at most one of the nonzero coordinates in L0(x).

Finally we check Assumption 3.13 for the simple-majority case (with even or odd number

of battlefields). Suppose xi is a vertex. If xi ties with xj just on the one non-zero coordinate

of xi, xj wins, as K > 3. Thus, condition (1) holds. As for condition (2), suppose L∗
i (x) is

nonempty and |L0(x)| > 2. If π̃i(y
k
i , xj) = 0 for some k, thenK is even and |Lj(x)| = K/2−1.

21Rather than viewing electoral competition as occurring in the space of proposed policies, as the strategy
space one can equivalently use the space of voters’ utility profiles generated by policies. In this framework,
Colonel Blotto games are the special case in which the strategy spaces are simplices.
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Each strategy yk
′

j of player j would lose battlefield k′ if k′ ∈ L0(x) but win every other battle

in L0(x). Thus, π̃j(y
k
j , xi) = 0 if ykj ∈ L∗(x) and |L0(x)| = 2; otherwise, it equals +1, as

required by condition (2a). If π̃i(y
k
i , xj) = −1, then |Lj(x)| is the greatest integer not more

than K/2. Each ykj can win at least one of the battles in L0(x) and thus win the war, giving

us condition (2b).

�

Remark 4.2. We need something stronger than the standard rule if payoff approachability

is to hold. To see the problems with the standard rule, suppose K = 3, we have simple

majority rule, R1 > R2, i = 2, and xi allocates zero resources to the first battle and R2/2

to each of the other two. Suppose xj is the pure strategy of player j = 1 that allocates a

positive amount to the first battle and ties with player i on the other two battles. Then

using tosses of a fair coin for each of the ties gives player i a probability 1/4 of winning.

Every nearby strategy loses.

4.2. Existence of an Equilibrium With Zero Probability of Ties. The results above

can be strengthened for simple-majority games. For this class of games we use the existence

result from Section 3.4, under the tie-breaking rule T S.

Permutations of the battles induce a symmetry group, and therefore among the equilibria

there are some that inherit the symmetries of the game. We show that these equilibria have

zero probability of ties except for a single critical value of R1/R2.

Assume that wk = 1/K for all k, so that G is a simple-majority game. Thus a player

winning 1 + ⌊K/2⌋ battles wins the game.22 Let r∗ = K/⌈K/2⌉. Diermeier and Myerson [4]

call r∗ the hurdle factor and prove the following.

Proposition 4.3. If R1/R2 > r∗ then player 1 has a strategy that wins for sure indepen-

dently of the tie-breaking rule.

Sketch of Proof. The pure strategy of player 1 that allocates his resources uniformly across

all the battles wins the game against every strategy of player 2, and no ties occur that could

affect whether player 1 wins. �

In the most relevant case that R1/R2 is strictly below the hurdle factor, there exists an

equilibrium in which the tie-breaking rule is invoked with zero probability, as we now verify.

Because the game G uses a simple majority to decide the winner, it treats battles sym-

metrically.23 Every permutation ϕ : { 1, . . . , K } → { 1, . . . , K } of the battles defines a

22⌊K/2⌋ is the greatest integer not more than K/2, and ⌈K/2⌉ is the least integer not less than K/2.
23This feature is also exploited by Hart [10] for the discrete case.
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homeomorphism of Xi with itself that sends each xi to xϕ
i where xϕ

i,k = xi,ϕ(k) for each k.

Obviously πi(xi, xj) = πi(x
ϕ
i , x

ϕ
j ) for all ϕ. Let Φ be the set of all permutations. Define

Hi : Xi → Σi by mapping each xi to the uniform mixture over the set {xϕ
i }ϕ∈Φ. This map

extends to a function from Σi to Σi. Define Σ̃i ≡ Hi(Σi) and let Σ̃ = Σ̃1 × Σ̃2. There exists

an equilibrium σ∗ of the game G with the tie-breaking rule T S such that σ∗ ∈ Σ̃ and σ∗
1 = σ∗

2

if R1 = R2. To see this, apply the perturbation method in the proof of Theorem 2.7 but now

choosing the strategy sets to be symmetric with respect to the battlefields and perturbing

the strategies of both players simultaneously. These perturbed games have an equilibrium

that is invariant under all the symmetries of the game and hence the limit of these equilibria

as the perturbations shrink inherit the same properties. The following result, proved in the

Appendix, shows that ties occur with zero probability in equilibrium.24

Theorem 4.4. If R1/R2 < r∗ then (σ∗
1 × σ∗

2)(D) = 0. That is, at the equilibrium σ∗ the

probability is zero that the tie-breaking rule T S is invoked.

Remark 4.5. In the knife-edge case that R1/R2 is exactly equal to the hurdle factor r∗, ties

can occur in an equilibrium, and minimax strategies can depend on the tie-breaking rule.

The uniform strategy described in the proof of Proposition 4.3 continues to be a minimax

strategy of player 1 under rule T , or if he wins all ties then again he can assure the value

+1. But player 1 does not have a minimax strategy if the tie-breaking rule is the standard

rule that tosses a fair coin to resolve each tied battle. For simplicity, we illustrate the case

K = 3, R1 = 3/2, R2 = 1, and r∗ = 3/2. Let π be the expected payoff function induced by

the standard rule. As argued above, because of the symmetry of the battles, if player 1 has a

minimax strategy then he has one that is invariant under all permutations of the coordinates.

Thus fix a strategy σ̃1 that is invariant under the symmetries of the game. For each xi, denote

the rank order by (xi,k1 , xi,k2 , xi,k3), with xi,k1 6 xi,k2 6 xi,k3 for distinct battles k1, k2, k3.

Let σ̃1({x1 : x1,k2 6 1/2}) = α > 0. Observe that the probability of x1
2 = (1/2, 1/2, 0)

winning is bounded below by (1/6)α. Thus π1(σ̃1, x
1
2) 6 1− α + 5α/6 = 1− α/6. For each

b ∈ (1/2, 3/4], let σ̃1({x1 : b/2 + 1/4 6 x1,k2 6 b}) = β(b) > 0. Observe that we can find b

and β(b) > 0 when α = 0 and that α = 1 when β(b) = 0 for all such b. Now, because for

each x1 with b/2 + 1/4 6 x1,k2 6 b, we necessarily have x1,k1 6 1− b, the probability of the

strategy xb
2 = (b, 1−b, 0) winning is bounded below by (1/6)β(b). So π1(σ̃1, x

b
2) 6 1−β(b)/6.

Combining the two bounds, we must have infx2∈X2 π1(σ̃1, x2) 6 min{1 − α/6, 1 − β(b)/6}.
24Zero probability of ties does not imply irrelevance of the tie-breaking rule, since it still has a role in

deterring deviations from the equilibrium strategies. We conjecture (at least in the symmetric case where
both candidates have equal resources, but possibly also more generally except for a single critical ratio of
resources) that the game has an equilibrium that remains an equilibrium for every tie-breaking rule.
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Theorem 4.1 above ensures that the game has a value, and the value is independent of the

tie-breaking rule. Because the value of the game with payoff function π+ is +1 (the minimax

strategy for player 1 assigns 1/2 to each battlefield), the value of the game with payoff

function π is +1. So a minimax strategy σ̃1 for player 1 must satisfy infx2∈X2 π1(σ̃1, x2) = +1.

But this requires that α and β(b) are zero for every b, which is impossible. So player 1 does

not have a minimax strategy, and a Nash equilibrium cannot exist. Note that this implies

that the game with payoff function π violates better-reply security even though the value

exists.

5. Concluding Remarks

The absence of general theorems establishing existence of values, minimax strategies, and

equilibria of zero-sum majority games has long impeded applications to electoral competition

and redistributive politics. In studies of elections, reliance on one-dimensional policy spaces

has limited the relevance to practical affairs. In studies of resource allocation in electoral

campaigns and lobbying, the absence of general existence results has impaired conclusions

about effects of asymmetries in resources available to the candidates. The technical dif-

ficulties stem from discontinuities in payoffs at ties, and therefore hinge on how ties are

resolved.

Our two general results in Section 2 provide alternative tools. Theorem 2.4 shows that

when all ties are resolved in favor of one player then the value exists and that player has a

minimax strategy that ensures the value. This conclusion is especially useful in models of

elections, where otherwise assumptions about voters’ preferences are required. Theorem 2.7

shows that tie-breaking rules satisfying payoff approachability imply better-reply security

and therefore equilibria exist that yield the value; and importantly, any other tie-breaking

rule yields the same value, so ε-equilibria exist.

This result applies to the models of elections addressed in Section 3, where a tie-breaking

rule and the assumed diversity of voters’ preferences implies payoff approachability (Theo-

rems 3.9 and 3.19). And it applies to the weighted-majority games of resource allocation

addressed in Section 4, where again a particular tie-breaking rule implies payoff approach-

ability (Theorem 4.1), and further, for simple-majority games it implies existence of an

equilibrium with zero probability of ties (Theorem 4.4).

Appendix A. Proof of Theorem 4.4

We begin with a preliminary lemma about the payoff function π̃ that describes the tie-

breaking rule T S, introduced in Section 3.4 for simple-majority games. In this game, fix
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(xi, σj) such that the support of σj is finite and contained in D(xi). Choose ε̄ as in the

proof of Theorem 3.9 and fix a neighborhood V (xi) also as there. The following lemma then

proves payoff approachability for (xi, σj) and, additionally, yields properties that we use to

prove Theorem 4.4.

Lemma A.1. There exists k ∈ K∗(xi) such that π̃i(xi, σj) 6 π̃i(y
k
i , σj). Moreover the

inequality is strict if one of the following conditions holds:

(1) K(xi) is nonempty and there is a positive probability of (T2) or (T3) being used.

(2) K∗(xi) has at least three coordinates and there is a positive probability of (T2) or

(T3) being used.

(3) K∗(xi) has two coordinates and (T2) or (T3) is used in resolving a tie (xi, xj) for

which L0(xi, xj) ̸= { k } for one of the k’s in K∗(xi).

(4) K(xi) is empty and (T1) is invoked for some (xi, xj) because i satisfies the conditions

for the rule and either: |L0(x)| > 3 and π̃i(y
k′
i , xj) = 0 for some k′ ∈ K∗(xi); or

uk′′(xi) ̸= uk′′(xj) for some k
′′ ∈ K∗(xi).

Proof. The proof becomes transparent once we compare the payoffs to xi and yki against xj

for each k and xj, which we now do.

If (T1) is invoked and π̃i(y
k
i , xj) is 0 (resp. −1) for some k ∈ L∗(x), then π̃i(y

k′
i , xj)

is 0 (resp. −1) for all k′ in L∗
i (x), because of simple-majority scoring, and π̃i(y

k′
i , xj) is 1

(resp. non-negative) for k′ ∈ K∗(xi) \ L∗
i (x). Thus in this case π̃i(xi, xj) 6 π̃i(y

k
i , xj) for

all k ∈ K∗(xi), with strict inequality if K(xi) is empty and either: (i) |L0(x)| > 3 and

π̃i(y
k′
i , xj) = 0 for some k′ ∈ K∗(xi); or (ii) uk(xi) ̸= uk(xj).

If (T1) is invoked because π̃j(y
k
j , xi) is 0, then π̃i(xi, xj) is zero if |L0(x)| = 2 and +1 if

|L0(x)| > 3. By Assumption 3.13, π̃i(y
k
i , xj) is nonnegative in the former case and is +1

in the latter. Likewise, if (T1) is invoked because π̃j(y
k
j , xi) is −1, then π̃i(y

k
i , xj) = +1 by

Assumption 3.13. In short, π̃i(y
k
i , xj) > π̃i(xi, xj) for all k. Thus, y

k
i does at least as well as

xi against every xj for which (T1) is applied.

There remains to consider xj’s for which (T2) or (T3) is invoked.

Suppose L∗
i (x) is empty for each i. If |Lj(x)| = K/2 then π̃i(xi, xj) = −1/2 from (T2). For

any k ∈ K∗(xi), because k /∈ L0(x), uk′(y
k
i ) > uk′(xj) for all k

′ ∈ L0(x), so |Li(yki , xj)| = K/2

as well, and π̃i(y
k
i , xj) = 0. Likewise, if |Li(x)| = K/2, then π̃i(xi, xj) = 1/2 from (T2), and

because k /∈ L0(x), π̃i(y
k
i , xj) = 1. Summing up, π̃i(y

k
i , xj) − π̃i(xi, xj) = 1/2 if either

|Li(x)| or |Lj(x)| equals K/2. This difference is equal to +1 otherwise (i.e. if neither of the

candidates has half the votes outside of L0(x)). Thus all yki ’s do strictly better against all

these xj’s.
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Suppose L0(x) contains just one voter, say k. If k /∈ K∗(xi), then the payoff difference

is as in the previous paragraph. If k ∈ K∗(xi), then K(xi) is empty (by point (1) of

Assumption 3.13) and π̃i(y
k
i , xj) − π̃i(xi, xj) = −1 + 1/2 = −1/2 (resp. 0 − 1/2 = −1/2)

if |Lj(x)| = K/2 (resp. |Li(x)| = K/2). This difference is equal to −1 if neither of the

candidates has half of the voters outside of L0(x). But, observe that for every k′ ̸= k in

K∗(xi), π̃i(y
k′
i , xj) − π̃i(xi, xj) = π̃i(xi, xj) − π̃i(y

k
i , xj), as uk(y

k′
i ) > uk(xj) > uk(y

k
i ). Thus

all yk
′

i ’s do strictly better against all these xj’s.

Finally suppose L0(x) contains at least two voters, either L∗
i (x) or L

∗
j(x) is nonempty but

each player for whom it is nonempty that he can achieve +1 rather than 0 or −1 specified

there. Then if L∗
i (x) is nonempty π̃i(y

k
i , xj) = 1 for some k ∈ L∗

i (x) (otherwise (T1) would

apply) and it holds for all k while π̃i(xi, xj) = 0; on the other hand if L∗
i (x) is empty, then

trivially each yki achieves +1.

We now complete the proof of the lemma as follows. Obviously if K(xi) is nonempty, then

yki does at least as well as xi against each xj in the support of σj and strictly better against

all xj’s for which (T1) is not invoked, proving the first statement and points (1-3) of the

second, with point (4) being vacuously true. Assume from now on that K(xi) is empty.

Each yki does as well against all xj to which (T1) applies and strictly better against those

xj’s for which the condition of point (4) of the lemma holds. If (T2) or (T3) is not used

with positive probability then the first statement of the lemma holds as does point (4), while

points (1-3) are vacuous.

Suppose (T2) or (T3) is invoked with positive probability. If there is one k for which no

tie is just on this voter’s utility, then yki does strictly better than xi as the calculations above

show. Thus, the inequality holds, regardless of the conditions of points (2)-(4), if there is

such a k. Suppose then that for each k ∈ K∗(xi) there is an xj that ties with xi just on k.

It is clear that at least one of the yki ’s would do as well as xi against σj. Moreover, if there

are at least three coordinates in K∗(xi), one of them would do strictly better, proving point

(2). Also, if there are only two such k’s then one of them would do strictly better than xi

against σj unless each tie involves exactly one of these k’s, which proves point (3). Observe

that when there are two such k’s, and xi is not inferior to some yki against σj, then xi and

each yki give the same payoff against the conditional distribution over the xj’s for which (T2)

or (T3) is used.

Coming to ties involving (T1) it is clear now that if there is a tie with an xj where the

rule is invoked because of i, then for xi to do at least as well as all yki , we must have

K∗(xi) ⊂ L0(x) and π̃i(y
k
i , xj) = −1 for each k ∈ K∗(xi) if |L0(x)| > 2. If this is violated

for some xi and if xi is already not dominated by some yki against the conditional over xj’s



COMPETITION FOR A MAJORITY 29

where (T1) is not used, then K∗(x) has two coordinates and as we argued at the end of the

last paragraph each k would do equally well against those not involving (T1), with the result

that it would do strictly better against σj, proving point (4). �

We now recall and prove Theorem 4.4 for simple-majority Colonel-Blotto games.

Theorem 4.4. Let σ∗ be an equilibrium that is invariant under all the symmetries of the

game. If R1/R2 < r∗ then (σ∗
1 × σ∗

2)(D) = 0, that is, at the equilibrium σ∗ the tie-breaking

rule T S has zero probability of being invoked.

We set up some notation and prove a number of preliminary claims before proving the

theorem. Suppose xi is a strategy in Xi such that σ∗
j (D(xi)) > 0. We can decompose σ∗

j

into σc,xi

j and σd,xi

j , where the former puts zero probability on Xj \ D(xi) and the latter

puts probability one on it. Let L(xi) be the set of quadruples L = (L0, Li, Lj, Tn) such

that there is a positive probability under σ∗
j of the set DL(xi) consisting of xj’s such that

(L0, Li, Lj) = (L0(xi, xj), L
i(xi, xj), L

j(xi, xj)) and provision (Tn) of rule T S is used, where

n ∈ { 1, 2, 3 }. For simplicity, from here on we suppress Tn in the notation. For each L

choose a point xj(L) ∈ DL(xi) and consider the conditional distribution σ̃xi
j over the xj(L)’s

given by σ̃xi
j (xj(L)) = (

∑
L′ σ∗

j (D
L′
(xi))

−1
σ∗
j (D

L(xi)). Choose a neighborhood V (xi) such

that for each yi ∈ V (xi) and L, yi,k > xj,k(L) if k ∈ Li, and yi,k < xj,k(L) if k ∈ Lj.

Claim A.2. π̃i(xi, σ
∗
j ) = σ∗

j (Xj \D(xi))π̃i(xi, σ
c,xi

j ) + σ∗
j (D(xi))π̃i(xi, σ̃

xi
j ).

Proof. As the payoff π̃i(xi, ·) is constant on each DL(xi), π̃i(xi, σ
d,xi

j ) = π̃i(xi, σ̃
xi
j ) and the

result follows. �

Claim A.3. If xi is a best reply to σ∗
j , then π̃i(xi, σ̃

xi
j ) > π̃i(y

k
i , σ̃

xi
j ) for all k ∈ K∗(xi).

Proof. Assume to the contrary that π̃i(xi, σ̃
xi
j ) < π̃i(y

k
i , σ̃

xi
j ) for some k ∈ K(xi). For each

ε > 0 let W ε(xi) be the set of yi such that |yi,k − xi,k| < ε. For each L, let Dε,L(xi) be the

set of xj in DL(xj) such that |xi,k − xj,k| > ε for k /∈ L0 and let Dε(xi) be the union of the

Dε,L(xi)’s. Choose ε small enough such that each xj(L) belongs to Dε(xi). Define σ̃ε,xi

j to

be the distribution over xj(L) that assigns probability σd,xi

j (Dε,L(xi))/
∑

L′ σ
d,xi

j (Dε,L′
(xi) to

xj(L). By construction π̃i(yi(W
ε(xi), k), ·) is constant on the set Dε,L(xi) for each L and

π̃i(yi(W
ε(xi), k), xj) ∈ [−1, 1] for all xj. Hence,

π̃i(yi(W
ε(xi), σ

d,xi

j ) ∈ (σd,xi

j (Dε(xi)))π̃i(yi(W
ε(xi), k), σ̃

ε,xi

j )± σd,xi

j (D(xi) \Dε(xi)) .

Obviously π̃i(yi(W
ε(xi), k), xj(L)) = π̃i(y

k
i , xj(L)) for all xj(L). Moreover, σ̃ε,xi

j converges to

σ̃xi
j and Dε(xi) converges to D(xi). Therefore, limε↓0 π̃i(yi(W

ε(xi), k), σ
d,xi

j ) = π̃i(y
k
i , σ̃

xi
j ) >
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π̃i(xi, σ
d,xi

j ). Since limε↓0 π̃i(yi(W
ε(xi), k), σ

c,xi

j ) = π̃i(xi, σ
c,xi

j ), we then have that π̃i(xi, σ
∗
j ) <

limε↓0 π̃i(yi(W
ε(xi), k), σ

∗
j ) and σ∗

j is not a best reply to σ∗
j , a contradiction. �

The next three claims argue directly about points (xi, xj) ∈ D.

Claim A.4. If xi is a vertex, then there exists x′
j obtained by permuting the coordinates of

xj such that (T1) does not apply to (xi, x
′
j).

Proof. Let xi be a strategy that assigns Ri to a battle, say k = 1. Observe first that for

(T1) to be used in deciding a tie between xi and xj’s, this battle must belong to L0(x).

If R1 = R2, this means that xi = xj and (T3) is operative. If R1 > R2, then i = 2 and

π̃i(y
1
i , xj) = −1. Since R1 < r∗R2, there exists some k′ ̸= 1 such that 0 < xj,k′ < R2. There

exists some x′
j that swaps these two coordinates and now (T3) applies to (xi, x

′
j). �

Claim A.5. Suppose xi is not a vertex, and (T1) applies to (xi, xj) ∈ D. If π̃i(y
k
i , xj)

is either 0 or −1 for some k ∈ L∗(x), then either: (i) there exists k′ ∈ K∗(xi) such that

xi,k′ ̸= x′
j,k′ for some x′

j obtained from permuting the coordinates of xj; or (ii) |L0(x)| > 3

and π̃i(y
k
i , xj) > 0 for some k ∈ L∗

i (x).

Proof. If R1 = R2, conclusion (i) is valid, since otherwise xi = xj and (T3) would apply. If

R1 > R2 and i = 1, then conclusion (i) is obvious.

Assume now that i = 2, R1 > R2 and conclusion (i) of the claim is violated. Then

xi,k = xj,k for each positive coordinate of xi. If π̃i(xi, xj) = 0 for some k, then K is even,

|L0(x)| = 2, and |Lj(x)| = K/2− 1, while if π̃i(xi, xj) = −1, then either |Lj(x)| = ⌊K/2⌋ (K
can be odd or even) or |L0(x)| > 3 K is even and |Lj(x)| = K/2 − 1. If |L0(x)| = 2, then

|Lj(x)| = K − |L0(x)| = K − 2 > ⌊K/2⌋ − 1. Thus, when |Lj(x)| = K/2− 1, |L0(x)| > 3.

If |Lj(x)| = ⌊K/2⌋, then |L0(x)| = ⌈K/2⌉. Therefore, there exists k′ such that xi,k′ >
R2/⌈K/2⌉. Moreover, since |Lj(x)| = ⌊K/2⌋, and R1 < r∗R2, there exists a coordinate k′′

such that xi,k
′′ = 0 < xj,k

′′ < R1 − R2 < R2/⌈K/2⌉. There exists x′
j that swaps these two

coordinates and (xi, x
′
j) ∈ D. Now there is a coordinate, namely k′, for which xi,k′ > x′

j,k′ , a

contradiction. So (i) must hold.

If |Lj(x)| = K/2−1 then, as we saw above, |L0(x)| > 3. Therefore, π̃i(y
k
i , xj) = 0 for each

k ∈ L∗
i (x) , which proves (ii). �

Claim A.6. Suppose (xi, xj) ∈ D, both xi and xj have two positive coordinates, L∗(xi) is

nonempty, and (T2) or (T3) applies. There exists another x′
j obtained by a permutation of

coordinates from xj where (T2) or (T3) applies as well but where (xi, x
′
j) are either tied in

two or more coordinates or in a zero coordinate.
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Proof. Suppose xi and xj are tied in just coordinate, say k = 1, and that this coordinate is

positive for both players. Then K = 3 and i wins, say, k = 2 and j wins k = 3. Derive x′
j

from xj by permuting coordinates 2 and 3. x′
j ties with xi in coordinates 1 and 3. �

Proof of Theorem 4.4. Fix x1 ∈ D such that σ∗
j (D(xi)) > 0. We show that xi is not a best

reply to σ∗
j , which proves the result.

Fix xj in D(xi). Let L = (L0(x), Li(x), Lj(x)). Observe that if x′
j is obtained by

permuting coordinates of xj, then there exists x′
j(L

′) in the support of σ̃xi
j where L′ =

(L0(xi, x
′
j), L

i(xi, x
′
j), L

j(xi, x
′
j)). Using this fact, the proof of the theorem follows quite eas-

ily. If xi is a vertex, by Claim A.4, point (1) of Lemma A.1 holds for σ̃xi
j , and by Claim A.3,

xi is not a best reply to σ∗
j .

The other cases work similarly. If xi is not a vertex, but (T1) applies to (xi, xj), then

combining Claim A.5, point (4) of Lemma A.1 and Claim A.3 proves the result.

If (T2) or (T3) applies to (xi, xj), then by point (2) of Lemma A.1, xi has only two non-zero

coordinates. Claim A.6, point (3) of Lemma A.1 and Claim A.3 finish the proof. �
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