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Abstract

We consider the invertibility (injectivity) of a nonparametric nonseparable demand
system. Invertibility of demand is important in several contexts, including identi�ca-
tion of demand, estimation of demand, testing of revealed preference, and economic
theory exploiting existence of an inverse demand function or (in an exchange economy)
uniqueness of Walrasian equilibrium prices. We introduce the notion of �connected
substitutes�and show that this structure is su¢ cient for invertibility. The connected
substitutes conditions require weak substitution between all goods and su¢ cient strict
substitution to necessitate treating them in a single demand system. The connected
substitutes conditions have transparent economic interpretation, are easily checked,
and are satis�ed in many standard models. They need only hold under some trans-
formation of demand and can accommodate many models in which goods are comple-
ments. They allow one to show invertibility without strict gross substitutes, functional
form restrictions, smoothness assumptions, or strong domain restrictions. When the
restriction to weak substitutes is maintained, our su¢ cient conditions are also �nearly
necessary�for even local invertibility.
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1 Introduction

We consider the invertibility (injectivity) of a nonparametric nonseparable demand system.

Invertibility of demand is important in several theoretical and applied contexts, including

identi�cation of demand, estimation of demand systems, testing of revealed preference, and

economic theory exploiting existence of an inverse demand function or (in an exchange

economy) uniqueness of Walrasian equilibrium prices. We introduce the notion of �connected

substitutes�and show that this structure is su¢ cient for invertibility.

We consider a general setting in which demand for goods 1; : : : ; J is characterized by

� (x) = (�1 (x) ; : : : ; �J (x)) : X � RJ ! RJ (1)

where x = (x1; : : : ; xJ) is a vector of demand shifters. All other arguments of the demand

system are held �xed. This setup nests many special cases of interest. Points � (x) might

represent vectors of market shares, quantities demanded, choice probabilities, or expenditure

shares. The demand shifters x might be prices, unobserved characteristics of the goods, or

latent preference shocks. Several examples in section 2 illustrate.

The connected substitutes structure involves two conditions. First, goods must be �weak

substitutes�in the sense that, all else equal, an increase in xj (e.g., fall in j�s price) weakly

lowers demand for all other goods. Second, we require �connected strict substitution��

roughly, su¢ cient strict substitution between goods to require treating them in one demand

system. These conditions have transparent economic interpretation and are easily con�rmed

in many standard models. They need only hold under some transformation of the demand

system and can accommodate many settings with complementary goods.

The connected substitutes conditions allow us to show invertibility without the functional

form restrictions, smoothness assumptions, or strong domain restrictions relied on previously.

We also provide a partial necessity result by considering the special case of di¤erentiable

demand. There we show that when the weak substitutes condition is maintained, connected

strict substitution is necessary for nonsingularity of the Jacobian matrix. Thus, given weak
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substitutes, connected substitutes is su¢ cient for global invertibility and �nearly necessary�

for even local invertibility. A corollary to our two theorems is a new global inverse function

theorem allowing arbitrary open domain.

Important to our approach is explicit treatment of a �good 0�whose �demand�is de�ned

by the identity

�0(x) = 1�
JX
j=1

�j(x): (2)

The interpretation will vary with the application. When demand is expressed in shares (e.g.,

choice probabilities or market shares), good 0might be a �real�good� e.g., a numeraire good,

an �outside good,�or a good relative to which utilities are normalized. The identity (2) will

then follow from the fact that shares sum to one. In other applications, good 0 will be a

purely arti�cial notion introduced only as a technical device (see the examples below). This

can be useful even when an outside good is also modeled (see Appendix C).

It is clear from (2) that (1) characterizes the full demand system even when good 0 is

a real good. Nonetheless, explicitly accounting for the demand for good 0 in this case

simpli�es imposition of the connected substitutes structure on all goods. When good 0 is an

arti�cial good, including it in the connected substitutes conditions proves useful as well. As

will be clear below, it strengthens the weak substitutes requirement in a natural way while

weakening the requirement of connected strict substitution.

Also important to our approach is a potential distinction between the set X and the

subset of this domain on which injectivity of � is in question. A demand system generally

will not be injective at points mapping to zero demand for some good j. For example, raising

good j�s price (lowering xj) at such a point typically will not change any good�s demand. So

when considering conditions ensuring injectivity, it is natural to restrict attention to the set

~X = fx 2 X : �j (x) > 0 8j > 0g

or even to a strict subset of ~X� e.g., considering only values present in a given data set, or

only positive prices even though � is de�ned on all of RJ (e.g., multinomial logit or probit).
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Allowing such possibilities, we consider injectivity of � on any set

X � � X

(typically X � � ~X ). Rather than starting from the restriction of � to X �, however, it proves

helpful to allow X � 6= X . For example, one can impose useful regularity conditions on X

with little or no loss (we will assume it is a Cartesian product). In contrast, assumptions

on the shape or topological properties of X � implicitly restrict either the function � or the

subset of ~X on which injectivity can be demonstrated. Avoiding such restrictions is one

signi�cant way in which we break from the prior literature.

There is a large literature on the injectivity of real functions, most of it developing

conditions ensuring that a locally invertible function is globally invertible. This literature

goes back at least to Hadamard (1906a,b). Although we cannot attempt a full review here,

the monograph of Parthasarathy (1983) provides an extensive treatment, and references to

more recent work can be found in, e.g., Parthasarathy and Ravindran (2003) and Gowda

and Ravindran (2000). Local invertibility is itself an open question in many important

demand models, where useful conditions like local strict gross substitutes or local strict

diagonal dominance fail because each good substitutes only with �nearby� goods in the

product space (several examples below illustrate). Even when local invertibility is given,

su¢ cient conditions for global invertibility in this literature have proven either inadequate

for our purpose (ruling out important models of demand) or problematic in the sense that

transparent economic assumptions delivering these conditions have been overly restrictive or

even di¢ cult to identify.

A central result in this literature is the global �univalence�theorem of Gale and Nikaido

(1965). Gale and Nikaido considered a di¤erentiable real function � with nonsingular

Jacobian on X � = X .1 They showed that � is globally injective if X � is a rectangle (a

product of intervals) and the Jacobian is everywhere a P -matrix (all principal minors are

1Gale and Nikaido (1965) make no distinction between X and X �. When these di¤er, Gale and Nikaido
implicitly focus on the restriction of � to X �.
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strictly positive). While this result is often relied on to ensure invertibility of demand, its

requirements are often problematic. Di¤erentiability is essential, but fails in some important

models. Examples include those with demand de�ned on a discrete domain (e.g., a grid

of prices), random utility models with discrete distributions, or �nite mixtures of vertical

models. Given di¤erentiability, the P -matrix condition can be di¢ cult to interpret, verify,

or to derive from widely applicable primitive conditions (see the examples below). Finally,

the premise of nonsingular Jacobian on rectangular X � is often an signi�cant limitation. If

� is di¤erentiable and �j (x) = 0, then typically
@�j(x)

@xk
= 0 8k, yielding a singular Jacobian

at x =2 ~X . However, ~X is often not a rectangle. For example, in a market with vertically

di¤erentiated goods (e.g., Mussa and Rosen (1978)), a lower quality good has no demand

unless its price is strictly below that of all higher quality goods. So if �x is the price vector,
~X generally will not be a rectangle. Other examples include models of spatial di¤erentiation

(e.g., Salop (1979)), linear demand models, the �pure characteristics�model of Berry and

Pakes (2007), and the Lancasterian model in Appendix C. When ~X is not a rectangle, the

Gale-Nikaido result can demonstrate invertibility only on a rectangular strict subset of ~X .

The literature on global invertibility has not been focused on invertibility of demand, and

we are unaware of any result that avoids the broad limitations of the Gale-Nikaido result

when applied to demand systems. All require some combination of smoothness conditions,

restrictions on the domain of interest, and restrictions on the function (or its Jacobian) that

are violated by important examples and/or are di¢ cult to motivate with natural economic

assumptions.2 The connected substitutes conditions avoid these limitations. They have

clear interpretation and are easily checked based on qualitative features of the demand

system. They hold in wide range of models studied in practice and imply injectivity without

2A few results, starting with Mas-Colell (1979), use additional smoothness conditions to allow the domain
to be any full dimension compact convex polyhedron. However, the natural domain of interest ~X can be
open, unbounded, and/or nonconvex. Examples include standard models of vertical or horizontal di¤erenti-
ation or the �pure characteristics model�of Berry and Pakes (2007). And while the boundaries of ~X (if
they exist) are often planes when utilities are linear in x, this is not a general feature. A less cited result in
Gale and Nikaido (1965) allows arbitrary convex domain but strengthens the Jacobian condition to require
positive quaside�nitess. Positive quaside�niteness (even weak quaside�niteness, explored in extensions) is
violated on ~X in prominent demand models, including that of Berry, Levinsohn, and Pakes (1995).
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any smoothness requirement or restriction on the set X �.

The plan of the paper is as follows. Section 2 provides several examples that motivate our

interest, tie our general formulation to more familiar special cases, and provide connections

to related work. We complete the setup in section 3 and present the connected substitutes

conditions in section 4. We give our main result in section 5. Section 6 presents a second

theorem that underlies our partial exploration of necessity, enables us to provide tight links

to the classic results of Hadamard and of Gale and Nikaido, and has additional implications

of importance to the econometrics of di¤erentiated products markets.

2 Examples

Estimation of Discrete Choice Demand Models. A large empirical literature uses ran-

dom utility discrete choice models to study demand for di¤erentiated products, building on

pioneering work of McFadden (1974, 1981), Bresnahan (1981, 1987) and others. Conditional

indirect utilities are normalized relative to that of good 0, often an outside good representing

purchase of goods not explicitly under study. Much of the recent literature follows Berry

(1994) in modeling price endogeneity through a vector of product-speci�c unobservables x,

with each xj shifting tastes for good j monotonically. Holding observables �xed, �(x) gives

the vector of choice probabilities (or market shares). Because each �j is a nonlinear function

of the entire vector of unobservables x, invertibility is nontrivial. However, it is essential

to standard estimation approaches, including those of Berry, Levinsohn, and Pakes (1995),

Berry and Pakes (2007), and Dube, Fox, and Su (2012).3 Berry (1994) provided su¢ cient

conditions for invertibility that include linearity of utilities, di¤erentiability of �j (x), and

strict gross substitutes.4 We relax all three conditions, opening the possibility of developing

3The Berry, Levinsohn, and Pakes (1995) estimation algorithm also exploits the fact that, in the models
they consider, � is surjective at all parameter values. Given injectivity, this ensures that even at wrong (i.e.,
trial) parameter values, the observed choice probabilities can be inverted. This property is not necessary for
all estimation methods or for other purposes motivating interest in the inverse. However, Gandhi (2010)
provides su¢ cient conditions for a nonparametric model and also discusses a solution algorithm.

4Although Berry (1994) assumes strict gross substitutes, his proof only requires that each inside good
strictly substitute to the outside good. Hotz and Miller (1993) provide an invertibility theorem for a similar
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estimators based on inverse demand functions for new extensions of the standard models,

including semiparametric or nonparametric models (e.g., Gandhi and Nevo (2011), Souza-

Rodrigues (2011)).

Nonparametric Identi�cation of Demand. Separate from practical estimation issues,

there has been growing interest in the question of whether demand models in the spirit of

Berry, Levinsohn, and Pakes (1995) are identi�ed without the strong functional form and

distributional assumptions typically used in applications. Berry and Haile (2009b, 2010)

have recently provided a¢ rmative answers for nonparametric models in which x is a vector

of unobservables re�ecting latent tastes in a market and/or unobserved characteristics of the

goods in a market. Conditioning on all observables, one obtains choice probabilities of the

form (1). The invertibility result below provides an essential lemma for Berry and Haile�s

identi�cation results, many of which extend immediately to any demand system satisfying

the connected substitutes conditions.

Inverting for Preference Shocks in Continuous Demand Systems. Beckert and

Blundell (2008) recently considered a model in which utility from a bundle of consumption

quantities q = (q0; : : : ; qJ) is given by a strictly increasing C2 function u (q; x), with x 2 RJ

denoting latent demand shocks. The price of good 0 is normalized to 1. Given total expen-

diture m and prices p = (p1; : : : ; pJ) for the remaining goods, quantities demanded are given

by qj = hj (p;m; x) j = 1; : : : ; J , with q0 = m �
P

j>0 pjqj. Beckert and Blundell (2008)

consider invertibility of this demand system in the latent vector x, pointing out that this is

a necessary step toward identi�cation of demand or testing of stochastic revealed preference

restrictions (e.g., Block and Marschak (1960), McFadden and Richter (1971, 1990), Falmagne

(1978), McFadden (2004)). They provide several invertibility results. One requires mar-

ginal rates of substitution between good 0 and goods j > 0 to be multiplicatively separable

in x, with an invertible matrix of coe¢ cients. Alternatively, they provide conditions (on

class of models, although they provide a complete proof only for local, not global, invertibility. Berry and
Pakes (2007) state an invertibility result for a discrete choice model relaxing some assumptions in Berry
(1994), while still assuming the linearity of utility in xj . Their proof is incomplete, although adding the
second of our two connected substitutes conditions would correct this de�ciency.
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functional form and/or derivative matrices of marginal rates of substitution) implying the

Gale-Nikaido Jacobian requirement. We provide an alternative to such restrictions.

One way to translate their model to ours is through expenditure shares. To do this, �x

p and m, let �j (x) = pjh (p;m; x) =m for j > 0. Expenditure shares sum to one, implying

the identity (2). Other transformations are also possible (see Example 1 below). And

although Beckert and Blundell represent all goods in the economy by j = 0; 1; : : : ; J , a

common alternative is to consider demand for a more limited set of goods� for example,

those in a particular product category. In that case, there will no longer be a good whose

demand is determined from the others�through the budget constraint, and it will be natural

to have a demand shock xj for every good j. This situation is also easily accommodated.

Holding prices and all other demand shifters �xed, let �j (x) now give the quantity of good

j demanded for j = 1; : : : ; J . To complete the mapping to our model, let (2) de�ne the

object �0 (x). A hint at the role this arti�cial good 0 plays below can be seen by observing

that a rise in �0 (x) represents a fall in the demand for goods j > 0 as a whole.

Existence of Inverse Demand, Uniqueness of Walrasian Equilibrium. Let �xj be

the price of good j. Conditional on all other demand shifters, let �j (x) give the quantity

demanded of good j. A need for invertible demand arises in several contexts. In an ex-

change economy, invertibility of aggregate Walrasian demand is equivalent to uniqueness of

Walrasian equilibrium prices. Our connected substitutes assumptions relax the strict gross

substitutes property that is a standard su¢ cient condition for uniqueness. In a partial equi-

librium setting, invertibility of aggregate Marshallian demand is required for competition in

quantities to be well de�ned. The result of Gale and Nikaido (1965) has often been employed

to show uniqueness. Cheng (1985) provided economically interpretable su¢ cient conditions,

showing that the Gale and Nikaido (1965) Jacobian condition holds under the dominant di-

agonal condition of McKenzie (1960) and a restriction to strict gross substitutes. In addition

to the limitations of requiring di¤erentiability and, especially, a rectangular domain, the re-

quirement of strict gross substitutes (here and in several other results cited above) rules out

many standard models of di¤erentiated products, where substitution is only �local,� i.e.,
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between goods that are adjacent in the product space (see, e.g., Figure 1 and Appendix A

below). Our invertibility result avoids these limitations. Here we would again use the

identity (2) to introduce an arti�cial good 0 as a technical device.

3 Model

Let J = f0; 1; : : : ; Jg. Recall that x 2 X � RJ is a vector of demand shifters and that all

other determinants of demand are held �xed.5 Given the identity (2), the demand system

can be characterized by � = (�1; : : : ; �J) : X ! RJ . Although we refer to � as �demand�

(and to �j (x) as �demand for good j�), � may be any transformation of the demand system,

e.g., � (x) = g � f (x) where f (x) gives quantities demanded and g : f (X ) ! RJ . In this

case � is injective only if f is. Our connected substitutes assumptions on � are postponed

to the following section; however, one should think of xj as a monotonic shifter of demand

for good j. In the examples above, xj is either (minus) the price of good j, the unobserved

quality of good j, or a shock to taste for good j. In all of these examples, monotonicity is a

standard property. Recall that we seek injectivity of � on X � � X .

Assumption 1. X is a Cartesian product.

This assumption can be relaxed (see Berry, Gandhi, and Haile (2011) for details) but

appears to be innocuous in most applications. We contrast this with Gale and Nikaido�s

assumption that X � is a rectangle. There is a super�cial similarity, since a rectangle is a

special case of a Cartesian product. But a fundamental distinction is that we place no

restriction on the set X � (see the discussion in the introduction). Further, Assumption 1

plays the role of a regularity condition here, whereas rectangularity of X � is integral to the

proof of Gale and Nikaido�s result (see also Moré and Rheinboldt (1973)) and limits its

applicability.

5When good 0 is an real good relative to which prices or utilities are normalized, this includes all char-
acteristics of this good. For example, we do not rule out the possibility that good 0 has a price x0, but are
holding it �xed (e.g., at 1).
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4 Connected Substitutes

Our main requirement for invertibility is a pair of conditions characterizing connected sub-

stitutes. The �rst is that the goods are weak substitutes in x in the sense that when xj

increases (e.g., j�s price falls) demand for goods k 6= j does not increase.

Assumption 2 (weak substitutes). �j (x) is weakly decreasing in xk for all j 2 J ,

k =2 f0; jg.

We make three comments on this restriction. First, in a discrete choice model it is implied

by the standard assumptions that xj is excluded from the conditional indirect utilities of

goods k 6= j and that the conditional indirect utility of good j is increasing in xj.

Second, although Assumption 2 appears to rule out complements, it does not. In the

case of indivisible goods, demand can be characterized as arising from a discrete choice

model in which every bundle is a distinct choice (e.g., Gentzkow (2004)). As already noted,

the weak substitutes condition is mild in a discrete choice demand system. In the case of

divisible goods, the fact that � may be any transformation of the demand system enables

Assumption 2 to admit some models of complements, including some with arbitrarily strong

complementarity. Example 1 below illustrates.

Finally, consider the relation of this assumption to a requirement of strict gross substi-

tutes. If good zero is a real good, then our weak substitutes condition is weaker, corre-

sponding to the usual notion of weak gross substitutes. When good 0 is an arti�cial good,

Assumption 2 strengthens the weak gross substitutes condition in a natural way: taking the

case where x is (minus) price, all else equal, a fall in the price of some good j > 0 cannot

cause the total demand (over all goods) to fall.

To state the second condition characterizing connected substitutes, we �rst de�ne a

directional notion of (strict) substitution.

De�nition 1. Good j substitutes to good k at x if �k (x) is strictly decreasing in xj.

Consider a decline in xj with all else held �xed. By Assumption 2 this weakly raises

�k (x) for all k 6= j. The goods to which j substitutes are those whose demands �k (x)
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strictly rise. When xj is (minus) the price of good j, this is a standard notion. De�nition 1

merely extends this notion to other demand shifters that may play the role of x. Although

this is a directional notion, in most examples it is symmetric; i.e., j substitutes to k i¤ k

substitutes to j.6 An exception is substitution to good 0: since any demand shifters for

good 0 are held �xed, De�nition 1 does not de�ne substitution from good 0 to other goods.7

It will be useful to represent substitution among the goods with the directed graph of a

matrix � (x) whose elements are

�j+1;k+1 =

8<: 1 fgood j substitutes to good k at xg j > 0

0 j = 0:

The directed graph of � (x) has nodes (vertices) representing each good and a directed edge

from node k to node ` whenever good k substitutes to good ` at x.

Assumption 3 (connected strict substitution). For all x 2 X �, the directed graph of

� (x) has, from every node k 6= 0, a directed path to node 0.

Figure 1 illustrates the directed graphs of � (x) at generic x 2 ~X for some standard

models of di¤erentiated products, letting �x be the price vector and assuming (as usual)

that each conditional indirect utility is strictly decreasing in price. The connected substitutes

conditions hold for X � � ~X in all of these models. As panel e illustrates, they hold even

when J is comprised of independent goods and either an outside good or an arti�cial good

0. Each of these examples has an extension to models of discrete/continuous demand (e.g.,

Novshek and Sonnenschein (1979), Hanemann (1984), Dubin and McFadden (1984)), models

of multiple discrete choice (e.g., Hendel (1999), Dube (2004)), and models of di¤erentiated

products demand (e.g., Deneckere and Rothschild (1992), Perlo¤ and Salop (1985)) that

6See, e.g., Appendix D. We emphasize that this refers to symmetry of the binary notion of substitution
de�ned above, not to symmetry of any magnitudes.

7If good 0 is a real good designated to normalize utilities or prices, one can imagine expanding x to
include x0 and de�ning substitution from good 0 to other goods prior to the normalization that �xes x0. If
Assumption 3 holds under the original designation of good 0, it will hold for all designations of good 0 as
long as substitution (using the expanded vector x = (x0; : : : xJ)) is symmetric at all x 2 ��.
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Figure 1: Directed graphs of � (x) for x 2 ~X (x equals minus price) in some standard models
of di¤erentiated products. Panel a: multinomial logit, multinomial probit, mixed logit, etc.;
Panel b: models of pure vertical di¤erentiation, (e.g., Mussa and Rosen (1978), Bresnahan
(1981b), etc.); Panel c: Salop (1979) with random utility for the outside good; Panel d:
Rochet and Stole (2002); Panel e: independent goods with either an outside good or an
arti�cial good 0.
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provide a foundation for representative consumer models of monopolistic competition (e.g.,

Spence (1976), Dixit and Stiglitz (1977)).8 Note that only the models represented in panel

a satisfy strict gross substitutes.

As we have noted already, allowing complementarity is straightforward with indivisible

goods. Further, natural restrictions such as additive or subadditive bundle pricing would

only help ensure invertibility by restricting the set X �.9 The following example shows that

complements can be accommodated even in some models of demand for divisible goods.

Example 1 (Demand for Divisible Complements). Let qj(p) : R+ ! R+ denote a

di¤erentiable function giving the quantity of good j demanded at price vector p (here x = �p).

Let q0 (p) = q0 be a small positive constant and de�ne Q (p) �
PJ

j=0 qj (p). Let �jk (p) denote

the elasticity of demand for good j with respect to pk and let �Qk (p) denote that of Q (p) with

respect to pk. If we assume that for all p such that qj (p) > 0, (i) Q (p) is strictly decreasing

in pj 8j � 1, and (ii) �jk (p) � �Qk (p) 8k; j 6= k, then it is easily con�rmed that the connected

substitutes conditions hold for any X � � ~X under the transformation of demand to �market

shares��j (p) =
qj(p)

Q(p)
(see Appendix B). A simple example is the constant elasticity demand

system in which qj (p) = Ap��j
Q
k 6=j p

��
k with � > � > 0. For for su¢ ciently small q0

and any X � such that all qj are bounded above zero, conditions (i) and (ii) above are easily

con�rmed (see Appendix B).

The following lemma provides a useful reinterpretation of Assumption 3.

Lemma 1. Assumption 3 holds i¤ for all x 2 X � and any nonempty K � f1; : : : ; Jg, there

exist k 2 K and ` =2 K such that �` (x) is strictly decreasing in xk.

8Mosenson and Dror (1972) used a graphical representation to characterize the possible patterns of sub-
stitution for Hicksian demand. Suppose x is minus the price vector, expanded to include the price of
good zero (see footnote 7). Suppose further that � is di¤erentiable and represents the Hicksian (compen-
sated) demand of an individual consumer. Let �+ (x) be the expanded subsitution matrix, with elements
�+j+1;k+1 = 1 fgood j substitutes to good k at xg : Mosenson and Dror (1972) show that the directed graph
of �+ (x) must be strongly connected. This is a su¢ cient condition for Assumption 3.

9In a recent working paper, Azevedo, White, and Weyl (forthcoming) consider an exchange economy with
indivisible goods and a continuum of �nancially unconstrained consumers with quasilinear utilities. They
focus on existence of Walrasian equilibrium prices but also consider uniqueness under a restriction to additive
pricing of the elementary goods in each bundle. Their �large support�assumption on preferences makes all
bundles strict gross substitutes in the aggregate demand function. See the related discussion in section 2.
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Proof. (necessity of Assumption 3) Let I0 (x) � J be comprised of 0 and the indexes of all

other goods whose nodes have a directed path to node 0 in the directed graph of � (x). If

Assumption 3 fails, then for some x 2 X � the set K = J nI0 (x) is nonempty. Further, by

construction there is no directed path from any node in K to any node in I0 (x). Thus,

there do not exist k 2 K and ` =2 K such that �` (x) is strictly decreasing in xk:

(su¢ ciency) Assumption 3 implies that for all x 2 X � and any nonempty K � J n0, every

node k0 2 K has a directed path in � (x) to node 0 =2 K. By de�nition, on this directed

path there exists some k 2 K (possibly k = k0) and ` =2 K (possibly ` = 0) such that good k

substitutes to good `. �

Thus, Assumption 3 requires that there be no strict subset of goods that substitute only

among themselves. Note that when good 0 is an arti�cial good, its presence in J weakens

the requirements of Assumption 3: taking the case where x is (minus) price, when the price

of some good j > 0 falls it may be only the demand for good zero that strictly declines.

Finally, when introducing the model we suggested that xj should be thought of as a

monotonic shifter of demand for good j. The following remark shows that we have implicitly

imposed this monotonicity with the connected substitutes conditions.

Remark 1. Suppose Assumptions 2 and 3 hold. Then for all x 2 X � and j > 0, �j (x) is

strictly increasing in xj:

Proof. Take x 2 X � and x0 2 X such that x0j > xj; x
0
k = xk 8k 6= j. Assumption 2 implies

�k (x
0) � �k (x) 8k 6= j: Further, by Lemma 1, �` (x0) < �` (x) for some ` 6= j. Thus,P

k 6=j �` (x
0) <

P
k 6=j �` (x). The claim then follows from (2). �

5 Invertibility of Demand

To establish our main result, we begin with two lemmas. The �rst shows that under weak

substitutes, if xj weakly increases for (only) a subset of goods j, demand for the remaining

13



goods (taken as a whole) does not increase.10 Adding the requirement of connected strict

substitution, Lemma 3 then shows that, all else equal, a strict increase in xj for some goods

j strictly raises demand for those goods (taken as a whole). This intuitive property is the

key to our injectivity result.

Lemma 2. Given Assumption 1, Assumption 2 implies that for any I � J and any x; x0 2 X

such that for all j 6= 0, x0j � xj if j 2 I and x0j � xj if j =2 I,
P

k=2I �k (x
0) �

P
k=2I �k (x).

Proof. Let ~x be such that, for all j 6= 0, ~xj = xj if j 2 I and ~xj = x0j if j =2 I. If J nI

contains only 0, then ~x = x and

X
k=2I

�k(~x) �
X
j =2I

�k(x) (3)

trivially. If instead J nI contains any nonzero element, without loss let these be 1; : : : ; n.

Then let ~x(0) = x, r = 0, and consider the following iterative argument. Add one to r and,

for all j > 0, let ~x(r)j = ~x
(r�1)
j + 1 fj = rg

�
x0j � xj

�
. Assumption 1 ensures that � is de�ned

at ~x(r) =
�
~x
(r)
1 ; : : : ; ~x

(r)
J

�
. By Assumption 2,

P
j2I �j(~x

(r)) �
P

j2I �j(~x
(r�1)). Iterating until

r = n and applying (2) we obtain (3). A parallel argument shows that

X
k=2I

�k(x
0) �

X
k=2I

�k(~x)

and the result follows. �

Lemma 3. Let Assumptions 1�3 hold. Then for all x; x0 2 X � such that I �
�
j : x0j > xj

	
is nonempty,

P
j2I �j (x

0) >
P

j2I �j (x) :

Proof. Since 0 =2 I, Lemma 1 ensures that for some k 2 I and some ` =2 I, �` (x) is

strictly decreasing in xk. Take one such pair (k; `). De�ne a point ~x by ~xj = xj +

10The converse also holds: taking x0j � xj , x0i = xi 8i 6= j; and I = J n fkg, we obtain �k (x) weakly
decreasing in xj .
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(x0k � xk) 1 fj = kg 8j > 0. Assumption 1 ensures that � is de�ned at ~x. By Assumption 2,

�j (~x) � �j (x) for all j 6= k. Further, �` (~x) < �` (x) by our choice of (k; `). So, since ` =2 I;

X
j =2I

�j (~x) <
X
j =2I

�j (x) :

By Lemma 2,
P

j =2I �j (x
0) �

P
j =2I �j (~x), so we obtain

X
j =2I

�j (x
0) �

X
j =2I

�j (~x) <
X
j =2I

�j (x)

and the result follows from (2).11 �

To demonstrate invertibility of demand under the connected substitutes conditions, we

will �rst show that � is inverse isotone on X �. Below we use � to denote the component-wise

weak partial order on Rn. Thus for y; y0 2 Rn, y � y0 i¤ yi � y0i for all i = 1; : : : ; n:

De�nition 2. A mapping F : D � Rn ! Rm is inverse isotone if for any y; y0 2 D,

F (y0) � F (y) implies y0 � y:

Theorem 1. Under Assumptions 1�3, � is inverse isotone on X �.

Proof. Take any x; x0 2 X � such that

� (x0) � � (x) (4)

and suppose, contrary to the claim, that the set I =
�
j : x0j > xj

	
is non-empty. By Lemma

3 this requires X
j2I

�j (x
0) >

X
j2I

�j (x)

which contradicts (4). �

11If X � is open then, given Assumption 2, Assumption 3 is necessary for the conclusion of this lemma.
Suppose Assumption 3 fails. Then by Assumption 2 and Lemma 1 there is some x 2 �� and some nonempty
K � J n0, such that �` (x) is constant in xk for all k 2 K and all ` =2 K. For some � > 0 and each k 2 K
let x0k = xk + �, while x0j = xj for j =2 K. Now I = K. For su¢ ciently small � we have x0 2 X � andP
j =2I �j (x

0) =
P

j =2I �j (x), which implies
P

j2I �j (x
0) =

P
j2I �j (x).

15



Injectivity follows from Theorem 1, exploiting the following well known observation (e.g.,

Rheinboldt (1970b)).12

Remark 2. If F : D � Rn ! Rm is inverse isotone, it is injective.

Proof. Suppose F (y) = F (y0) for y; y0 2 D. Since F is inverse isotone this implies both

y � y0 and y0 � y; hence y0 = y: �

This gives us our main result:

Corollary 1. Under Assumptions 1�3, � is injective on X �.

6 Discussion

Given the new set of su¢ cient conditions for invertibility provided by Corollary 1, two

questions naturally arise. One is whether these conditions are unnecessarily strong. Another

is how these conditions relate to those required by the classic results of Gale and Nikaido

(1965) and Hadamard (1906a, 1906b). In this section we provide partial answers to these

questions and develop some additional results of independent interest. To facilitate this, we

assume � is di¤erentiable on X �. In addition, consider the following di¤erentiable version

of the connected strict substitution requirement in Assumption 3 (recall Lemma 1).

Assumption 3�. For all x 2 X � and any nonempty K � f1; : : : ; Jg, there exist k 2 K and

` =2 K such that @�`(x)
@xk

< 0:

Given di¤erentiability, this condition slightly strengthens Assumption 3 by ruling out a

zero derivative @�`(x)
@xk

where �` (x) is strictly increasing in xk. Let J� (x) denote the Jacobian

matrix 26664
@�1(x)
@x1

: : : @�1(x)
@xJ

...
. . .

...

@�J (x)
@x1

: : : @�J (x)
@xJ

37775 :
12Another application of Theorem 1 appears in a recent paper by Gandhi, Lu, and Shi (2011). They

exploit the inverse isotone property shown here in studying identi�cation and estimation of multinomial
choice demand models under mismeasurement of market shares.
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Theorem 2. Suppose Assumption 2 holds and that � (x) is di¤erentiable on X �. Then the

following conditions are equivalent:

(i) J� (x) is nonsingular on X �;

(ii) J� (x) is a P -matrix on X �;

(iii) Assumption 3*.

Proof. See Appendix A. �

This result leads to several valuable observations:

Near Necessity. Equivalence between conditions (i) and (iii) suggests that our su¢ cient

conditions for invertibility are not much too strong. Given weak substitutes and di¤erentia-

bility, Assumption 3* (slightly stronger than Assumption 3) is necessary for a nonsingular

Jacobian. Thus, given the restriction to demand systems that can be transformed to satisfy

weak substitutes, connected substitutes may be viewed as �nearly necessary�for even local

invertibility.

Relation to Gale-Nikaido. The equivalence between conditions (ii) and (iii) provides a

tight link between connected substitutes and the P -matrix condition required by the classic

result of Gale and Nikaido (1965).13 Given di¤erentiability and weak substitutes, Gale and

Nikaido�s P -matrix requirement is equivalent to a slightly strengthened version of our As-

sumption 3. One would never use this observation to establish invertibility: if the connected

substitutes conditions hold, Corollary 1 establishes invertibility without the additional dif-

ferentiability and domain restrictions Gale and Nikaido relied on. However, Theorem 2

clari�es the relationship between the two results.14 One interpretation is that we drop Gale

and Nikaido�s di¤erentiability requirement, replace the restriction to rectangular X � with

13Recall that, given di¤erentiability and a nonsingular Jacobian J� (x) on a rectangular domain X �, they
required further that J� (x) be a P -matrix on X �:

14A secondary result (Theorem 5) in Gale and Nikaido (1965) shows that their injectivity result can be
extended to show inverse isotonicity under the additional restriction that J� (x) has only nonpositive o¤-
diagonal entries. Our weak substitutes assumption strengthens their restriction on the o¤-diagonals only
by requiring �0 (x) to be nonincreasing in each xj . This allows us to avoid their problematic requirement
of a rectangular domain and implies that their P -matrix requirement would add nothing to the requirement
of nonsingular Jacobian.
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the weak substitutes condition, and replace the P -matrix requirement with the more eas-

ily interpreted but essentially equivalent (slightly weaker) requirement of connected strict

substitution.

AGlobal Inverse Function Theorem. One corollary to our two theorems is the following

global inverse function theorem for a mapping with arbitrary open domain.

Corollary 2. Let � : RJ ! RJ be a C1 function and suppose that, given (2), Assumption 2

holds. Then for any open X � � RJ , the restriction of � to X � has a C1 inverse on � (X �)

i¤ J� (x) is nonsingular on X �.

Proof. Necessity of a nonsingular Jacobian for existence of a di¤erentiable inverse follows

from the identity ��1 (� (x)) = x and the chain rule. To show su¢ ciency, observe that

by Theorem 2 a nonsingular Jacobian on X � implies that Assumption 3* holds. Thus the

restriction of � to X � is inverse isotone by Theorem 1, implying that � has an inverse on

� (X �). By the standard inverse function theorem this inverse is C1 in a neighborhood of

every point in � (X �) and, thus, C1 on � (X �). �

This result shows that if weak substitutes holds, the conclusion of the usual (local)

inverse function theorem extends to any open subset of the domain. This follows from the

equivalence between conditions (i) and (iii) in Theorem 2.

Corollary 2 may be compared to the classic result of Hadamard (and its extensions), which

shows that if both X � and S� are smooth connected manifolds and S� is simply connected,

a C1 map � : X � ! S� is a di¤eomorphism (i.e., a smooth bijection) if and only if it has

nonzero Jacobian onX � and is �proper.�15 Corollary 2 avoids any connectedness condition on

the domain or range and replaces properness with the weak substitutes condition. Whereas

properness is not easily veri�ed, we have shown that weak substitutes is a natural property of

many demand systems. Finally, our Assumption 3* provides a widely applicable condition

equivalent (given weak substitutes) to Hadamard�s requirement of local invertibility. Of

course, our main result (Corollary 1) requires neither smoothness nor open domain.

15See e.g., Palais (1959), Ho (1975), Parthasarathy (1983), Parthasarathy and Ravindran (2003), and
Krantz and Parks (2002). A function is proper if the pre-image of any compact set is compact.
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Unlike Hadamard�s theorem, Corollary 2 avoids the question of surjectivity (and the

additional requirements this creates) by seeking a smooth inverse only on � (X �). Rhein-

boldt (1970a) provides necessary and su¢ cient conditions for surjectivity onto RJ for inverse

isotone functions.

Transforming Demand. As noted already, if f (x) describes a demand system that does

not itself satisfy the connected substitutes conditions, it may be possible to �nd a function g

such that � = g �f does. Theorem 2 provides some guidance on suitable transformations g.

If both f and g have nonsingular Jacobians� a requirement one might not expect to avoid

in seeking to show invertibility of a di¤erentiable demand system� then by the equivalence

of conditions (i) and (iii) it is su¢ cient to verify that g � f satis�es weak substitutes.

Identi�cation and Estimation in Di¤erentiated Products Markets. The su¢ ciency

of condition (iii) for conditions (i) and (ii) in Theorem 2 is important to the econometric

theory underlying standard empirical models of di¤erentiated products markets (e.g., Berry,

Levinsohn, and Pakes (1995)). Berry and Haile (2010a) use the latter implication to establish

nonparametric identi�ability of �rms�marginal costs and to testability of alternative models

of oligopoly competition. There the P -matrix property ensures invertibility of the derivative

matrix of market shares with respect to prices for goods produced by the same �rm� a matrix

appearing in the �rst-order conditions characterizing equilibrium behavior. Their results

generalize immediately to models with continuous demand satisfying connected substitutes.

Berry, Linton, and Pakes (2004) provide the asymptotic distribution theory for a class of

estimators for discrete choice demand models. A key condition, con�rmed there for special

cases, is that the Jacobian of the demand system (with respect to a vector of demand shocks)

is full rank on X �. Su¢ ciency of the connected substitutes conditions again establishes

economically interpretable su¢ cient conditions with wide applicability.
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7 Conclusion

We have introduced the notion of connected substitutes and shown that this structure is

su¢ cient for invertibility of a nonparametric nonseparable demand system. The connected

substitutes conditions are satis�ed in a wide range of models used in practice, including many

with complementary goods. These conditions have transparent economic interpretation,

are easily checked in practice, and allow demonstration of invertibility without functional

form restrictions, smoothness assumptions, or strong domain restrictions commonly relied

on previously. Further, given a restriction to weak substitutes, our su¢ cient conditions are

also �nearly necessary�for even local invertibility.

Appendices

A Proof of Theorem 2

We �rst review some de�nitions (see, e.g., Horn and Johnson (1990)). A square matrix is

reducible if it can be placed in block upper triangular form by simultaneous permutations of

rows and columns. A square matrix that is not reducible is irreducible. A square matrix A

with elements aij is (weakly) diagonally dominant16 if for all j

jajjj �
X
i6=j

jaijj:

If the inequality is strict for all j, A is said to be strictly diagonally dominant. An irreducibly

diagonally dominant matrix is a square matrix that is irreducible and weakly diagonally

dominant, with at least one diagonal being strictly dominant, i.e., with at least one column

16Here we refer to column dominance, not row dominance.
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j such that

jajjj >
X
i6=j

jaijj: (A.1)

We begin with three lemmas concerning square matrices. The �rst is well known (see,

e.g., Taussky (1949) or Horn and Johnson (1990), p. 363) and the third is a variation on a

well known result. The second appears to be new.

Lemma 4. An irreducibly diagonally dominant matrix is nonsingular.

Lemma 5. Let D be a square matrix with nonzero diagonal entries and suppose that every

principal submatrix of D is weakly diagonally dominant, with at least one strictly dominant

diagonal. Then D is nonsingular.

Proof. LetM = D and consider the following iterative argument. IfM is 1�1; nonsingularity

is immediate from the nonzero diagonal. For M of higher dimension, if M is irreducible the

result follows from Lemma 4. Otherwise M is reducible, so by simultaneous permutation of

rows and columns, it can be placed in block upper triangular form; i.e., for some permutation

matrix P ,

M� � PMP 0 =

24 A B

0 C

35
where A and C are square matrices. Simultaneous permutation of rows and columns changes

neither the set of diagonal entries nor the o¤-diagonal entries appearing in the same column

(or row) as a given diagonal entry. Each principal submatrix of A or of C is also a principal

submatrix of D. Thus, A and C have only nonzero diagonal entries and are such that every

principal submatrix is diagonally dominant with at least one strictly dominant diagonal. M

is nonsingular if M� is, so it is su¢ cient to show that both A and C are nonsingular. Let

M = A and restart the iterative argument. This will show A to be nonsingular, possibly

after further iteration. Repeating for M = C completes the proof. �

Lemma 6. Suppose a real square matrix D is weakly diagonally dominant with strictly

positive diagonal elements. Then jDj � 0.
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Proof. Let Dij denote the elements of D. For � 2 [0; 1] de�ne a matrix D (�) by

Dij (�) =

8<: Dij i = j

�Dij i 6= j:

For � < 1, D (�) is strictly diagonally dominant. Since the diagonal elements of D (�) are

strictly positive this implies jD (�)j > 0 (see, e.g., Theorem 4 in Taussky (1949)). Since

jD (�)j is continuous in � and jD (1)j = jDj, the result follows. �

Two observations regarding the demand system � will be useful.

Remark 3. Suppose � is di¤erentiable on X � and that Assumptions 2 and 3* hold. Then
@�j(x)

@xj
> 0 for all j > 0 and x 2 X �:

Proof. Di¤erentiate (2) with respect to xj and applying Assumptions 2 and 3*. �

Lemma 7. Suppose � is di¤erentiable on X � and that Assumptions 2 and 3* hold. Then

for all x 2 X �, every principal submatrix of J� (x) is weakly diagonally dominant, with at

least one strictly dominant diagonal.

Proof. Take x 2 X � and nonemptyK � f1; 2; : : : ; Jg. LetDK(x) denote the principal subma-

trix of J� (x) obtained by deleting rows r =2 K and columns c =2 K. Because
P

k2J �k (x) = 1,

X
k2J

@�k (x)

@xj
= 0:

By Remark 3 and Assumption 2, @�j(x)
@xj

> 0 and @�k(x)
@xj

� 0 8j > 0, k 6= j. So for j 2 K

����@�j (x)@xj

���� = X
k2K�fjg

����@�k (x)@xj

����+X
`=2K

����@�` (x)@xj

���� : (A.2)

This implies ����@�j (x)@xj

���� � X
k2K�fjg

����@�k (x)@xj

���� : (A.3)
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Furthermore, since 0 =2 K, Assumption 3* implies that for some j 2 K the second sum in

(A.2) is strictly positive. For that j the inequality (A.3) must be strict. �

With these results in place, we now prove the su¢ ciency of condition (iii) in Theorem 2

for condition (ii). This will immediately imply su¢ ciency for condition (i). Take arbitrary

x 2 X � and let D (x) be a principal submatrix of J� (x). Since every principal submatrix of

D (x) is also a principal submatrix of J� (x), Lemma 7 implies that every principal submatrix

of D (x) is weakly diagonally dominant with at least one strictly dominant diagonal. Thus,

by Lemma 5, D (x) is nonsingular. Since, by Remark 3, D (x) also has strictly positive

diagonal entries, it follows from nonsingularity and Lemma 6 that jD (x)j > 0.

Finally, we show necessity of condition (iii) in Theorem 2 for condition (i). This will

immediately imply necessity for condition (ii). Suppose condition (iii) fails. Then by As-

sumption 2, for some x 2 X � there is a nonempty set K � f1; : : : ; Jg such that @�j(x)

@xk
= 0

for all k 2 K and all j 2 J nK. Fix this value of x and, without loss, permute the labels of

goods 1; : : : ; J so that K = f1; : : : ; jKjg. If jKj < J , J� (x) has block triangular form

24 A B

0 C

35
where A is jKj � jKj. If instead jKj = J , let A = J� (x). Because 0 =2 K, @�0(x)

@xk
is zero for

all k 2 K, so (2) requires X
j2K

@�j (x)

@xk
= 0 8k 2 K.

Thus, either jKj = 1 and A = @�1(x)
@x1

= 0, or @�1(x)
@xk

= �
PjKj

j=2
@�j(x)

@xk
8k 2 K. In either case,

A is singular and the result follows.

B Demand for Divisible Complements

Here we demonstrate two assertions made in the discussion of Example 1 in the text.
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Proposition 1. Let q0 (p) = q0 be a small positive constant and de�ne Q (p) =
PJ

j=0 qj (p).

Suppose that for all p such that qj (p) > 0, (i) Q (p) is strictly decreasing in pj 8j � 1 and

(ii) �jk (p) � �Qk (p) 8k; j 6= k. Then Assumptions 2 and 3 hold for any X � � ~X under the

transformation �j (p) =
qj(p)

Q(p)
:

Proof. We �rst verify the weak substitutes condition. If qj (p) = 0, @qj(p)
@pk

cannot be neg-

ative, so the derivative @�j(p)

@pk
=

@qj(p)

@pk
=Q(p) is nonnegative. When qj (p) > 0, @�j(p)

@pk
=h

Q (p)
@qj(p)

@pk
� qj (p) @Q(p)@pk

i
=Q(p)2, which is nonnegative if @qj(p)

@pk

pk
qj(p)

� @Q(p)
@pk

pk
Q(p)

. We have

assumed this in (ii). To show that Assumption 3 holds, observe that since �0 (p) =
q0
Q(p)

, (i)

implies that each good j 6= 0 substitutes directly to the arti�cial good zero on ~X . �

Proposition 2. For p such that qk (p) � � > 0 for all k > 0, the hypotheses of Proposition 1

hold for q0 su¢ ciently small when, for all j > 0, qj (p) = Ap��j
Q
k=2f0;jg p

��
k with � > � > 0.

Proof. Part (i) of the hypotheses is immediate since all real goods have downward sloping

demand and are strict gross complements. Since �Qk (p) =
PJ

j=1 �j (p) �jk (p), part (ii)

holds if

�� � � [1� �k (p)� �0 (p)] � � �k (p)�

i.e.,

� � qk (p)

qk (p) + q0
�:

Since qk (p) � � > 0 and � < �, this holds for su¢ ciently small q0. �

C A Lancasterian Example

Consider a simple variation of Lancaster�s (1966) �diet example,� illustrating a continuous

demand system with only local substitution, with a non-rectangular domain of interest, and

where the introduction of an arti�cial good 0 is useful even though an outside good is already

modeled. A representative consumer has a budget y and chooses consumption quantities
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(q1; q2; q3) of three goods: wine, bread, and cheese, respectively. Her preferences are given

by a utility function

u (q1; q2; q3) = ln(z1) + ln (z2) + ln (z3) +m

where (z1; z2; z3) are consumption of calories, protein, and calcium, and m is money left to

spend on other goods. The mapping of goods consumed to characteristics consumed is given

by17

z1 = q1 + q2 + q3

z2 = q2 + q3

z3 = q3:

We assume y > 3. The set of prices (p1; p2; p3) such that all goods are purchased is de�ned

by

0 < p1 < p2 � p1 < p3 � p2: (C.1)

Since p plays the role of x here, (C.1) de�nes ~X , which is not a rectangle. Let X �= ~X .

It is easily veri�ed that demand for each inside good is given by

�1 (p) =
1

p1
� 1

p2 � p1
�2 (p) =

1

p2 � p1
� 1

p3 � p2
(C.2)

�3 (p) =
1

p3 � p2

for p 2 X �. These equations fully characterize demand for all goods. However, we introduce

17Unlike Lancaster (1966), we sacri�ce accuracy of nutritional information for the sake of simplicity.
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the arti�cial quantity of �good 0�, de�ned by

q0 � 1�
3X
j=1

qj: (C.3)

Observe that this arti�cial good is not the outside goodm. Further, the connected substitutes

conditions would not hold if the outside good were treated as good 0:

With (C.2), (C.3) implies

�0 (p) = 1�
1

p1
:

From these equations, it is now easily con�rmed that Assumption 2 holds Further, goods 2

and 3 strictly substitute to each other, goods 1 and 2 strictly substitute to each other, and

good 1 strictly substitutes to good 0. Thus, Assumption 3 also holds.

D Symmetric Strict Substitution

Our graphical illustrations of the connected substitutes property involved examples in which

(strict) substitution is symmetric, i.e., good j substitutes to good k only if good k also

substitutes to good j (excepting substitution from good 0, as discussed in the text). The

following result shows that this generically true in discrete choice models given monotonicity

in xj.

Proposition 3. Consider a discrete choice model in which each consumer i�s conditional

indirect utility from good j is vij = vj (xj; �i), j = 1; : : : ; J . Suppose the (possibly in�nite-

dimensional) parameter �i is independent of x and that vj (�; �i) is strictly increasing for all

�i. Then for all j 2 f1; : : : ; Jg ; k 2 f1; : : : ; Jg nj, and almost all x, �k (x) strictly decreasing

in xj implies �j (x) is strictly decreasing in xk.

Proof. Strict monotonicity implies that for all �i, vj (�; �i) and vk (�; �i) are almost everywhere

continuous. Take a point of continuity x. By the exclusion of xj from vk (�) for k 6= j, to
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have �k (x) strictly decreasing in xj requires that for all � > 0

Pr

�
� > vij � vik > ��;min fvij; vikg > max

`6=j;k
vi`

�
> 0:

This implies that �j (x) is strictly decreasing in x. �
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