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Abstract

This paper is a revision of my paper, CFDP 1865. The principal innovation
is an equivalent reformulation of the decision problem for weak feasibility
of the GE inequalities, using polynomial time ellipsoid methods, as a
semidefinite optimization problem, using polynomial time interior point
methods. We minimize the maximum of the Euclidean distances between
the aggregate endowment and the Minkowski sum of the sets of
consumer’s Marshallian demands in each observation. We show that this is
an instance of the generic semidefinite optimization problem: inf,ck f(x)
= Opt(K, f), the optimal value of the program,where the convex feasible
set K and the convex objective function f(x) have semidefinite
representations. This problem can be approximately solved in polynomial
time. That is, if p(K, x) is a convex measure of infeasibilty, where for all
x, p(K,x) 20 and p(K,z) = 0iff z € K, then for every € > 0 there
exists an e-optimal y such that p(K,y) < e and f(y) < e+ Opt(K, f)
where y is computable in polynomial time using interior point methods.
Keywords: GE Inequalities, Polynomial solvability, Semidefinite

Programming
Donald J. Brown () Complexity of GE Inequalities August 2012 2/36

Electronic copy available at: http://ssrn.com/abstract=2135069



Introduction

We consider a pure exchange economy with N price-taking consumers,
where in each of S periods we observe the market prices, the income
distribution and the aggregate endowments of L goods and services.
Consumer demands are unobservable. In these notes, we propose a
polynomial time algorithm for deciding the weak feasibility of the general
equilibrium inequalities introduced by Brown and Shannon (2000). This
system of multivariate polynomial inequalities is feasible iff there exists an
indirect utility function for each consumer and utility maximizing demands,
subject to her budget constraints, that define a competitive equilibrium in
each observation. That is, in each observation, the endogenous aggregate
demand of goods and services of consumers at the observed market prices
and income distribution equals the exogenous aggregate supply of goods
and services.
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Refutable Theories of Value

(1) Rationalization
(2) Weak Axiom of Revealed Preference (WARP)
(3) Afriat’s Theorem

(4)

4) Tarski—Seidenberg Theorem
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Rationalization

If the Marshallian demands x; are observed, then
_ =S
D = {x,pj}j—{, where x;, p; € R: ..
The non-satiated utility function U(x) rationalizes D if for all j and for all

XGRJLH_:
pj-x < pj-x = Ulx) = U(x).
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Weak Axiom of Revealed Preference (WARP)

(1) If the Marshallian demands x; are observed, then
— j=S
D = {x. 127, where x;, p; € R,
and
pL-Xo < proXy = P2 Xy > P2 X
(2) WARP is necessary but not sufficient for rationalizing D.

(3) The Generalized Axiom of Revealed Preference (GARP) is necessary
and sufficient for rationalizing D.

(4) GARP, due to Varian (1982), is a generalization of the Strong Axiom
of Revealed Preference (SARP).
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Afriat's Theorem

If the Marshallian demands x; are observed, then the following conditions
are equivalent:

(a) D is rationalized by a non-satiated utility function u.

(b) The “Afriat Inequalities”:
uj < U+ Ajp; - (X = xj)

fori,j=1,..., S are a solvable family of linear inequalities in the
unobserved utility levels u; and marginal utilities of income A;.
(c) D satisfies GARP.

(d) D is rationalized by a non-satiated, concave utility function U.
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Tarski—Seidenberg Theorem

(1) Semi-algebraic sets are solutions of a finite family of multivariate
polynomial inequalities.

(2) The projection of a semi-algebraic set is a semi-algebraic set.

(3) Example:
ax? +bx+c=0

has a real solution iff
b?> — 4ac > 0.

(4) Example: In Afriat's Theorem

(b) iff (c).
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The General Equilibrium (GE) Manifold

(1) If 0 is a regular value of the smooth market excess demand function
F(pY w11w21 "'YwL)Y

then
M= {(p, w1, w2, ..,wr) : F(p,w1,wa, ..., wr) =0}

is a smooth manifold.

(2) 0 is a regular value of the smooth market excess demand function for
almost all (w1, wy, ..., wy).

(3) The GE manifold M rationalizes the market data D, where

D= {(Pr. Wr1, Wr2, ...y er):i{V

if DC M.
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The Marshallian GE Inequalities

(1) The Afriat inequalities for each consumer, where the Marshallian
demands of consumers are unobserved, the budget constraints for each
consumer in each observation and the market clearing conditions in each
observation.

(2) Brown and Matzkin (1996) prove that a finite family of observations of
aggregate endowments, market prices and the income distribution can be
rationalized with a GE manifold, iff the Marshallian GE inequalities are
feasible.

(3) Recently, Cherchye et al. (2011) proved the important negative result
that deciding the strong feasibility of the Marshallian GE inequalities is a
NP-complete problem. That is, if P 7% NP then there is no “efficient”
(polynomial time) method for deciding the strong feasibility of the
Marshallian GE inequalities.
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NP-Completeness of the Marshallian GE Inequalities

Cherchye et al. propose a non-polynomial time (inefficient) algorithm to
decide strong feasibility of the Marshallian GE inequalities, where they
convert the problem of deciding the strong feasibility of the Marshallian
equilibrium inequalities to solving an equivalent mixed-integer linear
programming problem. Note that mixed-integer linear programming
problems are also NP-hard.
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A Local Characterization of the GE Manifold

(1) Ekeland and Chiappori (1999) proposed a local characterization of the
GE manifold, using the exterior calculus and the consumer’s smooth,
convex indirect utility function V(p, /).

(2) If p are the market prices and / is the consumer’s income, then they
express the consumer’'s Marshallian demand as:

1V V(p. 1]
[p-VpVi(p. ]
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The Dual Afriat Inequalities

Theorem

Let (p",x"),r=1,...,S be given and let I" = p" - x" for each r. There
exists a utility function rationalizing this data that is strictly quasiconcave
and monotone if and only if there exist numbers V', A', and vectors
g €RY, i=1,... N such that:
(a) for i # j,
. . . i j
Vi Vi g <7__77> fori,j=1,...,5.

(b)) N >0,¢ <0,j=1,....5(c) % =-Nx,j=1,...,5.

Remark: Solutions of (a) define a convex indirect utility function V().
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The Dual Afriat Inequalities (continued)

Conditions (a) and (b) constitute the “dual Afriat inequalities.” Condition
(c) is an expression of Roy’s identity in this context. To see this, note that
if (c) holds for some A > 0, then pd — M- xl) = =Ml e,

M= ’(’;J . which implies that the vector (,1 , M) corresponds to the
gradient of the rationalizing indirect utility function V evaluated at

(p/, ). This is essentially the content of (a). More precisely, (a) says that
¢ is the derivative of V with respect to the income normalized price

vector £ evaluated at (p/, V). Thus 9~ (p/ 1y =14% _ and
X H) = ’()J?J If qj =M, then x/ is the demand at the

price-income pair (p/, /J) by Roy's identity.
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A Global Characterization of the GE Manifold

(1) Brown and Shannon proposed a global characterization of the GE
manifold, using the theory of revealed preference and the consumer’s
smooth, convex indirect utility function, V(7).

(2) That is, they introduced the Hicksian GE inequalities, consisting of the
first-order conditions for minimizing a smooth convex indirect utility
function, V(?), subject to a budget constraint, i.e., the dual Afriat
inequalities for each consumer, the budget constraints for each consumer
and the market clearing conditions in each observation.

(3) Brown and Shannon proved that a finite family of observations of
aggregate endowments, market prices and the income distribution can be
rationalized with a GE manifold iff the Hicksian GE inequalities are feasible.
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Complexity of GE Inequalities

(1) Brown and Shannon proved that the Hicksian GE inequalities are
feasible iff the Marshallian GE inequalities are feasible.

(2) The Cherchye et al. result suggests that the Hicksian equilibrium
inequalities are also NP-complete. That is, there does not exist a
polynomial time algorithm for deciding the strong feasibility of the
Hicksian GE inequalities.

(3) In fact, we show there exits an polynomial time algorithm for deciding
the weak feasibility of the Hicksian GE inequalities. That is, there exists a
polynomial time algorithm for deciding if the aggregate endowment in
each observation is “e-near” the aggregate demand.

(4) Hence there exists a polynomial time algorithm for deciding the weak
feasibility of the Marshallian GE inequalities.
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Weak Membership Oracle for Convex Bodies

(1) A convex body is a compact convex set with nonempty interior. A
strong membership oracle for a convex body K asserts for any
rational y € Rt that y € K or y ¢ K. See Proposition 2.1.5 in in
Grotschel, Lovasz and Schrijver [GLS].

(2) A convex body K is centered if there explicitly exists &y € K and
r € R such that B,(ag) C K.

(3) A weak membership oracle for a centered, convex body K asserts for
any positive rational 6 and any rational y € R" that y is “e-near” K or
y ¢ K — see Lemma 4.3.3 in [GLS].

(4) There exists a polynomial time algorithm for weak membership in
Ki + K>, given polynomial time algorithms for weak membership in the
centered convex bodies K; and Kj. See section 4.5 in [GLS].
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The Perspective Map

(1) The perspective map
P:RX x R, — RX,

X

P(x, xk+1) = :
XK+1
(x,xk41), (v, yk11) € R X Ry

then the perspective image of the interval.

[(x, xk+1), (v, yk+1)] © RY X Ryy

is the interval
[P(x, xk+1), P(y, yk41)] C R¥.
(3) Hence, the image and pre-image of a convex set is a convex set under

the perspective map. See section 2.3.3 in Boyd and Vandenberghe (2004)
for proof.
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Centered Convex Bodies of Marshallian Demands

(1) A sequence of S non-negative vectors in R:, bounded by the sequence
of S aggregate endowments, are the images of the perspective map, i.e.,
Marshallian demands for some indirect utility function, iff the linear Afriat
inequalities for the given S non-negative vectors and observed market
prices and income distribution are solvable for the unobserved utility levels
and marginal utilities of income.

(2) Solutions of the strict Afriat inequalities constitute the interior of the
convex body of Marshallian demands defined as the intersection of the
closure of the perspective image of the convex set of marginal indirect
utilities and marginal utilities of income and the convex interval in the
positive orthant defined by the origin and the aggregate endowments.

(3) Since any strict smooth concave utility function satisfies the strict
Afriat inequalities, we can center each convex body of Marshallian
demands.
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A Weak Feasibility Oracle for the GE Inequalities

(1) It follows from a theorem of Yudin and Nemirovskii (1976) — see
section 4.3 in [GLS] — that there exists a polynomial time algorithm for
weak membership of the aggregate endowment in the sum of the centered
convex bodies of Marshallian demands in each observation.

(2) That is, there exists a polynomial time algorithm for the weak
feasibility of the Hicksian (Marshallian) GE inequalities.
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Strong and Weak Feasibility of the GE Inequalities

(1) The apparent contradiction between the negative result of Cherchye et
al. and our positive result on deciding feasibility of the GE inequalities in
polynomial time derives from two different notions of feasibility.

(2) We use the notion of weak feasibility, common in convex optimization
and Cherchye et al. use the notion of strong feasibility, common in
combinatorial optimization.
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Market Clearing

(1) Infeasibility of the aggregate endowment in the Hicksian GE
inequalities is a measure of the lack of market clearing. We propose the
minimization of a real-valued convex measure of the lack of market clearing
over each consumer’s family of piece-wise linear indirect utility functions.

(2) We minimize the maximum Euclidean distance between the aggregate
endowment and the Minkowski sum of the centered convex bodies of
Marshallian demands in each observation. It follows from Theorem 4.3.13
in [GLS] that this optimization problem can be solved in polynomial time,
using the ellipsoid method The optimal value of this problem is a measure
of the lack of market clearing. In practice, polynomial time interior point
methods are more efficient then the ellipsoid methods.
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Polynomial Time Solvability of Convex Programs

Sufficient conditions for polynomial time solvability of a family of convex
optimization problems using the ellipsoid method are:

(1) Polynomial computability,

(2) Polynomial growth,

(3) Polynomial boundness of feasible sets,

(4) See Theorem 5.3.1 in Ben-Tal and Nemirovski (2001).
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Polynomial Time Solvability: Some Examples

Subfamilies of linear, conic quadratic and semidefinite convex optimization
problems with box constraints on the feasible sets are polynomial solvable.
That is, they satisfy the conditions of polynomial computability polynomial
boundness of feasible sets and polynomial growth.

See section 5.3 in Ben-Tal and Nemirovski.
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Properties of Spectrahedra

(1) A spectrahedron is the solution set of a linear matrix inequality (LMI).
That is,

i=K
{XERL:A0+ ZX,'A,';O}
i=1

where the A; are gxg symmetric matrices, for i =0,1,2, ..., K.

(2) Every polyhedron is a spectrahedron, where the A; are diagonal
matrices.
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Spectrahedral Shadows of Convex Sets

(1) A convex subset C C R! is called a spectrahedral shadow,If C = L(S),
where S is a spectrahedron in R? and L : R’ — R' is an affine linear map.
(2) Spectrahedral shadows of convex sets are called semidefinite
representations of convex sets in Ben-Tal and Nemirovski. A convex
function is semidefinite representable if its epigraph is semidefinite
representable.

(3) A polyhedron is a spectrahedral shadow.

(4) The linear image of a spectrahedral shadow is a spectrahedral shadow.
(5) The perspective image of a spectrahedral shadow is a spectrahedral
shadow.

(6) The Minkowski sum of two spectrahedral shadows is a spectrahedral
shadow.

(7) The max of two semidefinite representable convex functions is a
semidefinite representable convex function.
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Spectrahedral Shadows of Convex Sets (Continued)

(8) See the chapter on spectrahedral shadows in Nitzer (2012) and section
4.2 in Ben-Tal and Nemirovski.

(9) If the spectrahedral shadow C has a nonempty interior,then C is also
the canonical projection of the spectrahedron C, where

i=K j=H
¢= {<X'Y>€RK><R”:A0+ZX,-A,-+ Zyjsj;o}
i=1 j=1

and
C = {m(xy): (x,y) € C}.

See Lemma 4.1.6 in Nitzer (10) Optimization problems, where the feasible
set is a semidefinite representable convex set and the objective function is
a semidefinite representable convex function are solvable in polynomial
time, using the ellipsoid method.
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Perspective Images of Spectrahedral Shadows

Theorem

The perspective image of a spectrahedral shadow with nonempty interior is
a spectrahedral shadow. If

— i=K+1 j=H
C: {((X'XK“)“V) ERKIIXRT: Ao+ Y, XA+ Y B = 0}
=1 j=1

1

then
= _ K H .
¢ = {((XvXK+1):Y)€R X Ry X R™:
1 i=K+1 j=H yi
X Aoy + LA I_Bi| =05.
[ K+1XK+1 ¢ ,221 XK +1 J; XK+1 ’

Donald J. Brown () Complexity of GE Inequalities August 2012 28 / 36



C= {7TXXK+1 ((¢xk41),y) + (X, xk11),y) € C}.

For all ((x,xk11),y) € C

i=K+1 Y g
A+ Y, A+Z | =0

XK+1 -1 XK+1 j=1 XK+1

i=K+1 i
A+ Y XA+Z” -]%o.
1

1
<~ XK+1
XK+ i—1 XK+1 1 XK+1
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Proof (Continued)

E = {( X ,y)ERKxR++><RL:
XK+1

i=K+1 ] j=H Y
Ag + Bi| =0
XK+1 ° Z Z !

i—1 XK+1 j=1 XK+1

The canonical projection of E is the perspective image of the canonical
projection of C.

The perspective image of a polyhedron is a spectrahedral shadow. I
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Spectrahedral Shadows of Marshallian Demands

(1) We project the polyhedron of solutions of the dual Afriat inequalities
onto the set of gradients of indirect utility functions in each observation.
This is a polyhedron, denoted X.

(2) We define a linear map of X into the 2-tuples of the gradient of the
indirect utility function and the marginal utility of income in that
observation,denoted X. That is,

atj — (Qt,j. ,l:—Jj : CIt,j) .

(3) X is a polyhedron, hence a spectrahedron or more generally a
spectrahedral shadow.

(4) The perspective image of X ,denoted P[X], is the set of Marshallian
demands at the observed market prices and incomes for each indirect
utility function. That is,

P[X] = {P (qt,j, /I:—JJ : qt,j) = % : (qt,jr /I:_Jj ' qu) € 7}

is a spectrahedral shadow.
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Polynomial Time Interior Point Methods

(1) If the feasible set K of a convex optimization problem is a
spectrahedral shadow, i.e., has a semidefinite representation and the
epigraph of the convex objective function is a spectrahedral shadow, then
there exists a polynomial time interior point method that solves the
following generic semidefinite optimization problem.

(2) Given a positive number € > 0, and a real-valued convex measure of
infeasibility for the feasible set K , denoted p(x, €), where for all x € RN

[p(x,€) 2 0] and [p(x,€) =0 < x € K]
find a y such that p(y,¢) < € and
f(y) < Opt(p) +e

where f is a semidefinite representable convex function on K. and
Opt(f; K) is the infimum of  on K. See section 6.6.3 in Ben-Tal and
Nemirovski for the complexity analysis of semidefinite programming.
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Epsilon Feasibility of General Equilibrium Inequalities

Minimizing the maximum of the Euclidean distances between the
aggregate Minkowski sum of each agent’s Marshallian demands and the
aggregate endowment in each observation is an instance of the generic
semidefinite optimization problem. Hence e-feasibility of the Hicksian
(Marshallian) GE inequalities can be decided in polynomial time using
interior point methods.
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