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Evolutionary Dynamical
Pattern of ‘Coyness and
Philandering’:
Evidence from
Experimental Economics
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‘Coyness and Philandering’, a two populations game, is one of the most typical
game in evolutionary game theory. The evolution dynamic provides the velocity field
and then the evolution trajectories of the game with beautiful patterns. However, this
game has never been empirically detected in laboratory experimental economics and the
patterns have never been obtained. We design and conduct this two populations game
with 192 human subjects. With our instantaneous velocity at position (VAP) metric, in
which the velocity is of time reversal anti-symmetry, we find that, the empirical velocity
vectors fall into a global cyclic pattern in the ‘Coyness and Philandering’ game. The
significant of the global velocity pattern together with the VAP metric might be helpful
for understanding evolutionary dynamic better.
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1 Evolutionary Game Theory, Experimental E-
conomics and Velocity

The ‘Coyness and Philandering’ game original suggested by Dawkins in 1976 [10]
is a typical model for evolutionary game theory for decades (e.g., [21, 16, 24, 15,
27]). In the paper of ‘Coyness, Philandering and stable strategies’, published in
Animal Behaviour in 1981 [21], Schuste & Sigmund analysis the game to describe
the evolution of strategies in the conflict of the sexes over parental investment
with replicator dynamic [26], and the ordinary differential equations (ODE) is

a'ci =X E a,-jxj — E wkaijj , (1)
J kj

where, the ij Zpay;x; is the mean payoff of the given population, and Zj ai;T;
is the mean payoff of the agent who use strategy ¢. The left hand side of Eq.(1),
I, is the velocity, which indicates the changing of the frequencies of strategies
[4, 23, 28]. Given the payoff matrix in Table 1 and the replicator dynamic, phase
diagram of the game can be presented [21]. Figure 1 is a reproduction of the
phase diagram. This indicates that when the dynamic equation given, for each
point in state space, the velocity is determined [1]. The strategies should be
oscillating and the velocity field should be in cyclic pattern, it is predicted in
different theoretical models [20].

g: density of Y1 in population Y

p: density of X1 in population X

Figure 1: Phase diagram for the replicator dynamics of the ‘Coyness and Philandering’
game. The background colors represent speed of motion, the magnitude of velocity:
blue is slowest, red is fastest. Instantaneous velocity should always be tangential to the
trajectory. Black lines indicate the trajectories of the evolution. The white dots are
unstable equilibrium. Figure is made by the game dynamics program Dynamo [20].

Laboratory experimental economics removes evolutionary game theory from
its abstract setting and links the theory to observed behavior [19]. The observed
behavior in the experiment was systematic, replicable, and roughly consistent
with the dynamical systems approach [9, 29, 30, 3, 2, 6]. Empirically, however,
the velocity pattern has not been seen yet.
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We conducted the ‘Coyness and Philandering’ game in laboratory experimen-
tal economics, and then, in our velocity at position (VAP) metric, we measured
velocity vectors in the data. In this paper we will report the graphical results
and some additional results as literatures in experimental economics. The main
aim of this paper is to report, firstly, the existence of global velocity pattern in
the ‘Coyness and Philandering’ game. In discussion, the advantage of the VAP
metric method is comparing with the existent metrics is shown; and conclusion
last.

2 Design and procedure

2.1 Experiment Design and Theoretical Predict
Experiment Design

As the traditional experimental setting in experimental economics [9, 12, 13,
30, 2], with Dawkins’e matrix in Table 1, we employed a two populations game
in which strategic interaction among two population of agents by introducing
random matching [20]. Each session consists of two populations, each popu-
lation includes 8 subjects, one is the male population and the other is female
population. Males have the two strategies X (faithful) and X, (philanderer);
females have the another two strategies Y7 (coy) and Ya (fast). We set 300
rounds repeated, as long as possible practically, for each of the sessions.

Table 1: Payoff matrix of the ‘Coyness and Philandering’ game

Coy(Y1) Fast(Y2)
Faithful(X1) 2 5
2 5
Philanderer(Xz2) 0 15
0 -5

Strategy Space and Strategy Position

Because there are 8 human subjects in each of the two populations, there would
be 9 potential density states for each population, and 81 combinative strategies
state points of two populations in a square 9 x 9 two-dimensional Euclidian grid.
This Euclidian grid is the two populations strategy set in our experiment situa-
tion. Each of the 81 combinative strategies state points denotes one observable
position which can be described as z,, = pe’x, + ¢€y,, or (p,q), or xp, in which

(p,q) €{0,1/8,2/8,...,1} ®{0,1/8,2/8,...,1}.

Theoretical Velocity Pattern

An evolution dynamic provides an instantaneous velocity of each position of the
grid. When the positions are limited to the 81 points, as in the situation of our
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experiment, the instantaneous velocity can also be captured by the evolution
dynamic equations.

Practically, with the ODE as Eq.(1) of replicator dynamic and the payoff
matrix as Table 1 of the ‘Coyness and Philandering’ game, the Eq.(2) can be
archived,

{1’)— p(1—p)(—10+12q) @)

§= q(1 —q)(5—8p)

where the p indicates the density (or proportion, or frequency) of the subjects
who using strategy X; in male population, and the ¢ indicates the density of the
subjects who using strategy Y7 in female population. Point (p, ¢) is one state of
the combinative strategies state of the two populations. Now, the instantaneous
velocity at each of the 81 positions can be calculated from Eq.(2), and the result
of the theoretical instantaneous velocity for each of the 81 positions is exhibited
in Fig. 2.
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Figure 2: Theoretical instantaneous velocity field at the 81 state positions in strategy
space from the replicator dynamics equation of the ‘coyness and philandering’ game
as Eq.(2). Plotting ratio is 1:10.

2.2 Practical Velocity Measurement

In general physics, the unit of time is hour, minute, or second in generally. In
laboratory experiment, the unit of time is the interval between two rounds in
laboratory experimental economics game, and usually At = 1.

In general physics, again, velocity is the measurement of the rate and di-
rection of change in the position of an object. Instantaneous velocity is always
tangential to trajectory. Velocity is odd in time reversal symmetry transition, or,
velocity is time reversal asymmetry. In experimental economics, in the discrete
strategy space (in finite subject pool in population games), in the stochastic
processes, there is no well accepted metric for velocity till now. We develop a
metric for the variable, velocity, as following.
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Velocity in a Microscope Process

We denote the observed populations state vector z,, at ¢ as zj,, then denote
the observed state at its last round ¢ + 1 state as x;y; and observed state at
t —1 as m;—1 respectively. For the fixed z , we define the forward change, as

the change from Tp, 10 Tii1, as

30;;1 = (T441 — ifzq)§ (3)
and the backward change, as the change from =~ to z},, as
T,y = (Tp, — Ti—1). (4)

We define the one observation of the instantaneous velocity at x4, vp,, explicitly
as,

o9, = (), +1,,) /(2 A0). (5)

where At = 1 which means time interval in two closest rounds in a experimental
session is set to 1. Practically, At = 1 is the smallest interval of time which
could be archived.

No loss of generality, Fig. 3 illustrates one observation of an instantaneous
velocity vy, in a microscope process, meanwhile Fig. 3 demonstrates also one
observation of forward change 2% in Eq.(3) and one observation of backward
change z~ in Eq.(4), respectively.

S

q: density of Y1 in population Y

0 0.25 05 0.75 1
p: density of X1 in population X

Figure 3: Illustration of an observation of an instantaneous velocity at a microscope
process. No loss of generality, suppose that, during a process P the obtained state at ¢
round is A, and at (t—1) is B and at (t+1) is C, Eq.(5) says, an instantaneous velocity
vector, v4 := (C'— B)/2, is observed at site A. v4 (in blue), including both processes of
a backward change (z~, jump-in to A, in orange) and a forward change (z™, jump-out
from A, in green), is a time reversal asymmetric vector. In the time reversed process
PT of above process P, at A, the velocity should be vyl = (§ - C_")/Q and equals to
—v% in P, and it is time reversal asymmetric. The Eq.(6) is an aggregation form for a
given site.
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VAP Metric

We define VAP (Velocity At a given Position) metric for the mean velocity at
the given position z,, as

20V
Upq = O pq7 (6)
Pq

where vy, is an one observation of velocity vector at position (p, q) and the sum-
marization of each velocity vector is adding up once whenever (p, q) is obtained;
2,4 is the obtained times (adding up 1 whenever the (p, q) state is obtained in all
of the experimental sessions, or called as occupation times). For each of the Upg
is odd under T-symmetry, v,, is anti-symmetry (also asymmetry) under time
reversal transition. Comparing with existing metrics for evolution pattern in
data of experimental economics is in the last section. Till now, we have finished
to build the metric, VAP, for each position z,,, to measure the velocity vector
practically from experimental data.

For comparison, similarly, we define the mean vector of forward change
(called also as mean forward change, jump out) per round at position (p,q)
is

out __ 1 x;q

vt = N e (7)
T, A A

For comparison again, similarly, the mean vector of backward change (called
also as mean backward change, jump in) per round at position (p, q) is

w1
o = — = (8)
Py, - At

For Eq.(7) and Eq.(8) the At = 1 and the summarization of each velocity vector
is carried over whenever a (p, q) state is obtained.

2.3 Experiment Procedure

The experiment includes 12 independent sessions. Each session involves 16 hu-
man subjects split randomly into two populations no matter what gender of a
subject is. Each populations includes 8 subjects. The role of subjects in one
population is called as player X and in the other, player Y. Once a subject’s
role is generated it is persisted on during a session, meanwhile, we only tell the
subjects the payoff matrix. Each session consists of 300 rounds of the game
repeatedly with a random matching for each round. The experiments were con-
ducted with a computerizing controlled environment. Each subject sat in an
isolated seat with a computer. No communication among was allowed during
the experiment. The software for the experiments was developed as a Web base
system by the authors. In each session, the player X has two options, X; and
X5, while the player Y has Y; and Y. The player X selected to use X3’ or ’ X5’
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button and player Y selected to use Y7’ or 'Yy’ button simultaneously. After
each round one received the feedback including his or her own strategy used in
the previous round, his or her opponent’s strategy in the previous round, and his
or her own payoff from the previous round. The payoff is calculated according
the payoff matric in Tablel. The subjects were asked to document the informa-
tion on his/her experimental records. At the end of the experiments, one could
obtain the accumulated score which would be changed into RMB currency, as
the subject’s payments after a session. The exchange rate is 25 experimental
points for 1 RMB, in addition, every participant was paid 5 Yuan RMB as the
showup fee.

We conducted the laboratory experimental sessions in the Center of Social
Science Laboratory of Zhejiang Gongshang University in Hangzhou China from
January to March 2011. Each session lasts about 1.5 to 2 hours including the
introduction stage in both the written and oral forms to inform the participating
subjects the game protocol as well as a test drive for the subjects to be familiar-
ized with the game and the experiments. There were in total 192 undergraduate
students of Zhejiang Gongshang University majoring in different areas recruited
into these experiments with each subject participating in only one session. The
average payoff for each participant was 33.92 Yuan RMB.

3 Results

In all, there are 12 sessions, each session is 300 rounds repeated, and we have
total 3600 records from the two populations game. From the the requirement
of Eq. 5, observation number reduces to 3576 for the velocity field measurement
(excluding the first and the last rounds in each of the 300 rounds’ 12 session). We
now report the mean velocity vectors and its distributions at all of the observable
positions from the data.

3.1 Velocity at Positions

According to Eq.(6), we measure the velocity, vy, at each given position (p, ¢).
Fig. 4 exhibits the results from our data according to Eq.(6). The empirical
pattern, called as velocity vector field following, is exactly a cyclic and grossly
can be captured by evolutionary population dynamics models (e.g., Fig.2 in [21]
and Fig. 3 in [34]).

For comparison, we also compute the mean forward change according to
Eq.(7) and the mean backward change according to Eq.(8) for all 81 positions
in our data. Fig. 5 provided the patterns. Both of them are quit faraway from
the the theoretical pattern, cycle-pattern, likes the pattern in Fig. 2 and Fig. 1.

Adding up the forward vector field and backward vector field together at
each (p, ) position, the cyclic pattern v,q is rebuilded. It is the mathematical
logic within the Equations set, Eq.(6), Eq.(7) and Eq.(8).
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Figure 4: Experimental observation of the velocity field of the ‘Coyness and Philan-
dering’ game. Each velocity vector (vpq) denotes the speed and direction at (p, q). At
sites with €,, > 5 the mean velocity vectors are plotted in heavy arrows, and others
in thin arrows. The plotting ratio (measured:plotting) is 1:3.
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Figure 5: Change in given sites (a) mean forward change (in green) vector, and (b)
mean backward change (in orange) vector at each strategy site (Zpq) in strategy space.
At sites with €,, > 5 the vectors are plotted in heavy arrows and others in thin arrows.
The plotting ratio is 1:1.

3.2 Occupation at Positions

The mean density is, in mean+Std.Dev., (0.604 £+ 0.061,0.681 & 0.11), and the
theoretical prediction is (5/8,5/6) or (0.625,0.833) [21]. Table 2 reports the
mean observation of the density for each sessions. We measure also the observa-
tions of occupation, €2,4, at each population strategy point (p, ¢), from the total
3576 observations. Fig. 6 is the results. These data could be useful for under-
standing the evolutionary velocity reported above and for the learning models’
competing, e.g., [11, 22, 5].
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Table 2: Mean Value of (p, q) by Sessions
SessionID 1 2 3 4 5 6
p | 0.487 0.614 0.649 0.517 0.635 0.573
q | 0.682 0.784 0.762 0.733 0.479 0.710
SessionID 7 8 9 10 11 12
p | 0.654 0.610 0.654 0.559 0.697 0.600
q | 0.482 0.680 0.855 0.639 0.660 0.704
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Figure 6: Distribution of observation in the lattice of the strategy space. At each
(p, q) point, the size of the circle and the number means the obtained times, 2,4, during
the 12 experimental sessions. For example, €1 0.5y = 7 means, at (1,0.5) point (all
in the male X population choice faith X; and half in the female Y population choice
coyness Y1), in the total 3576 observations (excluding the first and the last rounds in
each of the 12 session), this state is obtained (occupied) 7 times.

4 Summary

Till now, the main results are reported. In summary, we first compare our VAP
metric in Eq.(6) with three most relevant metrics in experimental economics
literatures; then, discuss on velocity and the pattern; and last, conclusion.

4.1 Comparison of Metrics for Evolution

Understanding how a system change, evolution, in time and in the strategy space
is long expected [23]. Experimental economics also develops metrics to detect
the change, e.g., [17]. Mainly, there are three class metrics:

e Metric M1 is for (a) each round’s frequency of strategies on time (round)
and/or (b) N-round average frequency on time (round);

e Metric M2 is for (¢) the time path of frequency in strategy grid and/or
(d) N-round average of frequency pathes in strategy space;
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Figure 7: Samples of traditional metric M1 and M2. Metric M1 presentations are
(a) frequency of strategies on time for each round, (b) N-round average on time, red
and blue lines are frequencies of X; and Y7 respectively. Metric M2 presentations are
(c) time path in strategy grid and (d) N-round average path in strategy space. Data
from the 3rd session in our experiment and N = 20. Numeric labels in (c) are the last
20 rounds. In above subplots, z, y-axis label the observed values of strategy frequency,
except in the two subplots in left, the z-axis are labeled along experimental rounds.

e Metric M3 is a for the average of change of x, Ax, at given z.

The metrics M1 and M2 are used to present social evolution [30, 8, 29] with
which the sample results in our data are show in subplot (a)-(d) in Fig. 7. Both
of M1 and M2 are useful for distinguish convergence, however, in complex game
environment, as in the four sub-figures, the patterns of evolution are fuzzy. The
M3 [2] is the most relative to our VAP metric and the comparison of M3 and
VAP will be provided following.

The M3 method, ‘the change of x, Ax, at given a2’ has been employed for
evaluating the evolution dynamics for & [2]. In their one population games,
both of the best responde and the logit (A = 1) dynamics predicts there exists
a separatrix Az (at 0.8 that is state zg near the payoff dominant equilibrium
in Fig. 4 in ref. [2]). The Fig. 4 presents how & dependent on x. Numerical
result of the average of the change in x, denoted by Az, for each state for each
treatment (see the Table IIT in [2]) is reported, and as a result, however, the
authors do not find the separatrix (see footnote 9 in [2]).

Now we compare the two metrics mathematically, then report the results in
both experimental data with both metrics, comparing roughly with both of the
theoretical pattern form evolution dynamics, respectively.
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With M3, the metric ‘change in given site’ metric can be presented as Eq.(7),
we have:

e in their data, one can replicate their results (the Table I1I and the Figure 5
in [2]). In Table 3 in this paper includes the Table III in [2] in (FV)-block,
from which we can not find the separatrix in the (FV)-block either, see
the numerics in bold. At the same time, at each of the end position of the
populations strategy space (xg and xg) in all of the three treatments, the
velocity biases from zero, at zg > 0 and xg < 0; but all the theoretical
prediction are zero.

e in our data, the empirical pattern is in Fig. 5, which significant difference
from the cycle pattern expected by evolution dynamics, like Fig. 2.

In words, with their metric M3, one should also fail to link the empirical patterns
with theoretical evolutionary velocity field patterns either in their data or in our
date.

Table 3: Results of the two metrics: the average changes in given x

Treat- z: The number of subjects choosing X
ment 08 1 2 3 4 5 61 7 88
0.6R 0.55 0.38 0.10 -0.08 -0.27 -0.03 -0.34 -0.20 -0.16
FV® R 0.23 -0.18 -0.22 0.14 -0.4 -0.37 -0.15 0.19 -0.32
2R 0.07 -0.26 -0.46 0.16 -0.5 -0.57 -0.38 -1.75
0.6R | -0.051 _ 0.071 -0.100 -0.038 -0.082 -0.008  0.036 _ 0.014 _ 0.013
VAP# R -0.005 -0.074 -0.156 -0.035 -0.195 -0.191 -0.037 0.104 -0.011
2R -0.009 -0.115 -0.346 -0.138 -0.196 -0.119 0.143 -0.125

< Forward change, by Eq.(7), calculated from raw data from [2], values are exactly equal to Table III in
ref. [2]; The strategy space is not be normalized to [0, 1] but as [0, 8] as the ref. [2];

A By Eq.(6), the mean velocity at a given position with VAP;
T The separatrix is theoretically expected at this zg in dynamics models in Fig. 4 in [2]
§ Theoretical values in all of the three treatments at z = 0 and = = 8 should be zero (the Fig. 4 in [2]).

Alternatively, with the VAP metric, explicitly, as Eq.(6), we have:

e in their data, in Table 3 VAP-block, the missed separatrix near xg, see the
numerics in bold at the xg column, appears in each of the three treatments;
at the same time, at each of the end position of the populations strategy
space (zg and xg) in all of the three treatments, the velocity closes to zero,
see also the numerics in bold at the xy and xg column, as the theoretical
prediction of the dynamics models.

e in our data, the figural pattern Fig. 4 is systematic and roughly consistent
with the dynamical velocity pattern likes Fig. 2.

In words, with our metric VAP, the patterns of the velocity direction are roughly
comparable with the theoretical evolutionary velocity field patterns both in their
data and in our data.

Important difference between the M3 and our VAP metric comes from T-
symmetry of velocity. Comparing with VAP as Eq. (6), the backward-jumping

vector U;Z is not included in Eq.(7) in M3, and so the M3 is not time reversal
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anti-symmetry, which significantly violates the requirement of the T-symmetry
of the velocity [18].

4.2 Discuss on Velocity and the Pattern

In the time scale, the default setting of At = 1 is for the interval of the rounds
is one. Two aspects need to be noticed. First, reports from N-round average
pathes, usually, the evolution pathes is still visible in the stochastic processes in
experimental economics, the reason is not clear. Second, with data from recently
developed continuous time game data [14], the pattern of the velocity field is not
clear.

In our pilot research, with the VAP metric, we have found the widely exis-
tence of global patterns of velocity fields, e.g., in matching pennies game [32], in
standard Rock-Paper-Scissor game [31] in Selten and Chmura 12 different 2 x 2
games data [22, 33] and also in market game data [6, 33]. We notice also that
the dynamics models of evolutionary game theory could be evaluated with the
empirical velocity pattern [31].

4.3 Conclusion

Our exploring indicates that evolutionary velocity field, by the ‘Coyness and
Philandering’ game as an example, can not only can be illustrated in abstract
models in mathematics [21, 16, 24, 15, 27] or in physics [7, 25], but also be
obtained empirically in laboratory experimental economics.

In the practical VAP metric method, firstly, we report the significant dy-
namic pattern from laboratory experimental economics. Von Neumann and
Morgenstern stress: ‘A dynamic theory would unquestionably be more complete
and therefore preferable’. For the dynamic theory, the significant velocity field
pattern might be helpful.
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