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Abstract

We study the manner in which learning shapes behavior towards
risk when individuals are not assumed to know, or to have beliefs
about, probability distributions. In any period, the behavior change
induced by learning is assumed to depend on the action chosen and the
payoff obtained. We characterize learning processes that, in expected
value, increase the probability of choosing the safest (or riskiest) ac-
tions and provide sufficient conditions for them to converge, in the
long run, to the choices of risk averse (or risk seeking) expected utility
maximizers. We provide a learning theoretic motivation for long run
risk choices, such as those in expected utility theory with known payoff
distributions.
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1 Introduction
In the economics tradition, risk aversion is typically understood in the con-
text of expected utility theory (EUT). This theory is silent on how indi-
viduals make choices in the absence of knowledge or beliefs about payoff
distributions, however, and therefore, it cannot explain risk averse choices
in complex problems where beliefs are hard to formulate.1 We provide a
learning approach to study choice in such contexts and show that individuals
can systematically make more often the safest (or riskiest) choices over time,
even in absence of beliefs, depending on how their choices change in response
to experience.

As the learning models we study in this paper place far fewer cognitive
demands on individuals than EUT, they allow us to understand decision
making in a wide variety of complex problems. In particular, these learning
models do not require that the agent has preferences over payoff distribu-
tions or a utility function describing such preferences. The learning models
we study include many that have been used to describe human behavior in
diverse experimental settings in both psychology and economics and which
have been studied in the machine learning literature to find optimal actions
in complex environments.

We consider an agent who knows the finite set of available actions. She
does not know, and need not have beliefs about, the distribution of outcomes
that would result from the choice of any action. We refer to this set of dis-
tributions, one for each action, as the environment. The individual chooses
among the actions according to her state (of learning). The state is trans-
formed to stochastic behavior according to a choice rule. The assumption of
stochastic choice is common in learning models. It can, for instance, describe
an individual who may not know for sure which is the best action, if any.
In every period, the individual chooses an action and receives an outcome
from the chosen action. Her state of learning is then updated according
to her state transition rule. This is the only information the agent uses in
updating her behavior, i.e., the probabilities of choosing each action. As in
EUT, outcomes are assumed to be money (not utility) and we shall often
refer to them as “payoffs.” This assumption is crucial for the interpretation
of all our results. Our analysis is concerned with how learning responds to

1For a related discussion, see Gilboa and Schmeidler (1995).
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the degree of risk of payoff distributions in terms of the amount of money an
individual would obtain by choosing an action. This parallels the manner in
which risk preferences are defined in EUT, with respect to monetary payoff
distributions of lotteries.

The state transition rule and the choice rule are taken as the primitive of
the model and they define what we call the learning process. The learning
process determines a (behavioral) learning rule, which maps the state of the
agent today, the action she chooses, and the outcome she obtains into her
behavior tomorrow. Hence, a learning rule describes the short run change
in behavior and determines how behavior evolves over time. The learning
process is, thus, assumed to be a primitive characteristic of the individuals.
In particular, we do not need to assume that individuals have Bernoulli
utility functions or that they play any role in the learning process. Examples
of learning models that satisfy our assumptions include those in Bush and
Mosteller (1951), Cross (1973), Roth and Erev (1995), March (1996), and
Börgers and Sarin (2000).

In the first part of our analysis we study the short run properties of learn-
ing. Hence, we focus on the properties of the learning rule that the learning
process defines. We study learning rules that, in every environment, are ex-
pected to increase the probability of choosing those actions whose payoff dis-
tribution second order stochastically dominate the distributions of all other
actions. Therefore, decision makers whose learning rules satisfy this property
are expected to increase the probability of choosing those actions that any
risk averse expected utility maximizer would choose. We refer to learning
rules that satisfy this property as monotonically risk averse learning rules.
We define monotonically risk seeking and monotonically risk neutral learning
rules in an analogous way. These properties refer to the expected change in
behavior (from one period to the next), and they impose restrictions on how
the learning rule responds to the payoff distributions’ risk properties. These
restrictions are required to hold in every environment. This is a desirable
restriction, given that we do not require the decision maker to know any
aspect of the environment, other than the set of actions.

We characterize monotonically risk averse learning rules (Proposition 1).
This characterization reveals that how a learning rule updates the probability
of unchosen actions, in response to the payoff obtained from the chosen ac-
tion, must be a convex function of the obtained payoff. The convex response
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of the probability of choosing the actions not chosen in this period, together
with the fact that the updated probabilities must sum up to one, imply that
every monotonically risk averse learning rule has to update the probability of
choosing the chosen action using a concave function of the payoff obtained.
The characterization of monotonically risk seeking and monotonically risk
neutral learning rules is analogous.2

Short run properties of learning are worth investigating, as behavioral
scientists are often interested in how behavior is likely to change in response
to some experience. In some problems, the number of times an individual
faces a decision is very low, such as choosing a realtor for selling a house,
or choosing a school for each of her children. In these kinds of problems,
short run properties are particularly relevant. The short run properties of
learning also have implications for the second part of our analysis to which
we now turn our attention.

In the second part of the paper, we focus on the long run properties of
learning. These properties are relevant in problems that individuals face
repeatedly over time, such as choosing the assets in which to invest their
wealth. We study whether the learning processes whose learning rules sat-
isfy the above properties globally, i.e., at every state, converge to make choices
that involve less risk. Our first long run result (Proposition 3) shows that any
learning process with a globally monotonically risk averse learning rule con-
verges with high probability to the set of actions that second order stochasti-
cally dominate all others, provided that it satisfies two additional conditions.
First, we require the learning rule to be sensitive in a non-trivial manner to
second order stochastic dominance at all states. We call this property the
non shrinking condition (NSC). It requires that the expected change in the
probability of choosing any safest action (in proportion to its current prob-
ability) is bounded from below away from zero while both safest and riskier
actions are chosen with positive probability. And second, we require learning
to be slow in response to experience, i.e., that the probability of choosing
each action does not change much in each period.3 We provide a number of

2EUT also provides a characterization of utility functions that prefer more to less and
have a preference for first order stochastically dominant distributions. We define and
characterize the analogous property for learning rules (Proposition 2).

3The role of slow learning to achieve convergence has been recognized in the literature
and we discuss this further below.
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examples illustrating that these conditions are not very restrictive. This long
run result reveals that agents who have very limited information about the
environment can converge to choose the same actions in the long run as those
that would be chosen by risk averse expected utility maximizers who know
the true environment. An analogous result holds for learning processes with
monotonically risk seeking and monotonically risk neutral learning rules.4

Our last result (Proposition 5) provides conditions under which the choices
of an expected utility maximizer with a given Bernoulli utility function would
be obtained in the long run by a learning process. The conditions on the
learning rule required for this result are similar to those in our first two
long run results. Here, however, we require the learning rule to transform
payoffs into the updated probability of choosing the unchosen actions using
affine transformations of the additive inverse of the Bernoulli utility func-
tion. Hence, the updated probability of choosing the chosen action is an
affine transformation of the Bernoulli utility function. This result reveals the
“preferences” specific learning processes would exhibit in the long run. We
illustrate this by showing that some well-known learning models converge to
choose according to the preferences represented by some widely used utility
functions, such as the constant absolute risk aversion utility functions.

Before turning our attention to the related literature, we shall emphasize
that, since we do not use any concept of “utility” in our definition of the
learning model, our only substantive assumption is that obtained monetary
payoffs and the learning process are enough to specify how learning shapes be-
havior. Any model of human behavior consistent with this general structure
can be analyzed using our results. Therefore, the features of the functional
form of monotonically risk averse learning rules may have different meanings
and interpretations in different learning models. In all of them, however,
satisfying these properties has the implications studied here. In particular,
our results tell us what these models predict in terms of risk behavior. Thus,
to the extent that these models differ in terms of such predictions, our results
and the appropriate data can be useful for telling these models apart.

The first paper we know of that investigates the relation between learning
4We also provide an analogous result regarding convergence to actions that first order

stochastically dominate all others (Proposition 4).
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and risk aversion in expected utility theory is March (1996).5 March simu-
lates three classes of learning models popular in the psychology literature.
Burgos (2002) provides a similar exercise with two additional models. Most
of these simulations find that the models choose the risk free action more
frequently than the risky in the domain of gains. Their simulation results,
for models with monotonically risk averse learning rules, are consistent with
our findings.6

Denrell (2007) shows that a class of learning models that initially choose
each action equally often, asymptotically choose the risk-free action more
frequently than the risky action in two action-decision problems with some
restrictions on the outcome distributions. In comparison with his paper,
ours characterizes a large class of learning rules that satisfy monotone risk
aversion. We also provide conditions under which these learning processes
converge to choose the safest action in any decision problem with an arbitrary
finite number of actions.

Monotonically risk averse learning rules are closely related to the mono-
tone learning rules studied by Börgers, Morales, and Sarin (2004), which, in
every environment, are expected to strictly increase the probability of choos-
ing the expected payoff maximizing actions. They show that monotone
learning rules update the probability of the unchosen actions by a negative
affine transformation of the obtained payoff. We show that all classes of
learning rules studied in their paper are strict subsets of the class of mono-
tonically risk neutral learning rules that we characterize. In contrast to the
analysis in their paper, we also provide implications for choices in the long
run.

Our long run analysis is related to the convergence results provided in
the machine learning literature (e.g., Narendra and Thathachar (1989)). In

5Earlier attempts to relate decision theory and learning theory analyze specific learning
rules to see whether their long run choices coincide with those of specific static decision
theories (see, e.g., Thrall, Coombs and Davis (1954) and the related paper by Simon
(1956)). This literature finds that different learning rules could be used to motivate the
choices predicted by some decision theories, often different from EUT (such as maximin
or minimax regret).

6For the other rules they consider, which are not monotonically risk averse (or risk
seeking), our results imply the more subtle fact that, in spite of the reported simulations,
one can find other safe and risky distributions such that these rules would not choose the
safest (risky) action more often.
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particular, the result of Lakshmivarahan and Thathachar (1976) is related
to our first long run result. They show that a specific class of learning
processes, which move slowly, converge with a high probability to expected
payoff maximization. The learning processes they consider have a state space
equal to the probability simplex, which is much smaller than the state space
we allow. They only consider environments in which each action gives two
possible outcomes. Hence, our results generalize theirs in several dimensions.
To the best of our knowledge, the machine learning literature has no analogue
of our other results.

Lastly, our work is related to the literature on the evolution of preferences.
Robson (1996a,b) studies how evolution may shape attitudes towards risk and
when it may lead to expected utility (and non-expected utility) preferences.
Dekel and Scotchmer (1999) consider the impact of evolution on risk attitudes
in winner-take-all games. This work complements ours in showing how
risk preferences emerge through a dynamic process involving cognitively less
sophisticated agents than those assumed in EUT.

2 Framework
Let A be a finite set of actions. If chosen, action a ∈ A gives an outcome,
which we interpret to be a number of units of money, according to the dis-
tribution function Fa, whose expected value is denoted by µa. We assume
that the support of Fa is contained in the compact interval X = [xmin, xmax]
for all a. We shall refer to F = (Fa)a∈A as the environment and we suppose
it does not change from one period to the next. The agent knows the set of
actions A but not the distributions F .

All the aspects of each of the actions that are relevant for the individual’s
behavior are summarized by her state s. The set of states, denoted by S, is
taken to be some subset of R|A|·K , where |A| denotes the number of actions in
A and K ∈ N denotes the finite number of attributes of each action that are
relevant for choice and learning. Larger sets of states may be considered,
though most of the learning models that we are familiar with are easily
accommodated with this set of states. The state of the agent determines
her behavior, which is described by the probability with which she chooses
each action. We, thus, define a function, α : S → ∆ (A), which maps the
state of the agent to her behavior. The component of α(s) corresponding to
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action a ∈ A, denoted by αa(s), is the probability of choosing this action at
the state s ∈ S. We call α the choice rule and it may be thought of as a
behavior rule.7

In every period the agent chooses an action and receives its payoff. This
is the only information the agent uses to update her state in any period.
Formally, we define a second function, π : S × A×X → S, which maps the
state of the agent, the action she chooses and the payoff she obtains into
her state in the next period. Therefore, π defines the state transition rule

and may be interpreted as the primitive learning model. Since the transition
of the states is determined by the chosen action and obtained payoff, states
evolve randomly. The initial state, however, is assumed to be exogenously
given.

We define a learning process as a pair of a choice rule and a state transition
rule (α, π). The learning process (α, π) and the environment F define the
transition probability for the states. Formally, we define T(α,π),F : S×B(S) →
[0, 1], where B(S) is the set of Borel subsets of S, such that

T(α,π),F (s, S
�) =

�

a∈A

αa(s)

ˆ
1{x�∈X:π(s,a,x�)∈S�}(x)dFa(x)

for all s ∈ S and S � ∈ B(S), where 1{·} is the indicator function of the set
{·}. Thus, for any learning process (α, π) and environment F , T(α,π),F (s, S �)
gives the probability of reaching a state in the set S � in the next period, given
that the current state is s, for all s ∈ S and S � ∈ B(S).

For each learning process (α, π), a learning rule L is defined as a com-
position of π and α, i.e., L := α ◦ π. A learning rule L takes the state
s of the agent, the action a she chooses and the payoff x she obtains in
any period and maps them to her behavior in the next period. That is,
L : S×A×X → ∆ (A). In this paper we focus on the agent’s behavior and,
consequently, the learning rule plays a critical role in our analysis. Formally,
we have the following definition.

Definition 1 A learning process (α, π) is a pair of functions α : S → ∆ (A)
and π : S×A×X → S. The learning rule associated to the learning process

(α, π) is a function L : S × A×X → ∆ (A) defined as L = α ◦ π.

7See, e.g., Hopkins (2007) and Jehiel and Samet (2005).
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For any state s ∈ S, a learning rule tells us how the probability of each

action a ∈ A is updated upon choosing any action a� ∈ A and receiving a
payoff x ∈ X. Let La(s, a�, x) denote the probability with which a is chosen
in the next period if the state of the agent is s, action a� is chosen and a payoff
of x is received today. Thus, by specifying the learning process (α, π), and
hence, the learning rule L, we define a (finite, square) matrix of functions





La (s, a, ·) La� (s, a, ·) La�� (s, a, ·) · · ·
La (s, a�, ·) La� (s, a�, ·) · · · · · ·
La (s, a��, ·)

... . . .
...

... . . .




(1)

for all state s ∈ S.

The following definition introduces some terminology for describing the
manner in which a learning rule responds to payoffs.

Definition 2 A learning rule L is own-concave ( own-increasing) at s if

La (s, a, ·) is concave (increasing) for all a ∈ A with αa(s) > 0. A learn-

ing rule L is cross-convex ( cross-decreasing) at s if La (s, a�, ·) is convex

(decreasing) for all a� ∈ A and a ∈ A\ {a�} with αa�(s) > 0.

Own-increasing and own-concavity place restrictions only on the diagonal
terms of the learning matrix (1). The restrictions on the off-diagonal ele-
ments of the learning rule are referred to as cross restrictions. Since each row
in (1) has to sum to one, a cross-convex (cross-decreasing) learning rule is
own-concave (own-increasing). Notice that these properties are local in that
they apply to a specific state s. A specific learning rule may, for example,
be own-concave at some states and not at others. If a property is satisfied
at all states s ∈ S then we will say that the property holds globally.

3 The Short Run
In this section we take the state of the agent as given and study how behavior
changes from one period to the next. That is, in this section, we focus on
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local and short run properties of learning. The expected change in behavior
plays a central role in the subsequent analysis. This magnitude is useful
because it allows us to abstract from the random aspects of both behavior and
payoffs. As we shall see in Section 5, it also provides pertinent information
for the long run analysis of learning. For a given environment F and learning
process (α, π), with corresponding learning rule L, the expected movement
of probability on action a in state s is denoted by

fa (s) =
�

a�∈A

αa�(s)

ˆ
La (s, a

�, x) dFa� (x)− αa(s).

Therefore, the study of the short run properties only requires knowing the
learning rule of a learning process. It will also be useful to extend this
definition to any subset of A, hence, for any learning rule L and environment
F , we also define fÂ (s) = Σa∈Âfa (s) for all Â ⊂ A and s ∈ S.

In EUT, a distribution Fa is said to be more risky than another F �
a if

and only if both have the same mean and every risk averse agent prefers
F �
a to Fa (e.g., Mas-Colell et al., 1995). In this case it is usually said that

F �
a second order stochastically dominates (SOSDs) Fa. Let A∗ denote the

set of actions whose distributions SOSD those of all other actions. That is,
A∗ = {a : Fa SOSDs Fa� for all a� ∈ A}. If A∗ = A then Fa = Fa� for all
a, a� ∈ A.

Definition 3 A learning rule L is monotonically risk averse at s ∈ S if

fA∗(s) ≥ 0 in all environments.

A learning rule is monotonically risk averse if the expected change in the
probability of choosing the set of the safest actions is non-negative in every
environment. Correspondingly, we say that a learning rule is monotonically

risk seeking if the expected change in the probability of choosing the set of
the riskiest actions (those that are second order stochastically dominated by
all other actions) is non-negative in every environment. Finally, we say that
a learning rule is monotonically risk neutral if it is monotonically risk averse
and monotonically risk seeking. In EUT, if A∗ is empty, just knowing that
an individual is risk averse (without knowing her utility function) does not
allow us to pin down the action she will choose. This has the analogue, in
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this paper, that no restrictions are placed on the movement of probability
when A∗ is empty (without knowledge of the learning rule).

We shall see, in the proof of the next result, that all monotonically risk
averse learning rules have the feature that, if all actions have the same dis-
tribution of payoffs, then there is no expected movement of probability. We
call such learning rules impartial.

Definition 4 A learning rule L is impartial at s ∈ S if fa(s) = 0 for all a
whenever Fa = Fa� for all a, a� ∈ A.

Proposition 1 A learning rule L is monotonically risk averse at s ∈ S if

and only if (i) L is impartial at s and (ii) L is cross-convex at s.

Our proof begins with two lemmas. The first shows that all monotonically
risk averse learning rules are impartial and the second characterizes impartial
learning rules.

Lemma 1 If a learning rule L is monotonically risk averse at s ∈ S then it

is impartial at s ∈ S.

Proof. The proof is by contradiction. Suppose L is monotonically risk averse
at s ∈ S but there exists an environment F with A = A∗ and fa(s) > 0 for
some a ∈ A. If Fa does not place strictly positive probability on (xmin, xmax),
then consider the environment �F such that, for all action a� ∈ A, the prob-
abilities of xmin and xmax are (1− ε) times their corresponding probabilities
in the environment F , and the probability of some x ∈ (xmin, xmax) is ε. If
Fa places strictly positive probability on (xmin, xmax), then let �F = F. We
now construct the environment �F in which �Fa is a mean preserving spread of
�Fa and �Fa� = �Fa� for all a� �= a. Specifically, suppose that �Fa is obtained by
assigning to every interval I ⊂ [xmin, xmax] only (1− ε) times the probability
it had under �Fa and then adding (�µa − xmin)ε/(xmax − xmin) on the prob-
ability of xmax and (xmax − �µa)ε/(xmax − xmin) on the probability of xmin.
By construction, �Fa� SOSD �Fa for all a� �= a. It follows that �A∗ = A\{a}.
Since �fa(s) is a continuous function of ε, there exists a small enough ε such
that �fa(s) > 0. This contradicts that L is monotonically risk averse at s.
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Lemma 2 A learning rule L is impartial at s ∈ S if and only if αa(s) =�
a�∈A αa�(s)La(s, a�, x) for all a ∈ A and x ∈ X.

Proof. Necessity.

Consider an environment where all actions pay x with probability one.
Then, for all a ∈ A and s ∈ S,

fa(s) =
�

a�∈A

αa�(s)La(s, a
�, x)− αa(s).

Therefore, in order to be impartial, L must satisfy

αa(s) =
�

a�∈A

αa�(s)La(s, a
�, x)

for all a ∈ A and x ∈ X.
Sufficiency.

Consider the environment F such that Fa = Fa� for all a, a� ∈ A.

fa(s) =
�

a�∈A

αa�(s)

ˆ
La(s, a

�, x)dFa�(x)− αa(s)

=

ˆ �

a�∈A

αa�(s)La(s, a
�, x)dFa(x)− αa(s)

= 0.

The second statement follows from the fact that all the distributions are the
same, and the third statement follows from the hypothesis.

Notice that Lemma 2 implies that impartial rules do not “experiment,”
i.e., if L is impartial at s and αa(s) = 0, then La(s, a�, x) = 0 for all a� �= a,
for all a ∈ A and x ∈ X. We list this observation for future reference as
Remark 1.

Remark 1 Suppose L is monotonically risk averse at s ∈ S and for some

a ∈ A, αa(s) = 0. Then, for all a� ∈ A� {a}, αa�(s) > 0 implies La(s, a�, x) =
0 for all x ∈ X.

Proof. We now proceed to complete the proof of Proposition 1.
Sufficiency.
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For all a ∈ A∗,

fa(s) = αa(s)

ˆ
La(s, a, x)dFa(x) +

�

a� �=a

αa�(s)

ˆ
La(s, a

�, x)dFa�(x)− αa(s)

=

ˆ �
αa(s)−

�

a� �=a

αa�(s)La(s, a
�, x)

�
dFa(x) +

�

a� �=a

αa�(s)

ˆ
La(s, a

�, x)dFa�(x)− αa(s)

=
�

a� �=a

αa�

�ˆ
La(s, a

�, x)dFa�(x)−
ˆ

La(s, a
�, x)dFa(x)

�

≥ 0.

The second statement follows from (i) in the hypothesis of the proposition
and the last inequality follows from the fact that a ∈ A∗ and the convexity
of La(s, a�, ·) for all a� �= a such that αa�(s) > 0.

Necessity.

We argue by contradiction. Suppose that for some a ∈ A and some
a� �= a such that αa�(s) > 0, La(s, a�, ·) is not convex. Therefore there exists
x�, x��, λ ∈ (0, 1) and x := λx� + (1 − λ)x�� such that λLa(s, a�, x�) + (1 −
λ)La(s, a�, x��) < La(s, a�, x). Consider an environment where a� �= a pays
x� with probability λ, and x�� with probability (1 − λ). Action a pays x
with probability one, and all the other actions in the set, if any, pay x with
probability 1 − ε, x� with probability ελ, and x�� with probability ε(1 − λ).
Clearly, A∗ = {a}. From the sufficiency part we know

fa(s) =
�

a�� �=a

αa��(s)

�ˆ
La(s, a

��, x)dFa��(x)−
ˆ

La(s, a
��, x)dFa(x)

�

= αa�(s)[λLa(s, a
�, x�) + (1− λ)La(s, a

�, x��)− La(s, a
�, x)]

+ε
�

a�� �=a,a�

αa��(s)[λLa(s, a
��, x�) + (1− λ)La(s, a

��, x��)− La(s, a
��, x)].

Therefore, for small enough ε, fa(s) < 0.

An analogous argument shows that a learning rule is monotonically risk
seeking (neutral) if and only if it is impartial and cross-concave (cross-convex
and cross-concave).

Monotonic risk aversion places restrictions on how a learning rule updates
the probability of each unchosen action as a function of the payoff obtained
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from the action chosen. In particular, it requires this function to be convex in
the payoff received for each unchosen action. Since

�
a∈A La (s, a�, x) = 1 for

all s ∈ S, a� ∈ A, and x ∈ X, every cross-convex learning rule is own-concave.
Hence, every monotonically risk averse learning rule is own-concave.

Proposition 1 also shows that all monotonically risk averse learning rules
are impartial. The set of impartial learning rules is related to the unbiased
learning rules studied in Börgers et al. (2004). A learning rule is unbiased

at s ∈ S if no probability mass is expected to be moved among actions when
all have the same expected payoff (i.e., fa(s) = 0 for all a whenever µa = µa�

for all a, a� ∈ A ). Unbiased learning rules have the restrictive feature that
they cannot respond to aspects of the payoff distribution other than the
mean. The set of impartial learning rules is considerably larger than the set
of unbiased rules.

Börgers et al. (2004) characterize the class of monotone learning rules,
defined as those which are expected to strictly increase probability on the
set of expected payoff maximizing actions, in every environment. Such
rules seem to respect risk neutrality. It may, hence, be conjectured that
the set of monotone learning rules is equal to the set of monotonically risk
neutral learning rules. This conjecture turns out to be false. In fact, a
learning rule is monotonically risk neutral if and only if it is unbiased. As
unbiased learning rules (strictly) contain the set of monotone learning rules,
monotone learning rules are (strictly) contained in the class of monotonically
risk neutral rules studied in this paper.

Remark 2 A learning rule is unbiased at s ∈ S if and only if it is mono-

tonically risk neutral at s ∈ S.

Proof. Recall from Proposition 1 in Börgers et al. (2004) that if α(s) ∈
int (∆ (A)), a learning rule L is unbiased at s if and only if it can be written,
for all a ∈ A and x ∈ [0, 1], as

La(s, a, x) = αa(s) + (1− αa(s))(Aaa(s) + Baa(s)x) (2)
La(s, a

�, x) = αa(s)− αa(s)(Aa�a(s) + Ba�a(s)x) ∀a� �= a,

where the coefficients Aa�a(s) and Ba�a(s) satisfy Aaa(s) = Σa�∈Aαa�(s)Aa�a(s)
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and Baa(s) = Σa�∈Aαa�(s)Ba�a(s).8 To see that unbiased rules are impartial,
we verify that
�

a�∈A

αa�(s)La(s, a
�, x) =

�

a� �=a

[αa�(s) (αa(s)− αa(s)(Aa�a(s) + Ba�a(s)x))]

+αa(s) (αa(s) + (1− αa(s))(Aaa(s) + Baa(s)x))

= αa(s)

for all a ∈ A and x ∈ [0, 1]. Equations (2) show that unbiased rules are cross-
affine, and hence they are cross-concave and cross-convex. Consequently,
unbiased rules are monotonically risk averse and monotonically risk seeking
and, hence, monotonically risk neutral.

To prove that monotonically risk neutral learning rules are unbiased,
note that every monotonically risk neutral rule is cross-concave and cross-
convex. Therefore, there exist coefficients Aa�a(s) and Ba�a(s) such that
every monotonically risk neutral rule can be written as (2). To prove
that Aaa(s) = Σa�∈Aαa�(s)Aa�a(s) and Baa(s) = Σa�∈Aαa�(s)Ba�a(s), note that
monotonically risk neutral rules are impartial and, hence, they satisfy

�

a� �=a

αa�(s)La(s, a
�, x) + αa(s)La (s, a, x) = αa(s)

for all a ∈ A. Therefore,

La(s, a, x) = 1−
�

a� �=a

αa�(s)La (s, a
�, x) /αa(s)

= 1−
�

a� �=a

αa�(s) (1− (Aa�a(s) + Ba�a(s)x))

= αa(s) +
�

a� �=a

αa�(s) (Aa�a(s) + Ba�a(s)x) .

Equating the RHS of the last equality with the RHS of the first equality
in (2), we obtain that αa(s) + (1 − αa(s))(Aaa(s) + Baa(s)x) = αa(s) +
Σa� �=aαa�(s)(Aa�a(s) + Ba�a(s)x). Since this equality has to hold for all x ∈

8Börgers et al. (2004) define unbiasedness for states s such that αa(s) > 0 for all a ∈ A.
However, their definition and its equivalence to monotone risk neutrality can be extended
to the whole simplex. Also notice that the coefficients Aa�a(s) and Ba�a(s) are defined for
each state s ∈ S, for all a, a� ∈ A (i.e., they are allowed to be state dependent).
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[0, 1] we obtain that Aaa(s) = Σa�∈Aαa�(s)Aa�a(s) and Baa(s) = Σa�∈Aαa�(s)Ba�a(s),
as desired.

In EUT, a distribution F �
a is said to first order stochastically domi-

nate (FOSD) another Fa if and only if every individual with an increasing
Bernoulli utility function prefers the former. We conclude this section with
the analogue of Proposition 1 as it pertains to first-order stochastic dom-
inance. Specifically, we would like to identify the learning rules that are
expected to add probability mass on the set of actions whose distributions
FOSD the distributions of all the other actions, in every environment. We
call such learning rules first order monotone. Let A∗∗ := {a ∈ A : Fa FOSDs
Fa� for all a� ∈ A}.

Definition 5 A learning rule L is first order monotone at s ∈ S if fA∗∗(s) ≥
0 in every environment.

First-order monotone learning rules can be characterized in the same
manner as monotonically risk averse learning rules. In particular, these
rules need to be impartial but instead of being cross-convex they require the
response of the probabilities of playing the unchosen actions to be decreasing
in the obtained payoff.

Proposition 2 A learning rule L is first order monotone at s ∈ S if and

only if (i) L is impartial at s and (ii) L is cross-decreasing at s.

The proof of this result is based on an argument that is analogous to the
one used in the proof of Proposition 1 and is provided in the Appendix.

The class of monotone learning rules studied in Börgers et al. (2004) is
contained in the set of first order monotone rules which we characterize above.
Whereas monotone learning rules are unbiased and affine in payoffs, the
first-order monotone rules we characterize are impartial and do not require
affine-ness in payoffs.

In EUT requiring that an individual prefers more to less and is risk averse
restricts her Bernoulli utility function to be increasing and concave. Our
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results show that requiring a learning rule to be first order monotone and
monotonically risk averse restricts how each element of the learning matrix
(1) responds to payoffs. Specifically, each of the off-diagonal terms have to
be decreasing and convex. Hence, the diagonal terms have to be increasing
and concave. These restrictions on learning rules should prove useful in
further theoretical and empirical work on learning.

4 Examples
In this section we study the short run properties of some learning models
that have appeared in the literature. The next section studies the long run
properties of some of these models or their straightforward modifications and
extensions.

Example 1 considers the Cross (1973) learning model. Previous work
has studied its long run properties and shown its relation to the replicator
dynamics of evolutionary game theory (e.g., Börgers and Sarin, 1997). The
learning rule of this model was shown to satisfy all the properties studied in
Börgers et al. (2004). Example 2 studies Roth and Erev’s (1995) learning
model which has been used extensively in the experimental analysis of learn-
ing in games (e.g., Erev and Roth, 1998). Its long run properties in decision
problems, normal form and extensive form games have been studied by Rus-
tichini (1999), Laslier, Topol and Walliser (2001), Beggs (2005), Hopkins and
Posch (2005) and Laslier and Walliser (2005). The learning rule of Roth and
Erev (1995) does not satisfy any of the properties studied by Börgers et al.
(2004) who show this rule is not unbiased. Both of our first two examples
are discussed in Fudenberg and Levine (1998). Examples 3-5 study three
learning models analyzed by March (1996) and which have been used widely
in the psychological literature on learning. A class of "belief-based" learning
models (see, e.g., Erev and Roth (1998)) that generalizes one of the learning
models in March (1996) is also considered.

Example 1 [Cross, 1973] The set of states is S = ∆(A), where each com-

ponent of s ∈ ∆(A) corresponds to each action in A. The state transition

rule, π : S × A×X → S, is given by

πa (s, a, x) = sa + (1− sa) x

πa (s, a
�, x) = sa − sax ∀a� �= a,
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for all s ∈ S, a ∈ A, and x ∈ X = [0, 1]. The choice rule α : S → ∆(A) is the

identity function, i.e., α(s) = s for all s ∈ S. Thus, La (s, a�, x) = πa (s, a�, x)
for all s ∈ S, a, a� ∈ A, and x ∈ [0, 1].

In the Cross rule, for any a ∈ A, s ∈ S, and x ∈ X,

Σa�∈Aαa�(s)La (s, a
�, x) = Σa� �=aαa�(s) (sa − sax) + αa(s) (sa + (1− sa) x)

= αa(s).

Hence, by Lemma 2, the Cross learning rule is impartial. Furthermore, for
all a� �= a and s ∈ ∆(A), La (s, a�, ·) is an affine function. Therefore, this
learning rule is monotonically risk averse and monotonically risk seeking and,
hence, it is monotonically risk neutral. As the cross terms are decreasing
functions, this rule is first order monotone. As all these properties hold for
all states s ∈ ∆ (A), each of them also holds globally.

Example 2 [Roth and Erev, 1995] The state of an agent is given by a vector

s ∈ S = R|A|
++. The vector s = (sa)a∈A describes the decision maker’s

“attraction” to choose any of her actions. The choice function α : S → ∆(A)
is given by αa(s) = sa/Σa�sa� for all a ∈ A and s ∈ S. The state transition

rule π is defined as follows:

πa (s, a, x) = sa + x

πa (s, a
�, x) = sa ∀a� �= a.

for all s ∈ S, a ∈ A, and x ∈ X = [0, xmax]. Combining α and π we obtain

that the Roth and Erev learning rule is given by

La (s, a, x) =
sa + x

Σa��sa�� + x

La (s, a
�, x) =

sa
Σa��sa�� + x

∀a� �= a,

for all a ∈ A, s ∈ S, and x ∈ X.

For arbitrary a ∈ A, s ∈ S, and x ∈ X,
�

a�∈A

αa�(s)La (s, a
�, x) =

�

a� �=a

�
sa�

Σa��∈Asa��

�
sa

Σa��∈Asa�� + x
+

�
sa�

a��∈A sa��

�
(sa + x)�
a��∈A sa�� + x

=
sa�

a�∈A sa�
= αa(s).
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Therefore, this learning rule is impartial. Furthermore, for all a� �= a and
s ∈ S, La (s, a�, ·) is decreasing and convex, which implies that this learning
rule is globally first order monotone and monotonically risk-averse.

Example 3 [Weighted Return over Gains, March, 1996] The state of learn-

ing is described by a vector of attractions s ∈ X |A|, where X = [xmin, xmax],
xmin > 0, and xmax < ∞. If action a is chosen and yields a payoff x, the

state transition rule adds β (x− sa) to sa, where β ∈ (0, 1) is a parameter,

leaving all other attractions unchanged. Thus,

πa (s, a, x) = sa + β (x− sa)

πa (s, a
�, x) = sa ∀a� �= a.

for all s ∈ S, a ∈ A, and x ∈ X. The choice rule is given by αa(s) =
sa/Σa�sa� for all a ∈ A and s ∈ S.Therefore, the learning rule of this learning

process may be written as

La(s, a, x) =
sa + β(x− sa)�

a��∈A sa�� + β(x− sa)

La(s, a
�, x) =

sa�
a��∈A sa�� + β(x− sa�)

∀a� �= a,

for all a ∈ A, s ∈ S, and x ∈ X.

The learning rule of this example is cross-convex. Similar computations
to those provided above for the Cross learning rule and the Roth and Erev
learning rule show that this learning rule is monotonically risk averse and
first order monotone if sa = sa� for all a, a� ∈ A. However this learning rule
is not globally impartial and thus is not globally monotonically risk averse or
globally first-order monotone. To see this, consider an environment in which
all actions pay x ∈ (xmin, xmax) with probability one and the state s satisfies
sa < x and sa� > x for all a� �= a. With probability one, either the attraction
of an action a� �= a will decrease or the attraction of a will increase. In either
case the probability of choosing action a will increase and thus, fa(s) > 0.
It follows that this learning rule cannot be globally impartial. March (1996)
also proposes a weighted return model over losses that can be analyzed in
the same way.
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The analysis of the average return model studied by March (1996) is
similar. It can be obtained as a particular case of a class of belief-based

learning models considered, for instance, in Erev and Roth (1998), p. 866.
For this class of learning models, the set of payoffs is X := [xmin, xmax], with
xmin > 0 and xmax < ∞, and the set of states is S = (X × N)|A|. The state,
denoted by s = (ν,κ), is given by the vector of (strictly positive) attractions
of each action, denoted by ν, and a vector containing the number of times
each action has been chosen in the past, denoted by κ. It turns out to be
useful for the discussion below to allow explicitly for a transformation of
payoffs. Thus, let u : X → X be an increasing transformation. Roughly
speaking, the attraction of each action corresponds to the average value of
u(x) that it has yielded in the past. Thus, the state transition rule is given
by

πa (s, a, x) = (νa + (u(x)− νa) / (κa + 1) ,κa + 1)

πa (s, a
�, x) = (νa,κa) ∀a� �= a.

for all s ∈ S, a ∈ A, and x ∈ X. The choice rule is given by αa(s) = νρ
a/Σa�ν

ρ
a�

for all a ∈ A and s ∈ S, where ρ ≥ 0 is a parameter. Thus, the learning rule
of this learning process may be written as

La(s, a, x) =
(νa + (u(x)− νa)/ (κa + 1))ρ�

a�� �=a ν
ρ
a�� + (νa + (u(x)− νa)/ (κa + 1))ρ

La(s, a
�, x) =

νρ
a�

a�� �=a� ν
ρ
a�� + (νa� + (u(x)− νa�)/ (κa� + 1))ρ

∀a� �= a

for all a ∈ A, s ∈ S, and x ∈ X. March’s (1996) average return model is
obtained when ρ = 1 and u(x) = x for all x ∈ X. As ρ goes to infinity, the
model approximates arbitrarily close fictitious play (the action with the high-
est attraction is chosen with probability arbitrarily close to one). If ρ = 1,
the probabilities of choosing each action are proportional to the past averages
of u(x) of each action. In game theory, since payoffs are considered to be von
Neumann-Morgestern utility (see, e.g., Fudenberg and Tirole (1991)), u has
been interpreted as a Bernoulli utility function.9 One may conjecture that
if u is concave, then the resulting learning rule is monotonically risk averse.
An argument analogous to the one we used for March’s (1996) Weighted

9As we do not assume risk preferences, however, this is not the interpretation we
consider along the paper.
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Return over Gains model reveals that this conjecture is false for any ρ > 0,
because the belief-based learning rule fails to be globally impartial. Hence,
belied-based learning models fail to satisfy our short run properties.

Example 4 [Fractional Adjustment over Gains, March, 1996] This learning

model is defined for environments in which the decision maker has only two

actions. As in the Cross learning model, the set of states is S = ∆(A),
where each component of s ∈ ∆(A) corresponds to the probability of choosing

each action in A. The choice rule α : S → ∆(A) is, therefore, the identity

function, α(s) = s for all s ∈ S. Over gains, i.e., for x ≥ 0, the state

transition rule of this model is given by

πa (s, a, x) = 1− (1− σ)x (1− sa)

πa (s, a
�, x) = (1− σ)x sa a� �= a,

for all a ∈ A, and s ∈ S, where σ ∈ (0, 1) is a parameter. Thus, La (s, a�, x) =
πa (s, a�, x) for all s ∈ S, a, a� ∈ A, and x ≥ 0.

For all a ∈ A, s ∈ S, and x ∈ X,

Σa�∈Aαa�(s)La (s, a
�, x) = αa�(s) ((1− σ)x sa) + αa(s) (1− (1− σ)x (1− sa))

= αa(s).

Therefore, this learning rule is impartial. For all a� �= a and s ∈ S, La (s, a�, ·)
is decreasing and convex. Hence, this learning rule is globally first order
monotone and monotonically risk averse.

Example 5 [Fractional Adjustment over Losses, March, 1996] The learning

process is defined in the same manner as in the Fractional Adjustment over

Gains model. The only difference is that the state transition rule is given by

πa (s, a, x) = (1− σ)−x sa
πa (s, a

�, x) = 1− (1− σ)−x (1− sa) a� �= a

for all a ∈ A, s ∈ S, and x < 0. The learning rule is, thus, given by

La (s, a�, x) = πa (s, a�, x) for all s ∈ S, a, a� ∈ A, and x < 0.

This learning rule is cross-concave. However, simple algebra reveals that
Σa�∈Aαa�(s)La (s, a�, x) = αa(s) if and only if x = 0, for all a ∈ A and s ∈ S.
Therefore, this learning rule is not impartial at any state.
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5 The Long Run
In Subsection 5.1 we introduce some concepts that play an important role in
the subsequent analysis. Subsection 5.2 proves that under some conditions
learning processes with globally monotonically risk averse (respectively, glob-
ally first-order monotone) learning rules converge, with high probability, to
the set of actions that SOSD (respectively, FOSD) all others. Subsection 5.3
shows that for every continuous Bernoulli utility function, there exist learning
processes that, with high probability, converge to choose the corresponding
expected utility maximizing action.

5.1 Preliminaries
As we consider the learning process at different periods of time, we will often
subscript the state and the probability of choosing the safest actions by the
time period t = 0, 1, ... Let α∗ : S → [0, 1], defined by α∗(s) :=

�
a∈A∗ αa(s),

be the probability of choosing an action in A∗, for all s ∈ S. Also, let α∗
t be

the probability of choosing an action in A∗ at time t, for all t ∈ N0. Hence,
α∗
t = α∗(st), where st is the state at time t ∈ N0.

Recall the standard concept of strict second-order stochastic dominance.
A distribution F �

a� strictly-SOSDs Fa� if F �
a� SOSDs Fa� and there is

some x ∈ X such that F �
a�(x) �= Fa�(x). The following definition formalizes

the idea that if we replace the distribution of an action a� with one which
strictly-SOSDs it, then the learning rule should respond to this change in a
non-trivial manner. Specifically, it requires that, at all states in which a and
a� are chosen with positive probability, if the distribution of a� is replaced by
a more “attractive” distribution then less probability should be added to any
action a �= a�, when a� is chosen. The condition requires that this difference
in the response has to be bounded away from zero. It utilizes a normalization
which ensures that it is consistent with impartiality.10 For any learning rule
L, two actions a and a� �= a, and payoff distributions F �

a� and Fa� , let

na�a(F
�
a� , Fa�) := inf

{s∈S:αa(s),αa� (s)>0}

�´
La (s, a�, x) dFa� (x)−

´
La (s, a�, x) dF �

a� (x)

αa(s)

�
.

10In particular, impartiality implies that for all states such that αa(s) is arbitrarily
close to zero, while αa�(s) is bounded away from zero for all a� �= a, La (s, a�, x) must be
arbitrarily close to zero for all x (see Lemma 2). Hence, without this normalization, the
learning rule would not be able to respond to the “more attractive” distribution.
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Definition 6 The learning rule L associated to a learning process (α, π)
satisfies the non-shrinking condition (NSC) if for any pair of actions a �=
a� and payoff distributions F �

a� and Fa� such that F �
a� strictly-SOSDs Fa�,

na�a(F �
a� , Fa�) > 0.

Notice that learning rules in which the change in probabilities becomes
arbitrarily small, such as the learning rule of the Roth-Erev (1995) model,
may not satisfy the NSC. Such rules may asymptotically become insensitive
to risk in the environment.

Lemma 3 Suppose that the learning rule L associated to the learning process

(α, π) is globally monotonically risk averse and satisfies the NSC. Then, for

arbitrary initial state s0 ∈ S, α∗
t converges almost surely to a random variable

α∗
∞ with support in {0, 1}.

Proof. For any learning process with a monotonically risk averse learning
rule L, α∗

t is a submartingale bounded above by 1. Consequently, α∗
t con-

verges with probability 1 to a random variable α∗
∞ (e.g., Billingsley, 1995,

p. 468). We shall prove that the support of α∗
∞ is contained in {0, 1} by

showing that Pr{α∗
∞ ∈ (0, 1)} = 0.

From the proof of Proposition 1, we know that for any monotonically risk
averse learning rule,

fA∗ (st) =
�

a∈A∗

�

a� /∈A∗

αa�(st)

�ˆ
La (st, a

�, x) dFa� (x)−
ˆ

La (st, a
�, x) dFa (x)

�

=
�

{a∈A∗|αa(st)>0}

�

{a� /∈A∗|αa� (st)>0}

αa(st)αa�(st)

´
La (st, a�, x) dFa� −

´
La (st, a�, x) dFa

αa(st)

for all t ∈ N0, where the second equality follows from Remark 1 and deleting
all the αa�(st) terms that are equal to zero.

Let

δ := min
{a∈A∗,a� /∈A∗}

�
inf

{s∈S:αa(s),αa� (s)>0}

�´
La (s, a�, x) dFa� −

´
La (s, a�, x) dFa

αa(s)

��
.

The NSC guarantees that δ > 0. Consequently, for all t ∈ N0,
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fA∗ (st) ≥ δ
�

{a∈A∗|αa(st)>0}

�

{a� /∈A∗|αa� (st)>0}

αa(st)αa�(st) = δ
�

a∈A∗

�

a� /∈A∗

αa(st)αa�(st) ≥ 0.

(3)
For all t ∈ N,

E [α∗
t ] = α∗

0 + E[α∗
1 − α∗

0] + E[α∗
2 − α∗

1] + ...+ E[α∗
t − α∗

t−1]

= α∗
0 +

t−1�

τ=0

E [fA∗ (sτ )] .

Since fA∗ (st) ≥ 0, we have E [fA∗ (st)] ≥ 0 for all t ∈ N0. It follows that
limt→∞ E [fA∗ (st)] = 0, because E [α∗

t ] ≤ 1 for all t ∈ N0.

From (3), E [fA∗ (st)] ≥ E
�
δ
�

a∈A∗
�

a� /∈A∗ αa(st)αa�(st)
�
≥ 0 for all t ∈

N0. Since limt→∞ E [fA∗ (st)] = 0, limt→∞ E
�
δ
�

a∈A∗
�

a� /∈A∗ αa(st)αa�(st)
�
=

0. Since δ > 0, limt→∞ E
��

a∈A∗
�

a� /∈A∗ αa(st)αa�(st)
�

= 0. Equiva-
lently, limt→∞ E [α∗

t (1− α∗
t )] = 0. This may be written as limt→∞ E [α∗

t ] =
limt→∞ E

�
(α∗

t )
2� .

By the Continuous Mapping Theorem (e.g., Resnick 1999, p. 261), limt→∞ E [α∗
t ] =

E [α∗
∞] and limt→∞ E

�
(α∗

t )
2� = E [(α∗

∞)2] .11 Therefore, E [α∗
∞] = E [(α∗

∞)2].
Since z > z2 for all z ∈ (0, 1), Pr{α∗

∞ ∈ (0, 1)} = 0.

Let Γ (s0) := Pr{α∗
∞ = 1} for arbitrary initial state s0 ∈ S. Existence

and uniqueness of Γ (s0) follow from Lemma 3, the fact that convergence with
probability 1 implies weak convergence, and the uniqueness of weak limits
(e.g., Resnick 1999, p. 252).

Lemma 3 guarantees that learning processes with monotonically risk
averse learning rules will converge to choose the safest actions with prob-
ability zero or one. However, it is uninformative about the probability with
which α∗

t converges to one. To obtain more precise bounds on Γ (s0) we
consider slow versions of the original learning process.

11The Continuous Mapping Theorem (e.g., Resnick, 1999) establishes that if the se-
quence of random variables {Xt}∞t=1 converge in distribution to the random variable X
and the probability that X is in the set of points where the bounded function g : R → R is
discontinuous is 0, then limt→∞ Eg(Xt) = Eg(X). Since α∗

t converges to α∗
∞ with prob-

ability 1, α∗
t converges to α∗

∞ in distribution, hence the Continuous Mapping Theorem
applies.
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Definition 7 Let (α, π) be a learning process with learning rule L = α ◦ π
and state space S, and let θ ∈ (0, 1]. A learning process (α, πθ) with state

space S, is a slow version of (α, π) if Lθ := α ◦ πθ satisfies

Lθ
a (s, a

�, x)− αa(s) = θ (La (s, a
�, x)− αa(s))

for all s ∈ S, a�, a ∈ A and x ∈ X. Furthermore, in this case we also say that

Lθ is a slow version of L.

Equivalently, a slow version Lθ of L satisfies,

Lθ
a (s, a

�, x) = (1− θ)αa(s) + θLa (s, a
�, x) . (4)

for all s ∈ S, a�, a ∈ A, and x ∈ X.

From now on we use the superscript θ to refer to the slow version of the
relevant variable. If L is monotonically risk averse, then so is Lθ. Further-
more, if L satisfies the NSC then so does Lθ for all θ ∈ (0, 1]. Hence, we
can apply Lemma 3 to show that for arbitrary initial state s0 ∈ S, αθ,∗

t con-
verges almost surely to a random variable, denoted by αθ,∗

∞ , whose support is
contained in {0, 1}. Let Γθ(s0) := Pr

�
αθ,∗
∞ = 1

�
for a slow learning process

(α, πθ) and initial state s0 ∈ S.

5.2 Convergence to second order stochastically domi-
nant actions

The main result in this subsection is Proposition 3. It shows that slow
versions of learning processes with globally monotonically risk averse learning
rules which satisfy the NSC converge, with high probability, to the set of
actions that second order stochastically dominate all others.

The following lemma plays a critical role in the proof of Proposition 3. It
provides a lower bound for Γ(s0). Specifically, it shows that we can construct
a function φ : [0, 1] → [0, 1] such that Γ(s0) ≥ φ (α∗(s0)) for all initial state
s0 ∈ S. The function φ satisfies φ(0) = 0 and φ(1) = 1, and is strictly
increasing and strictly concave. This function satisfies φ(z) ≥ z for all
z ∈ [0, 1]. The proofs of this lemma and the next are provided in the
Appendix.
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Lemma 4 Suppose that the learning rule L associated to the learning process

(α, π) is globally monotonically risk averse and satisfies the NSC. Then, there

exists γ∗ > 0 such that the function φ : [0, 1] → [0, 1], defined as

φ(z) :=
1− e−γz

1− e−γ

for all z ∈ [0, 1], satisfies the following conditions when γ = γ∗ :

(I) E
�
φ(α∗

t+1)
�
− E [φ(α∗

t )] ≥ 0 for all t ∈ N0, and

(II) Γ(s0) ≥ φ(α∗(s0)) ∀ s0 ∈ S.

The next lemma shows that γ can be taken to be arbitrarily large for
suitably slow learning processes while preserving the properties of φ obtained
in Lemma 4.

Lemma 5 Suppose that the learning rule L associated to the learning process

(α, π) is globally monotonically risk averse and satisfies the NSC. Then, for

all �γ > γ∗, with γ∗ defined as in Lemma 4, there exists a slow version of

(α, π), denoted by

�
α, πθ̂

�
, such that Γ

�θ(s0) ≥ φ(α∗(s0)) ∀ s0 ∈ S, when

γ = �γ.

As Lemma 4 reveals, for every learning process with a globally monoton-
ically risk averse learning rule, we can provide a lower bound for the prob-
ability of convergence to choose the safest actions with probability one.12

This lower bound corresponds to φ(α∗
0) with γ = γ∗, for some γ∗ > 0.

This function is a lower bound because E [φ(α∗
t )] is increasing in time and

E [φ(α∗
∞)] = E [α∗

∞] (because φ(z) = z for z ∈ {0, 1}, which is the support
of α∗

∞, as Lemma 3 reveals). Then, Lemma 5 shows that, if we consider the
slow learning process (α, πθ), φ(α∗

0) is a lower bound for the probability of
convergence if we set γ = �γ := γ∗/θ instead of γ = γ∗. It follows that by
considering slow learning, i.e., θ small enough, γ̂ can be chosen arbitrarily
large. Finally, since φ(α∗

0) → 1 when γ → ∞ for all α∗
0 ∈ (0, 1], we have that

Γθ(s0) → 1 as θ → 0, for all initial state s0 such that the initial probability
of choosing a second order stochastically dominant action is strictly positive.

12The technique for providing lower bounds is well known in computer science (e.g.,
Lakshmivarahan and Thathachar (1976) and Narendra and Thathachar (1989)).
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As explained below, in the proof of Proposition 3, this yields the lower bound
for the probability of convergence, φ(α∗

0), as close to 1 as desired.13

Proposition 3 Suppose that the learning rule associated to the learning pro-

cess (α, π) is globally monotonically risk averse and satisfies the NSC. Then,

for any ε > 0 and initial state s0 ∈ S such that α∗(s0) > 0, there exists

θε ∈ (0, 1] such that Γθ(s0) > 1 − ε for any slow version of (α, π) with

θ ∈ (0, θε).

Proof. Consider any ε > 0 and s0 such that α∗(s0) > 0. Lemma 4 and
Lemma 5 imply that there exists γ∗ > 0 such that, for all �γ > γ∗, there
exists �θ := γ∗/�γ which satisfies Γ�θ(s0) ≥ φ(α∗(s0)), when γ = �γ. As γ → ∞,
φ(z) → 1 for all z ∈ (0, 1]. Thus, we can choose γε > γ∗ such that, if γ ≥ γε,
φ(α∗(s0)) > 1 − ε. From the argument above, there exists �θε ∈ (0, 1), with
�θε := γ∗/γε, such that Γ

�θε(s0) > 1 − ε. Furthermore, for each θ ∈ (0, θε) we
can find a γ > γε such that θ = γ∗/γ and Γθ(s0) ≥ φ(α∗(s0)) > 1− ε.

Lemmas 3-5 and Proposition 3 reveal the different natures of the NSC
and slow learning, and what each of them accomplishes. The NSC plays a
critical role in the proof of Lemma 3, which shows that α∗

∞ cannot take values
in (0, 1) with strictly positive probability. Since the expected changes in α∗

t

are positive and α∗
t is bounded above by 1, these expected changes converge

to zero as time goes to infinity. The proof of Lemma 3 reveals that, given
the formulations of the expected change in α∗

t for monotonically risk averse
learning rules (i.e., fA∗(st)), the NSC provides a sufficient condition for these
expected changes to go to zero only when α∗

t converges to 0 or 1. This yields
the result of the lemma. In contrast, slow learning is often used in stochastic
learning models to ensure that the actual path of the learning process stays
close to the expected path with high probability.14 From (3), it follows that if
the sequence {α∗

t}
∞
t=1 was deterministic and followed the path of its expected

value, then the probability of choosing the safest action would converge to
one. This allows the lower bound for the probability of convergence to the

13Notice that our result provides sufficient conditions for convergence with high prob-
ability for slow learning processes. This does not imply that slow learning is a necessary
condition for convergence, yet the previous results in the machine learning literature and
our analysis suggest that convergence is difficult to obtain without considering slow learn-
ing.

14Early references are Norman (1968, 1974). For more recent related results, see
Izquierdo et al. (2007) and the references therein.
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safest action to go to one for slow learning processes with monotonically risk
averse learning rules.

To illustrate Proposition 3 consider March’s (1996) fractional adjustment
model over gains (Example 4 in Section 4). This learning rule is globally
monotonically risk averse and satisfies the NSC. To see this, notice that
for a �= a�, La (s, a�, x) = (1− σ)x sa. This is twice differentiable in x
with strictly positive second derivative. Thus, if F �

a� strictly second-order
stochastically dominates Fa� , then

inf
{s∈S:αa(s),αa� (s)>0}

�ˆ
(1− σ)x dFa�(x)−

ˆ
(1− σ)x dF �

a�(x)

�
> 0.

Slow versions are obtained by specifying the corresponding slow state tran-
sition rule. In particular, for any s ∈ ∆(A), a ∈ A, and x ≥ 0, let

πθ
a (s, a, x) = sa + θ (1− (1− σ)x) (1− sa)

πθ
a (s, a

�x) = sa + θ ((1− σ)x − 1) sa a� �= a.

The corresponding slow learning rule is given by Lθ
a (s, a

�, x) = πθ
a (s, a

�, x) for
all s ∈ S, a, a� ∈ A, and x ≥ 0. Proposition 3 implies that sufficiently slow
versions of this learning process converge with high probability to the set of
actions that SOSD all others, provided this set is chosen initially with positive
probability. That is, Proposition 3 implies that for any ε > 0, and s0 ∈ S
such that α∗(s0) > 0, there exists θε ∈ (0, 1] such that Pr

�
α∗,θ
∞ = 1

�
> 1− ε

for any slow version of this learning process, (α, πθ), such that θ ∈ (0, θε).

An analogous version of Proposition 3 holds for learning processes with
monotonically risk seeking learning rules. Such a result would pertain to
an environment in which there is at least one action whose distribution is
a mean preserving spread of all other actions. An action in this set would
be the riskiest in terms of second order stochastic dominance. If this set of
actions is initially chosen with positive probability and the inequality in the
NSC is reversed, then a suitably slow version of any learning process with a
monotonically risk seeking learning rule would converge with high probability
to this set.

Another analogy can be obtained for first order monotone learning rules.
Formally, let α∗∗(s) := Σa∈A∗∗αa(s) for all s ∈ S and α∗∗

t := α∗∗(st) for
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all t ∈ N0, and recall that a distribution F �
a is said to strictly first order

stochastically dominate a distribution Fa if F �
a FOSDs Fa and there is some

x ∈ X such that F �
a(x) �= Fa(x).

Proposition 4 Suppose that the learning rule associated to the learning pro-

cess (α, π) is globally first-order monotone and na�a(F �
a� , Fa�) > 0 for any pair

of actions a �= a� and payoff distributions F �
a� and Fa� such that F �

a� strictly-

FOSDs Fa�. Then, (i) for arbitrary initial state s0 ∈ S, α∗∗
t converges almost

surely to a random variable α∗∗
∞, with support in {0, 1}, and (ii) for any

ε > 0 and s0 ∈ S such that α∗∗(s0) > 0, there exists θε ∈ (0, 1] such that

Pr{αθ,∗∗
∞ = 1} > 1− ε for any slow version of (α, π) with θ ∈ (0, θε).

The argument of the proof of this proposition is analogous to the argu-
ment in the proof of Lemmas 3-5 and Proposition 3 and is omitted.

5.3 Convergence to expected utility maximization
Consider an expected utility maximizer whose preferences are represented by
the Bernoulli utility function u and who knows the environment F = (Fa)a∈A.
Let A∗

u be the set of most preferred actions for a decision maker with Bernoulli
utility function u, i.e.,

A∗
u :=

�
a ∈ A :

ˆ
u(x)dFa(x) ≥

ˆ
u(x)dFa�(x)∀a� ∈ A

�
.

Let α∗(u, s) := Σa∈A∗
u
αa(s) for any Bernoulli utility function u : [xmin, xmax] →

R and s ∈ S; and also let α∗
t (u) := α∗(u, st). The following Lemma provides

conditions on a learning process such that the limit of α∗
t (u) is 1 with high

probability. We say that c + du is a negative affine transformation of u if
d < 0 and c ∈ R.

Lemma 6 Suppose that the learning rule L associated to the learning process

(α, π) is globally impartial. Furthermore, suppose that (i) La(s, a�, ·) is a

negative affine transformation of u for all s ∈ S, a ∈ A and a� ∈ A\ {a}, and

(ii) na�a(F �
a� , Fa�) > 0 for any pair of actions a �= a� and payoff distributions

Fa� and F �
a� such that

´
u(x)dF �

a�(x) >
´
u(x)dFa�(x). Then, for all ε > 0 and
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initial state s0 ∈ S with α∗(u, s0) > 0, there exists a θε ∈ (0, 1] such that for

any slow version
�
α, πθ

�
of the learning process, with θ ∈ (0, θε), there exists

a random variable, denoted by α∗,θ
∞ (u), such that α∗,θ

t (u) converges almost

surely to α∗,θ
∞ (u), and Pr{α∗,θ

∞ (u) = 1} > 1− ε.

Proof. Impartiality implies

fa(s) =
�

a� �=a

αa�(s)

�ˆ
La(s, a

�, x)dFa�(x)−
ˆ

La(s, a
�, x)dFa(x)

�

for all a ∈ A and s ∈ S. For any action a ∈ A∗
u, we have fa(s) ≥ 0 because

La(s, a�, ·) is a negative affine transformation of u for all a ∈ A, a� �= a, and
s ∈ S. It follows that fA∗

u
(st) ≥ 0 for all t ∈ N0. The rest of the argument

is analogous to the arguments in the proofs of Lemmas 3-5 and Proposition
3, and is omitted.15

Our last result shows that for any continuous Bernoulli utility function u
there exists a learning process such that α∗

t (u) is close to 1 in the long run,
with high probability.

Proposition 5 Consider any environment F and continuous Bernoulli util-

ity function u : [xmin, xmax] → R. There exists a learning process (α, π), with

associated learning rule L, such that fa(s) ≥ 0 for all a ∈ A∗
u and s ∈ S; and

for all ε > 0, if s0 satisfies α∗(u, s0) > 0, then there exists θε ∈ (0, 1] such

that for any slow version of (α, π), denoted by (α, πθ), with θ ∈ (0, θε), we

have that α∗,θ
t (u) converges almost surely to a random variable, denoted by

α∗,θ
∞ (u), such that Pr{α∗,θ

∞ (u) = 1} > 1− ε.

Proof. Consider a continuous function u : [xmin, xmax] → R. By Lemma 6,
we just need to provide a learning process with a globally impartial learning
rule L such that conditions (i) and (ii) of the lemma are satisfied. In order to
construct such a learning process, for each a ∈ A and a� ∈ A \ {a}, consider
an affine transformation of u, denoted by ua�a : [xmin, xmax] → [0, 1] such
that uaa� = ua�a. Let the set of states be given by S = ∆(A), with state

15Note that condition (ii) plays the role that the NSC plays in the proof of Proposition
3.

30



transition rule πa (s, a�, x) = sa(1−ua�a(x)) for all s ∈ S, a ∈ A, a� ∈ A \ {a}
and x ∈ [xmin, xmax]. Furthermore, define the choice rule as α(s) = s for all
s ∈ S. These conditions imply that the associated learning rule L satisfies
(i) and (ii) in Lemma 6. Finally, impartiality follows from

�

a�∈A

αa�(s)La(s, a
�, x) =

�

a� �=a

αa�(s)sa(1− ua�a(x)) + αa(s)

�
1−

�

a� �=a

La�(s, a, x)

�

=
�

a� �=a

αa�(s)sa(1− ua�a(x)) + αa(s)−
�

a� �=a

αa(s)sa�(s)(1− ua�a(x))

= αa(s)

for all s ∈ S, a ∈ A, and x ∈ X.

To illustrate Proposition 5, we provide three examples. First, we revisit
March’s (1996) fractional adjustment learning model over gains (Section 4,
Example 4). We have shown that the learning rule of this model is globally
impartial. The off-diagonal terms of this rule can be written as

La (s, a
�, x) = (1− σ)x sa

= sae
−(ln 1

1−σ )x

for all s ∈ S and x ∈ X. This expression corresponds to a negative affine
transformation of the Constant Absolute Risk Aversion (CARA) Bernoulli
utility function uCARA(x) = −e−bx with Arrow-Pratt coefficient of absolute
risk aversion b = ln 1

1−σ . For any pair of distributions Fa� and F �
a� such that´

uCARA(x)dF �
a�(x) >

´
uCARA(x)dFa�(x),

na�a(F
�
a� , Fa�) =

ˆ
e−(ln

1
1−σ )xdFa�(x)−

ˆ
e−(ln

1
1−σ )xdF �

a�(x) > 0.

Hence, condition (ii) in Lemma 6 is satisfied. The results above imply
that the asymptotic probability of choosing an action which maximizes the
expected utility of a CARA decision maker with Arrow-Pratt coefficient of
absolute risk aversion, b = ln 1

1−σ , can be made as close to 1 as desired for a
suitably slow version of March’s fractional adjustment learning process.

Next, we consider a simple modification of the Roth and Erev learning
model (Section 4, Example 2) in which we keep the sum of attractions con-
stant. Additionally, suppose all payoffs are strictly positive. For this mod-
ified learning process, the set of states is S =

�
(sa)a ∈ R|A|

++ :
�

a sa = S
�

,
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where S > 0 is an exogenously given constant. If the state is s, action a
is chosen and it gets a payoff of x, then its attraction becomes πa(s, a, x) =
(sa + x) (Σsa�/ (Σsa� + x)) = (sa + x)

�
S/

�
S + x

��
. If instead a� �= a is cho-

sen, then the attraction of action a becomes πa(s, a�, x) = sa
�
S/

�
S + x

��
.

The choice rule α is as in the original model, i.e., αa(s) = sa/
�

a�∈A sa� for
all a ∈ A and s ∈ S. The corresponding learning rule is, thus, given by

La(s, a, x) =
sa + x

S + x

La(s, a
�, x) =

sa
S + x

∀ a� �= a,

for all s ∈ S, a ∈ A, and x ∈ X.

The functions La (s, a�, ·) are negative affine transformations of the utility
function u(x) = −1/

�
S + x

�
, for all a� �= a. To see that this rule satisfies

condition (ii) in Lemma 6, notice that

na�a(F
�
a� , Fa�) =

ˆ
S/

�
S + x

�
dFa� (x)−

ˆ
S/

�
S + x

�
dF �

a� (x)

= S

�ˆ
1/

�
S + x

�
dFa� (x)−

ˆ
1/

�
S + x

�
dF �

a� (x)

�
.

If
´
u (x) dF �

a� (x) >
´
u (x) dFa� (x), this expression is strictly greater than

zero. Our results imply that the asymptotic probability of choosing an
action, which maximizes the expected utility of a decision maker whose pref-
erences are represented by the Bernoulli utility function u(x) = −1

S+x
, can be

made as close to one as desired by choosing a small enough θ to construct
an slow version of this learning process.

As S → 0, since we have assumed that 0 < xmin < xmax < ∞, u(x) = −1
S+x

converges uniformly to the Constant Relative Risk Aversion (CRRA) utility
function �u(x) = x1−σ

1−σ with coefficient of relative risk aversion σ = 2. Hence,
for every environment F , there exists a small enough S, call it SF , such that
at least one of the maximizers of �u is a maximizer of u. Therefore, for a slow
enough version of the learning process constructed with SF , the probability
of converging to one of the maximizers of �u in F can be made arbitrarily
close to one.16

16As S → 0, slow versions of this learning rule converge to the Bush-Mosteller (1955)
learning rule, i.e., limS→0 L

θ
a(s, a, x) = (1 − θ)sa + θ and limS→0 L

θ
a(s, a

�, x) → (1 − θ)sa
for a� �= a.
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Finally, consider a “generalized” version of Cross’ learning model (Section
4, Example 1). This learning process arises when we set ua�a (x) = u (x) for
all x ∈ X, a ∈ A, and a� ∈ A\ {a} in the learning process constructed in the
proof of Proposition 5. The associated learning rule specifies

La (s, a, x) = sa + (1− sa) u (x)

La (s, a
�, x) = sa − sau (x) ∀a� �= a,

for all s ∈ S, a ∈ A, and x ∈ X, where s := (sa)a∈A ∈ ∆ (A) and u : X →
[0, 1] is a continuous function. This rule contains the above two examples as
special cases. As in our previous examples, this rule can be shown to satisfy
the hypotheses of Lemma 6. Hence, the asymptotic probability of choosing
an action which maximizes the expected utility of a decision maker, whose
Bernoulli utility function is u, can be made as close to one as desired by
choosing a small enough θ for a slow version of this learning process.

The proof of Proposition 5 reveals that for every utility function one
can consider several different learning processes that converge to choose the
most preferred actions for such a decision maker. There are other learning
processes in the literature that converge to choose, with high probability,
expected utility maximizing actions, including, for instance, the belief-based
learning model that we discussed in Section 4.17 Nevertheless, in contrast to
the learning rules that satisfy the hypothesis of Lemma 6, the learning rules
of belief-based models are not impartial and hence, cannot satisfy the short
run property fa(s) ≥ 0 for all a ∈ A∗

u and s ∈ S in every environment.

6 Discussion
Our results do not have implications for the risk attitudes we observe when
individuals decide among known payoff distributions. In particular, our study
is not aimed to provide an explanation for the origin of risk preferences in
EUT. It instead explains how the risk choices of individuals, who do not

17For the belief-based learning rules we described in Section 4, this amounts to take
arbitrarily large values of ρ. As ρ → ∞ the probability that the learning rule chooses the
action with the highest average utility goes to one. Furthermore, since u(xmin) > 0 and
u(xmax) < ∞, the probability of choosing each action is bounded from below away from
zero, which guarantees that each action is chosen infinitely often and that the average of
u(x) converges to

´
u(x)dFa for all a ∈ A. This yields the result.
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have knowledge of payoff distributions, change in response to experience and
how individuals exhibit risk averse (or risk seeking) behavior that mimics
the choices of expected utility maximizers who know the payoff distributions.
Neither do our results imply that individuals are more likely to behave as risk
averse (or risk seeking) individuals as a consequence of learning than when
distributions are known. An approach that accommodates decision making
both with and without knowledge (or beliefs about) payoff distributions could
address this issue. This is left for further research.

An approach that we do not pursue in this paper is defining the learning
process as a function of utility functions rather than directly over monetary
payoffs. Some of our results hold under both manners of defining the learn-
ing process. For instance, consider a learning process whose learning rule
L̂ is both monotonically risk averse and first-order monotone, but instead
of being defined over monetary payoffs, it is defined over an increasing and
concave Bernoulli utility function u : X → X. The corresponding learning
rule, as defined in our framework, is given by La(s, a�, x) = L̂a(s, a�, u(x)) for
all a, a� ∈ A, s ∈ S, and x ∈ X. Impartiality, cross-convexity, and cross-
decreasing are preserved when payoffs are transformed using such a function
u. Therefore, L is both monotonically risk averse and first-order monotone.
In general, however, whether the learning process is defined over the utility
function or directly over monetary payoffs can make a substantive difference.
For example, let L̂ be the learning rule of the Cross model, as defined in
Example 1, but now defined over a strictly increasing and strictly concave
Bernoulli utility function. Then, the corresponding learning rule, defined
over payoffs, is monotonically risk averse and first-order monotone, yet, not
monotonically risk neutral as the Cross learning rule. Defining learning pro-
cesses over utility functions, however, requires establishing conditions that
define whether and how individuals use their utility functions (provided that
they exist) to update behavior. This analysis is different to what we do here
and, hence, we leave it for future research.

A weaker notion of risk aversion for learning rules requires that, for any
payoff distribution, the learning rule is expected to add more probability to
an action when it gives the expected value of the distribution with certainty
than when it gives a random payoff drawn from that distribution, provided
that all the other aspects of the environment are the same. We refer to
the learning rules that satisfy this property as risk averse learning rules.
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A learning rule is risk averse if and only if it is own-concave. Therefore
monotonically risk averse learning rules are risk averse. The expected value
of the probability of choosing an action whose payoff distribution becomes
riskier decreases when the learning rule is risk averse. Learning models with
risk averse learning rules that are not monotonically risk averse, however, do
not, in general, converge to choose the safest actions with high probability,
even for slow versions that satisfy the NSC.

An alternative definition of when a learning rule may be considered to
be risk averse can be constructed looking at the expected behavior in the
next period given the current state s, namely, (αa(s) + fa (s))a∈A. This
probability distribution on actions generates a (reduced) distribution over
payoffs, which is a weighted average of the payoff distribution of each of
the actions,

�
a (αa(s) + fa (s))Fa. We could ask whether the learning rule

is such that expected behavior tomorrow generates a distribution over pay-
offs which second-order stochastically dominates that of today, i.e., whether�

a (αa(s) + fa (s))Fa SOSDs
�

a αa(s)Fa, in every environment. It can be
shown that, in environments with only two actions, the only learning rules
which satisfy this condition are the unbiased rules studied by Börgers et
al. (2004).18 Unbiased rules exhibit zero expected movement in probability
when all actions have the same expected payoffs. Such rules satisfy the above
condition in a trivial manner because the expected distribution tomorrow is
the same as today.19 We conclude, therefore, that such a property is too
restrictive. Restricting the set of environments on which the improvement is
required would lead us to identify a larger class of learning rules.20 We do
not pursue such an approach in this paper.

Whereas EUT provides restrictions on the von Neumann and Morgenstern
utility function of risk averse individuals, the analysis of monotonically risk
averse learning provides restrictions on the matrix of functions that specifies
a learning rule. Hence, our analysis provides a similar level of generality

18See Claim 1 in the Appendix for the proof.
19It can also be shown that unbiased learning rules are the only learning rules which

are continuous in x for all a, a� ∈ A and satisfy
�

a (αa(s) + fa (s))Fa sosd
�

a αa(s)Fa

in every environment. For details, see Claim 2 in the Appendix.
20For example, we could consider learning rules that satisfy

�
a (αa(s) + fa (s))Fa sosd�

a αa(s)Fa in every environment that is completely ordered by the sosd relation. It can
be shown that a learning rule is continuous in payoffs and satisfies this condition if and
only if it is monotonically risk-averse at that state.
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and detail in describing learning rules as the analysis of utility functions in
EUT. This paper, however, does not provide an axiomatic foundation for the
learning processes we study. The properties studied here, while normatively
appealing, are not intended to be behaviorally descriptive. This is a subject
for further study. The papers by Gilboa and Schmeidler (1995) and Easley
and Rustichini (1999) make important contributions toward this objective.21

Both those papers, however, adopt slightly different frameworks from the one
we consider. More work needs to be done to provide an axiomatic foundation
for learning processes within the framework of this paper.

Finally, our results on convergence of learning processes with slow globally
monotonically risk averse learning rules provide only sufficient conditions. We
are not aware of convergence results, at least for a suitably general class of
payoff distributions, that allow for convergence without imposing some form
of slow learning. Furthermore, Narendra and Thathachar (1989) show exis-
tence of upper bounds away from one for the probability of convergence to
optimal actions for non-slow learning automata in a binary outcome model.
This suggests that slow learning also may be a necessary condition in our
framework as well. Yet, we have not been able to generalize their analy-
sis of upper bounds to our setting. Whether slow learning is necessary for
convergence is a question that deserves further attention in future research.

7 Appendix

Proof of Proposition 2

We begin with the following lemma, the proof of which closely parallels
that of Lemma 1.

Lemma 7 If a learning rule L is first order monotone at s ∈ S then it is

impartial at s.

21Easley and Rustichini (1999) analyze an alternative setting where individuals can
observe forgone payoffs. Yet, their analysis, in contrast to ours, focuses on the implications
of certain axioms on the learning rules rather than in their properties. Extending our
results to a setting with information about forgone payoffs is also an interesting direction
for future research. Oyarzun and Ruf (2009) provide some progress in that direction in
the context of boundedly rational social learning models.
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Proof. We argue by contradiction. Consider an environment F with A =
A∗∗ and suppose that fa(s) < 0 for some a ∈ A. Now we construct an
environment �F where �A∗∗ = {a}. We construct �Fa by assigning to every
interval I ⊂ X only (1− ε) times the probability it had under Fa and adding
ε to the probability of xmax. We construct �Fa� for all a� ∈ A\{a} by assigning
to every interval I ⊂ X only (1 − ε) times the probability it had under Fa�

and then adding ε to the probability of xmin. Clearly, �A∗∗ = {a}. Since
�fa(s) can be written as a continuous function in ε, for small enough ε we
have �fa(s) < 0. Therefore L is not first order monotone at s.

Now we provide the proof of the proposition.

Proof. Necessity.

The necessity of (i) follows from Lemma 7. To prove the necessity of (ii)
we argue by contradiction. Suppose that for some a ∈ A and a� ∈ A\{a} such
that αa�(s) > 0, there are x and x� with x� < x and La(s, a�, x) > La(s, a�, x�).
Consider the environment F where action a pays x with probability one and
action a� pays x� with probability one. All the other actions a�� ∈ A\{a, a�},
if any, pay x with probability 1 − ε and x� with probability ε. Clearly,
A∗∗ = {a}. From Lemma 7 and Lemma 2, we have that

fa(s) =
�

a�� �=a

αa��(s)

�ˆ
La(s, a

��, x)dFa��(x)−
ˆ

La(s, a
��, x)dFa(x)

�

= αa�(s) [La(s, a
�, x�)− La(s, a

�, x)] + ε
�

a�� �=a,a�

αa��(s) [La(s, a
��, x�)− La(s, a

��, x)] .

For small enough ε, fa(s) < 0, which contradicts first order monotonicity.

Sufficiency.

As in the proof of Proposition 1, consider a ∈ A∗∗, then

fa(s) =
�

a� �=a

αa�(s)

�ˆ
La(s, a

�, x)dFa�(x)−
ˆ

La(s, a
�, x)dFa(x)

�

≥ 0.

The last inequality follows from the fact that a ∈ A∗∗ and the fact that
La(s, a�, ·) is decreasing for all a� ∈ A\{a} such that αa�(s) > 0.

Proof of Lemma 4
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Proof. (I) From (3), with δ > 0 defined as in the proof of Lemma 3, we have

E
�
α∗
t+1|st

�
≥ α∗

t + δα∗
t (1− α∗

t )

and, hence,

E
�
α∗
t+1|st

�
− 1− e−γα∗

t

1− e−γ
≥ α∗

t + δα∗
t (1− α∗

t )−
1− e−γα∗

t

1− e−γ
(5)

for all γ > 0 and t ∈ N0.
Consider the function G : [0, 1]× R++ → R, such that

G(z, γ) := z + δz(1− z)− 1− e−γz

1− e−γ

for all z ∈ [0, 1] and γ > 0. For this function, G(0, γ) = G(1, γ) = 0,

∂G(z, γ)

∂z
= 1 + δ (1− 2z)− γe−γz

1− e−γ
,

and

∂2G(z, γ)

∂z2
= −2δ +

γ2e−γz

1− e−γ
= −2δ +

γ2

eγz − e−γ(1−z)

for all z ∈ [0, 1] and γ > 0. It follows that

lim
γ→0

∂2G(z, γ)

∂z2
= −2δ < 0

for all z ∈ [0, 1] and uniformly. Hence for small enough γ∗ > 0, G(·, γ∗) is
strictly concave. Since G(0, γ∗) = G(1, γ∗) = 0, it follows that G(z, γ∗) > 0
for all z ∈ (0, 1). Therefore, from (5) and the definition of G, we have

E
�
α∗
t+1|st

�
− 1− e−γ∗α∗

t

1− e−γ∗ ≥ G(α∗
t , γ

∗) ≥ 0

for all t ∈ N0, and thus,

E
�
α∗
t+1|st

�
≥ 1− e−γ∗α∗

t

1− e−γ∗ = φ(α∗
t ).

Since φ(z) ≥ z for all z ∈ [0, 1], we obtain E
�
φ(α∗

t+1)|st
�
≥ E

�
α∗
t+1|st

�
≥

φ(α∗
t ) and E

�
φ(α∗

t+1)
�
≥ E [φ(α∗

t )] for all t ∈ N0.
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(II) For all γ > 0, φ is bounded. Hence, from Lemma 3 and the Con-
tinuous Mapping Theorem (footnote 11), limt→∞ E [φ(α∗

t )] = E [φ(α∗
∞)].

Therefore, from (I), E [φ(α∗
∞)] ≥ φ(α∗

0) = φ(α∗(s0)). From Lemma 3,
we also know that the support of α∗

∞ is contained in {0, 1}. Thus, since
E [φ(α∗

∞)] = [1− Γ(s0)]φ(0) + Γ(s0)φ(1), φ (0) = 0, and φ (1) = 1, we obtain
E [φ(α∗

∞)] = Γ(s0). It follows that Γ(s0) ≥ φ(α∗(s0)) for all s0 ∈ S.

Proof of Lemma 5

Proof. From Lemma 4, when γ = γ∗, E[φ(α∗
t+1)|st] − φ(α∗

t ) ≥ 0 for all
t ∈ N0. Therefore,

E

�
1− e−γ∗α∗

t+1

1− e−γ∗ |st
�
− 1− e−γ∗α∗

t

1− e−γ∗ ≥ 0

and hence, −e−γ∗α∗
t

�
E
�
e−γ∗(α∗

t+1−α∗
t )|st

�
− 1

�
≥ 0, for all t ∈ N0.

For any �γ > γ∗, let �θ := γ∗/�γ, hence γ∗ = �γ�θ. Therefore,

−e−�γ�θα∗
t

�
E
�
e−�γ�θ(α∗

t+1−α∗
t )|st

�
− 1

�
≥ 0

−e−�γα∗
t

�
E
�
e−�γ�θ(α∗

t+1−α∗
t )|st

�
− 1

�
≥ 0,

for all t ∈ N0. It follows that for the learning process (α, π
�θ),

E

�
1− e−�γα∗

t+1

1− e−�γ |st
�
− 1− e−�γα∗

t

1− e−�γ ≥ 0,

for all t ∈ N0. Then, as in the proof of Lemma 4, we obtain that for
γ = �γ, (α, π�θ) satisfies E

�
φ(α∗

t+1)
�
−E [φ(α∗

t )] ≥ 0 for all t ∈ N0, and hence,
Γ
�θ(s0) ≥ φ(α∗(s0)) ∀ s0 ∈ S.

Claim 1 For problems such that |A| = 2, the only learning rules which sat-

isfy Σa (αa(s) + fa(s))Fa SOSD Σaαa(s)Fa in the state s, in every environ-

ment, are the unbiased rules at s.

Proof. From the proof of Lemma 1, we have that impartiality at s is a
necessary condition for a learning rule to satisfy Σa (αa(s) + fa(s))Fa SOSD
Σaαa(s)Fa in every environment, with any finite number of actions.
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Now we suppose |A| = 2 and prove that La(s, a�, ·) is both concave and
convex for all a�, a ∈ A is a necessary condition too. Since L has to be
impartial at s,

fa(s) = αa�(s)

�ˆ
La(s, a

�, x)dFa�(x)−
ˆ

La(s, a
�, x)dFa(x)

�
,

where a� �= a, for all a ∈ A. Suppose La(s, a�, ·) is not convex, thus there
exists x��, x� ∈ X such that La(s, a�, x) > λLa(s, a�, x�) + (1 − λ)La(s, a�, x��)
for some λ ∈ (0, 1) and x := λx�+(1−λ)x��. Consider an environment where
Fa provides x with probability 1 and Fa� pays x� with probability λ and x��

with probability (1− λ). Therefore

fa(s) = αa�(s) [λLa(s, a
�, x�) + (1− λ)La(s, a

�, x��)− La(s, a
�, x)] < 0.

It follows that Σaαa(s)Fa strictly-SOSD Σa (αa(s) + fa(s))Fa. Therefore, a
necessary condition for a learning rule to satisfy Σa (αa(s) + fa(s))Fa SOSD
Σaαa(s)Fa in every environment is that La(s, a�, ·) is convex for a� �= a.

To complete the proof we need to prove that the concavity of La(s, a�, ·)
for a� �= a is necessary as well. The convexity of La(s, a�, ·) implies that it is
continuous on (xmin, xmax) for all a and a� �= a. First, we prove that La(s, a�, ·)
is concave on (xmin, xmax) for all a and a� �= a. Suppose not, i.e., for some
a ∈ A and a� �= a, there exists x�, x�� ∈ (xmin, xmax), with x� < x��, such
that La(s, a�, x) < λLa(s, a�, x�) + (1− λ)La(s, a�, x��) for some λ ∈ (0, 1) and
x := λx� + (1− λ)x��. Consider an environment where Fa corresponds to the
lottery (x�, δλ; x, 1 − δ; x��, (1 − λ)δ) for some δ ∈ (0, 1) and Fa� corresponds
to the lottery (x� + 1−λ

λ ρ,λ; x�� − ρ, 1 − λ) for ρ > 0 such that these payoffs
are contained in (xmin, xmax). Therefore,

fa(s) = αa�(s)[λLa(s, a
�, x� +

1− λ

λ
ρ) + (1− λ)La(s, a

�, x�� − ρ)−

(δλLa(s, a
�, x�) + (1− δ)La(s, a

�, x) + (1− λ)δLa(s, a
�, x��))]

= αa�(s)[λLa(s, a
�, x� +

1− λ

λ
ρ) + (1− λ)La(s, a

�, x�� − ρ)− La(s, a
�, x)−

δ (λLa(s, a
�, x�)− La(s, a

�, x) + (1− λ)La(s, a
�, x��))].

Since La(s, a�, ·) is continuous on (xmin, xmax), for small enough ρ, in the RHS
of the last equality, we have λLa(s, a�, x� + 1−λ

λ ρ) + (1− λ)La(s, a�, x�� − ρ)−
La(s, a�, x) > 0. Thus for small enough ρ and δ, we have fa(s) > 0. But
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Fa puts weights on the boundaries of the interval [x�, x��] while the support
of Fa� is contained in (x�, x��). It follows that Σa (αa(s) + fa(s))Fa does not
SOSD Σaαa(s)Fa. Hence La(s, a�·) needs to be both concave and convex on
(xmin, xmax) for all a� �= a.

Thus, we are left to prove that limx→xmin La(s, a�, x) = La(s, a�, xmin) and
limx→xmax La(s, a�, x) = La(s, a�, xmax). Since La(s, a�, ·) is convex we only
need to rule out La(s, a�, xmin) > limx→xmin La(s, a�, x) and limx→xmax La(s, a�, x) <
La(s, a�, xmax). Consider an environment F such that the payoff distribution
of a� yields xmin + ε and xmax − ε with probability ε/2, and xmin +

1
4(xmax −

xmin) and xmin + 3
4(xmax − xmin) with probability (1 − ε)/2 for some ε ∈

(0,min{1, (xmax − xmin) /2}); and action a yields xmin and xmax with proba-
bility ε/2, and xmin+

1
2(xmax−xmin) with probability 1−ε. If La(s, a�, xmin) =

limx→xmin La(s, a�, x) and limx→xmax La(s, a�, x) = La(s, a�, xmax), the learn-
ing rule would be unbiased and we would have fa(s) = 0. Instead, if
La(s, a�, xmin) > limx→xmin La(s, a�, x), or limx→xmax La(s, a�, x) < La(s, a�, xmax),
or both, we have fa(s) < 0, and, for some small enough ε,

´
u(x)dFa >´

u(x)dFa� for the concave function u : X → R, u(x) = (x − xmin)1/2. This
yields Σa (αa(s) + fa(s))Fa does not SOSD Σaαa(s)Fa.

Claim 2 The only learning rules such that La(s, a�, ·) is continuous for all

a, a� ∈ A and satisfy Σa (αa(s) + fa(s))Fa SOSD Σaαa(s)Fa in every envi-

ronment, in the state s, are the learning rules that are unbiased at s.

Proof. From the proof of Claim 1, learning rules which satisfy Σa (αa(s) + fa(s))Fa

SOSD Σaαa(s)Fa in every environment are impartial. Now we prove that
continuous rules which satisfy Σa (αa(s) + fa(s))Fa SOSD Σaαa(s)Fa in ev-
ery environment also need to be both cross-convex and cross-concave. Since
these rules are impartial, we have

fa(s) =
�

a� �=a

αa�(s)

�ˆ
La(s, a

�, x)dFa�(x)−
ˆ

La(s, a
�, x)dFa(x)

�

for all a ∈ A. Suppose there is a ∈ A and a� �= a such that La(s, a�, ·) is not
convex. Thus there exists x�� > x� ∈ X such that La(s, a�, x) > λLa(s, a�, x�)+
(1−λ)La(s, a�, x��) for some λ ∈ (0, 1) and x := λx�+(1−λ)x��. Consider an
environment where Fa corresponds to the distribution (x�,λ; x��, 1 − λ) and
Fa� provides x with probability 1. All the other actions a�� �= a, a�, if any,
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have payoff distributions Fa�� corresponding to (x�+ 1−λ
λ ε,λ; x��− ε, 1−λ) for

ε > 0. Therefore

fa(s) = αa�(s)[La(s, a
�, x)− λLa(s, a

�, x�)− (1− λ)La(s, a
�, x��)] +�

a�� �=a,a�

αa��(s)
�
λLa(s, a

��, x� + (1− λ)λ−1ε) + (1− λ)La(s, a
��, x�� − ε)

−λLa(s, a
�, x�)− (1− λ)La(s, a

�, x��)) .

The first term of the sum in the RHS is positive and all the other terms go
to zero as ε goes to zero. Therefore, for small enough ε, fa(s) > 0. Thus,
since Fa is the only distribution that puts weights on the boundaries of the
interval [x�, x��] and the support of all the other distributions is contained in
(x�, x��), Σa (αa(s) + fa(s))Fa does not SOSD Σaαa(s)Fa.

Suppose there is a ∈ A and a� �= a such that La(s, a�, ·) is not concave.
Thus there exists x�� > x� ∈ X such that La(s, a�, x) < λLa(s, a�, x�) + (1 −
λ)La(s, a�, x��) for some λ ∈ (0, 1) and x := λx� + (1 − λ)x��. Consider an
environment where Fa corresponds to the lottery (x�, δλ; x, 1−δ; x��, (1−λ)δ)
and Fa� corresponds to the lottery (x�+ 1−λ

λ ρ,λ; x��−ρ, 1−λ) for ρ > 0. All the
other actions a�� �= a, a�, if any, have payoff distributions Fa�� corresponding
to (x� + 1−λ

λ ε, δλ; x, 1− δ; x�� − ε, δ(1− λ)). Therefore

fa(s) = αa�(s)[λLa(s, a
�, x� +

1− λ

λ
ρ) + (1− λ)La(s, a

�, x�� − ρ)

−δλLa(s, a
�, x�)− (1− δ)La(s, a

�, x)− (1− λ)δLa(s, a
�, x��)] +

�

a�� �=a,a�

αa��(s)(δλLa(a
��, x� +

1− λ

λ
ε) + (1− δ)La(s, a

��, x) + δ(1− λ)La(s, a
��, x�� − ε)

−δλLa(s, a
��, x�)− (1− δ)La(s, a

��, x)− (1− λ)δLa(s, a
��, x��))

= αa�(s)[λLa(s, a
�, x� +

1− λ

λ
ρ) + (1− λ)La(s, a

�, x�� − ρ)− La(s, a
�, x) +

δ (La(s, a
�, x)− λLa(s, a

�, x�)− (1− λ)La(s, a
�, x��))] +

�

a�� �=a,a�

αa��(s)(δλLa(s, a
��, x� +

1− λ

λ
ε) + (1− δ)La(s, a

��, x) + δ(1− λ)La(s, a
��, x�� − ε)

−δλLa(s, a
��, x�)− (1− δ)La(s, a

��, x)− (1− λ)δLa(s, a
��, x��)).

In the last equality, for small enough ρ and δ, the term inside the square
bracket is strictly greater than zero. Furthermore, all the other terms go to
zero as ε goes to zero. Therefore, for small enough ε, ρ, and δ, fa(s) > 0.
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Thus Σa (αa(s) + fa(s))Fa does not SOSD Σaαa(s)Fa, since Fa is the only
distribution that puts weights on the boundaries of the interval [x�, x��] and
the support of all the other payoff distributions is contained in (x�, x��).
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