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Abstract

The interaction of capital stock with overlapping generations is in-
vestigated where the time structures of human capital and other phys-
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gold or fiat as the outside money and consider the financing problems
that appear in the financing of capital stock. The complexity of the
underlying physical structure combined with concern for efficiency and
equity help to determine the financial structure.

Key words: capital stock, time scales, fiat, gold, joint product.

JEL Classification: C73, D24,.E22, E41

∗e-mail: desmith@santafe.edu
†e-mail: martin.shubik@yale.edu

1



Electronic copy available at: http://ssrn.com/abstract=2078175

1 The Economy: Time, Size and Complexity:

1.1 Dynamics, Finance and Institutions

In this essay we consider a communal financing problem that could describe
institutionally the type of problem faced in a rural community towards the
end of the nineteenth century with a relatively sparse population, but an
opportunity for the construction of a utility such as a grain silo, or a power
plant; where the product could be sold to the individuals, but the construc-
tion could be achieved by communal ownership.

Our purpose in presenting these extensions of a strategic market game
is to show how extra physical facts added to basic economic process models
can be used to illustrate the natural extension of the complexity of financial
control instruments in the economy. The call for the efficient finance of
the economy arises as an economic imperative in the need to deal with the
underlying broad physical facts of durable goods and the human life span.

The importance of capital stock was well known and emphasized by
the Austrian school of economics and others such as Böhm-Bawerk, Acker-
man and Wicksell; however mathematical treatments that cover both capital
structure and finance require considerable detail.

In a previous paper [10] we compared economies with gold and with fiat
money. We continues this contrast in a more complex setting.

1.2 Comments on Process

The embedding of the economy within the framework of government and
society provides both a natural formal and an informal control system. The
government provides the formal rules with the laws and their enforcement,
and the society and polity on different time scales provide the pressures on
the government on rule formation and the direct pressures on the economy to
conform to custom as well as law. The price system where it exists provides
a perception device where the pressures of disequilibrium are signalled by the
shadow prices that develop on both commodities and the price of loans and
other financial instruments.

2



2 The production and exchange economy in

a dynamic setting with overlapping gener-

ations.

The simple transformation to a fully defined multistage economy immedi-
ately exposes the difficulties with the forward looking features of the nonco-
operative equilibrium solution and calls for the need for coordination. The
literature on repeated games (Mailath and Larry Samuelson [6], Fudenberg
and Levine [3], for example) illustrates many inadequacies and redundancies
in the unqualified concept of the noncooperative equilibrium. Do individu-
als look ahead and compute infinite horizon strategies that are exceptionally
consistent, or do they use simpler rules of thumb such as a local backward
looking optimal response strategy? As soon as one writes down some form
of difference or differential equation to describe process it is easy to spell out
time paths with virtually any trajectory including cycles, bubbles, inflations
and deflations of any magnitude (there is a formal mathematical literature
on cycles dating from at least Harrod [4] and Domar [1]. The mathematical
literature on growth theory includes Frank Ramsey [8], von Neumann [12],
Phelps [7] (on the golden rule), and many others. Hicks [5] provides sim-
ple difference equation models with easy macroeconomic interpretations that
display growth, decline and cyclic behavior in more or less elementary math-
ematical models.

A way of coping with these situations appears to lie more in the realm of
political economy with government providing a control mechanism than in
refining the concept of a noncooperative equilibrium.

2.1 Social and political process and jointly owned goods

Even were we to imagine a society with no innovation or evolution, but
nevertheless with consumption, production and jointly owned goods we would
be required to solve two different types of coordination and control processes.
They are the production and distribution of private goods and jointly owned
goods. We note that natural problems of scale can easily call forth the need
for joint forms of ownership and the needs for financing in even elementary
situations.
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2.2 Pareto optimality, welfare functions and political
process

In our simplifications we have resurrected older somewhat ill-defined concepts
such as a social welfare function (SWF) and money measure in a modern garb
because we believe that as approximations they are productive and can be
justified methodologically. In particular when all individuals have identical
preferences a SWF can be defined and efficiency can be measured. This is
important because although Pareto optimality (PO) can be well defined in a
no-process or cost-free-process world, when the enforcement and coordination
mechanism itself absorbs resources PO must be replaced with optima in a
cost reduced feasible set. A comparison of mechanisms within an appropriate
domain is called for.

The distribution of public goods is primarily a socio-political and only
secondarily an economic process. Direct representative government, indirect
representation and a host of other mechanisms guide both the procurement
and allocation of these goods. Jointly owned accumulations of capital assets
such as public utilities and privately held corporations lie somewhat closer
to the simple world of individually owner-fungible chattels than do many
complex public goods.

3 The economic control problem

The distinguished macroeconomist, Jim Tobin regarded macroeconomic anal-
ysis as utilizing a short run closed general equilibrium model of the economy
open in the longer run to the polity and society so that many key parameters
and institutional structures required re-estimation or restructuring frequently
to take into account the changes caused by the polity, the society and tech-
nology providing feedback of different lengths on an evolving economy that
nevertheless for periods ranging from a few months to a few years could be
usefully regarded as a closed general equilibrium system for the answering
of some economic questions. Although this insight can be easily expressed
verbally, the making of the formal connections between the evolving system
and the static analysis calls for the structure of fully defined process models
with a parsimonious representation of how the economy connects to its polity
and society.

In his inaugural address the great mathematical economist Edgeworth
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posed the problem that has illustrated the gap between pure abstraction and
application, for many years

It is worth while to consider why the path of applied economics
is so slippery; and how it is possible to combine an enthusiastic
admiration of theory with the coldest hesitation in practice. The
explanation may be partially given in the words of a distinguished
logician who has well and quaintly said, that if a malign spirit
sought to annihilate to whole fabric of useful knowledge with the
least effort and change, it would by no means be necessary that
he should abrogate the laws of nature. The links of the chain of
causation need not be corroded. Like effects shall still follow like
causes; only like causes shall no longer occur in collocation. Every
case is to be singular; every species, like the fabled Phoenix, to be
unique. Now most of our practical problems have this character
of singularity; every burning question is a Phoenix in the sense
of being sui generis.

F.Y. Edgeworth, 1891[2]

We are in accord with Edgeworth but do not interpret this as a counsel of
despair. Instead it says to us that general theory is no substitute for knowing
your business. In application the perceptors need micro-detail. As in military
theorizing the selection of goals and grand strategy when applied must be
in concord with tactics. And tactics require the appreciation of detail. The
cries of the practical businessman against the theorist need to be considered
seriously by the theorist.

We argue that the act of converting a timeless static equilibrium model
into a playable strategic market game forces us to open the elegant but lifeless
static model to its environment. Little details like default rules, inheritance
rules, accounting rules emerge even at a minimalist level as necessities in
constructing a minimally viable organization. There may be a vast array
of minimal organizations reflecting the ecological richness of an economy
embedded in a polity and society. But these all still obey the general laws.

The criterion of minimality can be well defined and is at the essence
of economics. Any item removed from a minimal model will prevent the
performance of some function it is meant to perform. Thus minimality is
associated with the level of complexity reflected by the functions.
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Money and credit provide not only the possibility for a decentralized
system but a part of the need for various levels of coordination and control.
They provide the sufficient conditions for the functioning of a loosely coupled
system. Any system that remains robust under change must, perforce, be
loosely coupled.

In this essay we develop and analyze an OLG model with publicly owned
capital stock such as an irrigation system, community silos or a power plant
or other utility to demonstrate how the needs for financing arise from the
basic physical dynamics. In our investigation we show that the utilization of
a fiat monetary system may be both more flexible and more dangerous than
one utilizing gold as a money.

4 A production and exchange OLG economy

The models developed below illustrate the need for the introduction of new
financing and control features in a system where durables have finite lives
larger then one. When construction time, length of life time of the asset and
consumption timing all differ, efficiency considerations call forth somewhat
sophisticated finance.

4.1 Construction of a playable OLG SMG

Our view of economic process models is that there are myriads of plausible
feasible models and in virtually any area of investigation there is a multiplic-
ity of choices. However these can be judiciously pruned in concert with the
questions being asked. In the listing below we present a large shopping list
of features pertaining to OLG models and indicate by a “*” or a comment
the modeling choices we have made in the models that follow.

1. Time segment: (a) [T1,T2], (b) [T1,∞)*, or (c) (-∞,∞)

2. Number of types of legal persons, (a)natural persons alone, (b)
natural and corporate persons*. The latter are directly or indirectly
fully owned by the former.

3. Life span of Natural persons: They live T1 years. We select T1 = 2.
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4. Life span of Corporation: They live T2 years; but if they are ex-
tant at the end of a finite game they (including the government) are
liquidated on the day of final settlement. We select T2 = 3.

5. Agents: (a) Representative* or (b) individual agents* (c) both. When
there is no exogenous uncertainty the distinction between representative
agents and type-symmetric individual agents may not matter.

6. Price formation: The economy may be modeled as (a) sell-all, (b)
buy-sell* or (c) a bid-offer strategic market game.

7. Number of types of goods and services:. They are: (a) la-
bor/leisure*; (b) services; (c) perishable consumables*; (d) storable
consumables; (e) reproducible durables*; (f) non-reproducible durables
or land.

8. Depreciation rates: There are many but as an extreme case sim-
plification rather than dealing with various discount rates we give all
entities specific lives (the one-hoss shay phenomenon)*.

9. Length of production time: For simplicity we may assume that
the length of production for all producible items is 1 period. We note
however that for many services such as supermarkets, electric plants
one may build the durable, it then supplies services for may years and
new construction may not be needed for many periods. This is central
to our models*

10. The role of the banks: We model a dummy inside bank that makes
loans or accepts deposits of gold at a fixed rate of interest ρ, or an
outside bank that stands ready to make one-period loans of fiat. The
interest rate ρ is determined by policy objectives of the banks and prop-
erties of solutions determined by the markets.

11. The default condition is given as part of the rules of the game. For
simplicity it is introduced as a quasi linear term that connects money
with utility.

12. Type of money: (a) barley, (b) gold*, (c) fiat* An official government
money is specified.. All trades are made in government money. All
borrowing and lending is via the bank. We consider both gold and fiat
in different models.
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13. Initial conditions consist of a vector of initial physical resources and
financial instruments owned by all the n natural persons together with
a set of production transformation sets that are owned by the k existing
firms (here k = 1). We assume that there is a vector of estimated or
predicted initial first period prices that exists for all real and financial
assets. This enables us to place an estimated monetary value on the
initial bundle of assets.

14. Terminal conditions: In full generality terminal conditions should be
full algorithms dependent on the path down the tree. We make a great
simplification by defining models for which terminal conditions do not
propagate more than a finite number of individual life-cycles into the
interior solutions of the OLG, so that steady-state solutions we compute
in the interior are independent of a large class of changes in detail of
the terminal conditions.

15. The process of liquidation: At the end of the game this would
require that all non-real corporate legal persons be liquidated at the
day of final settlement. The order of settlement is that all firms pay
back their loans and if they have negative money this is flowed through
to the real persons. The firms are then liquidated at the initial prices
assigned in the first period. Any profits or losses of the central bank are
flowed through; all real and financial assets are then liquidated at the
initial prices. At this point the real persons must settle their accounts.
We avoid these complications here.

16. The behavior of the firms: firms can be modeled as (a) strategic
dummies* (b) price taking agents, (c) power strategic players. Here
there is only a communal enterprise that mechanically converts non-
consumable inputs into consumable service streams. The proceeds from
the sale of these streams are distributed in the manner of dividends or
partnership shares. The conversion efficiency or payout is a parameter
of the system. Here for simplicity we assume it is 100%.

17. The definition of short term profits is another free parameter of
the system as it is in accounting systems. We define short term profits
as the revenues from sales minus the direct costs of the directly relevant
inputs.
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18. Inheritance conditions: There are many mixed monetary and non-
monetary ways this can be defined. We want the inheritance conditions
to reflect the condition “I want the next generation to be as well off as
I am”. To define minimal models that introduce the fewest new ad hoc
parameters, we will use only the utility functions already defined for
agents, and we will introduce inter-generational transfers only when
these are needed to overcome constraints of the production functions
that would lead to zero consumption of some essential quantities and
thus to singular solutions.

19. Preferences and utility: The utility function, together with com-
plete preferences is a hard pill to swallow; but without enormous com-
plication it appears to be about as good a crude economic approxima-
tion as one can produce.1 Edgeworth included a quasi-concave term
for concern of others and one can consider his “coefficient of concern”
(conventionally denoted θ) with θ = 1 to be the equivalent of your
children should have at least the chance you had. For purposes of our
producing a model for the financing of a capital good that can be ex-
plicitly analyzed we select a specific simple form for the utility function
as is noted below.

5 Production and Exchange OLG Economies

with Gold or Fiat

In a previous essay [10] we considered the microstructure of production, trade,
and consumption within a single generation, modeled with a large number of
symmetric periods. Here we consider multiple timescales created by lifetimes
of institutions or capital goods with sunk costs, which may be longer than
a generation for agents. The relation of periods in the lifecycle of goods
to the lifecycle periods or generations of agents may also be heterogeneous,
creating a mismatch with agent preferences in situations where the latter
are time-symmetric. The stress on the market system comes from the need
to smooth over such mismatches between material constraints and agent
preferences. A further source of stress that we introduce comes from non-
convexity in the production process, particularly in the form of capacity

1We need to seek some form of sensitivity analysis to help to justify this simplification
that is difficult in the extreme to measure.
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constraints to exploit higher-efficiency production methods. Thresholds for
feasible production together with long lifetimes are common characteristics
of goods produced by firms or publicly held utilities.

5.1 Introduction to particular OLG models

The time structure we consider is shown in Fig. 1.

a,e0

*

a,e0

a,e0

a,e0

*

(τ) = 0

(τ) = 1

(τ) = 2

(τ) = 2

τ 
=

 0

τ 
=

 1

τ 
=

 2

τ 
=

 0

τ 
=

 1

τ 
=

 2

Figure 1: Structure of the overlapping generations model with episodic con-
struction of capital stock. Boxes represent periods. Columns represent time,
indexed τ , and rows indicate birth-time, indexed (τ). Cascading two-period
rows indicate generations of farmers or prospectors, with the endowment in-
dicated by the parameters a or e0 in the boxes representing the young period.
Three-period heavy boxes at the bottom indicate the service cycle of capital
stock, with the period of production indicated by ∗. Vertical arrows show the
times at which intergenerational transfers of gold may be made by farmers.

We abstract to two types of production functions: one for non-durable
consumables which we consider in aggregate and refer to as “food”, and the
other for a durable that we call “gold”, which may be used as money but
is also an input to production. As in Ref. [10], the choice of a production
function remains a commitment over an agent’s lifetime, so agents have two
types, again termed farmers and prospectors.

5.1.1 Time structure for capital stock as a “One-Hoss Shay”

Capital stock introduces the new longer timescale into the model. A mini-
mal model of agents is a standard two-period overlapping-generations (OLG)
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model, for which initial conditions must be specified, but which may be in-
definitely repeated thereafter.2 We term the two periods “young” and “old”
for any generation of agents.

We suppose that a production/retirement cycle for capital stock requires
three periods, and we distinguish the generations that are young in each
period with superscript τ ∈ {0, 1, 2} cyclic, where period 0 is the period
in which capital stock is built. We consider an endless sequence of cycles
of capital-stock production and retirement. Capital stock consumes a finite
quantity of gold to be constructed, delivers utilitarian services at a fixed rate
over its life, and disappears entirely at the end of its third period. (It is a
“One-Hoss Shay” rather than a depreciating asset.) It therefore provides the
mechanism by which non-depreciating gold exits the system.3

5.1.2 Production with thresholds

We wish to consider the general class of cases in which efficiency gains from
scale are possible, but a threshold unit size is required to capture them. This
problem is similar to the problem of exploiting the gains from specialization
considered in Ref. [10], but in an OLG setting.

Publicly owned (government or large-scale corporate) works are often of
this kind, including dams, power plants, mass-production assemblies, etc.
Typically a unit capacity C exists for a minimal unit, and these units can
then be replicated in integer numbers. We avoid the complexities of integer
programming as far as possible by focusing on the threshold for production
of the first unit, and considering production thereafter to be linear in the
invested amount.

Fig. 2 shows a rationale for this model of production. Three production
functions are shown on a log-log scale. For a society large enough to far
exceed the capacity C for investment, the steps of integer production are
minor perturbations. For a society that cannot reach the capacity at any

2While initial conditions are required for a well-defined game, we typically regard them
as an aggregate representation for the legacy of a long past. For the models we will
introduce, even though agent generations repeat indefinitely, for a wide range of terminal
conditions, cross-generation interactions truncate over a finite number (here, zero or one) of
generations. Therefore, the precise statement of the role of terminal boundary conditions
is that among a wide range of specifications (all those that do not involve divergent salvage
values for any gold held by agents in the last period), differences do not affect strategic
choices sufficiently prior to the last generation.

3It may be still physically present but in a form that makes its reclaim uneconomic.
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allocation of labor, only linear production with a reduced efficiency ε can be
attained. This low-yielding production serves the same function as a fallback
position that autarchy served in Ref. [10].

Our interest is in the intermediate range, where the society under a
strained labor allocation can meet the capacity constraint, but sufficient
strain makes this no more favorable for some class of agents than autarchy.
Our model of production (the blue curve in Fig. 2) treats production above
capacity C with the same linear form as autarchy, but higher efficiency. This
upper-semicontinuous function permits an invariant utility when agents can
meet the threshold at the non-cooperative equilibrium of the OLG game,
because all production and consumption are homogeneous of order one in
population size. At an expanding population equilibrium the extra produc-
tion provides enough to sustain a constant living standard.
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Figure 2: Three production functions. Red is the low-yield proportional pro-
duction, with ε = 1/100, as used in the later numerics. Green is the granular
production we might consider realistic, with a fixed unit size, resulting in a
stairstep. Blue is our model, which keeps the first step – the most important,
in relation to the low-yield fall-back – but replaces the subsequent steps with
a linear production function for ease of handling. The range shown for labor
below the capacity constraint – between 10−1 and 100 – is the range of stress
that we model in numerical simulations.
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5.1.3 Production efficiency for the low-yield capital stock

The utility value of capital stock is determined by its rate of delivery of a
service which we denote S. We measure the service in the same units as the
gold invested to build the capital stock, to avoid introducing a distinct type
of unit. The important feature of capital stock is that, once built, the rate
of services it yields is constant over three periods until its service life ends
and it must be replaced. Therefore, for each amount of capital stock shown
in this and later sections, the total service stream delivered multiplies that
amount by three.

We represent the quantity of capital stock built as an upper-semicontinuous
function of the investment level, and we distinguish low-yielding from high-
yielding production by labeling these functions C< and C>, respectively.

The amount of capital stock formed with the low-yielding production
process corresponds to the linear functional form

C<

(∑
i

σi

)
≡ ε

∑
i

σi, (1)

where
∑

i σi represents the investments of all agents who can invest in period
τ = 0. The sum takes the value

∑
i σi = n (σ0 + σ1) + n0 (σ̂0 + σ̂1) where:

σi ≡ investment by farmers,

σ̂i ≡ investment by prospectors.

There is considerable notation associated with the model; we define the
new symbols as they are introduced, but for convenience at the end of the
appendices a full listing is given.

5.1.4 Production efficiency for the high-yield capital stock with
threshold

The amount of capital stock formed with the high-yielding production process
defines the function C> in terms of a threshold function c,

C>

(∑
i

σi

)
≡ c

(∑
i

σi

)
, (2)
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where c(y) approximates the discrete threshold function

c(y) ≈ yΘ(y − C) . (3)

In Eq. (3) Θ is the Heaviside function and C the threshold to produce the first
unit.4 The nature of this approximation, and the relation to the low-yield
production process, are shown in Fig. 3, and discussed in App. B.

y 

c(y) 

C

ε

Figure 3: Low-yielding (heavy-dashed) and high-yielding (heavy solid) pro-
duction functions. Low-yielding function C<(y) = εy, while the high-
yielding function has form c(y) ≈ yΘ(y − C), with derivatives at transitions
smoothed to make optimization criteria well-defined.

5.1.5 Time-symmetric and type-symmetric consumption utilities

All agents are given identical functional forms of consumption utility for
both food and the services delivered by capital stock. The endowment a
for food to farmers and the endowment e0 for gold to prospectors set the
scales for consumption. A fully-specified consumption bundle is a quantity
A or S of food or services, a subscript index i for the agent, superscript
(τ) for the generation in which the agent was born, and further subscript 0
or 1 to indicate whether the agent is in the young or old period of life. A

4The Heaviside function Θ(x) ≡ 0 if x < 0 and Θ(x) ≡ 1 if x ≥ 0.
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Cobb-Douglas consumption utility5 for agent i then becomes

Ui(τ) = log

(
Ai

(τ)
0 Ai

(τ)
1

(a/2)2

)
+s log

(
Si

(τ)
0 Si

(τ)
1

e2
0

)
+θs log

(
Si

(τ+1)
0 Si

(τ+1)
1

e2
0

)
. (4)

where:

A
(τ)
i0 = food consumption of the focal generation-(τ) agent i when young.

A
(τ)
i1 = food consumption of the focal generation-(τ) agent i when old.

S
(τ)
i0 = services consumption of the focal generation-(τ) agent i when young.

S
(τ)
i1 = services consumption of the focal generation-(τ) agent i when old.

S
(τ+1)
i0 = services consumption of the equivalent offspring generation-(τ + 1)

to agent i, when young.

S
(τ+1)
i1 = services consumption of the equivalent offspring generation-(τ + 1)

to agent i, when old.

Our parameter θ is one exemplar of Edgeworth’s “coefficient of concern”
of one generation for the next. Our instantiation is mediated by the particular
concern about the offspring-generation’s consumption of services from capital
stock, which we choose because it addresses the most important potential
allocation failure in OLG economies, and the agents can avert shortages
either by intergenerational transfers or by borrowing.

We will quickly suppress the agent index i and pass to a notation that
refers only to agent type. Because the period subscript (0 or 1) will carry
an important distinction, in this chapter we will distinguish the strategic
variables and consumption bundles of farmers from those of prospectors by
using carets over all prospector variables. The buy-sell game will define
market clearing, with notation b for bids, q for quantities offered, and p
for clearing prices. In models with markets for both gold and food, bids,

5Originally the Cobb-Douglas function was introduced as a production function with
two inputs: land and labor, and exponents for these inputs that sum to unity. It has
become common to refer to the same functional form, when used in utilities, as a “Cobb-
Douglas” form, to relax the restriction that the coefficients sum to unity (since the result
of this relaxation is at most monotone transformation), and to include in the “Cobb-
Douglas” appellation all cardinal utilities which share the same homothetic preferences as
the original power-law Cobb-Douglas form.
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quantities, and prices in the gold market will be explicitly subscripted bG,
qG, and pG.

The lifecycle of capital stock is chosen longer than that of agents, so
that some generations of agents cannot directly finance the capital stock’s
construction or own shares in the services it provides. The important catalytic
function of the constructed capital good is that it converts durable gold
from a good with no inherent consumption value into an entity delivering
a stream of services with direct utility of consumption. It is the episodic
nature of this conversion opportunity that may leave some generations of
agents with a surplus of gold and a deficit of services rendered by gold, while
other generations encounter a lumped demand for gold which leads to under-
consumption of other goods.

5.1.6 A comment on logarithmic utilities

In this chapter as in the preceding we use logarithmic utilities of consumption
as minimal models. Logarithmic utility reflects homothetic preferences and
leads to price elasticities of unity, which rule out modeling certain classes
of price response to scarcity. In the models below, this simplification has
the desirable feature of separating the types of agents and thus simplifying
analysis and solution of models where our interest is in demonstrating the
nature of the financing. Apart from these simplifications, the qualitative
differences among market systems that we demonstrate should not depend
sensitively on our use of logarithmic utility.

5.1.7 Population structure is not a strategic variable, but may be
optimized by adaptive adjustment

The abstraction that stress on market systems and allocative efficiencies is
created by a mismatch between the timescales and cycles of physical assets,
and the needs of agents, entails the assumptions that agents cannot freely
shift production in response to cyclical exogenous constraints. We simplify
this abstraction into a minimal form by supposing that numbers n of farmers
and n0 of prospectors, in each of the two generations, are slowly changing
variables even relative to the cycle of capital stock, so that stationary solu-
tions to strategic market games can be computed treating these quantities
as fixed parameters. We take the total number of agents 2 (n+ n0) as a
fully fixed constraint, and consider the adjustment of the allocation of labor
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n/n0 to be a slow process that equalizes some aggregation of utilities across
the three generations of farmers with the same aggregation across the three
generations of prospectors. (In the examples solved below, we will take this
aggregation to be simply the arithmetic mean.) The process of adjusting
the labor allocation is not modeled explicitly as the strategic variables are,
and the selection of the utility-equalizing value using stationary solutions for
the strategic variables is therefore akin to a problem in comparative statics.
Informally, we consider this a proxy for slow processes of cultural adaptation
that are outside the scope of our models.

5.2 The competitive rational expectations equilibrium
allocation and utilities

The temporal structure of OLG models exposes the difficulties with extend-
ing the competitive equilibrium definition, because given the finiteness of
expected life many contracts implicit in GE are ruled out although, as noted
by Samuelson [9] the presence of money helps to restore some contracts. Fur-
thermore the formulation of full dynamics calls for a treatment of initial and
terminal conditions that introduce many degrees of freedom that have to be
accounted for in well-defining the models. An easy, but not always satisfac-
tory way in which the infinite horizons can be treated, consistently with the
spirit of GE is to account for initial and terminal conditions by a “rational
expectations assumption” which solves only for dynamic equilibrium, but
leaves unanalyzed the influence of transient states.

For the examples below, we suppose that complete markets exist both
within and across the two periods of any individual’s life cycle and the three
periods of existence of the capital stock. That is, young farmers purchase
forward contracts for food in their old periods, at prices equal to the spot-
market prices in those periods, in which both young and old prospectors also
trade.

The assumption that complete contracts must include forward contracts
requires that, in an OLG setting with a definite starting period, it is neces-
sary to suppose that agents who are already old in that period have initial
allocations of gold, or forward contracts for food, in amounts that are con-
sistent with the rational expectations equilibrium values inferred for later
periods.
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5.2.1 Consumption levels, population structure, and utility level

Suppose that the society is either large enough or small enough that, at
the equilibrium allocations of labor, we are in the linear regime of either the
high-yield or the low-yield production function. In a competitive equilibrium
among agents with identical preferences, relative prices between food and
the services from capital stock are the same for all agents, and only their
budgets have the potential to distinguish them. However, we consider the
labor allocation n0/n also identified by the criterion that all agent utilities be
identical (so that changing professions over long times is never advantageous
to either type of agent), making the market value of all agents’ endowments
equal.6 Therefore we do not notationally distinguish consumption levels A
or S either across periods or between farmers and prospectors, and solve the
equilibrium for the values which are common to all of these.

With total production na of food per period, all equilibrium consumption
levels are

A
(τ)
0 = A

(τ)
1 =

na

2 (n+ n0)
. (5)

With production n0e0 of gold per period, and a durable capital stock that
consumes 3n0e0 units to produce, but then yields an equal level of services
for three periods, the service consumption level per period per agent becomes

S
(τ)
0 = S

(τ)
1 =

3n0e0

2 (n+ n0)
. (6)

At these symmetric allocations, the utility of any agent given by Eq. (4),
with high-yielding production, becomes

U (τ) = 2 log

(
1

1 + n0/n

)
+ 2s (1 + θ) log

(
3

2

n0/n

1 + n0/n

)
. (7)

Since the service stream delivered over an entire cycle, when measured in
units of invested gold, is three times the actual quantity of the scarce resource
(gold) produced by prospector labor, it is S(τ)/3, rather than S(τ), which
appears in marginal rates of substitution. (That is, the factor 3/2 in the
logarithm of Eq. (7) leads to a constant summand in utility for all agents,

6This is equivalent to the reduction to a labor-equivalent metric of utility developed in
Ref. [10].
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which does not affect the optimization problem. The equilibrium price system
defined by the marginal rates of substitution is therefore

pτ,CE =
S(τ)/3

s (1 + θ)A(τ)
=

n0e0

s (1 + θ)na
. (8)

The competitive-equilibrium labor allocation, obtained by varying Eq. (7)
with respect to n0/n becomes

n0

n

CE→ s (1 + θ) , (9)

giving pτ,CE = e0/a.

6 Three economic systems: informal inter-

generational transfer, gold banking, and fiat

with government as a reserve buyer of gold

We now consider the way that economies with this common OLG model of
agent preferences and threshold-limited production,but different levels of in-
stitutional structure, meet the needs of distribution of food, concentration
of gold for investment, and distribution of services. We will use total pop-
ulation as a control variable that determines the stress on the system as
measured by the shadow price of the capacity constraint. For each model
a non-cooperative equilibrium exists for populations at or above a (model-
dependent) critical size NC . At N = NC , and the utility-equalizing allo-
cation n0/n of the non-cooperative equilibrium, the total prospector gold
endowment over three generations meets the threshold for high-efficiency
production: 3n0e0 = C. All of these non-cooperative equilibria require criti-
cal populations NC larger than the competitive-equilibrium value (9), which
provides one measure of their inefficiency.

In each case, for N < NC , the capacity constraint develops a nonzero
shadow price, which quantifies the stress on the system. The rate at which the
economy can allow N/NC < 1 to decrease, relative to the rise of the shadow
price, provides a measure of the robustness of its functions of distribution.
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6.1 Synopses of the three cases

6.1.1 Case 1: food markets denominated in gold money, with
intergenerational transfers of gold

We model an “informal” economy without financial support as one with
trading-post markets for food denominated in gold, and individual bequests
of gold by agents in their old period to furnish an initial endowment of gold
for agents of the same type in the next generation, in their young period.
These bequests are the only mechanism of intergenerational transfer (IGT).
The prospector endowment of gold flows primarily through the food markets
to accumulate in period τ = 0 when it is needed for capital stock construc-
tion. The internalization of offspring utilities of consumption of services from
capital stock is sufficient to produce interior solutions in which those farmers
who require gold to purchase shares in period τ = 0 receive nonzero IGTs
from the previous generation. Stress from an insufficient population leads to
asymmetric contribution from farmers and prospectors to meet the capacity
constraint, and strong divergence of the utilities of different prospector gen-
erations despite producing only mild divergence of food prices if the overall
budget share from gold remains small.

6.1.2 Case 2: an inside bank for gold in place of intergenerational
transfers

The concentration of stress on a single period of agents, and its resulting im-
pact on the investment levels and on divergent consumption bundles of agents
born in different generations, can be mitigated by introducing an inside bank,
which provides a repository and pass-through institution to redistribute gold.
In place of IGTs that propagate gold forward in time through the capital cy-
cle, bank loans couple consumption between the young and old periods within
each generation. A limited intergenerational flow of gold occurs through the
payment of interest on loans and deposits. However, the need of an inside
bank to balance interest payments of debtors and creditors creates a compli-
cated coupling among the roles of gold as an input to production, a medium
of exchange, and an inter-period (and hence, indirectly through the food
markets) inter-generational store of value. This coupling is expressed in a
counterintuitive requirement for a nonzero interest rate (indeed the maxi-
mal rate in the model) in the unstressed non-cooperative equilibrium, and
a dependence of prices on this interest rate that moves them away from the
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competitive-equilibrium value and contributes part of the non-CE allocation
of labor in the population.

6.1.3 Case 3: a central bank for fiat and a reserve buyer for gold

The role of gold as a durable consumable can be decoupled from the function
of the money system by introducing fiat exchange, which places all producers
on an equal footing with respect to purchasing and interest. In the particular
model we present here, multiple functions must be introduced, because the
replacement of gold as a medium of exchange requires the introduction of
both a gold market and of a reserve buyer for gold in periods when there is
no demand in the open market of non-cooperative agents. We combine these
functions in a model of a policy-guided central bank, which provides loans
in fiat money, collects interest, provides gold demand in slack periods and
restores stored gold when it is needed for production. The introduction of a
fiat exchange system creates multiple control parameters by which the central
bank may influence policy objectives. We show, however, that no single value
for these parameters is generally utility-improving or price-stabilizing; rather
the parameters must generally be tuned to the particular configuration of
population constraints and shadow prices faced by the society.

6.2 The markets used to allocate food, gold, and ser-
vices in all models

6.2.1 A notation for agent-symmetric solutions within each type

We look for non-cooperative equilibria in which all agents of a given type
make the same bids and offers, and have the same consumption levels. We

denote the bid and offer variables for farmers by
(
b

(τ)
0 , q(τ)

)
in the young

period, and by b
(τ)
1 in the old period. Their bids on gold in the young and old

periods are denoted
(
b

(τ)
G0, b

(τ)
G1

)
. Their consumption levels of food and services

are
(
A

(τ)
0 , S

(τ)
0

)
in the young period and

(
A

(τ)
1 , S

(τ)
1

)
in the old period. The

clearing price for food in period τ is denoted pτ .
The corresponding quantities for prospectors are(

b̂
(τ)
0 , b̂

(τ)
1 , b̂

(τ)
G,0, q̂

(τ)
G b̂

(τ)
G,1, Â

(τ)
0 , Ŝ

(τ)
0 , Â

(τ)
1 , Ŝ

(τ)
1

)
. The gold clearing price is pGτ .

The prospector variables replace an offer q of food with an offer q̂G of gold

21



in cases when gold markets exist.

6.2.2 Price formation and market clearing

The clearing price for food markets relates to bids of both types, and to
offers, as

pτ =
nb

(τ−1)
1 + n0

(
b̂

(τ−1)
1 + b̂

(τ)
0

)
nq(τ)

. (10)

The comparable clearing price for gold (in models with a gold market) is
expressed as

pG,τ =
nb

(τ−1)
G,1 + n0

(
b̂

(τ−1)
G,1 + b̂

(τ)
G,0

)
nq̂

(τ)
G

. (11)

The consumption level of food for farmers is

A
(τ)
0 = a− q(τ) +

b
(τ)
0

pτ

A
(τ)
1 =

b
(τ)
1

pτ+1

. (12)

and the level for prospectors is

Â
(τ)
0 =

b̂
(τ)
0

pτ
.

Â
(τ)
1 =

b̂
(τ)
1

pτ+1

, (13)

6.2.3 Private share rights and publicly-held utilities for services

In the following models, we will solve separately for the non-cooperative equi-
libria with investments in either low-yielding or high-yielding capital stock.
Agents who are alive in the period when capital stock is built can purchase
proportional shares in the stream of services. When these agents die, the part
of the service stream un-purchased becomes a publicly held utility, which we
distribute equally among the remaining agents.

Letting C stand for either C< or C> in Sec. 5.1.3 above, according to
the production function under consideration, the service consumption levels
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measured in units of invested gold, for the three generations of agents and
their two periods, are given by

S
(0)
0 = S

(0)
1 =

σ0∑
i σi

C

(∑
i

σi

)
; Ŝ

(0)
0 = Ŝ

(0)
1 =

σ̂0∑
i σi

C

(∑
i

σi

)

S
(1)
0 = Ŝ

(1)
0 =

1

n+ n0

∑
i σi − (nσ0 + n0σ̂0)∑

i σi
C

(∑
i

σi

)
; S

(1)
1 = Ŝ

(1)
1 =

1

N
C

(∑
i

σi

)

S
(2)
0 = Ŝ

(2)
0 =

1

N
C

(∑
i

σi

)
; S

(2)
1 =

σ1∑
i σi

C

(∑
i

σi

)
; Ŝ

(2)
1 =

σ̂1∑
i σi

C

(∑
i

σi

)
.

(14)

In the first and third lines, for generations τ = 0 and τ = 2, the factors
σ0, σ̂0 and σ1, σ̂1 represent explicit ownership rights of the focal agent, from
investments in the τ = 0 period. The expressions for S

(1)
0 , Ŝ

(1)
0 in the second

line represent the proportional publicly-held service allocation of all explicit
(farmer and prospector) rights from τ = 2 agents who have died. The im-
portant feature of the sum

∑
i σi − (nσ0 + n0σ̂0) in the numerator is that

it contains only decision variables from the generation τ = 2. Therefore,
while it affects the consumption levels of τ = 1, which appear in the utilities
U (0)
i , those consumption levels do not depend on the τ = 0 decision variables

except at higher order in 1/N (hence, on finite replicates), which terms we
omit. Note that in the linear ranges of either production function, the factors
of C(

∑
i σi) and

∑
i σi cancel, leaving only simple linear functions of σ0 or

σ1.

6.2.4 Budget conditions and budget constraints

If we take µ
(τ)
0 to be the initial budget from exogenous variables, whether

endowment or inter-generational transfers, then a general Lagrangian for the
budget constraint that can encompass all three models may be written

L(τ)
Common = U (τ) + η

(τ)
0

(
µ

(τ)
0 + g

(τ)
0 − σ0δτ,0 − b(τ)

0 − b
(τ)
G,0

)
+ η

(τ)
1

(
µ

(τ)
1 − g

(τ)
1 − σ1δτ,2 − b(τ)

1 − κτ
)
, (15)

with hatted variables used if the agent is a prospector. Here g are amounts
borrowed from a bank (in either gold or fiat), with negative values repre-
senting lending to the bank. In models where the institutions entailed by
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the use of some variable are not included, that variable is set to zero. We
provide the general form here so that we may write in one place the relations
between marginal utility of consumption, and the K-T multipliers η

(τ)
0 , η

(τ)
1

for the budget constraint, in those first-order conditions that are common to
all agent types in all models.

The second-period initial budget for the two types is given in terms of
the first period budget, expenditures, and proceeds of sale for farmers and
prospectors respectively by

µ
(τ)
1 = µ

(τ)
0 + g

(τ)
0 − σ0δτ,0 − b(τ)

0 − b
(τ)
G,0 + q(τ)pτ

µ̂
(τ)
1 = µ̂

(τ)
0 + ĝ

(τ)
0 − σ0δτ,0 − b̂(τ)

0 − b̂
(τ)
G,0 + q̂

(τ)
G pG,τ . (16)

6.3 Representation of a jointly-binding capacity con-
straint with an effective Kuhn-Tucker multiplier
and associated shadow price

Constraints on individual strategic variables are readily implemented with
Kuhn-Tucker multipliers, which have the interpretation of shadow prices.
The jointly-binding capacity constraint, that investment must reach a thresh-
old before high-yielding production is possible, is not in general similarly
representable by such a multiplier, because the threshold is not under the
strategic control of any single agent. Often in such cases an additional mar-
ket would be required in reality, to propagate real price signals to individuals.

In these models, we exploit a property of logarithmic utilities that permits
us to represent the jointly-binding capacity constraint in terms of a single
Kuhn-Tucker multiplier Λ which is common to the optimization problems of
all agents, which which has the interpretation of a shadow price. Our ap-
proach is to first regularize the threshold behavior of the production function
to a smooth but non-convex and sharply curved function. The strongly non-
linear dependence of the derivative of this function, on the investment level
in a neighborhood of the capacity threshold value, together with logarithmic
dependence of utility on the consumption level, permits us to treat the log-
derivative of the non-convex production function as a K-T multiplier. The
detailed construction is presented in App. B.
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6.4 Common first-order conditions and their conse-
quences for consumption

6.4.1 Farmer bid and offer variables

The common terms in the first-order condition for farmers in all models are

0 = δL(τ) =

[
1

A
(τ)
0 pτ

− η(τ)
1

](
δb

(τ)
0 − pτδq(τ)

)
− η(τ)

0 δb
(τ)
0 +

[
1

b
(τ)
1

− η(τ)
1

]
δb

(τ)
1

+

[
2s

σ0

+ 2 (1 + θ) Λ−
(
η

(τ)
0 + η

(τ)
1

)]
δσ0δτ,0

+

[
s

σ1

+ (1 + 2θ) Λ− η(τ)
1

]
δσ1δτ,2.

(17)

Where Λ is the effective K-T multiplier for the capacity constraining on
high-yielding production, derived in App. B.

(In Eq. (17) and all subsequent equations, δτ,0 is the Kronecker δ-function,
which takes value 1 when τ = 0 and zero otherwise, and δτ,2 is the corre-
sponding Kronecker δ-function with respect to τ = 2.) Because the utility (4)
does not saturate, farmers will always consume a part of their food, and the
first and third conditions in Eq. (17) therefore give

A
(τ)
0 pτ = b

(τ)
1 . (18)

To provide a complete analysis we must consider the possibility that farm-
ers engage in wash selling in their young period, as we did for models in
previous chapters. The equation that determines the value of η

(τ)
0 , which

excludes wash sales if it is positive in Eq. (17), is

2s

σ0

+ 2 (1 + θ) Λ− 1

b
(0)
1

= η
(0)
0 . (19)

We provide a systematic analysis covering all cases in App. C. There we show
that wash selling may be excluded from all solutions derived below, either
because it cannot occur or because it cannot affect prices or allocations, so
that any solution with wash sales can be replaced by an equivalent solution
without them.
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6.4.2 Prospector bids on food

Prospectors bid on food in both periods, and generations (τ = 2) or (τ = 0)
will invest in capital stock in period τ = 0. The common terms in their
first-order conditions including budget constraints are

0 = δL(τ) =

[
1

b̂
(τ)
0

−
(
η̂

(τ)
0 + η̂

(τ)
1

)]
δb̂

(τ)
0 +

[
1

b̂
(τ)
1

− η̂(τ)
1

]
δb̂

(τ)
1

+

[
2s

σ̂0

+ 2 (1 + θ) Λ−
(
η̂

(τ)
0 + η̂

(τ)
1

)]
δσ̂0δτ,0

+

[
s

σ̂1

+ (1 + 2θ) Λ− η̂(τ)
1

]
δσ̂1δτ,2.

(20)

The general relation between bids in the two periods is

1

b̂
(τ)
0

− 1

b̂
(τ)
1

= η̂
(τ)
0 . (21)

Situations in which prospectors carry gold over between periods, requiring
η̂

(τ)
0 = 0, are distinguished from those in which the periods are related

through lending at interest, requiring η̂
(τ)
0 ρη̂

(τ)
1 = ρ/b̂

(τ)
1 , and the relation

between bids and total budget is then given by Eq. (21) in either case.

6.5 The model with intergenerational transfers and
without banking

In this model, the Lagrangian L(τ) = L(τ)
Common of Eq. (15). The defining

feature of the model is the introduction of intergenerational transfers (IGTs)
κ(τ) from each generation (τ) of farmers to their successor generation. The
IGTs appear in through the budget conditions as

κ(τ−1) = µ
(τ)
0

µ
(τ)
0 − b

(τ)
0 − σ0δτ,0 = µ

(τ)
1

µ
(τ)
1 + q(τ)pτ = b

(τ)
1 + σ1δτ,2 + κ(τ). (22)

The first-order conditions and their consequences in this economy are
derived in detail in App. D. We summarize the major properties of the
model here in a series of figures.
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Analytic results for the labor allocation in the unstressed equilibrium give
n0/n→ s (1 + θ) /6. Pinning 3n0e0 = C at the lower limit of this equilibrium,
we arrive at a critical lower population for N = 2 (n+ n0) of

NC ≡
2C
3e0

(
1 +

n

n0

)
=

2C
3e0

(
1 +

6

s (1 + θ)

)
, (23)

roughly six times larger for s� 1 than the corresponding CE critical popu-
lation.

The stress level on the price system, represented as the shadow-price
value of the capacity constraint, Λe0, is shown versus the population below
its threshold level N/NC in Fig. 4.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

Figure 4: Stress level as measured by the shadow price Λe0 ∈ [0, 3.5], as a
function of N/NC ≤ 1.

The response of food prices to N/NC < 1 is shown, both in absolute terms
and with the three-period mean subtracted, in Fig. 5. In the unstressed
equilibrium, prices approximate the CE value apτ/e0 → 1 to O(s).

The relation of investment to the market value of food in the competitive
equilibrium is just that of the optimal labor allocation: n0e0/ (napCE + n0e0) =
n0/ (n+ n0) ≈ s (1 + θ) for s � 1. In the simulations we show θ = 1/2,
leading to a CE investment level of 3se0/2. In the unstressed noncoopera-
tive equilibrium, prospector investment levels σ̂0 ≈ se0, and σ̂1 ≈ se0/2 for
s� 1. In the farmer sector, where generation (τ = 0) depends on IGTs from
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Figure 5: BGR are absolute prices apτ/e0 for periods 0, 1, 2. Left panel is
absolute; right panel is relative to mean: (apτ −

∑
τ ′ apτ ′/3) /e0 for periods

0, 1, 2.

the (τ = 2) generation, which are discounted by θ, the unstressed equilibrium
investment levels are σ1 = e0s/2 and σ0 = κ(2) = e0sθ.

The distribution of investments needed to meet the constraint n (σ0 + σ1)+
n0 (σ̂0 + σ̂1) = C = 3n0e0 in noncooperative equilibria with shadow prices is
shown in Fig. 6. With decrease of N/NC < 1, an increasing fraction of
investment is met by prospectors.

While three-period average utility has been set equal for farmers and
prospectors as the condition that determines the labor allocation n0/n, the
utilities within individual periods may still differ. Measures of this difference
such as variance over the three generations may be used as a measure of the
failure of allocative efficiency by the IGT mechanism, or the minimum single-
generation utility may be used as a fragility threshold in a coalitional-form
solution concept: if it falls below the noncooperative equilibrium-utility for
low-efficiency production, this generation has no incentive to remain within
the coalition that cooperates to produce high-yielding capital stock.

Fig. 7 shows the absolute utility levels versus N/NC ≤ 1. The utility
levels of the CE with high-yielding and with low-yielding production are
shown for comparison. The generation (τ = 0)-prospectors suffer utilities
far below autarchy for N/NC < 0.4. The lower limit for population shown
is N/NC ∼ 1/50, so still twice the sacrifice in total rate of capital services
encountered in going from high-yielding production to autarchy.
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Figure 6: Investment levels: or who is contributing most to meet the capacity
constraint for the jointly-constructed good. Values σ are normalized by se0.
BG is period 0, 2. Solid is farmers, symbols are prospectors. Left panel is
linear; right panel the same data on log scale. I think the reason both-period
farmers group with τ = 2 prospectors in the unstressed equilibrium is that
the farmer σ0 is limited by farmer κ(2), and in the τ = 2 valuation of offspring
utilities, the factor θ = 1/2 here cancels the factor of 2 in the service stream.

6.6 An inside bank as a pass-through entity for gold,
in place of intergenerational transfers

In the banking model agents of both types borrow or lend gold at a fixed
rate of interest ρ to couple the expenditures between their own young and
old periods, rather than across generations as in the IGT economy. Since the
purpose behind banking is to optimize utilities, the bank will return all gold
to the market economy within each cycle of generations. Since it is an inside
bank, it has no other source of gold, and thus cannot return more than it
receives. The condition that gold flow balance within each production cycle
therefore closes the system.

The bank has no remaining degrees of freedom if it is constrained to
balance gold flows. However, unlike Ref. [10], we are not modeling the costs
of banking, so the bank is not required to make a profit in order to function.
In this sense the bank is a strategic dummy, implicitly representing a banker
who is equivalent to an unpaid bureaucrat.

The model introduces loan variables
(
g

(τ)
0 , g

(τ)
1

)
for farmers, and

(
ĝ

(τ)
0 , ĝ

(τ)
1

)
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Figure 7: BGR are utilities for generations 0, 1, 2. Symbols mark prospectors,
un-symboled are farmers. Solid black is the average, which is equal for both
types. Upper black dotted is the CE utility, and lower black dotted is the
CE minus the correction for autarchic production 2 (1 + θ) log (0.01).

for prospectors, in each period, along with their associated KT-multipliers
Λ

(τ)
B and Λ̂

(τ)
B . The ΛB values are varied on a finite interval to implement the

linear bankruptcy constraint of previous sections. We give values for these
shadow prices of the bankruptcy constraint at interior solutions, but will
assume that the penalty is strong enough that strategic default is always ex-
cluded, and will therefore not introduce a separate notation for the strength
of the penalty. The sign convention will be that positive g denotes borrowing
by agents from the bank, while negative ĝ denotes lending to the bank.

The Lagrangians for farmers are then expansions of the common terms
from Eq. (15) of the form

L(τ) = L(τ)
Common − ΛB

[
(1 + ρ) g

(τ)
0 + g

(τ)
1

]
, (24)

with an equivalent with hatted variables for prospectors. The same constraint
term works for both borrowing and lending, ensuring that the amount with-
drawn can never exceed the discounted negative of the amount deposited.

The corresponding budget sequences for farmers and prospectors, respec-
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tively, become

0 = µ
(τ)
0

µ
(τ)
0 + g

(τ)
0 − b

(τ)
0 − σ0δτ,0 = µ

(τ)
1

µ
(τ)
1 + q(τ)pτ = b

(τ)
1 + σ1δτ,2 + g

(τ)
1 (25)

e0 = µ̂
(τ)
0

µ̂
(τ)
0 − b̂

(τ)
0 − σ̂0δτ,0 −

(
−ĝ(τ)

0

)
= µ̂

(τ)
1

µ̂
(τ)
1 + ĝ

(τ)
1 = b̂

(τ)
1 + σ̂1δτ,2. (26)

6.6.1 Solution properties, and a review of the problem of achiev-
ing high-yielding production below the critical population
size

A full analysis of the first-order conditions and budget conditions, and their
solutions, is given in App. E. There we show that the full return of gold
from the banks to the individual sector is not compatible with the first-
order conditions governing farmer investment, at arbitrary combinations of
interest rate ρ and population composition n0/n. The two conditions can be
met only for a function ρ which approaches unity at Λe0 = 0, and decreases
with increasing Λe0, shown in Fig. 10. To understand the meaning and
consequence of this interest rate, we review the problem of achieving high-
yielding production in a society whose population N is below the critical
value NC required to invest the required gold without a shadow price.

The unstressed, noncooperative equilibrium with low-yield production
is always a joint solution (autarchy) to this strategic market game at all
populations N ≤ NC . If we consider the comparative statics of this class
of solutions with fixed n0/n as population is increased, we find a class of
solutions homogeneous of order one in population size, bids, and investment
levels, with a fixed interest rate ρ = 1. At N = NC , the utility level undergoes
a discontinuous jump 2 (1 + θ) log (1/ε) as low-yield production is replaced
with high-yield production at the same investment level.

For N ≥ 2C/3e0, however, agents may also lower the interest rate, re-
allocate labor until n0 = 2C/3e0, invest at a higher absolute rate with most
investments made by the expanded prospector sector, and adopt a noncoop-
erative equilibrium in which the marginal utility of scarce food and uneven
consumption of services is balanced by the shadow price of the capacity con-
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straint. As N → NC from below, n0 remains fixed at 2C/3e0, the excess
gold per capita declines, prospector deposits and interest payments on them
decline as well, and farmer investment levels for services in the young and
old periods are driven nearly equal by cash-flow constraints. This solution –
σ0 = σ1 +O(s) – is also a property of the competitive equilibrium, but not of
any of the noncooperative equilibria we construct in this chapter, because the
returns on investment and hence the first-order conditions differ for σ0 and
σ1. In order to make the optimal investment levels converge, the discount
factor to interest payments 1 + ρ, must approach 2, returning the economy
to the value ρ = 1 of the unstressed equilibrium. This sequence provides a
continuous interpolating path between low-yield and high-yield production,
as the population size is increased to its critical value.

6.6.2 Consumption, prices, and critical population size

For s � 1, utility levels are dominated by food consumption. Because
prospectors borrow in both periods to buy food, their consumption becomes
uneven (by the factor 1+ρ) in the old versus the young periods. Their young-
period consumption is governed by their endowment and remains high, while
their old-period consumption is further augmented by interest that they earn.

Since farmers always borrow and prospectors always lend, food prices
apτ/e0 must compensate the farmers for the this interest factor (1 + ρ) by
which the gold-value of prospector consumption is inflated. For logarithmic
utilities of the form (4), this compensation gives the scaling of prices

apτ
e0

→
√

1 + ρ. (27)

for s � 1. Therefore in the unstressed equilibrium apτ/e0 →
√

2 + O(s), a
large distortion from the CE value of unity.

The corresponding critical population size, derived in App. E, becomes

NC ≡
2C
3e0

(
1 +

n

n0

)
=

2C
3e0

(
1 +

3√
2s

)
. (28)

Numerical solutions for absolute and relative price levels, investment lev-
els by each type and period, stress level Λe0 and interest rate ρ, and single-
period absolute utility levels, for comparison to those in the IGT economy
without banking, are shown in Figures 8–11.
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Figure 8: BGR are absolute prices apτ/e0 for periods 0, 1, 2. Left panel is
absolute; right panel is relative to mean: (apτ −

∑
τ ′ apτ ′/3) /e0 for periods

0, 1, 2. Relative prices shown on the same scale as for Fig. 5 (absolute
prices approach

√
2 in the unstressed equilibrium, rather than unity as in

the IGT economy or the competitive equilibrium). Note that for banking
ap2 > ap1 > ap0, and we can confirm with the analytic expressions (90) that
this must be the case. For IGTs the order was ap1 > ap2 > ap0

6.6.3 Gold requirements of the bank

The gold requirements of the bank in order to meet net withdrawals with a
minimum balance of zero are shown in Fig. 12. To interpret the per-capita
version refer to Fig. 8 showing that at the lower end of the N/NC range,
apτ/e0 ∼ 1. A (gold stock) / (n+ n0) e0 ∼ 0.3 means that gold stored in the
bank to buffer prices equals almost 1/3 the total value of the food markets.
(At the lower limit shown here, n/n0 ∼ 5, so ∼ 5/6 of the economy’s value is
still represented by the food market. However this condition is still stressed
relative to the unstressed equilibrium value n/n0 ∼ 50.)

The combination of price distortions, and the requirement that signifi-
cant amounts of gold be taken maintained out of circulation, show the main
weaknesses of banking with a commodity money that is also an input to
production, and motivate the features of a fiat-banking model considered
next.
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Figure 9: Investment levels: or who is providing the public good. Values
σ are normalized by se0. BG is period 0, 2. Solid is farmers, dashed is
prospectors. Left panel is linear; right panel the same data on log scale.
The pairings in the unstressed equilibrium are now different than for the
IGT economy with both-period farmers grouping together and both-period
prospectors grouping together. Here the cause should be that the interest
rate ρ→ 1 in the unstressed equilibrium causes 1+ρ to cancel the factor-of-2
differences that would otherwise distinguish σ0 from σ1.

7 An economy with a central bank that lends

fiat and serves as a reserve buyer for gold

Our third OLG model changes the means of payment from gold to fiat money
issued by a central bank.

7.1 Institutional structure of a fiat OLG economy

The removal of gold as a means of payment requires the introduction of a
gold market, which we make a buy-sell market equivalent to the food market.
This move immediately converts prospectors into a class of producers on an
equal economic footing with farmers, and leads to prices in the unstressed
noncooperative equilibrium that converge to those in the CE. Fiat is intro-
duced into the economy through loans which are recollected with interest at
rate ρ.

The removal of gold as a means of payment also eliminates a form of
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Figure 10: Interest rate (b), and stress level (g) as measured by the shadow
price Λe0, as a function of N/NC ≤ 1. Note that now Λe0 ∈ [0,∼ 1], so bank-
ing permits a lower shadow price for the capacity constraint at comparable
N/NC .

cross-generation transmission through the food markets, removing demand
for gold from the open markets in the two periods when it cannot be used
to invest in capital stock. Therefore in addition to being a lender of fiat,
the central bank must become a buyer of gold in two periods, and a net
supplier in period τ = 0. Its role as a gold buyer defines the numéraire for
fiat. At the same time, the government’s freedom to dictate offer prices for
gold in periods when there is no open-market demand, together with the
interest rate, provide control degrees of freedom that may be set to achieve
policy objectives of the central bank. These degrees of freedom are not all
independent. As in the inside-gold-banking model of the last section, we
suppose that the central bank returns all gold to the private sector within
each production cycle, and we also assume that it balances the flow of fiat
to stabilize its price. The result of these constraints is that the central bank
is left with two independent control variables that it may set freely within
finite intervals.
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Figure 11: BGR are utilities for generations 0, 1, 2. Solid is farmer; dotted is
prospector. (The greater demands of the numerics for resolution permitted
the dotted line to show here.) Solid black is the average, again set equal for
the two types. Upper black dotted is the CE utility, and lower black dotted
is the CE minus the correction for autarchic production 2 (1 + θ) log (0.01).
Axes are the same as those in Fig. 7 for comparison

7.1.1 The period structure for a model with gold markets and fiat
money

The natural use of the existing OLG period structure makes gold markets
parallel to food markets in their operation. Bids and offers are placed in one
period; purchases and proceeds are distributed as the initial values of goods
and money for the next period. Under this market structure, (τ = 0)-farmers
– who were not yet born in the previous period τ = 2 – have no way to se-
cure delivery of gold in time for them to invest in capital stock. Since all
investors will still be alive in their young period, these farmers also have no
publicly-held service stream from which to draw. This situation results in
zero consumption and singular (−∞) utilities, unless we re-introduce inter-
generational transfers, which are now no longer money but simply durable
property. The re-introduction of IGTs restores the relation between invest-
ments and IGTs in the farmer sector which are the first two lines of Eq. (61),
except for a factor (1 + ρ) because the money must be borrowed to buy gold.
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Figure 12: Prior gold balances of the bank in the three periods, normalized
by n0e0 (left) or by (n+ n0) e0 (right), as a function of N/NC . (Recall that
n0 is fixed by the capacity constraint C = 3n0e0.) BGR are prior balances
coming into periods τ = 0, 1, 2. (Prior balance for τ = 1 is zero, and may be
hard to see in this figure.)

7.1.2 The use of control variables in the fiat economy

The fiat economy admits a regular ρ→ 0 limit of solutions for the unstressed
equilibrium.

Maintaining ρ � 1 for all values of N/NC is not optimal policy for a
benevolent central bank. If interest rates are set to zero for populations
below the critical size, the model solution becomes identical to that of the pre-
financial IGT economy shown in Fig. 7. The stresses lead to price reductions
and severe dispersion of utilities for agents in different generations. The
following sections show that a policy objective of minimizing dispersion of
utility between the generations of prospectors leads to a schedule for interest
rates and payments that remains closer to the competitive equilibrium for
smaller populations N < NC than either of the previous two models.

7.2 Farmer budgets, preferences, and first-order con-
ditions

Because fiat rather than gold is the money in this economy, two separate bud-

gets coexist, for gold and for money. Parallel to the notations
(
µ

(τ)
0 , µ

(τ)
1

)
for beginning young-period and old-period money budgets, we introduce no-
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tations
(
γ

(τ)
0 , γ

(τ)
1

)
for beginning young-period and old-period gold stocks.

Intergenerational transfers (which in most periods may be zero) provide the
young-period endowment of gold for farmers, and the old-period gold stock
may be augmented with gold purchases. Gold in either period may be used
for investment and in the old period part of it may also provide an IGT to
the next generation. The equations for gold stocks of farmers are

κ(τ−1) = γ
(τ)
0

γ
(τ)
0 − σ0δτ,0 = γ

(τ)
1 ≥ 0

γ
(τ)
1 +

b
(τ)
G0

pGτ
− σ1δτ,2 − κ(τ) ≥ 0. (29)

The Lagrangian for farmers contains the common terms (15) as well as a
constraint term for repayment of young-period borrowing (now denominated
in fiat), as well as two new constraint terms for gold stocks, which we enforce

with K-T multipliers η
(τ)
G0 and η

(τ)
G1 , both on the interval [0,∞):

L(τ) = L(τ)
Common − Λ

(τ)
B

[
(1 + ρ) g

(τ)
0 + g

(τ)
1

]
+
(
γ

(τ)
0 − σ0δτ,0

)
η

(τ)
G0 +

(
γ

(τ)
1 +

b
(τ)
G0

pGτ
− σ1δτ,2 − κ(τ)

)
η

(τ)
G1 . (30)

The loans, bids, and repayments that determine the forms of the money
balances in the budget terms of the common Lagrangian (15), for the farmers
in this economy, become

0 = µ
(τ)
0

µ
(τ)
0 + g

(τ)
0 − b

(τ)
0 − b

(τ)
G0 = µ

(τ)
1 ≥ 0

µ
(τ)
1 + q(τ)pτ − b(τ)

1 + g
(τ)
1 ≥ 0. (31)

Bids may now be made for gold as well as for food, but investments in capital
stock are now made from the gold supply (29) rather than from the money
budget (31).

The terms in the farmer first-order conditions that follow from these pref-
erence and budget expressions (suppressing the variations in K-T multipliers
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which simply enforce the inequality constraints), are then

0 = δL(τ) =

[
1

A
(τ)
0 pτ

− η(τ)
1

](
δb

(τ)
0 − pτδq(τ)

)
− η(τ)

0 δb
(τ)
0 +

[
1

b
(τ)
1

− η(τ)
1

]
δb

(τ)
1

+
[
η

(τ)
0 + η

(τ)
1 − (1 + ρ) Λ

(τ)
B

]
δg

(τ)
0 +

[
η

(τ)
1 − Λ

(τ)
B

]
δg

(τ)
1

+

[
2s

σ0

+ 2 (1 + θ) Λ−
(
η

(τ)
G0 + η

(τ)
G1

)]
δσ0δτ,0

+

[
s

σ1

+ (1 + 2θ) Λ− η(τ)
G1

]
δσ1δτ,2

+

[
2θs

κ(τ)
+ 2θΛ− η(τ)

G1

]
δκ(τ)δτ,2

+

[
η

(τ)
G1

pGτ
−
(
η

(τ)
0 + η

(τ)
1

)]
δb

(τ)
G0 (32)

7.3 Prospector budgets, preferences, and first-order
conditions

For prospectors, the endowment e0 from their production function, rather
than intergenerational transfers, furnishes their initial stock of gold, and they
may offer part or all of this (a quantity q̂

(τ)
G ) for sale on the gold market to

provide money for food, as well as investing it in capital stock. The equations

for the prospectors’ gold stocks, denoted
(
γ̂

(τ)
0 , γ̂

(τ)
1

)
, are then

e0 = γ̂
(τ)
0

γ̂
(τ)
0 − σ̂0δτ,0 − q̂(τ)

G = γ̂
(τ)
1 ≥ 0

γ̂
(τ)
1 − σ1δτ,2 ≥ 0. (33)

The Prospector Lagrangian is directly parallel to Eq. (30) for farmers

(with hatted variables in L(τ)
Common), and with modified gold-stock constraint

terms enforced with K-T multipliers η̂
(τ)
G0 and η̂

(τ)
G0 :

L̂(τ) = L(τ)
Common − Λ̂

(τ)
B

[
(1 + ρ) ĝ

(τ)
0 + ĝ

(τ)
1

]
+
(
γ̂

(τ)
0 − σ̂0δτ,0 − q̂(τ)

G

)
η̂

(τ)
G0 +

(
γ̂

(τ)
1 − σ̂1δτ,2

)
η̂

(τ)
G1 . (34)
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The loans, bids, and repayments that determine the forms of the money
balances in the budget terms of the common Lagrangian (15), for the prospec-
tors in this economy, then become

0 = µ̂
(τ)
0

µ̂
(τ)
0 + ĝ

(τ)
0 − b̂

(τ)
0 = µ̂

(τ)
1 ≥ 0

µ̂
(τ)
1 + q̂

(τ)
G pGτ − b̂(τ)

1 + ĝ
(τ)
1 ≥ 0. (35)

The terms in the prospector first-order conditions that follow from these
preference and budget expressions (again suppressing the variations in K-T
multipliers which enforce the inequality constraints), are then

0 = δL̂(τ) =

[
1

b̂
(τ)
0

−
(
η̂

(τ)
0 + η̂

(τ)
1

)]
δb̂

(τ)
0 +

[
1

b̂
(τ)
1

− η̂(τ)
1

]
δb̂

(τ)
1

+
[
η̂

(τ)
0 + η̂

(τ)
1 − (1 + ρ) Λ̂

(τ)
B

]
δb̂

(τ)
0 +

[
η̂

(τ)
1 − Λ̂

(τ)
B

]
δb̂

(τ)
1

+

[
2s

σ̂0

+ 2 (1 + θ) Λ−
(
η̂

(τ)
G0 + η̂

(τ)
G1

)]
δσ̂0δτ,0

+

[
s

σ̂1

+ (1 + 2θ) Λ− η̂(τ)
G1

]
δσ̂1δτ,2

+
[
η̂

(τ)
1 pGτ −

(
η̂

(τ)
G0 + η̂

(τ)
G1

)]
δq̂(τ). (36)

7.4 Price formation and the central bank as a reserve
buyer for gold

Food clears according to the price-formation rule (10). If an analogous
rule (11), which we write here as,

pprivate only
G,τ =

nb
(τ−1)
G,1 + n0

(
b̂

(τ−1)
G,1 + b̂

(τ)
G,0

)
nq

(τ)
G

, (37)

receiving bids only from private individuals, then a price of zero would result
in periods τ = 0, 1, because in these generations no individual has a salvage
value for gold in his old period, when it would be delivered from the markets.
The (τ = 0, 1)-prospectors would then have no source of income, and interior
solutions would be unattainable.
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The solution we adopt here to this market failure is to make the central
bank a reserve buyer and seller of gold. Denoting the bank’s bids and offers
by B

(τ)
G and Q

(τ)
G , respectively, we modify the price-formation rule (11) to the

form

pG,τ =
nb

(τ−1)
G,1 + n0

(
b̂

(τ−1)
G,1 + b̂

(τ)
G,0

)
+B

(τ)
G

nq
(τ)
G +Q

(τ)
G

. (38)

Participation by the central bank in the open gold markets does two
things. First, it defines the numéraire of fiat, which would be left unde-
termined by the mere existence of a nonzero interest rate. Second, it gives
the central bank several control variables, by which it may achieve policy
objectives for distribution and welfare in the society.

To identify the control variables as well as to make a minimal model, we
constrain the central bank’s policies to be drawn from those which return
all purchased gold to the economy within each three-period cycle, and which
balance all payments of fiat aggregated over gold purchases and sales, and
interest payments. The former constraint may be seen as a social-welfare
condition: since gold has value as an input to production, and since the
central bank (a strategic dummy) does not take profits or pay for labor, net
extraction of gold would constitute waste of part of the endowment. The
latter constraint ensures stable fiat prices for food and gold (no net fiat
injected into the private economy) while enabling solutions without strategic
default (no net fiat extraction required to avoid default).

We may finally require that the bank not engage in wash selling either
as a buyer or a seller of gold. Any allocation that can be achieved by a
solution with wash selling can be achieved by another solution without it,
which differs only by additive constants in the accounts of gold and fiat held
by the bank. Excluding wash selling results in bank moves that return all
gold to the private economy in (at least) one round when the bank is a
net seller, giving the lowest level of reserved gold in that class of solutions.
(Solutions of the model will show that the bank is a buyer in two periods
and a seller only in period τ = 2.)

The four strategic parameters available to the central bank are the interest
rate ρ, its two bid levels B

(0)
G and B

(1)
G , and the offer level Q

(2)
G . Of these,

the offer Q
(2)
G is constrained by the requirement to recycle gold, and one

combination of the bids and ρ is constrained by the requirement to recycle
all fiat.

41



7.4.1 The central bank’s policy objective: minimizing the cross-
generation dispersion of prospector utilities

We demonstrate the use of the two remaining unconstrained variables as
control parameters, by choosing the policy objective of the bank to be mini-
mization of the cross-generation variance of prospector utilities,7

var
({
U (τ)

Pros

})
≡ 1

3

∑
τ

(
U (τ)

Pros

)2

−

(
1

3

∑
τ

U (τ)
Pros

)2

. (39)

Any feasible policy objective could, of course, be implemented by the central
bank. The motivation to minimize the variance (39) is that it extends the
presumptive region of validity of the joint high-production non-cooperative
equilibrium. While we have not considered the problem of strategic labor-
reallocation at the level of individuals, the justification for the joint non-
cooperative equilibrium clearly becomes questionable if one generation of one
profession systematically has very disparate and very low utility. To avoid
secession of such a generation, a more fully-specified game might require
other constraints against individual labor re-allocation.

In whatever domain the central bank can maintain all population utili-
ties above the level of the joint non-cooperative equilibrium with autarchy,
there is no utility improvement for any single generation or profession to se-
cede, and the high-production non-cooperative equilibrium stands on its own
without further qualification.

7.5 Properties of the fiat economy without and with
active control from the central bank

The first-order conditions, budget conditions, price cycle, and consequences
of central-bank purchases and sales are solved in App. F.

The availability of control in the fiat economy enables both higher mean
utilities, and lower prospector-utility variance, than either the IGT or gold-
banking economies at almost all values of n0/n. The non-cooperative equi-
librium with zero interest rate, as noted above, is identical to that for the
pre-institutional IGT economy. Since the optimal interest rate ρ → 0 as
the shadow price on the capacity constraint Λe0 → 0, the fiat economy has

7Here we are not concerned with the best estimator for the variance, but simply with
the second moment around the mean, so we normalize with 1/3 rather than with 1/2.
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the same critical population size (23) as the pre-institutional IGT economy.
With decreasing population size N/NC < 1, increasing interest is required
to redirect money flows, and most bids for gold are made in period τ = 0,
causing a rise in gold prices pG0.

7.5.1 How interest rate and bid structure serve to reduce variance
of prospector utilities

Fig. 13 illustrates the effects of interest rates, and the relative bids offered
by the government when it is the sole buyer of gold, on utility levels. When
ρ = 0, gold prices become constant over periods, the prospector gold of-
fers and investment levels (102,103) become those of the IGT equilibrium,
central-bank bids in fiat (108) substitute for prospector bids in the IGT
gold-denominated markets, and farmer consumption and intergenerational
transfers become those of the pre-institutional IGT model. In this limit the
solution to the fiat model converges to that of the IGT model. In particu-
lar, under increasing shadow price Λe0 with decreasing N/NC < 1, uneven
per-period demand for gold causes prospector utilities to diverge.

If instead parameters ρ = 0.069, α = −0.522 are chosen, different-
generation utilities become very different in the Λe0 → 0 equilibrium, but at
a particular value N/NC < 1, they compensate for uneven gold demand to
bring different generations’ utilities together.

Fig. 14 illustrates the use of full control over interest rates and the offer
prices in periods (1,2), by choosing values (ρ, θ) as functions of N/NC to min-
imize the cross-generation variance of the prospector utilities at each value of
N/NC < 1. In the absence of control (ρ = 0), gold prices remain stable but
food prices decline in all periods with decreasing N/NC . Prospector utilities
diverge sharply, making (τ = 0) prospectors worse-off than they would be
under autarchy for N/NC < 0.425. If the government raises interest rates
and bids appropriately, a rising price of gold in period τ = 0 stabilizes all
prospector utilities, and also food prices.

The variance-minimizing contour of ρ and θ is shown in Fig. 15, together
with the shadow price that it generates as a function of N/NC .8

8In all such solutions obtained numerically, discretization error requires control and
smoothing. The relation between samples of ρ and θ on a grid that minimize utility
variance, and smoothed parametric functions used for these variables to produce the “con-
trolled” utility, price, and demand variables, is shown in Fig. 16.
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Figure 13: The use of interest to reduce variance in the prospector utili-
ties. (Left) are generation-(0,1,2) utilities for farmers (solid) and prospectors
(dashed) at ρ = 0 for a range of N/NC < 1. Divergence of prospector utilities
creates an incentive for some generations to leave the economy, because they
are worse-off than they would be under autarchy. (Right) generation-(0,1,2)
utilities the same range of N/NC < 1 for values ρ = 0.069, α = −0.522, which
minimize variance of the three-generation prospector utilities at a particular
value N/NC . Black dotted curve is 1+8× log (variance), used for illustration
to show the extent of reduction.

7.5.2 Properties of the variance-minimizing fiat economy

The remaining price and investment-level plots in the fiat economy, for com-
parison to the other cases, are shown in Fig. 17 and Fig. 18. Qualitatively,
the investment levels closely resemble those of Fig. 6 for the IGT economy,
even when interest rates become nonzero. Note that the largest value of ρ
found in Fig. 15 is ρ ∼ 0.5, only half of the interest rate at the unstressed
noncooperative equilibrium of the gold-banking economy.

8 Summary and comparisons

The non-cooperative equilibria are inefficient relative to the competitive ra-
tional expectations equilibrium. This is expressed both in lower average util-
ities (true by the definition of efficiencies), and also in a larger critical size
of the population required to meet the capacity constraint in an unstressed
equilibrium (no shadow price for the capacity constraint).
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Figure 14: The use of tuned values of ρ and α to minimize variance of
prospector utilities at each value of N/NC < 1. (Left panels) food (solid)
and gold (dashed) prices; (Right panels) single-generation farmer (solid) and
prospector (dashed) utilities. (Top panels) with ρ = 0; (Bottom panels) ρ
and α along the variance-minimizing contour.

The critical population size and the market value of the food endowment
relative to the gold endowment are shown in Table 1.

Gold banking buffers prices and equalizes utilities for the three genera-
tions significantly more effectively than inter-generational transfers, and for
θ ≤

√
2 − 1/2 ≈ 0.9, it leads to lower critical population size. However,

since the mean utility at the critical size is lower than the utility maintained
with a nonzero shadow price, the lower value of NC simply means that this
inefficient noncooperative equilibrium attains for a larger range of absolute
population size than for the other models. It is also a property of this model
that, for small populations, a significant fraction of the wealth of the economy
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Figure 15: (Left) ρ and α values that minimize cross-generation variance of
prospector utilities; (Right) stress level measured as the shadow-price value
of the prospector endowment Λe0, both as functions of N/NC < 1. This
control contour was used to produce the utilities and prices in the lower
panels of Fig. 14.

is stored in the bank in some periods to buffer prices.
In a real society, the relation of a population to the critical value for

its non-cooperative equilibrium with each money supply is not the relevant
variable for comparison of financing systems. Rather, it is the absolute popu-
lation size relative to the size of the gold supply required to meet the capacity
constraint. We illustrate the interaction of NC and utility levels by plotting
mean utility versus N normalized relative to the critical population (NC)CE

at the competitive equilibrium, in Fig. 19. The fiat and IGT economies have
the same critical sizes and unstressed noncooperative equilibria, but over
the range N < NC the controlled fiat economy yields higher utility, closely
approaching the CE utility when N ∼ (NC)CE.

Mean utilities only present one aspect of social welfare. It must also be re-
membered, from Fig. 11 vs. Fig. 7, that the gold-banking economy maintains
much lower cross-generation variance of utilities at comparable N/NC , as well
as having a lower critical population size NC . Therefore, if the possibility
of secession of some producers from the economy is considered, the superior
average welfare of the gold-banking economy over the pre-institutional IGT
economy for N/(NC)CE < 1 actually extends to a more robust solution to
much larger values of N .
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Figure 16: This is a working-figure for my notes, showing the relation be-
tween smoothed functions ρ and θ chosen parametrically, and the discretized
versions obtained by minimizing variance on a grid of (x,Λe0) values. The
ρ curve is a 7th-order polynomial least-squares fit. The θ curve is a tangent
which is a linear function of Λe0.

9 Concluding Comments

Process models of the economy are by definition institutional because they
require carriers of process that are abstractions of institutions. Basic game
theory considerations tell us that the proliferation of reasonable models is hy-
perastronomical in size. However by adding the time structure of individuals
and goods to a closed T period economy we can obtain enough special struc-
ture to build models that reflect many of the specific features that abound
in an economy with physical assets and individuals existing on many dif-
ferent time scales. Many of these combinations call for the creation of the
vast array of special financial instruments designed to cope with the timing
and coordination. These mismatches must and can be overcome by a well
designed financial system. The system however is open to its environment
and requires considerable parametric specification, where each choice pro-
vides a somewhat institutionally different mechanism, fitted ad hoc to the
micro-micro detail of the part of the economy under scrutiny. Yet all models
obey the economic optimization structure reflecting Edgeworth’s inaugural
observations.

The transition from a general economic model illustrating static equilib-

47



0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

fo
od

 (s
ol

id
) a

nd
 g

ol
d 

(d
ot

te
d)

 p
ric

es
; B

G
R

 =
 a

p(
0,

1,
2)

N / NC

OLG-fiat model absolute prices (ctl)

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

BG
R

 =
 a

p(
0,

1,
2)

N / NC

OLG-fiat model relative prices (ctl)

Figure 17: Absolute and relative food (solid) and gold (dashed) prices for the
fiat model, using full control. Only food-price divergence is shown relative
to the mean in the right panel to reduce clutter; gold-price divergence is
dominated by period τ = 0, as shown in the left.

rium to economic dynamics calls for the invention of financial institutions
and instruments to guide the economy in motion. The optimization problem
does not disappear, but it is manifested in economy and efficacy of the insti-
tutions and instruments called forth to provide an economic way to handle
the needs of the economic dynamics.

Our models presented here were designed to provide illustrations of the
physical richness of durable asset laden economy and some of financial ar-
rangements called forth to supply the needed financial engineering. It is
fairly evident on considering this relatively simple example that even ele-
mentary sensitivity analysis, let alone further complexity calls for simulation
and computational methods beyond the type of analytical methods employed
here and on other low dimensional economic models.
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Figure 18: Investment levels for farmers (solid) and prospectors (dashed).
BG is σ0, σ1.

CE Fiat Bank IGT

NC
C
e0

(
2
3

+ 2
3(1+θ)s

)
C
e0

(
2
3

+ 4
(1+2θ)s

)
C
e0

(
2
3

+
√

2
s

)
C
e0

(
2
3

+ 4
(1+2θ)s

)
apτ/e0pG2 1 1

√
1 + ρ→

√
2 1

Table 1: NC values and relative wealth values apτ/e0pG2 for the competitive
equilibrium (CE), and the unstressed non-cooperative equilibria with bank-
ing and balanced interest payments (Bank), and intergenerational transfers
without banking (IGT). (In all models except the fiat economy, gold may be
taken as numéraire, in which case pG2 ≡ 1. In the fiat economy, this factor
removes the numéraire dependence from apτ . pτ values differ only by O(s)
in this regime, so which τ is chosen does not matter. The CE price system
is drawn from Eq. (8) and Eq. (9).
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Figure 19: Cross-generation average utilities (by construction the same for
farmers as for prospectors) in the three models, as a function of N now
measured in absolute size relative to (NC)CE of the competitive equilibrium,
rather than relative to the NC specific to each economy. The fiat economy
produces the highest maximal utility, converging to the CE value when the
actual population is close to the CE critical value (1 on the abscissa).
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A Notations used in the chapter

n0 number of prospectors of each generation
n number of farmers of each generation
N = 2 (n0 + n) total number of agents alive at any point
NC critical population size for high-yielding production w/o shadow price
C threshold of investment to achieve high-yielding production
ε ratio of low-yielding to high-yielding production, per unit gold
τ subscript indexing a period of time
(τ) superscript indexing a generation of agents
ρ interest rate on either gold or fiat money
θ Edgeworth’s “coefficient of concern”
a food endowment to farmers
e0 gold endowment to prospectors

Table 2: Parameters defining model properties, and parameters optimized
outside the strategic context, either by adaptive adjustment or by optimizing
policy objectives.
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U (τ) consumption utility for an agent of generation (τ)
L(τ) Lagrangian for an agent of generation (τ)

A
(τ)
i food consumption of a farmer in (young/old) period i

Â
(τ)
i food consumption of a prospector in (young/old) period i

S
(τ)
i services consumed by a farmer in (young/old) period i

Ŝ
(τ)
i services consumed by a prospector in (young/old) period i

b
(τ)
i bids by a farmer on food in (young/old) period i

b̂
(τ)
i bids by a prospector on food in (young/old) period i
q(τ) quantity of food offered by a young farmer in period τ
pτ price of food in period τ

b
(τ)
Gi bids by a farmer on gold in (young/old) period i

q̂
(τ)
G quantity of gold offered by a young prospector in period τ

Q
(τ)
G quantity of gold offered by a central bank as seller

B
(τ)
G bids on gold by a central bank as buyer

α parameter representing relation of B
(0)
G to B

(1)
G

pG,τ price of gold in period τ
σ0 investment by young (τ = 0) farmers
σ1 investment by old (τ = 2) farmers
σ̂0 investment by young (τ = 0) prospectors
σ̂1 investment by old (τ = 2) prospectors

g
(τ)
i loan or deposit (gold or fiat) by a farmer in (young/old) period i

ĝ
(τ)
i loan or deposit (gold or fiat) by a prospector in (young/old) period i
κ(τ) intergenerational transfer by a farmer from generation (τ)

µ
(τ)
i starting money budget of a farmer in (young/old) period i

µ̂
(τ)
i starting money budget of a prospector in (young/old) period i

η
(τ)
i K-T multiplier for farmer budget constraint in (young/old) period i

η̂
(τ)
i K-T multiplier for prospector budget constraint in (young/old) period i

Λ K-T multiplier for the capacity constraint on high-yielding production

γ
(τ)
i starting gold stock of a farmer in period i (fiat model)

γ̂
(τ)
i starting gold stock of a prospector in period i (fiat model)

η
(τ)
G,i K-T multiplier for farmer gold-stock in period i (fiat model)

η̂
(τ)
G,i K-T multiplier for prospector gold-stock in period i (fiat model)

Table 3: Strategic variables in the models
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B Regularizing the threshold constraint on

capacity with logarithmic utilities

Consider the optimization problem for an economy with one consumption
good, the demand for which by each agent i we denote Si, and which we
think of as services from capital stock in the manner defined in Ref. [10].
Here, however, rather than considering the capital stock and its delivery of
services disaggregated, we suppose that the capital stock is produced in a
single package and that its services are distributed in proportions to shares
in the package that agents own. We suppose that each agent i has a utility
of demand

Ui(Si) = s logSi. (40)

We will begin with the general notation for a strictly concave utility, to
indicate its role in the calculation, and then use the logarithmic form to
propose a specific simplified representation for the optimization problem.

Suppose that capital stock is built with contributions from agents, which
we denote σi. The contributions must come entirely from endowments ei
that the agents receive, so that they maximize the Lagrangian

Li(σi, ηi) = Ui(Si) + ηi (ei − σi) . (41)

in which ηi ∈ [0,∞] is the Kuhn-Tucker multiplier enforcing ei − σi ≥ 0.
We must now specify how the set of service streams {Si} is determined

from the set of contributions {σi}. The integer programming problem that we
wish to solve is a threshold problem: qualitatively, if the sum of investments∑

i σi exceeds some threshold capacity C, then the total output is
∑

i σi;
otherwise it is zero. Because both the value and the derivative of this function
are discontinuous at

∑
i σi = C, we replace the discontinuous function with

a strongly non-convex but twice-differentiable function

c

(∑
i

σi

)
,

of the form indicated in Fig. 3.
The service streams are then allocated in the proportions of the buy-sell

clearing rule for markets:

Si =
σi∑
i′ σi′

c

(∑
i′

σi′

)
. (42)
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The first-order condition for any agent’s optimization problem is

dUi
dSi

dSi
dσi
− ηi = 0, (43)

in which

dSi
dσi

=
c(
∑

i′ σi′)∑
i′ σi′

(
1− σi∑

i′ σi′

)
+ Si

d log c(y)

dy

∣∣∣∣
y=

∑
i′ σi′

(44)

The important property of d log c(y) /dy is that it is a function only of
the total contributions by all agents, and it runs from a minimum of 1/C for∑

i σi > C to a maximum of ∞ for
∑

i σi slightly less than C. By making
the “corner” of the transition in the function c very sharp, we may compress
the interval of this transition as much as desired.

In the special case (40) that the utility is logarithmic, the marginal utility
dUi/dSi = s/Si, and we may rewrite the first-order condition (43) as

dUi(σi)
dσi

+ Λ− ηi ≈ 0. (45)

In Eq. (45) we have used Si ≈ σi as an upper-semicontinuous function
in Eq. (42) to replace the argument of Ui, we have ignored terms at order
σi/
∑

i′ σi′ in Eq. (44) as a large-population approximation, and we have
introduced a lumped representation

Λ ≡ dUi
dSi

Si
d log c(y)

dy

∣∣∣∣
y=

∑
i′ σi′

= s
d log c(y)

dy

∣∣∣∣
y=

∑
i′ σi′

, (46)

making use of the logarithmic utility. Note that Λ is a function only of the
total contribution

∑
i′ σi′ but not otherwise of σi.

The result is that we may solve the original optimization problem by
maximizing (over {σi}) and minimizing (over {ηi} and Λ) the expression

L ≡
∑
i

[Ui(σi) + ηi (ei − σi)] + Λ

(∑
i

σi − C

)
, (47)

treating Λ as a Kuhn-Tucker multiplier shared among all the agents.
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This solution is chosen for simplicity in the case of logarithmic utility,
and it retains this form even when Ui has more complex dependence on σi,
as occurs in the inheritance model of this chapter. The generalization of this
method of regularizing threshold functions to more complicated utilities, or to
utilities with different functional forms for different agents, is straightforward
though the solution that results will no longer have the general form of a
simple Kuhn-Tucker multiplier.

C The exclusion of wash selling in the OLG

models

It is possible simply to rule out wash selling from the rules of the game, but
it is cleaner to model the economy as treating agent types symmetrically, so
that all constraints that differentiate their types originate in their choices of
production function. In these models it will be possible to show that wash
selling does not arise, as a property of solutions.

The first line of Eq. (17) shows that b
(τ)
0 will be zero if either η

(τ)
0 > 0,

or the initial budget µ
(τ)
0 = 0 (there is nothing to spend). Wash selling does

not occur if either of these conditions can be established.

C.1 No wash selling in banking models

Borrowing at inter-period interest rate ρ from any kind of bank (gold or fiat)
will produce a K-T multiplier from the default constraint that will always
set

η
(τ)
0 = ρη

(τ)
1 > 0, (48)

so wash selling will not arise in models with banking.

C.2 No wash selling in models with intergenerational
transfers and without banking

The case with inter-generational transfers (IGT) among farmers, but without
banking, is more complicated but still tractable. (τ = 1)-farmers cannot
invest and their consumption level is not directly influenced by IGTs, so the
(τ = 0) first-order conditions set transfer κ(0) = 0. Hence the (τ = 1) budget

µ
(1)
0 = 0 also and so b

(0)
0 = 0.
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C.2.1 No transfers from generation (τ = 0)

For τ = 0 and transfer κ(2) from the previous generation, it is possible to
show that as long as θ < 1, the transfer in the unstressed equilibrium is
always smaller than the minimum for η

(0)
0 in Eq. (19), excluding wash sales

in this limit. While we do not offer an analytic argument, the numerical
solutions presented in this chapter show that as the capacity constraint binds,
η

(0)
0 increases monotonically with the shadow price Λe0, becoming linear at

large Λe0. (This result is not surprising, as a shadow price for the capacity
constraint lowers all investment levels relative to their unstressed-equilibrium
values, but does not similarly force food consumption downward.) Therefore
wash sales are excluded from all solutions in the farmer (τ = 0)-generation.

C.2.2 No transfers for a large range of shadow prices from gener-
ation (τ = 1)

For (τ = 2)-farmers, the first-order condition from the offspring-regarding
utility at generation (τ = 1), which determines whether transfers κ(1) > 0, is
complicated because these transfers may be partly used by (τ = 2)-farmers
for investment. It is again possible to show that for a very large range of
stresses including the unstressed-equilibrium, the first-order condition never
permits κ(1) > 0, so the budget constraint sets b

(2)
0 = 0. However, allocations

consistent with κ(1) > 0 do fall within the configuration space for sufficiently
large Λe0, and the fact that all investment for generation τ = 2 occurs in
the second period requires η

(2)
0 = 0 if any non-binding level of wash selling

is chosen. The required parameter range for κ(1) > 0 is never encountered
in the solutions we present, however, so for these wash selling is excluded by
the budget.

C.2.3 Any solution at (τ = 2) with wash sales may be replaced by
an equivalent solution without wash sales

We note for completeness one precise sense in which the degree of wash sales
has no effect on any macro-variables and thus does not matter. We consider
the case that, whatever the degree of wash selling, it is the same for all
agents.9

9This assumption maintains the framework of type-symmetric solutions assumed for all
other analyses of the monograph. The first-order conditions never exclude type-symmetric
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The budget for (τ = 2)-farmers in the IGT is

κ(1) +
(
q(2)p2 − b(2)

0

)
= b

(2)
1 + σ1 + κ(2). (49)

The quantity in parentheses on the left-hand side does not depend on strate-
gic variables of the (τ = 2)-farmers, so the entire left-hand side is for them
a boundary condition. The first-order conditions (given in Sec.D.2.2) then

make the right-hand side a monotonic equation in b
(2)
1 , which is solved uniquely

for Λb
(2)
1 in terms of Λ

[
κ(1) +

(
q(2)p2 − b(2)

0

)]
. Thus the (τ = 2)-old-period

expenditures are fixed, independent of wash selling.
But then, the first-order condition (18) may then be used to write the

price level as

ap2 =
(
q(2)p2 − b(2)

0

)
+ b

(2)
1 . (50)

The term in parentheses is an input, and b
(2)
1 is a wash-sale-independent

function of the inputs, so the price p2 is also independent of wash sales. At
fixed prices, q(2) becomes an affine function of b

(2)
0 with coefficients determined

only by κ(1) +
(
q(2)p2 − b(2)

0

)
, which then also leaves all consumption levels

and budgets invariant.
Since nothing depends on wash selling, and since it is not dis-favored

by the first-order conditions, we could exclude it by a secondary criterion
of simplicity and identifiability by agents. It is one of two boundary cases
(b

(2)
0 = 0 or b

(2)
0 = κ(1)), and of these it the simpler because it does not depend

on κ(1).10

D Analysis of the OLG model with intergen-

erational transfers but without banking

For the OLG model with intergenerational transfers but without banking, we
analyze the prospector sector first because the logarithmic utility separates
prospectors’ decision variables from the rest of the economy except through

solutions, so at most we are failing to look for a high-dimensional set of non-symmetric
solutions which we haven’t proved do not exist.

10This analysis has been for the infinite-replicates limit. We note, however, that in other
chapters with finite rather than infinite replicates in same buy-sell game, wash selling was
weakly but explicitly excluded (at O(1/N)) by the first-oder conditions.
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the shadow price of the capacity constraint and the labor allocation required
to equalize three-period average utilities between farmers and prospectors.

D.1 Prospector sector

The prospector first-order conditions are given in Eq. (20).
The prospectors get all endowments in the young period and must spend

in both periods, so they must have carry-forward, which means that their
η

(τ)
0 ≡ 0, and they are governed by Eq. (51) with k = 2. If we disallow

IGTs for them, then their total wealth is just the endowment e0 for every
generation, and the results become very simple.

The solutions to a variety of first-order conditions of the form (20) are
given in terms of the net worths of individual endowments by solutions to a
closely-related set of quadratic equations. Therefore we introduce the nota-
tion for a function

ϕ(k)
z (s; y) ≡ k + zs+ (z + 2θ) y

2 (z + 2θ) y

[
1−

√
1− 4k (z + 2θ) y

(k + zs+ (z + 2θ) y)2

]
. (51)

The sign convention for the square roots is that ϕ
(k)
0 (s; y) ≡ 1, ∀k, s, y.

y → 0 will define the unstressed non-cooperative equilibrium for each model
(Λe0 → 0, or non-binding capacity constraint), so we note that

ϕ(k)
z (s; 0) =

k

k + zs
. (52)

For the case of prospectors in the no-banking IGT model, their bids on
food are given by

b̂
(τ)
0 = b̂

(τ)
1 =

e0

2
ϕ

(2)
τ−1(s; Λe0) . (53)

The investment levels σ̂0, σ̂1 are then given by the general budget relation

e0 = b̂
(τ)
0 + b̂

(τ)
1 + σ̂0δτ,0 + σ̂1δτ,2. (54)

D.2 Farmer sector

For the farmers we give forms for the marginal utilities and budget con-
straints individually for each generation, because the offspring-regarding term
presents different difficulties of evaluation in each generation. The general
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method of solution begins with recognizing that the lack of an investment
opportunity for τ = 1 gives κ(0) = 0 directly from the (τ = 0)-first-order con-
ditions. This creates a break-point for IGTs in the cycle, from which we can
recursively solve the remainder of the allocation variables from any sequence
of prices (p0, p1, p2). The prices are determined by matching gold inflow to
markets with farmer investment by which gold exits the system.

D.2.1 τ = 0

The extension of the consumption-first-order condition (17) to include the
IGT variable κ(0) is

0 = δL(0) =

[
1

A
(0)
0 p0

− η(0)
1

](
δb

(0)
0 − p0δq

(0)
)
− η(0)

0 δb
(0)
0 +

[
1

b
(0)
1

− η(0)
1

]
δb

(0)
1

+

[
2s

σ0

+ 2 (1 + θ) Λ−
(
η

(0)
0 + η

(0)
1

)]
δσ0 − η(0)

1 δκ(0). (55)

Start with the ansatz η
(0)
0 > 0, which we will return and verify at the end.

This requires both b
(0)
0 = 0 and σ0 = κ(2) from the IGT cycle. It also sets

κ
(0)
0 = 0, making the bid and offer variables

Λb
(0)
1 =

Λap0

2
, (56)

q(0)

a
=

1

2
. (57)

D.2.2 τ = 2

Working backward in time, the condition σ0 = κ(2) enables (τ = 2)-farmers
to evaluate all first-order conditions, for their own consumption and the
offspring-regarding term for (τ = 0)-farmers. These take the form

0 = δL(2) =

[
1

A
(2)
0 p2

− η(2)
1

](
δb

(2)
0 − p2δq

(2)
)
− η(2)

0 δb
(2)
0 +

[
1

b
(2)
1

− η(2)
1

]
δb

(2)
1

+

[
s

σ1

+ (1 + 2θ) Λ− η(2)
1

]
δσ1 +

[
2θs

κ(2)
+ 2θΛ− η(2)

1

]
δκ(2).

(58)
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(Note in passing that for the value θ = 1/2 used in numerical solutions, the
first-order conditions for σ1 and κ(2) in the unstressed equilibrium are the
same. Therefore (τ = 2)-farmers invest the same amount as they transfer
to their (τ = 0)-offspring for investment. In the s � 1 limit, where prices
apτ → 1, this is equal to the investment level of (τ = 2)-prospectors, and
half that of (τ = 0)-prospectors. These relations may be seen in Fig. 6 in the
main text.)

From the first-order conditions and the budget constraint, the relation
between any received transfers κ(1), the market value of the endowment ap2,
and the expenditures is

κ(1) + ap2 = 2b
(2)
1 + σ1 + κ(2). (59)

We may express this as a relation between the worth of the farmer endow-
ment and the received transfers scaled by the shadow price of the capacity
constraint, Λap2 + Λκ(1), and the similarly-scaled bids Λb

(2)
1 , in the form of a

cubic equation in Λb
(2)
1 :

Λb
(2)
1

[
2 +

s

1− (1 + 2θ) Λb
(2)
1

+
2θs

1− 2θΛb
(2)
1

]
= Λap2 + Λκ(1). (60)

For numerical solution in the IGT model and also the banking model
(presented next), we treat Λb

(2)
1 as an implicit function of prices and transfers

through Eq. (60), meaning that we will take Λb
(2)
1 as an independent variable,

and express other quantities as functions of it, leaving the inverse functions
implicit. The key to a constructive solution – a consequence of the separation
between farmer and prospector sectors provided by logarithmic utilities – is
that prospector bids and investment are functions of the absolute stress level
in the economy Λe0 only, while price levels, and farmer bids and investments,
are matched to these scales through their dependence on the bid level Λb

(2)
1 ,

on population n0/n, and on explicit prospector bids.

For use in all following sections, introduce the notation x ≡ Λb
(2)
1 . If

we can simultaneously solve for x and Λκ(1) in terms of prices, then we will
have the (τ = 2)-bid, and we can compute the following cascade of offer,
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investment, and transfer variables:

Λσ1 =
sx

1− (1 + 2θ)x

Λσ0 = Λκ(2) =
2θsx

1− 2θx

q(2)

a
(Λap2) = x

[
1 +

s

1− (1 + 2θ)x
+

2θs

1− 2θx

]
− Λκ(1). (61)

We will require a simultaneous solution in general, because x and Λκ(1) are
not independently identified. To resolve their dependence, we must analyze
the previous period.

D.2.3 τ = 1

Because (τ = 2)-farmers may now make investments that depend on κ(1) if
κ(1) > 0, but because their level of use is no longer expressed in a sim-
ple constraint, the first-order condition for the offspring-regarding terms of
(τ = 1)-farmers are defined implicitly in terms of this partial use. The full
first-order conditions, including this implicit dependence, may be written

0 = δL(1) =

[
1

A
(1)
0 p1

− η(1)
1

](
δb

(1)
0 − p1δq

(1)
)
− η(1)

0 δb
(1)
0 +

[
1

b
(1)
1

− η(1)
1

]
δb

(1)
1

+

[(
θs

σ1

+ θΛ

)
dσ1

dκ(1)
− η(1)

1

]
δκ(1),

(62)

Before considering the value of κ(1), the result κ(0) = 0 that we already
have from τ = 0 gives the bid and offer relations to prices

Λb
(1)
1 =

1

2

(
Λap1 − Λκ(1)

)
,

q(1)

a
(Λap1) =

1

2

(
Λap1 + Λκ(1)

)
. (63)

Now return to κ(1). If, on the first-order condition for b
(1)
1 , the resulting

coefficient (
θs

σ1

+ θΛ

)
dσ1

dκ(1)
− 2

ap1 − κ(1)

61



of δκ(1) in Eq. (62) cannot be made non-negative, then κ(1) → 0. Other-
wise, vanishing of this coefficient determines the interior value for κ(1). The
alternative between these two cases can be written

Λκ(1) = max

{
0,Λap1 −

2

θ

[(
s

Λσ1

+ 1

)
dσ1

dκ(1)

]−1
}
. (64)

The expression (64) can be evaluated, because in the range where κ(1) > 0
an analytic form can be written for the sensitivity(

s

Λσ1

+ 1

)
dσ1

dκ(1)
=

s (1− 2θx) /x

s+ 2[1− (1 + 2θ)x]2
[
1 + θs/(1− 2θx)2] . (65)

This is a non-monotonic function that starts at ∞ (when x = 0), rapidly
decreases to O(s), and then increases (passing through a weak interior max-
imum) to value 1 at x → 1/ (1 + 2θ). The small-x branch of solutions is
never the relevant one to Equations (60,64), and the large-x branch will only
make Eq. (64) positive for x ∼ 1/ (1 + 2θ) − O(s). From the second term
in brackets on the left-hand side of Eq. (60), we may recognize that this is
the extreme range of stressing where σ1 accounts for a fraction of ap2 + κ(1)

comparable to the fraction from b
(2)
1 .

Once the value of x = Λb
(2)
1 is found from any pair of values (Λap2,Λap1),

jointly with the value of Λκ(1) from Eq. (64), then all other quantities in the
three periods are determined. Included in these (if we also supply Λp0) is an

expression for η
(0)
0 , which we may verify is nonzero. Numerical checks show

that the coefficient of δκ(1)/e0 in Eq. (62) remains within a few tenths of −2
over the range Λe0 ∈ [0, 3.5].

Note that there is a strong non-equivalence in the roles of prices. Only the
expression (56) for b

(0)
1 depends on p0, and that through a constant relation.

(Likewise q(0) is simply a constant.) All other quantities – even σ0 – are
explicitly functions only of the pair of prices (Λap2,Λap1).

D.3 The price cycle

Once we have excluded wash selling, for any relative numbers n0 of prospec-
tors and n of farmers, the amount of gold bid in each of the markets is
straightforward to express from Eq. (53):

q(τ)pτ = b
(τ−1)
1 +

n0

n

e0

2

(
ϕ

(2)
τ−1(s; Λe0) + ϕ

(2)
τ−2(s; Λe0)

)
(66)
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The first term is from old farmers, the second is from young prospectors,
and the third is from old prospectors. (In the following equations, where no

ambiguity results, we will adopt the shorthand ϕτ for ϕ
(2)
z (s; Λe0) to improve

readability.)
The expression (66) for inputs may be combined with the general budget

relation for expenditures, which takes the form

κ(τ−1) + q(τ)pτ = b
(τ)
1 + σ1δτ,2 + σ0δτ,0 + κ(τ). (67)

Adding the bids in all three periods from Eq. (66), canceling the explicit

b
(τ)
1 terms that appear on both sides, and using the budgets (67) to resolve the

remaining q(τ)pτ terms, we arrive at a relation between aggregate prospector
bids and farmer investments:

n0

n
(Λe0) (1 + ϕ1 + ϕ2) = Λ (σ1 + σ0) = Λ

(
σ1 + κ(2)

)
= Λb

(2)
1

[
s

1− (1 + 2θ) Λb
(2)
1

+
2θs

1− 2θΛb
(2)
1

]

= x

[
s

1− (1 + 2θ)x
+

2θs

1− 2θx

]
. (68)

(Recall, using Eq. (53), that prospectors invest n0e0 (2− ϕ1 − ϕ2), resulting
in a total of 3n0e0 over the economy.)

The following re-arrangements of the bid and budget equations then pro-
duce explicit relations among the three price levels:

Λ (ap1 − ap2) =
n0

n
Λe0ϕ2

Λ
(
ap2 + κ(1)

)
= Λap0 +

n0

n
Λe0

and recall Eq. (60) = x

[
2 +

s

1− (1 + 2θ)x
+

2θs

1− 2θx

]
now use Eq. (68) = 2x+

n0

n
(Λe0) (1 + ϕ1 + ϕ2)

subtract l2 from l4

Λap0 = 2x+
n0

n
(Λe0) (ϕ1 + ϕ2) . (69)

The foregoing equations are solved numerically as follows: To any pair
of values of (x,Λe0), Eq. (68) assigns a value of n0/n. From this, the first
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line of Eq. (69) assigns the difference Λap2 − Λap1, and the last line assigns
Λap0. In the range where κ(1) = 0, the third line assigns a value for Λap2,
fully determining the system. We need only search for the contour of equal
utilities to specify the other variables as functions of n0/n. We will show
numerically that over the range Λe0 ≤ 3.5, the first-order conditions remain
far from permitting κ(1) > 0, so the foregoing assignments are consistent and
exact.

D.3.1 Utility differences

The utility differences have fewer terms than the absolute utility magnitudes,
because the allocations of publicly-held services are the same to both types in
the periods where they occur. Therefore we first identify the utility difference
expressions that will select a particular contour of (x,Λe0) values from the
two-dimensional space.

The differences from the consumption utilities for food, using Equa-
tions (18,53), may be written as a general function of τ , as

U (τ)
Farm,food − U

(τ)
Pros,food = 2 log

(
2b

(τ)
1

e0ϕτ−1

)
(70)

The difference in utilities from consumption of services by the agents them-
selves is

U (τ)
Farm,self − U

(τ)
Pros,self = (τ − 1) s log

(
σ0δτ,0 + σ1δτ,2
e0 (1− ϕτ−1)

)
, (71)

where all expressions τ − 1 are understood to be evaluated cyclically.
The difference in utility of services consumed by offspring are cycled in τ

and scaled by θ:

U (τ)
Farm,offspr − U

(τ)
Pros,offspr = θ

(
U (τ+1)

Farm,self − U
(τ+1)
Pros,self

)
. (72)

It may be clearer to write these for each period independently, filling in
evaluations for bid variables using the preceding relations. An evaluation
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that emphasizes the role of prices is

U (0)
Farm,food − U

(0)
Pros,food = 2 log

(
ap0

e0

)
+ 2 log

(
1

ϕ2

)
U (1)

Farm,food − U
(1)
Pros,food = 2 log

(
ap1 − κ(1)

e0

)
U (2)

Farm,food − U
(2)
Pros,food = 2 log

(
ap2 + κ(1)

e0ϕ1

)
− 2 log

(
ap2 + κ(1)

2b
(2)
1

)

= 2 log

(
ap2 + κ(1)

e0

)
+ 2 log

(
1

ϕ1

)
− 2 log

(
2 + s

1−(1+2θ)x
+ 2θs

1−2θx

2

)
(73)

The difference for services consumed by self become

U (0)
Farm,self − U

(0)
Pros,self = 2s log

(
σ0

e0 (1− ϕ2)

)
= 2s log

(
κ(2)

e0 (1− ϕ2)

)
= 2s log

(
ap2 + κ(1)

e0

)
+ 2s log

(
s

1− ϕ2

)

− 2s log

(1− 2θx)
[
2 + s

1−(1+2θ)x
+ 2θs

1−2θx

]
2θ


U (1)

Farm,self − U
(1)
Pros,self = 0

U (2)
Farm,self − U

(2)
Pros,self = s log

(
σ1

e0 (1− ϕ1)

)
(74)

A numerical analysis from the condition that the equally-weighted sum∑
τ U

(2)
Farm − U

(2)
Pros = 0 gives the shadow-price, food-price, and investment

levels shown in the main text.
To convert the expressions for utility differences into absolute utility mag-

nitudes, it is easiest to use the prospector variables. The prospector utility
of food consumption is

U (τ)
Pros,food = log

(
(e0ϕτ−1)2

apτ apτ+1

)
. (75)
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The prospector investment levels are given in Eq. (54), and the service levels
derived from them for the three periods are given in Eq. (14) in the main
text. From these values for both the focal agent and the offspring generation,
we obtain the utility levels plotted in Fig. 7 in the main text.

E Analysis of the OLG model with an inside

bank for gold

The first-order conditions for the banking model follow from the Lagrangian (24).
The reason this model brings prices in the unstressed noncooperative equilib-
rium close to those in the competitive equilibrium is that now all agents face
a similar relation between their bids and the market value of their endow-
ments, apart from interest payments. Therefore solutions for farmers and
prospectors are structurally more similar than in the IGT economy.

E.1 Farmer sector

The first-order conditions for farmers are

0 = δL(τ) =

[
1

A
(τ)
0 pτ

− η(τ)
1

](
δb

(τ)
0 − pτδq(τ)

)
− η(τ)

0 δb
(τ)
0 +

[
1

b
(τ)
1

− η(τ)
1

]
δb

(τ)
1

+

[
2s

σ0

+ 2 (1 + θ) Λ−
(
η

(τ)
0 + η

(τ)
1

)]
δσ0δτ,0

+

[
s

σ1

+ (1 + 2θ) Λ− η(τ)
1

]
δσ1δτ,2

+
[(
η

(τ)
0 + η

(τ)
1

)
− Λ

(τ)
B (1 + ρ)

]
δg

(τ)
0 +

[
Λ

(τ)
B − η

(τ)
1

] (
−δg(τ)

1

)
(76)

The option to lend or borrow sets Λ
(τ)
B = η

(τ)
1 > 0, and this in turn sets

η
(τ)
0 = ρη

(τ)
1 for all τ . There is no wash selling (b

(τ)
0 = 0) and the remaining

expenses satisfy the budget relations

g
(τ)
0 = σ0δτ,0

A
(τ)
0 pτ = b

(τ)
1 + σ1δτ,2 + (1 + ρ) g

(τ)
0 . (77)

The other first-order condition we will use is the general relation Eq. (18).
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(We will show below that the interest rate in the unstressed equilibrium
goes to ρ → 1 + O(s). Note that in Eq. (76) this value for ρ makes the
first-order conditions for σ0 and σ1 the same, leading to the same investment
level in both generations τ = 0, 2. We will see a similar equality between
generations for prospectors, but prospectors will invest at the higher level
because they can lend rather than borrow. This difference (nominally a factor
of 2) will be partly compensated (to a factor of

√
2) because the unstressed-

equilibrium price levels apτ/e0 →
√

2 rather than 1 as in the CE and the
IGT economy. All these limits are met in numerical simulations in Fig. 9.)

The budget and first-order conditions lead to a relation between bids,
investment, and prices of the form

apτ = 2b
(τ)
1 + (1 + ρ)σ0δτ,0 + σ1δτ,2. (78)

The first-order conditions between σ and b variables also lead to quadratic
relations between b and ap levels comparable to those for prospectors in both
the IGT and banking models. They are

b
(0)
1 =

ap0

2
ϕ

(2)
2

(
s;

Λap0

(1 + ρ)

)
.

b
(1)
1 =

ap1

2

b
(2)
1 =

ap2

2
ϕ

(2)
1 (s; Λap2) . (79)

E.2 Prospector sector

The first-order conditions for the prospectors are

0 = δL(τ) =

[
1

b
(τ)
0

−
(
η

(τ)
0 + η

(τ)
1

)]
δb

(τ)
0 +

[
1

b
(τ)
1

− η(τ)
1

]
δb

(τ)
1

+

[
2s

σ0

+ 2 (1 + θ) Λ−
(
η

(τ)
0 + η

(τ)
1

)]
δσ0δτ,0

+

[
s

σ1

+ (1 + 2θ) Λ− η(τ)
1

]
δσ1δτ,2

+
[(
η

(τ)
0 + η

(τ)
1

)
− ΛB (1 + ρ)

]
δg

(τ)
0 +

[
ΛB − η(τ)

1

] (
−δg(τ)

1

)
(80)
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Two general conditions that follow immediately are η
(τ)
0 = ρη

(τ)
1 and b

(τ)
1 =

(1 + ρ) b
(τ)
0 .

The budget relation is

e0 = b
(τ)
0 − g

(τ)
0 + σ0δτ,0

− (1 + ρ) g
(τ)
0 = g

(τ)
1 = b

(τ)
1 + σ1δτ,2, (81)

which converts into an expression counterpart to Eq. (78), of the form

e0 = 2b
(τ)
0 + σ0δτ,0 +

σ1

(1 + ρ)
δτ,2. (82)

From these, the same algebra used for the IGT economy produces three
relations for the bids in terms of the endowment

b
(0)
0 =

b
(0)
1

(1 + ρ)
=

e0

2
ϕ

(2)
2 (s; Λe0)

b
(1)
0 =

b
(1)
1

(1 + ρ)
=

e0

2

b
(2)
0 =

b
(2)
1

(1 + ρ)
=

e0

2
ϕ

(2)
1 (s; (1 + ρ) Λe0) . (83)

These equations can be compared to Eq. (53) for the IGT economy. The
relative forms are the same, but all positions of e0 for prospectors are scaled
by (1 + ρ) relative to their counterparts for apτ .

If we want a single expression that covers all three periods, we may write

b
(τ)
0 =

b
(τ)
1

(1 + ρ)
=
e0

2
ϕ

(2)
τ−1(s; (1 + ρδτ,2) Λe0) . (84)

E.3 The price cycle

The three equations that relate bids to prices in the banking model, taking
the place of Eq. (66) for the IGT model, are

(1 + ρ)σ0 + b
(0)
1 = q(0)p0 = b

(2)
1 +

n0

n

e0

2
(ϕ2 + (1 + ρ)ϕ1)

b
(1)
1 = q(1)p1 = b

(0)
1 +

n0

n

e0

2
(1 + (1 + ρ)ϕ2)

σ1 + b
(2)
1 = q(2)p2 = b

(1)
1 +

n0

n

e0

2
(ϕ1 + (1 + ρ)) ,

(85)
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where all ϕs here are shorthand references to the prospector functions in
Eq. (84).

Again adding all three equations, and canceling the b variables which
appear on both sides, gives the relation of total prospector bids to the farmer
level of investment, counterpart to Eq. (68) of the IGT economy:

(1 + ρ)σ0 + σ1 =
n0

n
e0

(
1 +

ρ

2

)
(1 + ϕ1 + ϕ2) . (86)

Price levels in this loop are fixed when we demand that interest payments
on loans and deposits balance. Equality between total borrowing and total
lending reads

σ0 =
n0

n

e0

2
[ϕ2 + 1 + (2− ϕ1)]

=
n0

n

e0

2
(3− ϕ1 + ϕ2) , (87)

where the expressions on the right-hand side in the first line refer to the
prospector investments that draw interest in periods 0, 1, 2, respectively.

The condition (87) for balance of interest payments will not generally be
compatible with the form for σ0 from the first line of Eq. (79), at the price
levels generated by balanced interest payments. Hence they will violate the
first-order condition in the second line of Eq. (76). The contours of compati-
bility of these two conditions in (x,Λe0) space can be determined numerically,
and they are isoclines along which the utility differences between farmers and
prospectors vary monotonically. Therefore, in numerical solutions, we must
first assign compatible ρ values throughout this space, and then show how ρ
varies as a function of N/NC ≤ 1 along the contour of equal utilities. Exam-
ples showing the contours associated with these two distinct constraints are
given in Fig. 20.

Subtracting Eq. (87) from Eq. (86) gives the relation between x ≡ Λb
(2)
1

and Λe0 that specifies n0/n:

σ1 =
sx

1− (1 + 2θ)x
=
n0

n

e0

2
[(1 + ϕ1 + ϕ2)− 2 (1 + ρ) (1− ϕ1)] (88)

Note that, at any Λe0, Eq. (88) sets a limit on the interest rates that
could be compatible, of

ρ ≤ 3ϕ1 + ϕ2 − 1

2 (1− ϕ1)
, (89)
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OLG-banking model rho in the (Lambda-e0, x) plain
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Figure 20: pcolor plots of ρ (left) and U (τ)
Farm−U

(τ)
Pros (right). (Utility differences

are plotted in log of absolute value so that the zero crossing shows as a sharp
valley.) See that the iso-contours of ρ with the associated values of n0/n
that balance interest and satisfy the first-order conditions are circle-like arcs
around the origin, while the iso-utility contours are rays from the origin that
cut across these arcs. (Fine-resolution versions of these figures are available
at about four time the filesize, in commented-out lines.)

and this in turn limits the range of stresses Λe0 over which this model has
stationary solutions with ρ ≥ 0, to 3ϕ1 + ϕ2 ≥ 1.

From these conditions it is possible assign all price levels as functions of
x and Λe0, in the banking counterpart to the IGT-price cycle of Eq. (69),

Λap2 = 2Λb
(2)
1 + Λσ1

= x

(
2 +

s

1− (1 + 2θ)x

)
Λap1 = 2

(
Λb

(2)
1 + Λσ1

)
− n0

n
(Λe0) [ϕ1 + (1 + ρ)]

= x

(
2 +

2s

1− (1 + 2θ)x

)
− n0

n
(Λe0) [ϕ1 + (1 + ρ)]

Λap0 = Λap2 −
n0

n
(Λe0)

[
1 +

ρ

2
(1− ϕ1 + ϕ2)

]
(90)

From prices, the solutions (79) to the quadratic farmer first-order conditions
then assign all remaining bid and investment levels.
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E.4 Equalization of utilities

The final contour of solutions parametrized by either Λe0 or alternatively
n0/n is again given by equality of utilities. The banking-model utility dif-
ferences from food consumption, corresponding to to Eq. (73) for the IGT
economy, are given by11

U (0)
Farm,food − U

(0)
Pros,food = 2 log

(
ap0

e0

)
+ 2 log

ϕ(2)
2

(
s; Λap0

(1+ρ)

)
.

ϕ
(2)
2 (s; Λe0) .

− log(1 + ρ)

= 2 log

 Λap0
(1+ρ)

ϕ
(2)
2

(
s; Λap0

(1+ρ)

)
.

Λe0 ϕ
(2)
2 (s; Λe0) .

+ log(1 + ρ)

U (1)
Farm,food − U

(1)
Pros,food = 2 log

(
ap1

e0

)
− log(1 + ρ)

= 2 log

(
Λap1/

√
1 + ρ√

1 + ρΛe0

)
+ log(1 + ρ)

U (2)
Farm,food − U

(2)
Pros,food = 2 log

(
ap2

e0

)
+ 2 log

(
ϕ

(2)
1 (s; Λap2) .

ϕ
(2)
1 (s; (1 + ρ) Λe0) .

)
− log(1 + ρ)

= 2 log

(
Λap2 ϕ

(2)
1 (s; Λap2) .

(1 + ρ) Λe0 ϕ
(2)
1 (s; (1 + ρ) Λe0) .

)
+ log(1 + ρ)

(91)

The utility differences from an agent’s own consumption of services, coun-

11In the second lines of each of the following equations, we group terms to emphasize
the uniform way in which factors of 1 + ρ interact with wealth levels measured either as
Λapτ (for farmers) or e0 (for prospectors).
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terpart to Eq. (74) for the IGT economy, are given by

U (0)
Farm,self − U

(0)
Pros,self = 2s

log

(
ap0

e0

)
+ log

1− ϕ(2)
2

(
s; Λap0

(1+ρ)

)
.

1− ϕ(2)
2 (s; Λe0) .

− log(1 + ρ)


= 2s log

 Λap0
(1+ρ)

(
1− ϕ(2)

2

(
s; Λap0

(1+ρ)

)
.
)

Λe0

(
1− ϕ(2)

2 (s; Λe0) .
)


U (1)
Farm,self − U

(1)
Pros,self = 0

U (2)
Farm,self − U

(2)
Pros,self = s

[
log

(
ap2

e0

)
+ log

(
1− ϕ(2)

1 (s; Λap2) .

1− ϕ(2)
1 (s; (1 + ρ) Λe0) .

)
− log(1 + ρ)

]

= s log

 Λap2

[
1− ϕ(2)

1 (s; Λap2)
]

(1 + ρ) Λe0

[
1− ϕ(2)

1 (s; (1 + ρ) Λe0)
]


(92)

The offspring term continues to satisfy Eq. (72). Its role in the banking
economy is much simpler than in the IGT economy, as it acts only through
the shadow price of the capacity constraint.

Numerical solutions for for absolute and relative price levels, investment
levels by each type and period, stress level Λe0 and interest rate ρ, and
single-period absolute utility levels, are shown in Figures 8–11 of the main
text.

E.5 The distinctive response of interest rates to shadow
price on the capacity constraint in the gold-banking
model

An inside bank that returns all deposits is a highly-constrained entity, which
may be required to adopt particular interest rates at zero and non-zero
shadow prices in order to satisfy its constraints. In particular, the first-order
conditions for consumption of services for agents who invest in generations
(τ = 0) and (τ = 2), to be met, may require particular ratios of consumption
levels σ0/σ1, or σ̂0/σ̂1, while the fact that these investments (for farmers) are
limited by bidding levels for food may require other particular levels. The
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interest rate is the only device the bank has a available to bring these two
conditions into compatibility and ensure its balance of deposits and with-
drawals. We therefore consider here in detail the set of constraints that
determine interest rates, and the way these depend on the shadow price of
the capacity constraint.

E.5.1 Contribution from the first-order conditions

Comparison of the second and third lines in the first-order condition for
farmers (76), together with the relation between the K-T multipliers η

(τ)
0 =

ρη
(τ)
1 which will hold in any economy with lending at interest, lead us to

expect the coarse scaling σ0 ∼ 2σ1/ (1 + ρ). The greater marginal utility
of investment σ0 in the young period is weighed against the requirement to
borrow gold to supply it.

The full relations, obtained from Equations (78,79), are

(1 + ρ)σ0 = ap0

[
1− ϕ(2)

2

(
s;

Λap0

(1 + ρ)

)]
→ ap0s (1 +O(s))

σ1 = ap2

[
1− ϕ(2)

1 (s; Λap2)
]
→ ap2s

2
(1 +O(s)) . (93)

The first expression on the right-hand side of each line is a closed form; the
second expression is the leading small-s approximation when the correspond-
ing Λapτ → 0. At interest rates ρ� 1, the first-order conditions favor twice
the investment level in σ0 as in σ1.

E.5.2 Accounting identities and balance of interest payments

The requirement to balance interest payments, in the context of the in-
come/expense accounting relation for farmers, places an independent set of
constraints on σ0 and σ1.

We may re-arrange the sum (86) of income and expenses for farmers into
the young-period and old-period bids by prospectors, as

(1 + ρ)σ0 + σ1 =
n0

n

e0

2
[(1 + ϕ1 + ϕ2) + (1 + ρ) (1 + ϕ1 + ϕ2)] , (94)

in which the expressions ϕτ refer to the prospector allocations given in
Eq. (83).
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The equation (87) of total farmer loans with total prospector deposits,
necessary to balance interest payments, may be similarly re-arranged as

σ0 =
n0

n

e0

2
[(1 + ϕ1 + ϕ2) + 2 (1− ϕ1)] . (95)

The remainder of the prospector payments that support farmer investment,
Eq. (88), which is simply the difference of the previous two equations, then
becomes

σ1 =
n0

n

e0

2
[(1 + ϕ1 + ϕ2)− 2 (1 + ρ) (1− ϕ1)] . (96)

By the prospector first-order conditions (80), their bids on food in the old
and young periods always have the ratio (1 + ρ). Moreover, in the unstressed
(Λe0 → 0) equilibrium, almost all of the prospector endowment is used to
buy food; that is, the factors (1− ϕ1) ≈ s/2� 1 in equations (95,96). This
condition produces σ0 ∼ σ1, so that σ0 (with interest) is both paid for by old -
period prospector bids, and in turn provides the interest stream to produce
them, while σ1 is paid for with young-period prospector bids, nearly equal
in quantity to σ0.

However, this condition, together with the property that when s � 1,
inter-period fluctuations in food prices are O(s), then drives (1 + ρ) → 2 in
Eq. (93) giving the consequence of the first-order conditions.

E.5.3 Interest rates decrease from the unstressed-equilibrium value
ρ = 1 with increasing shadow price

It is not obvious a priori whether interest rates should increase or decrease
as the shadow price on the capacity constraint increases from zero due to
insufficient population. Since the relative value of present to future con-
sumption is inverse to the interest rate the way interest rates response to
shadow prices will depend on the way payment streams respond. In the
fiat-banking model considered next, interest rates will increase from a value
ρ = 0 in the unstressed equilibrium, as Λe0 increases. But in this model,
interest rates decrease from their value ρ = 1 in the unstressed equilibrium,
as Λe0 increases. Here we summarize how that response is produced by the
intersection of the first-order conditions and balance-of-payment constraints.

It is important to remember that, while the formation of a shadow price
on the capacity constraint for capital stock represents a stress relative to the
Λe0 = 0-noncooperative equilibrium, it corresponds to the situation N <
NC , in which there is a surfeit of gold per capita relative to the unstressed
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equilibrium. Therefore, although all prospector bids on food decrease per
capita as described by Eq. (94), as prospectors supply a larger relative share
of investments, their deposits in the bank decrease less quickly than their bids
on food, according to equations (95,96). At an interest rate ρ that balances
total interest payments, the farmer investment σ0 on which interest is paid
therefore declines more slowly than the investment σ1 on which interest is
not paid. Moreover, the term (1− ϕ1) responsible for the difference in bid
levels increases with increasing Λe0, while the common term (1 + ϕ1 + ϕ2)
decreases. When, at finite Λe0, these two contributions pass through the
ratio 2 : 1, it is possible to satisfy both the first-order conditions and the
accounting identity with ρ → 0, even if food prices remain similar across
periods.

E.6 Analytic solutions for limits in the unstressed non-
cooperative equilibria

Once it is recognized that these constraints determine the dependence of ρ
on Λe0, closed-form solutions are easy to obtain at s� 1, for the population
composition required for Λe0 → 0, and hence for the critical population size
for high-yielding production.

Utility levels are dominated by food consumption at s� 1, and at Λe0 →
0, all ϕ terms cancel in Eq. (91), casting the condition of equal utility in the
same functional form for all generations (τ). Therefore all gold-denominated
food prices converge to the same value apτ/e0 →

√
1 + ρ, reproduced in

Eq. (27) in the text.
Using the general budget relation (78), and the particular evaluation from

the first line of Eq. (79) to express σ0 in terms of ap0, the interest-balance
condition (87) at s� 1 and Λe0 → 0 gives the ratio of prospectors to farmers

n0

n
→ 2s

3 (1 + ρ)

ap0

e0

. (97)

As explained in the previous subsection, a similar but independent expres-
sion is obtained for σ1 in terms of ap2, using Eq. (78) and the second line
of Eq. (79). If these two relations are inserted in the remaining accounting
identity (88) between total bids and investment, together with the approxi-
mation at s � 1 that all apτ take the same value at Λe0 → 0, we find that
the required interest rate in the unstressed equilibrium is ρ → 1 + O(s).
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Eq. (27) then gives apτ/e0 →
√

2, which in Eq. (97) goes to

n0

n
→
√

2s

3
. (98)

The resulting critical population size for the unstressed equilibrium to sup-
port investment 3n0e0 = C is given as Eq. (28) in the main text.

E.7 How much gold does the bank need?

If we require that the bank lend physical gold, we may track the amount
that it must hold at the beginning of the period, in order to supply net
demands by the agents. The details of required bank reserves can of course
depend on the fine-structure of sequencing of deposits and withdrawals in
each period. The simplest choice (and one consistent with the interpretation
of periods as entire stages of life) is to not assume a detailed structure of lags
between withdrawals and deposits of various kinds, and to model deposits
and withdrawals within a period as being cleared in a single meeting of
all agents with the bank in that period. This is always possible, because
prospectors hold all gold they deposit from their endowments coming into
the period, and farmers hold all gold they may owe from clearing of the
previous-period’s food market.

Total deposits in the bank, both lending by prospectors and repayment
of principle and interest by farmers, may be computed in each period as

(Deposits)0

n0e0

=
1

2
ϕ

(2)
2 (s; Λe0)

(Deposits)1

n0e0

=
1

2
+ (1 + ρ)

σ0

e0

n

n0

(Deposits)2

n0e0

= 1− 1

2
ϕ

(2)
1 (s; (1 + ρ) Λe0) . (99)

Withdrawals in each period are

(Withdrawals)0

n0e0

= (1 + ρ)

[
1− 1

2
ϕ

(2)
1 (s; (1 + ρ) Λe0)

]
+
σ0

e0

n

n0

(Withdrawals)1

n0e0

= (1 + ρ)
1

2
ϕ

(2)
2 (s; Λe0)

(Withdrawals)2

n0e0

= (1 + ρ)
1

2
(100)
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The bank balance at the end of each period is the prior balance net of
Deposits and Withdrawals, and we choose the maximum balance so that
the minimum over the cycle is zero. Recall that the capacity constraint
is C = 3n0e0, so (Deposits)τ/C = (1/3) (Deposits)τ/n0e0, and similarly for
Withdrawals and balances. We will see from the solutions that in the un-
stressed equilibrium, the bank needs to hold approximately (2.5/3) C at the
beginning of period τ = 2, and in the small population limit where ρ → 0,
this requirement falls below (2/3) C for the value of θ = 1/2.

Numerical solutions for the prior balance of the bank in all three periods
are shown in Fig. 12 in the main text. The absolute gold reserve required
diminishes weakly with N/NC as interest rate diminishes, because it is deter-
mined mostly by the scale of capital stock. Bank reserves per capita therefore
increase roughly as NC/N .

F Solutions for the economy with fiat bank-

ing and control through purchase and sale

of gold

F.1 Solutions to the first-order conditions

In the fiat economy, the relation of the gold endowment for investment be-
comes much more symmetrical with the role of the food endowment for single-
period consumption than it is in an economy with gold money. As in the
previous examples, logarithmic utility leads to convenient simplifications for
the prospectors, so we begin with them. Because the numéraire of fiat is
now an arbitrary choice of the central bank, all prices will be referenced to
a single price that fixes this numéraire, which we take to be the τ = 2-price
for gold: pG2.

F.1.1 Prospector sector

The accounting identity for the fiat-value of the prospector endowment of
gold is

e0pGτ = q̂
(τ)
G pGτ + (σ̂0δτ,0 + σ̂1δτ,2) pGτ

= 2b̂
(τ)
1 + (σ̂0δτ,0 + σ̂1δτ,2) pGτ . (101)
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In the second line we have used the budget relations (36), along with the fact

that the first-order conditions with lending at interest give b̂
(τ)
1 = (1 + ρ) b̂

(τ)
0 ,

as they did for the banking model in Eq. (84).
Then the first-order conditions for prospectors relate their bids on food

to total gold price levels in each period as

(1 + ρ) b̂
(τ)
0 = b̂

(τ)
1 =

e0

2
pGτϕ

(2)
τ−1(s; Λe0) , (102)

the investment levels are given by

σ̂0 = e0

(
1− ϕ(2)

2 (s; Λe0)
)

σ̂1 = e0

(
1− ϕ(2)

1 (s; Λe0)
)
, (103)

and therefore the offered quantities satisfy

q̂
(τ)
G = e0ϕ

(2)
τ−1(s; Λe0) . (104)

These inputs form the basis for all other price-formation rules, given any
shadow-price valuation of the gold endowment Λe0.

F.1.2 Farmer sector

The first-order conditions for investment relative to old-period bids on food
take the same form as they did in the IGT economy,

Λσ1 =
sx

1− (1 + 2θ)x

Λσ0 = Λκ(2) =
2θsx

1− 2θx
, (105)

in terms of a collection of variables that we abbreviate

x ≡ Λb
(2)
1

(1 + ρ) pG2

. (106)

(Definition (106) differs from the x in Eq. (61) in the IGT model by the factor
(1 + ρ), and by pricing specifically relative to period-(τ = 2) gold through the
factor pG2.)
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F.1.3 Bank action

Only (τ = 2) farmers in their young period can bid on gold in time for its
delivery to serve either their own investments or their transfers to support
the investments of their (τ = 0)-offspring. Therefore we may write the gold-
price-formation rule (38) more explicitly in the form

n

n0

b
(2)
G0 δτ,2 +

B
(τ)
G

n0

=

(
q̂(τ) +

Q
(τ)
G

n0

)
pGτ . (107)

All other bids outside period τ = 2 must come from the central bank. Using
the expression (104) for offers of gold in these periods, and descaling with
pG2 to remove the numéraire of fiat, we arrive at two of the central bank’s
control variables expressed in terms of their effect on inter-period ratios of
gold prices, as

B
(τ)
G

n0e0pG2

=
pGτ
pG2

ϕ
(2)
τ−1(s; Λe0) , (108)

for τ = 0, 1.
The exclusion of wash selling means that offers are not made in these

periods, so that the central bank offers gold only in period τ = 2. Full return
of gold then requires

Q
(2)
G

n0

= q(0) + q(1)

= e0

(
ϕ

(2)
2 (s; Λe0) + 1

)
(109)

Evaluating the price expression (107) at τ = 2, and using Eq. (109) for

Q
(2)
G /n0 together with the fact that B

(τ)
G = 0 by exclusion of wash sales, gives

a relation between the total offered quantity (which depends only on e0 and

Λ), the labor allocation n0/n, and the farmer bid level set by b
(2)
G0, in the form

σ1 + σ0

e0

=
σ1 + κ(2)

e0

=
b

(2)
G0

e0pG2

=
n0

n

(
1 + ϕ

(2)
1 (s; Λe0) + ϕ

(2)
2 (s; Λe0)

)
=

sx

Λe0

(
1

1− (1 + 2θ)x
+

2θ

1− 2θx

)
(110)

The expressions on the first line involve only relative quantities of gold, and
ensure that the total investment from farmers and prospectors equals 3n0e0
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(by Eq. (103)). The relation to x – the farmer bid-level in (τ = 2)-gold prices
in the second line – follows from the farmer first-order conditions.

In numerical solutions, we will sweep the variables Λe0 appearing in the
first line and x appearing in the second line of Eq. (110), and for each pair,
determine the consistent value for n0/n to appear in later relations.

F.2 Price cycles

F.2.1 Cyclic accounting identities for fiat and gold

The farmer budget equation that cycles fiat among periods in the food mar-
kets is

q(τ)pτ = b
(τ)
1 + (1 + ρ) b

(τ)
G0

= b
(τ−1)
1 +

n0

n

(
b̂

(τ−1)
1 + b̂

(τ)
0

)
= b

(τ−1)
1 +

n0

n

(
(1 + ρ) b̂

(τ−1)
0 + b̂

(τ)
1

)
(111)

The first line includes the bids (along with interest on bids from the first
period) that farmers pay from proceeds of sales, and the second (and equiv-
alently, third) line lists the source of money from the pricing rule (10).

Summing Eq. (111) over τ , and canceling the factors b
(τ)
1 that appear

on both sides of the equality, gives the accounting relation between farmer
income and expenses

(1 + ρ)
n

n0

b
(2)
G0 = (2 + ρ)

∑
τ

b̂
(τ)
0 . (112)

The only farmer expenses that are not recycled are the bid on gold in period
τ = 2, and the interest paid on it.

Summing, instead, the price-formation rule (107) over τ , and then using
relations (104) and (102) for prospector gold offers and food bids, gives a
relation between central-bank bids and offers, prospector food bids set by e0

and Λ, and the farmer bidding scale set by b
(2)
G0,

n

n0

b
(2)
G0 +

∑
τ

B
(τ)
G

n0

=
∑
τ

q̂(τ)pGτ +
∑
τ

Q
(τ)
G pGτ
n0

= (1 + ρ)
∑
τ

2b̂
(2)
0 +

Q
(2)
G pG2

n0

. (113)
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The difference of Eq. (113) from Eq. (112), multiplied by n0, is the cycle
identity for fiat,

ρ

(
nb

(2)
G0 + n0

∑
τ

b̂
(2)
0

)
+Q

(2)
G pG2 =

∑
τ

B
(τ)
G . (114)

The left-hand side includes all expenditures by agents; the first term is in-
terest on borrowing, the second is payment for gold in period τ = 2. The
right-hand side includes all fiat expenditures by the central bank, in bids for
gold. This equation is predicated on the repayment of interest in full without
strategic bankruptcy, which will imply one constraint on the interest rate in
relation to the bid levels B

(τ)
G , which is derived below.

F.2.2 The food price cycle

The relation between endowment and price for farmers in the food sector,
parallel to Eq. (101) for prospectors in the gold sector, becomes

apτ = A
(τ)
0 pτ + q(τ)pτ

= 2b
(τ)
1 + (1 + ρ) b

(τ)
G0, (115)

where one first-order condition is used to evaluate A
(τ)
0 pτ , and Eq. (111) is

used to evaluate q(τ)pτ .
Combining these expense relations with Eq. (111) for inputs gives an

expression for the food price cycle

apτ + (1 + ρ) b
(τ)
G0 = apτ−1 − (1 + ρ) b

(τ−1)
G0 + 2

n0

n

(
b̂

(τ−1)
1 +

b̂
(τ)
1

1 + ρ

)

= apτ−1 − (1 + ρ) b
(τ−1)
G0 +

n0

n
e0

(
pGτ−1ϕτ−2 +

pGτϕτ−1

1 + ρ

)
.

(116)

The starting level for the cycle may be taken as the value of ap2 determined
from x appearing in Eq. (110), Eq. (115), and the first-order conditions (105):

Λap2

(1 + ρ) pG2

= x

{
2 +

s

1− (1 + 2θ)x
+

2θs

1− 2θx

}
. (117)
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F.2.3 Central-bank bid variables and control over gold prices

Eq. (110), together with the farmer income/expense balance (112) and the

expression (102) for b̂
(τ)
1 gives a relation between inter-period ratios of gold

prices (or equivalently, their control through central-bank bids) and interest
rates, of ∑

τ

(
pGτ
pG2

− (1 + ρ)2

(1 + ρ/2)

)
ϕ

(2)
τ−1(s; Λe0) = 0. (118)

Separating τ = 2, in which in which the central bank does not bid, from the
other two periods, we obtain a constraint on one linear combination of bids:

ρ
3 + 2ρ

2 + ρ
ϕ

(2)
1 (s; Λe0) =

∑
τ=0,1

(
pGτ
pG2

− (1 + ρ)2

(1 + ρ/2)

)
ϕ

(2)
τ−1(s; Λe0)

=
∑
τ=0,1

(
B

(τ)
G

n0e0pG2

− (1 + ρ)2

(1 + ρ/2)
ϕ

(2)
τ−1(s; Λe0)

)
,(119)

where the second line uses Eq. (108). The central bank cannot, thus, set all
gold prices equal and at the same time require full repayment of fiat, except
in the limit ρ→ 0.

We will introduce an “angle” α to express the two-period bids relative to
the interest rate, as

B
(0)
G

n0e0pG2

− (1 + ρ)2

(1 + ρ/2)
ϕ

(2)
2 (s; Λe0) =

(
cosα

cosα + sinα

)
ρ

3 + 2ρ

2 + ρ
ϕ

(2)
1 (s; Λe0)

B(1)

n0e0pG2

− (1 + ρ)2

(1 + ρ/2)
=

(
sinα

cosα + sinα

)
ρ

3 + 2ρ

2 + ρ
ϕ

(2)
1 (s; Λe0) .

(120)

Within the interior of the interval α ∈ [−π/4, 5π/4], either of the bids
B(0), B(1) may be taken to zero. The range α < 0 places maximum bids in
B(0); the range α > π/2 places maximum bids in B(1). In numerical solutions,
we will sample over the variables ρ and α to minimize the prospector utility
variance (39) at the values of x and Λe0 that equate cycle-averaged utilities
of farmers and prospectors, and are compatible with a given value of n0/n
through Eq. (110).
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