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Abstract

The basic two-noncooperative-equilibrium-point model of Diamond
and Dybvig is considered along with the work of Morris and Shin utiliz-
ing the possibility of outside noise to select a unique equilibrium point.
Both of these approaches are essentially nondynamic. We add an ex-
plicit replicator dynamic from evolutionary game theory to provide
for a sensitivity analysis that encompasses both models and contains
the results of both depending on parameter settings.
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1 The Diamond-Dybvig model and multiple

equilibria

We doubt that there is a single universal explanation of financial bubbles
and panics. There are just too many plausible possibilities available. A con-
catenation of many different special circumstances may suffice. Nevertheless
Diamond and Dybvig [1] (DD) in a seminal article presented a basic struc-
ture simple enough to be illustrated in the form of a two-stage game with two
well defined noncooperative equilibria, one reflecting a panic and the other
an optimally functioning economy with the choice for panic not exercised.
Their general framework has served as a model for a variety of questions
concerning coordinated equilibria and endogenous risk, and provided ground
for comparison of different equilibrium concepts.

The essential features of multiple-equilibrium models of the DD type is
reviewed in an article by Diamond [2]. There are three decision points T =
0, 1, 2, and an investment opportunity with increasing returns to the time
invested. An individual investing at T = 0 does not know whether she will
need to consume at T = 1 or at T = 2. This can be modeled by assuming
that at time T = 1 each agent is informed of the outcome of a lottery which
with probability θ declares that she needs to consume at time T = 1 and
with probability (1− θ) that she will need to consume at T = 2. Banks issue
demand deposits and can act as proxy investors for individuals; because it
pools deposits the bank’s needs for early termination of the investment are
less severe than those faced by any individual. Therefore, under optimal
conditions, the bank’s demand deposits remain liquid assets even though its
investments are not.

The model of demand-deposit contracts is that a bank repays an amount
r1 per unit deposited for money held for one period, and an amount r2 for
money held two periods, where r1 < r2. In the example of Ref [2], agents
consume their withdrawals, labeled c1 at T = 1 and c2 at T = 2. If their
consumption utility is U(c) = (1− 1/c), they are risk averse. Continuing
with the example, all agents are endowed with one unit which they deposit,
(θ, 1− θ) are set to (1/4, 3/4), and two assets are considered. One (inter-
preted as the underlying investment opportunity) is illiquid; if liquidated in
period T = 1 pays only 1, while if held until period T = 2 it pays 2. The
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resulting expected utility of an individual holding the asset is

(1− 1/1)

4
+

3 (1− 1/2)

4
= 0.375.

A more liquid asset, in this case one created by bank deposits, might pay
(r1, r2) = (1.28, 1.813) in the two periods, giving an expected utility for a
one-unit deposit of

(1− 1/1.28)

4
+

3 (1− 1/813)

4
= 0.391 > 0.375,

although the total amount paid out is less for the second asset than the
first. Ref. [2] describes a variety of situations in which either consumers or
investors might be sufficiently risk averse to prefer the second asset to the
first despite its lower total payout.

However, as long as r1 > 1, a second equilibrium also exists in which
agents who do not need to withdraw at T = 1 do so anyway, making the
bank insolvent, ensuring zero payout to any individual withdrawing at T = 2
(and thereby ensuring that there will be no such waiting individuals at this
Nash equilibrium), and generating a new lottery to be paid either r1 or
nothing for the agents who withdraw at T = 1. The second equilibrium is
the bank run.

The original Diamond-Dybvig model is ingenious in capturing the essen-
tial trade-off between “created” liquidity and co-created endogenous risk.
However, it is fundamentally an equilibrium analysis, leaving many aspects
of the solution concept implicit, and not considering the dynamics of panics.
In particular, it makes multiple uses of “expectations” in the descriptive ap-
plication of the model, which require further elaboration. As is standard in
games with multiple equilibria, the choice of any investor to run or not to
run is a best response “if all are expected to do this” [2]. Yet in the crucial
question whether it can be rational for investors to deposit in a bank sub-
ject to runs, rationality is defended “provided that the probability of a run
is small enough” [1]. The proposition that expectations can be rational but
time-inconsistent (choosing to deposit and later choosing to run) requires the
introduction of an additional (delayed) signal, and hence the refinement of
the problem to an extensive-form game and a solution by correlated equilib-
rium. When these features were added several years later in a stimulating
article by Morris and Shin [3], their conclusion was that under a general hash
of uncertainty only one equilibrium survives for a given state of the world θ.
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To consider the relation of these conclusions and also provide some con-
text in dynamics, we first consider the role of interpretation of solution con-
cepts and then analyze a simplified version of the Diamond-Dybvig model
at three levels: in the original Nash equilibrium of the strategic form with
implicit expectations, in a correlated subgame-perfect equilibrium of the cor-
responding extensive form, and finally using a replicator dynamic to identify
subgame fixed points and their stability.

1.1 Durable intuition, formal claims that depend sen-
sitively on modeling paradigm

The extent to which formal solution methods capture, ratify, or distort in-
tuitions about what constitute important economic problems can be compli-
cated. Together with bank runs, other problems such as currency attacks [3],
or more general processes involving threat, illustrate this difficulty. The intu-
ition derived from the empirical descriptive tradition – that outcomes depend
on mutual confidence – may in the end be more compelling than conclusions
of models attempting to formalize rational choice. Confidence is a concept
that grows out of information and dynamics. In models, it may be omitted
entirely, approximated with additional layers of variables and operators re-
flecting belief [4], or entailed in specific dynamical mechanistic models for
learning or updating actions.

The original DD model [1] and its subsequent exposition [2] invoke but do
not model expectations. As is known from the substantial literature on folk
theorems for repeated games [5, 6, 7], expectation or implicit prior agreement
can be a powerful tool for defending a very wide range of outcomes to a game
as non-cooperative equilibria, but this very flexibility calls into question what
is thereby learned from “solving” the game. The virtue of not formalizing
expectations, however, is that it can allow the equilibrium analysis to address
a rather subtle intuition that, against a background of contracts and trades
that is mostly orderly, multiple equilibria do nonetheless exist and are in some
sense indeterminate, and that this indeterminacy is an important source of
endogenous risk. Using equilibrium as a base case (and to establish notation)
we first repeat the standard two-equilibrium solution for a simplified bank-
run model in strategic form.

We then address the problem of contingently rational expectations by ex-
panding the strategic form into an extensive form in which knowledge about
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the moves by nature can support subgame-perfect, non-cooperative, corre-
lated equilibria. Our information model is one instance of a result of Morris
and Shin [3] (MS) which appears to refute the intuition from the DD equilib-
rium analysis. MS show that in the presence of small imprecisions in agents’
signals of the population state that underlie the correlated equilibrium, no
strategy can outperform a simple threshold strategy, which then selects be-
tween the coordinated and uncoordinated equilibria, removing indeterminacy
and its associated risk. A key feature of this result is that the amount of
imprecision may be arbitrarily small, and its form may vary widely, and the
MS theorem will still hold, even though a singular limit with no impreci-
sion remains indeterminate as in the DD analysis. Such regular limits with
removable singularities at the limit points are not uncommon in rational-
expectations equilibria, but they raise a caution about the interpretation of
theorems. As we have discussed [8] in regard to one of the better-known cases
– the Hahn paradox, or what establishes the salvage value of a fiat money
in long-term circulation – singular limits may signal the inherent fragility of
rational-expectations strategies, and in real situations these fragilities can be
exposed in explicit models of dynamics.

Therefore, in a third treatment, we re-formulate the process of identifying
the non-cooperative rational-expectations equilibrium of MS as the dynami-
cal convergence toward an Evolutionary Stable State [9] (ESS) in a replicator
dynamic. The simple structure of the model we will adopt ensures that, in
a suitable low-fluctuation limit, the ESS correspond to the Nash rational-
expectations equilibria. While a dynamical search process will recover the
MS decision rule for sufficiently large imprecisions and some prior distribu-
tions over population states, the limit of small imprecision leads to a regime
shift for many (very reasonable) cases, in which the DD instability between
coordinated equilibria and bank runs is restored. Because a replicator dy-
namic1 requires the specification of an explicit update rule, within the context
of any particular model class we obtain a description of behavior both at and
away from fixed points. These permit us to go beyond the mere identifica-
tion and description of equilibria [11], to a full treatment of the dynamics
in multiple-equilibrium systems [12, 13, 14, 15, 16, 17], including metastable
residence in different equilibria and punctuated escapes between equilibria.

1The replicator dynamic is equivalent to Bayesian learning from repeated samples [10],
so this formulation captures a wide range of cognitive as well as population-level processes
for convergence to equilibria.
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All of our results are carried out with highly generic modeling assumptions.
Our analysis upholds some qualitative claims from both DD and MS,

but it does not support any of these as general claims, instead arguing that
each captures a robust feature of process in limited contexts. Where context
matters, our dynamical models also generally produce quantitative differ-
ences from the estimates of equilibrium properties provided by either DD or
a constructive implementation of the MS decision mechanism. From DD, we
recover the existence of two relevant steady states corresponding roughly to
their high-liquidity coordinated equilibrium and their bank run. Banks can
provide both liquidity and risks of bank runs, and agents can be rational to
deposit in banks as long as the likelihood of runs is sufficiently rare. However,
our coordinated equilibrium may not be close to the General Equilibrium that
they propose as the Pareto-superior outcome. Finally – but only as a result
of a full process model – we present a framework to determine how frequent
runs should be. From MS, we recover the intuitive result that in conditions
of high imprecision, a simple threshold-based decision rule can be robust and
optimal, and may remove the indeterminacy of multiple equilibria. In many
such cases the price system in the resulting non-cooperative equilibrium dif-
fers significantly from the DD General Equilibrium prices; and is by that
measure inefficient. However, we add to the MS rational-expectations result
a formalization of the concept of fragility: when rational expectations are
replaced by generic and reasonable constructive decision rules, singular lim-
its give way to transitions between dynamical regimes with unique or with
multiple equilibria. At such transitions the appropriate description shifts
from an emphasis on particular equilibria to an emphasis on distributions of
outcomes and their temporal behaviors.

1.2 Basic framework: banks as creators of liquidity
and risk of runs, and the claim of two equilibria

We use a simplified version of the Diamond-Dybvig banking model [1] to
study multiplicity and indeterminacy of equilibria in all three descriptions.
We simplify the forms of utility and replace several of their continuous-valued
decision variables with discrete (binary) variables where no generality is lost
in the analysis of the core problem.2 The essential features of their model

2The simplification of the utility consists of omitting explicit time-discounting structure
which increases the appeal of the narrative particular to bank runs but can be replaced
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which we retain are these:

1. Illiquid production: A single good may be invested in production for
either a short term (one period) or a long term (two periods). If with-
drawn in the short term it returns only the original input. If withdrawn
after the long term it yields a multiplier R > 1 per unit of original in-
put. Each agent α in a continuum α ∈ [0, 1] is given an endowment
of one unit of the input. Some investors will learn after investing that
they must withdraw on the short term. The important feature of the
model is that Arrow-Debreu securities do not exist to cover the risk
of being someone who must withdraw early;3 the act of investing then
makes the goods-supply illiquid because of the waiting time required
to achieve the multiplier R.

2. Banks as proxy investors: Banks exist which can accept demand-
deposits from agents and can invest on behalf of the agents. Deposit
contracts that promise payouts r > 1 to agents who withdraw after
one period, subject to availability of funds, can provide some or all of
the liquidity that Arrow-Debreu securities would have provided (had
they existed), but promised payouts r > 1 leave the banks susceptible
to runs, in which some agents cannot be repaid. Following Ref. [1],
we suppose that in cases where a fraction > 1/r of agents attempt to
withdraw, making the banks insolvent, a random ordering of the agents
is generated, and the agents are fully-paid r in that order until the
initial deposits are exhausted; the remaining agents are paid nothing.

3. A natural risk of early withdrawal: A natural process partitions
the agents into a fraction θ ∈ [0, 1] which we term Type-1, who must
withdraw after one period, and a remainder termed Type-2, who have
the option to leave their deposits in the bank for both periods, but
who may also withdraw after one period. Agents will be randomly

by general conditions on the saturation of a single utility of payouts. The continuous
variables removed include amounts of the endowment invested, and amounts withdrawn,
which in the original model [1] took binary boundary solutions anyway.

3Ref. [1] characterize the surprise signal that one must withdraw early as “private in-
formation” to justify the lack of Arrow-Debreu securities within a General Equilibrium
framework. The model interpretation extends, however, to many other reasons for incom-
plete contracts.
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partitioned by nature between the two types, and only learn their indi-
vidual type after the payout contract r has been declared and deposits
have been made. Early withdrawal by Type-2 agents to the point of
insolvency constitutes a bank run.

The main result of Diamond and Dybvig is that, for r ∈ (1, R), and a
variety of situations that produce a measure of Type-1 agents θ < 1/r (few
enough agents are forced by nature to withdraw early that insolvency is not
assured), two Nash equilibria can exist for the joint decision to deposit/not-
deposit and for the agents who learn they are Type-2 to run/not-run. In
the high-yielding equilibrium all agents deposit, and no Type-2 agents run.
In the low-yielding equilibrium all agents deposit and all Type-2 agents run.
Whether the low-yielding equilibrium is a best response compared to not-
depositing depends on the likelihood of runs, for which a generating process
is not explicitly given in Ref. [1]. If θ takes a definite value 〈θ〉 (which is
a regular limit of θ sampled from progressively narrower distributions with
mean 〈θ〉), the payout r = r〈θ〉 ≡ R/ (1 + (R− 1) 〈θ〉) delivers an assured
return which is the risk-minimizing solution.4 At this solution, on the in-
terval r ∈

[
1, r〈θ〉

]
the social welfare, defined as the sum of expected utili-

ties of payout, is monotone increasing for the high-yielding equilibrium, and
monotone-decreasing for the bank-run equilibrium, since the mean of the lat-
ter is always 1 and the variance increases with r. The payout r = 1 gives
no incentive to run, but is identical to each agent’s investing individually,
and so provides no liquidity-incentive to deposit. In this way the provision
of liquidity and the risk associated with bank runs are intrinsically coupled
(prior to the discussion of deposit insurance, which we do not enter here).
The emphasis in Ref. [1] was on the ability of banking to recover the liquidity
of the General Equilibrium contract in one of the Nash equilibria.

4The more general case, maximizing ex ante expected utility for agents who are required
to deposit, maximizes the function

〈θ〉u(r) + (1− θ)u
(

(1− 〈θ〉 r)R
(1− 〈θ〉)

)
over r. The result is the condition reported in Ref’s. [1, 2], that

u′(r) = Ru′
(

(1− 〈θ〉 r)R
(1− 〈θ〉)

)
.
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1.3 Subgame-perfect equilibrium of an extensive-form
game, and threshold strategies as a kind of regu-
lator

In an explicitly-described extensive-form game, the incentive and risk as-
sociated with bank deposits and bank runs are captured as properties of
subgame-perfect non-cooperative equilibria. On top of extensive-form formu-
lations of multiple-equilibrium problems of the kind posed by Diamond and
Dybvig, Morris and Shin [3] add the explicit observation of the population
state – how many Type-1 and how many Type-2 agents – by the Type-2
agents as a part of the game specification, which enables them to consider
properties of correlated subgame-perfect equilibria. The important additional
feature added by Morris and Shin is imperfect observation of the population
state, which has the crucial effect of further partitioning the Type-2 agents
among (continuous) values of the observed signal.5 This smoothing permits
them to prove that no strategy for the wait/run subgame dominates a sim-
ple threshold strategy, and that furthermore, the use of any such threshold
strategy removes the degeneracy of the Diamond-Dybvig equilibria, yielding
a unique correlated subgame-perfect equilibrium for any θ. We characterize
their smoothing as a regulator ; the width in the dispersion of observations
of the population state does not matter to their formal proof of existence
and uniqueness of equilibrium, but in reasonable abstractions of dynamics it
will matter, and as the regulator becomes weak, the multiple equilibria and
non-determinism of Diamond and Dybvig will re-emerge.

Fig. 1 shows an extensive-form game for the bank-run model, with the
following sequence of moves:

1. In the first (continuous-valued) move, agents negotiate a payout r for
early withdrawal from the bank, and make deposits.6 The bank is a

5In Ref. [3] imperfect observation is discussed in a wider context of formalizing infor-
mation and beliefs. Here our concern is with the mechanistic consequences of dispersing
population responses, which may be given comparable analyses in many contexts of infer-
ence, reinforcement learning, or population updating.

6Here for brevity we pass over how the negotiation is performed. Because a unique
equilibrium value will be computable for the cases we consider, at the equilibrium it will
be sufficient for all agents to declare it independently. In a larger discussion of convergence
toward equilibrium, many mechanisms could be specified, along lines similar to those
we describe below for the selection of threshold strategies, and the convergence of these
mechanisms to deposit- or no-deposit-equilibria could be pursued in a more elaborate
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r

θ

run

wait

Figure 1: An extensive form game for bank runs. In the first ply, the agents
move, declaring a payout for early withdrawals r ∈ [1, R]. In the second ply,
nature moves, selecting a fraction of Type-1 agents θ ∈ [0, 1], and randomly
assigning agents within the two groups. (Filled wedges indicate continuous
decision variables.) In the third ply, which is the sub-game, agents of Type-2
make a binary decision to run or wait.

strategic dummy, which will accept any value the agents declare, but
enforces it in later rounds, along with implementing sorting protocols in
cases of insolvency when only some agents can be paid. For simplicity
we have all agents deposit as a rule of the game; this is a property of
the noncooperative equilibrium for the cases we will consider, and was
the boundary solution derived in Ref. [1].

2. In the second (continuous-valued) move, nature samples a measure θ to
make Type-1 agents, from a distribution ρ(θ), which is common knowl-
edge. The agents are randomly assigned types and informed privately
of their types.

3. In the third (binary) move, agents either withdraw at the first period
or do not withdraw. All Type-1 agents are required to withdraw early,
and Type-2 agents withdraw according to Morris-Shin threshold strate-
gies. We regard withdrawals as simultaneous, so the choices by Type-2

dynamical model.
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agents are made non-cooperatively. While agents know the distribu-
tion ρ(θ) from which population-states are sampled, and each knows
his own type, they do not know the exact measure θ. To obtain a signal
corresponding to the Morris-Shin imperfect information, we have each
Type-2 agent sample an integer number K agents from the population,
and use the fraction k/K ≡ θ̃ they find of Type-1 agents as a sam-
ple estimator for θ. The values θ̃ will be binomially distributed with
mean θ and variance θ (1− θ) /K. Agents also choose thresholds θ∗,
withdraw early if θ̃ < θ∗, and wait if θ̃ ≥ θ∗. (We describe below differ-
ent mechanisms by which values for θ∗ are chosen.) The magnitude of
K will determine the resulting robustness or fragility of the threshold
strategies.

1.3.1 Bayesian rational-expectations correlated equilibrium

For any value of r chosen in the first round of the extensive form, Type-
2 agents may identify Bayesian rational-expectations threshold values θ∗ as
shown next. These define the equilibrium of the wait/run subgame, and
the equilibrium of the outer move is then obtained by maximizing ex ante
expected utility over r.

The conditional probabilities for sample estimators θ̃ given actual popu-
lation states θ are

p
(
θ̃ | θ

)
= θk(1− θ)K−k

(
K
k

)∣∣∣∣
θ̃=k/K

. (1)

From these and the common-knowledge distribution ρ(θ), each agent may
form a Bayesian posterior distribution for the actual population state,

ρ
(
θ | θ̃

)
=

ρ(θ) p
(
θ̃ | θ

)
∫ 1

0
dθ′ρ(θ′) p

(
θ̃ | θ′

) . (2)

From any actual population state θ, because we assume a continuum of
agents, the measure of agents who will withdraw early, using any common
value of the threshold θ∗, will be given by

f
(θ∗)
θ ≡ θ + (1− θ)

1∑
θ̃≥θ∗

p
(
θ̃ | θ

)
. (3)
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For a population of such agents, the solvency threshold θ, beyond which early-
withdrawing agents are uncertain to be paid and late-withdrawing agents are

paid nothing, is given by f
(θ∗)
θ

∣∣∣
θ=θ

= 1/r.

A Type-2 agent who samples θ̃, in a background population using thresh-
old θ∗, will receive a Bayesian-posterior expected utility if his own threshold
tells him to wait at that θ̃, of

〈
u | θ̃

〉
wait

=

∫ θ

0

dθ ρ
(
θ | θ̃

)
u


(

1− f (θ∗)
θ r

)
R

1− f (θ∗)
θ

+

∫ 1

θ

dθ ρ
(
θ | θ̃

)
u(0) .

(4)
Alternatively, if his own threshold tells him to run at that θ̃, his expected
payoff will be

〈
u | θ̃

〉
run

=

∫ θ

0

dθ ρ
(
θ | θ̃

)
u(r)+

∫ 1

θ

dθ ρ
(
θ | θ̃

)[ 1

f
(θ∗)
θ r

u(r) +

(
1− 1

f
(θ∗)
θ r

)
u(0)

]
.

(5)
The Bayesian-Nash equilibrium value for θ∗ is the value of θ̃ for which

the difference in expected utility,

〈
u | θ̃

〉
wait
−
〈
u | θ̃

〉
run

=

∫ 1

0

dθ ρ
(
θ | θ̃

) u
(

max

((
1−f(θ

∗)
θ r

)
R

1−f (θ
∗)

θ

, 0

))
− u(r)

max
(

1, f
(θ∗)
θ r

) ,

(6)

equals zero. The proof of existence of such equilibria is sketched in App. A.
For large K and a sufficiently smooth prior distribution ρ(θ), the posterior

ρ
(
θ | θ̃

)
is dominated by the distribution over sample estimators and pro-

duces a Nash θ∗ for any r, which is asymptotically (in large K) independent

of the prior. Note that, for such a narrow ρ
(
θ | θ̃

)
, we expect that the Nash

threshold will fall close to the value where the wait- and run-payoffs which
are the arguments to the integral are equal, but with f

(θ∗)
θ in place of θ∗

– that is, it will produce
(
r, f

(θ∗)
θ

)
pairs near the risk-minimizing General

Equilibrium contract.
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The outer optimization of r then follows from properties of the utility,
and uniqueness follows from the monotone-decreasing utility of the payout
terms in Eq. (6) with r.

1.4 Dynamics and the fragility of the regulator; how
bistability re-emerges in context

The rational-expectations correlated equilibrium is defined as a best-response
of a single agent to a population already using the equilibrium strategy. It
is not a constructive solution, but often it can be approximated dynamically
(and in that sense, “constructed”) by embedding small sub-populations of
agents with variant strategies in a background with a hypothesized strat-
egy, and then using a replicator dynamic in which the fitness of each type
is its expected payout to update the population numbers, thereby shifting
the hypothesized strategy. The “fundamental theorem of evolutionary game
theory” [18] states that the rest points of the replicator dynamic converge
to the Nash equilibria as populations become homogeneous.7 The replicator
dynamic provides a general way to introduce population variation into the
analysis of strategies such as the Morris-Shin threshold strategies, and in
particular to study the ways they may become “fragile” to dynamics that
sample neighborhoods of the rational-expectations fixed point.

Here we demonstrate the behavior of a replicator dynamic on threshold
strategies for a utility of the form u(r) = rα for 0 ≤ r ≤ 1 and u(r) = 2−r−α
for r ≤ 1 ≤ R, and three distributions ρ(θ), shown in Fig. 2. The essential
properties of the utility for this particular problem are finiteness of u(0) = 0,
which makes strategies with nonzero risk of zero payout rationalizable, and
ru′(r) monotone decreasing for r ≥ 1. The latter property is necessary for
utilities with a single payout (from either time period) to produce solutions
with interior maxima, as shown in App. A.

We introduce a distribution ρ∗(θ∗) over sub-populations of agents using
different strategies θ∗. In examples we take this distribution to be bino-
mial (on 15 elements), because the approximately Gaussian form of both ρ∗

and the sample-estimator density p
(
θ̃ | θ

)
from Eq. (1) leads to a convolu-

tion which is also approximately Gaussian, and hence a population behavior

7Because the replicator dynamic with utility as fitness is equivalent to Bayesian up-
dating [10], the dynamics described here apply equally well to reinforcement learning by
Bayesian updating or to literal population-dynamic processes.
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Figure 2: Left panel: Functional form u(r) = rα for 0 ≤ r ≤ 1 and u(r) =
2 − r−α for r ≤ 1 ≤ R for α = 0.9 and R = 10. Right panel: three
densities ρ(θ) to be considered, all with 〈ρ〉 = 0.5. Blue is uniform on θ ∈
[0, 1]; green is Gaussian standard deviation ≈ 0.152, red is Gaussian with
standard deviation = 0.1.

comparable to the behavior of a homogeneous population of agents using the
mean threshold

〈θ∗〉 =

∫
dθ∗ ρ(θ∗) θ∗ (7)

with a slightly increased variance. The aggregate measure of agents who
withdraw early in a population with measure θ of Type-1 agents (randomly
assigned) is simply the integral∫

dθ∗ ρ(θ∗) f
(θ∗)
θ = fθ. (8)

The expected utility within each sub-population relative to the aggregate,
averaged over the actual distribution ρ(θ), is then given by

〈u | θ∗〉 − 〈u〉 =

∫ θ

0

dθ ρ(θ)
(
fθ − f (θ∗)

θ

)[
u

(
(1− fθr)R

1− fθ

)
− u(r)

]
−
(
u(r)− u(0)

r

)∫ 1

θ

dθ ρ(θ)

(
1− f

(θ∗)
θ

fθ

)
. (9)

The resulting shift in the aggregate threshold value 〈θ∗〉, if this population is
repeatedly subjected to a replicator dynamic with sub-population numbers
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increased or decreased in proportion to relative utilities [18], is given by

d〈θ∗〉
dt
≡ d

dt

∫
dθ∗ ρ(θ∗) θ∗ =

∫
dθ∗ ρ(θ∗) [〈u | θ∗〉 − 〈u〉] θ∗. (10)

Here we use such a replicator dynamic to identify the fixed points θ∗ as
a function of payout r in the subgame, and then simply maximize expected
utility along the subgame-perfect (r, θ∗) contour in the distribution ρ(θ), to
define an equilibrium for the extensive-form game.

1.4.1 The uniform distribution: uniqueness of ESS and the cor-
responding subgame-perfect correlated equilibrium

The properties of such a mixed population, and their behavior under a repli-
cator dynamic, for a payout r = 1.2 in the subgame, are shown for the
uniform distribution ρ(θ) in Fig. 3.8 The functional dependence of the ag-
gregate measure of early-withdrawing agents fθ closely resembles that of each
sub-population f

(θ∗)
θ (left panel). The relative utilities (9) for θ∗r � 1 (mid-

dle panel) are maximized near the population mean 〈θ∗〉, as agents whose
thresholds are lower miss out on yield R for a fraction of the samples θ,
while those whose thresholds are higher often receive zero payout by waiting
to withdraw, while a bank run by the majority of agents makes the bank in-
solvent before period-two. For θ∗r ≥ 1, Type-1 agents alone suffice to make
the bank insolvent before most Type-2 agents run, and the lowest thresh-
olds fare best from rare low signals θ̃. The resulting velocity (10) for the
population-mean (right panel), shows a unique stable fixed point for 〈θ∗〉 at
this (and indeed at all) r, which is the behavior that would be expected from
the theorem of Ref. [3] for the rational-expectations equilibrium.

Fig. 4 shows the expected utility

〈u〉 = u(r) +

∫ 1

0

dθ ρ(θ) max

(
1− fθ, 1−

1

r

)u
max


(

1− f (θ∗)
θ r

)
R

1− f (θ∗)
θ

, 0

− u(r)


(11)

8We use the value r = 1.2, which is larger than the equilibrium payout value r ≈ 1.1,
because its interesting transitions occur in the center of the θ range where they are easier
to view in graphs. We also use a distribution ρ∗(θ∗) in the first two panels of Fig. 3, to
illustrate population structure and the qualitative behavior of relative utility, which is 10x
wider than the distribution used to identify the replicator-dynamic velocity and to closely
approximate the Nash fixed points in the third panel and later figures.
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Figure 3: Identification of the fixed-point threshold θ∗ for a given r in
the wait/run subgame. Left panel: population structure. 15 thresholds

parametrize contours f
(θ∗)
θ in sub-populations (fine curves), with (binomial)

weight ρ∗(θ∗) shown shaded. Aggregate population response fθ (heavy line)
remains nearly that for a Gaussian sample estimator, but with a slightly
increased half-width. Half-way point for Type-2 agents who run, and the
solvency limit fθ = 1/r, are shown as horizontal lines. Middle panel: utilities
for each sub-population relative to the mean are graphed (height and color
scale) as a function of the population-mean 〈θ∗〉, and the sub-population off-
set (θ∗ − 〈θ∗〉). Right panel: the velocity of the population-mean d 〈θ∗〉 /dt if
this population structure is updated using a replicator dynamic. The unique,
stable zero crossing is the ESS which converges to the Nash best-response as
ρ∗(θ∗) is made narrow.

along the subgame-perfect (r, θ∗) contour (left panel), and the nearly-linear
dependence of r on θ∗ along this contour (right panel). The equilibrium value
r for any θ∗ grows more slowly with decreasing θ∗ than a näıve estimate

r∗ ≡ R

1 + (R− 1) f
(θ∗)
θ∗

=
R

1 + (R− 1) (1 + θ∗) /2
, (12)

which places the inflection point of the curve f
(θ∗)
θ at the point where the wait-

and run-payoffs R
(

1− f (θ∗)
θ r

)
/
(

1− f (θ∗)
θ

)∣∣∣
θ=θ∗

and r are equal. App. B

compares the efficiency of this equilibrium to that of the risk-minimizing
competitive equilibrium of Sec. 1.2. The smaller-than-expected r required to
produce runs at small θ∗ reflects asymmetry between a fixed marginal loss
of running too early, when fθ ≈ θ, and the absolute loss ∼ (1− θ∗) from
running too late, when fθ ≈ 1, which increases with decreasing θ∗.
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Figure 4: Left panel: expected utility (11) in the uniform distribution ρ(θ),
along the subgame-perfect (r, θ∗) contour given by the rest points of the
replicator dynamic. Marker (+) indicates the interior maximum which is the
equilibrium of the extensive-form game. Utility level at r = 1 (red line),
corresponding to the no-deposit outcome, shown for reference. Right panel:
locus of best-response pairs (r, θ∗) (blue) compared to the näıve expecta-
tion (12) (green).

1.4.2 Non-uniform ρ(θ) and the restoration of bistability

The uniqueness and stability of threshold equilibria, exhibited for uniform
ρ(θ), can fail for quite ordinary non-uniform ρ(θ) which increase the fre-
quency of losses from waiting during a run, relative to gains from avoiding
too-early sacrifice of yield R. We illustrate this by comparing the replica-
tor subgame rest points for three Gaussian ρ(θ) with mean 〈θ〉 = 1/2 and
different variances, shown in Fig. 2. Standard deviations ∞ (the uniform
distribution), 0.152 (critical), and 0.1 (bistable) are shown.

Fig. 5 shows the sign of the velocity for d〈θ∗〉 /dt from Eq. (10) as a
function of r and 〈θ∗〉 for the three cases. Stable 〈θ∗〉 result at any r when
positive velocities fall to the left of negative velocities in the plot. For the
uniform distribution fixed points are stable at all r. The Gaussian with
standard deviation = 0.152 shows a classic critical point, where the threshold
〈θ∗〉 is marginally stable and infinitely sensitive to r ≈ 1.225. The Gaussian
with standard deviation = 0.1 shows the characteristic “spinodal” behavior
associated with bistability and hysteresis. For r < 1.12 a single high-yielding
equilibrium exists. For 1.12 < r < 1.24, a high-yielding equilibrium co-exists
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with a low-yielding equilibrium corresponding to the Diamond-Dybvig bank
run; between these two is an unstable fixed point. The basin of attraction of
the bank-run equilibrium increases with increasing r, until for r > 1.24 it is
the only equilibrium.
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Figure 5: Signs of the evolutionary velocity d〈θ∗〉 /dt for the three prior
distributions shown in Fig. 2. Each horizontal cross-section (single r value)
corresponds to a curve like that in the right panel of Fig. 3. Red is positive
velocity; blue is negative. Left panel: the uniform distribution in which
each r has a unique stable fixed point θ∗. Middle panel: Gaussian ρ(θ) with
standard deviation ≈ 0.152 which is the critical value for onset of bistability.
Right panel: Gaussian ρ(θ) with standard deviation = 0.1 showing two stable
fixed points and one unstable fixed point over the range r ∈ [1.12, 1.24].

Is the region of bistability relevant to equilibrium for the full extensive-
form game? That is, does the original intuition developed by Diamond-
Dybvig for equilibrium, that agents can be rational to deposit in banks sus-
ceptible to runs, emerge in our treatment of threshold equilibria? Fig. 6 shows
the optimization problem for expected utility (11), along the high-yielding
subgame-perfect (r, θ∗) contour, where this contour exists. An interior max-
imizer of 〈u〉 does indeed fall within the domain of bistability, at r ≈ 1.1162
(left panel), and the velocity profile d〈θ∗〉 /dt (middle panel) is robustly that
for a bistable solution in an open neighborhood of this equilibrium. Thus,
within mild and generic assumptions about testing-and-reward dynamics to
identify equilibria, whether unique stable equilibria, or multiple equilibria
with risk, are recovered depends on the distribution of population states in
relation to the distribution of sample-estimators.

Finally, we note that the dynamical treatment adds the last feature re-
quired for a consistent analysis of the multiplicity or stability of equilibria: In
the stochastic version of a replicator dynamic appropriate to real processes
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Figure 6: Left panel: utility along high (blue) and low (green-heavy) (r, θ∗)
fixed-point contours in the wait/run subgame. Solutions drop out where
the hysteretic threshold is crossed, and one or the other branch ceases to
exist. The region with no stable thresholds covers much of the support of the
prior distribution of ρ(θ). The utility-maximizing r value (marker) lies along
the high-threshold contour, within the region of bistability. Middle panel:
evolutionary velocities d〈θ∗〉 /dt (blue) at the subgame-perfect equilibrium
r value, to be contrasted with the third panel of Fig. 3 for the uniform
distribution. Red is zero (for reference), and green shows the sign of the
velocity, which is a cross section at r = 1.1162 of panel three of Fig. 5.
Right panel: integral of the evolutionary velocity which defines a “fitness
landscape”. Time integrals of the potential, which correspond to appropriate
velocity-weighted red and blue shaded regions, are proportional to the log-
escape rates in a stochastic evolutionary dynamic; the difference of these
areas determines the log-ratio of occupancy of the high and low equilibria
(markers).

(such as finite-population sampling) that continuously generate variation in
parameters such as θ∗, the integral of the velocity field defines a potential
(often called a “fitness landscape”9, shown in the right panel of Fig. 6) for
transitions between the two fitness maxima. It is a basic result for escape
processes in Markov chains [23, 24, 25], including stochastic evolutionary
games [26, 16, 17], that for one-dimensional processes the log-escape rates
are proportional (with a minus sign) to the time-integrals of this potential
between the equilibria and the minimum (indicated schematically by shading
in the figure). The log-ratios of escape rates equal the log-ratios of occupancy
of the two equilibria in the long run, which are thus proportional to the dif-

9This usage follows Sewall Wright [19, 20, 21, 22].
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ference between the two integrated areas. The larger integrated area for the
high-yielding equilibrium in Fig. 6 will cause most time to be spent at this
point, and the ratio of time spent in the high-yielding versus the bank-run
equilibrium will grow exponentially as the standard deviation of the sam-
pling distribution ρ∗(θ∗) is taken to zero. The theory of escapes using this
formalism has been applied to conventional contracts [12, 13, 14, 15], and
this formula for the relative occupancy of states has been used in a context
similar to annealing to define an approach to equilibrium refinement [11].

In a modeling approach that requires commitment to particular, con-
structive, dynamic mechanisms of this kind for setting θ∗, we are able to
characterize not only the equilibria but also the non-equilibrium behavior
that determines the frequency of runs, while retaining some generality of re-
sults. More fundamentally, we may shift the focus of description between the
monostable and bistable regimes. In the monostable regime, the fixed point
and its neighborhood govern almost all observables, in keeping with an em-
phasis on equilibrium. In the bistable regime the relevant objects of descrip-
tion may become the distributions over equilibria and transitions between
them, which only in some cases reduce naturally to criteria for equilibrium
refinement.

1.5 Why do threshold strategies become fragile in this
way?

The purpose of our analysis is to show how apparent anomalous sensitivities
in paradigms or even theorems can reflect important context-dependence in
the formalization of the relevant concepts, and in some cases this context can
be made explicit and even quantified. One anomalous sensitivity is the mis-
match between the apparent demonstration of multiple equilibria and risk in
the Diamond-Dybvig bank-run model, contrasted with the general proof of
existence of unique equilibria in models of similar type by Morris and Shin,
with a slightly more explicit strategic treatment and the new element of sig-
nal imprecision. A second sensitivity is the apparent removable singularity of
threshold models: any dispersion in signals implies a unique equilibrium, but
exact signaling of the population state to all agents removes the conditions
needed for the theorem. The key element of the Morris-Shin construction
is the possibility for a part of a population of identical agents to run at the
optimal threshold. The equilibrium at such a threshold sacrifices efficiency
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compared to the competitive equilibrium because overall production is re-
duced, but makes well-defined the marginal value of shifts in the threshold.
However, the limit as signals are made arbitrarily precise is one where the
sensitivity of the population state to threshold changes becomes infinite –
equivalent to arbitrarily defining the value of a unit step function to be 1/2
at its transition. A theorem that makes essential use of partial runs, in a
limit where the measure of partial runs becomes infinitely sensitive to the
optimization parameter, does not seem a sufficiently strong result to inval-
idate the intuition that multiple equilibria exist and carry risk in realistic
situations. We now explain how the replicator dynamic formalizes this no-
tion of a “sufficiently strong” regularization mechanism, and why it recovers
multiple equilibria, not only at the singular limit, but in an open domain of
smooth partial-run transitions.
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Figure 7: The transition from robust to fragile threshold strategies in the
replicator dynamic. Here r is chosen so that at the inflection point fr ≡
f
(θ∗)
θ

∣∣∣
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= 0.9, the wait- and run-payouts are equal, R (1− frr) / (1− fr) =

r. Three population-aggregate thresholds 〈θ∗〉 = 0.4, 0.6, 0.8 are illustrated,
with the last value approximating the Nash threshold at this r. Broad tran-
sitions f

(θ∗)
θ (at K = 20) are shown as heavy solid colored lines, and narrow

transitions f
(θ∗)
θ (at K = 1000) are the corresponding light colored lines.

About the background 〈θ∗〉 = 0.4, the range of θ values where agents are
better to wait than to run are shaded, and the θ values where they are better
to run are unshaded. For the gradual transition at K = 20 (light shading),
the range where waiting is advantageous extends almost 0.1 above 〈θ∗〉 to-
ward the equilibrium value θ∗ = 0.8, favoring best-responses larger than 〈θ∗〉
unless the underlying distribution ρ(θ) is strongly increasing. For the sharp
transition at K = 1000 (dark shading), the range where waiting is advanta-
geous extends only ∼ 0.01 above 〈θ∗〉, and the disadvantage of waiting during
a run covers almost the entire interval up to θ∗ = 0.8. Therefore even small
positive dρ(θ) /dθ will create negative velocities in the replicator dynamic
near 〈θ∗〉 = 0.4.
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Threshold strategies function as regulators by balancing the marginal loss
of expected utility from choosing too low a threshold relative to the aggregate
population and sacrificing the multiplier R, against the alternative loss from
choosing too high a threshold and receiving payout 0 in period two when a
run has left the bank insolvent. The approximate magnitudes of these effects
can be estimated from the behavior of f

(θ∗)
θ shown in Eq. (3), that f

(θ∗)
θ → θ

for θ < θ∗, and f
(θ∗)
θ → 1 for θ > θ∗. These changes occur in a narrow range

of θ when p
(
θ̃ | θ

)
is narrow.

Agents who run at θ∗ < 〈θ∗〉 receive u(r) rather than≈ u(R (1− θ∗r) / (1− θ∗))
for a measure of events ∼ ρ(θ∗) (〈θ∗〉 − θ∗). Agents who run at θ∗ > 〈θ∗〉 re-
ceive u(0) rather than a lottery over u(0) and u(r) with mean payout 1, for
a measure of events ∼ ρ(θ∗) (θ∗ − 〈θ∗〉). Since the former loss is monotone
decreasing in θ∗ while the latter is fixed, in a uniform distribution there will
be a unique fixed point where they are equal.

If, however, we replace the uniform distribution by a more concentrated
distribution such as a Gaussian shown in Fig. 2, the measure ρ(θ)θ>〈θ∗〉 of
loss events from running late exceeds the measure ρ(θ)θ<〈θ∗〉from running
early where dρ/dθ > 0, and the converse where dρ/dθ < 0. With sufficient
curvature in ρ(θ), the interior fixed point splits into two fixed points, but the
latter is unstable because the best response to any aggregate value 〈θ∗〉 at
this lower fixed point is always a still-lower θ∗, which protects agents from
waiting during bank runs.

For wide p
(
θ̃ | θ

)
and “robust” regulators, the transition region of f

(θ∗)
θ is

wide and the marginal utility is determined by the small quantity df
(θ∗)
θ /dθ∗.

For narrow p
(
θ̃ | θ

)
and “fragile” regulators, the transition is abrupt and

marginal utility is dominated by the two extreme behaviors described above.
The transition from robust to fragile is illustrated in Fig. 7.

2 On Models and Theories

In this essay we claim no more than having taken a next reasonable step
in extending two noncooperative game theory analyses of the potential for
“rational bubbles”. But both of these stimulating papers have adhered to
the basis of equilibrium analysis. We have taken their work a step further
in the consideration of a specific dynamical context given by a replicator
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equation and we have provided a dynamic sensitivity analysis. However when
reading books such as Kindleberger [27] or old classics such as MacKay [28]
or a description of instability such as that supplied by Minsky [29], one
realizes that in spite of the attractiveness of our replicator story added to
the two equilibrium analyses these three models only go a small way to
offering a general dynamic theory of bubble behavior. We are in complete
accord with the view that one should push the limits of economic and game
theoretic analysis of homo ludens as far as possible. But when confronted
with items such as incomplete knowledge of the rules of the game and a
multiplicity of socio-psychological phenomena to account for we are still far
from understanding context and dynamics.

A Proof of existence of interior threshold strate-

gies

Lemma: If the utility satisfies ru′(r) monotone decreasing on r ≥ 1, then
the expected utility (11) along the subgame-perfect (r, θ∗) contour has an
interior maximum.

Proof: Existence follows from the signs of derivatives of 〈u〉 at r = 1 and
r = R.

For r = 1, there is never an incentive to run, while for all θ < 1 there is an
incentive to wait, so the subgame-perfect θ∗|r→1 > 1 and fθ = θ everywhere.
Then the expected utility becomes

〈u〉|r=1 = 〈θ〉u(1) + (1− 〈θ〉)u(R) , (13)

and the marginal expected utility may be computed and shown to be

d〈u〉
dr

∣∣∣∣
r=1

= 〈θ〉 [u′(1)−Ru′(R)] . (14)

As long as R > 1 and ru′(r) is monotone decreasing on r ≥ 1, this quantity
is always positive.10

10This restriction on u says that the utility increases more slowly than the logarithm
on 1 < r < R. Combining this requirement with a lower bound u′(0) > −∞ motivates
the form of utility shown in Fig. 2. In the original model of Ref. [1] the same effect was
achieved by discounting period-two payouts in the utility relative to period-one payouts,
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Conversely, if r = R, The payout R (1− fθr) / (1− fθ) < R for all θ,
so there is never an incentive to wait, making θ∗|r→R < 0 and fθ → 1
everywhere. The utility therefore becomes

〈u〉|r=R =

(
1− 1

R

)
u(0) +

1

R
u(R) , (15)

and the marginal expected utility becomes

d〈u〉
dr

∣∣∣∣
r=R

= − [u(R)− u(0)]−Ru′(R)

R2
. (16)

For any concave utility, [u(r)− u(0)] − ru′(r) > 0, so the derivative (16) is
negative and 〈u〉 has an interior maximum.

B Efficiency of threshold equilibria in rela-

tion to competitive equilibria

To illustrate the inefficiency of the threshold equilibria without reference to
the detailed form of the utility, we consider the risk-minimizing equilibrium.
Readers of Ref. [2] will recognize that the competitive equilibrium for utilities
of our form with α = 1 are recovered in the following results by replacing
R→

√
R, and the same efficiency arguments go through.

In the risk-minimizing competitive equilibrium of Sec. 1.2, Type-2 agents
never ran and the payout to those waiting until period-two to withdraw, in
any population state θ, was

rCompetitive =
R

1 + (R− 1) θ
. (17)

In contrast, for the threshold strategy used here, the inflection point of
the function f

(θ∗)
θ occurs at θ = θ∗, where f = (1 + θ∗) /2 (shown as the line

with slope 1/2 in the left panel of Fig. 3). When this inflection point closely

but apart from some narrative appeal to the case of bank runs, the method used is not
critical to the result. The reason such a strong requirement exists on utility, however, is
that early withdrawal reduces period-two payout proportionally, to (1− fθr)R, amplifying
the second marginal utility in Eq. (14) by R.
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approximates the subgame-perfect threshold θ∗, as it does in the numerical
examples, the payout to agents who withdraw early is

rThreshold =
R

1 + (R− 1) (1 + θ∗) /2
. (18)

For the sake of comparison, considering a narrow distribution where θ∗ ≈
〈θ〉 ≈ θ for almost-all samples θ, the threshold equilibrium is less efficient
than the competitive equilibrium by

1

rThreshold

− 1

rCompetitive

=

(
1− 1

R

)
1− 〈θ〉

2
. (19)

One half of Type-2 agents withdraw “needlessly” to implement the mech-
anism of regulation, reducing their own payouts because they decrease the
total production relative to a competitive equilibrium.
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