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Abstract

Consider the problem of maximizing the revenue from selling a

number of goods to a single buyer. We show that, unlike the case of

one good, when the buyer’s values for the goods increase the seller’s

maximal revenue may well decrease. We also provide a characteri-

zation of revenue-maximizing mechanisms (more generally, of “seller-

favorable” mechanisms) that circumvents nondifferentiability issues.

Finally, through simple and transparent examples, we clarify the need

for and the use of randomization when maximizing revenue in the

multiple-good versus the one-good case.
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1 Introduction

Consider the problem of a seller who wishes to maximize the revenue from

selling multiple goods to a single buyer with private information about his

value for the goods. In contrast to the one-good case where a complete

solution has been known for years,1 a general solution in the case of multiple

goods remains elusive and, except under special circumstances,2 very little is

known even about the form of the solution or its properties. The purpose of

the present note is to provide simple examples that highlight some important

differences between the one-good and the multiple-good cases, and to provide

a treatment of incentive compatibility that avoids nondifferentiability issues

which, while ultimately harmless, are often a distracting nuisance within the

analysis.

In Section 3, we exhibit the surprising phenomenon that the seller’s maxi-

mal revenue may well decrease when the buyer’s values for the goods increase.

This revenue nonmonotonicity can occur only when there is more than one

good : revenue is easily shown to be nondecreasing in the buyer’s value when

there is only a single good.

In Section 2, we restrict attention to “seller-favorable” mechanisms and

characterize their revenue using directional derivatives, which exist every-

where (and therefore circumvent nondifferentiability issues arising from in-

centive compatibility).

In Section 4, we present a simple example where randomization is neces-

sary for revenue maximization, and clarify why randomization is needed only

when there are multiple goods.

Since the maximal revenue problem appears significantly less well be-

haved when the values of the goods are correlated (cf.3 Hart and Nisan

2012a, 2012b), it is important to obtain examples with independent, and

even independent and identically distributed, values. We do so both for

1See Myerson (1981), who also allows for multiple buyers.
2See, e.g., Armstrong (1996), Thanassoulis (2004), Pycia (2006), Manelli and Vincent

(2006, 2007), and Pavlov (2011).
3For instance, deterministic mechanisms always ensure at least one half of the maxi-

mal revenue in the independent case, versus an arbitrarily small fraction in the general
(correlated) case.
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revenue-nonmonotonicity and for randomization.

1.1 Preliminaries

The seller possesses k ≥ 1 goods (or “items”), which are worth nothing to

him (and there are no costs). The valuation of the goods to the buyer is

given by a vector4 x = (x1, x2, ..., xk) ∈ Rk, where xi is his value for good i.

The valuation is assumed to be additive over the goods: the value of a set

L ⊂ {1, 2, ..., k} of goods is
∑

i∈L xi. The buyer knows the valuation vector

x, whereas the seller knows only that x is drawn from a given probability

distribution F on Rk with support D. We make no further assumptions on

F . In particular, F may possess atoms and its support D may be finite or

infinite and hence need not be convex or even connected. The seller and the

buyer are each risk-neutral and have quasilinear utilities.

A (direct) mechanism for selling the k goods is given by a pair of functions

(q, s), where q : D → [0, 1]k and s : D → R. If the buyer reports that his

valuation is x, then qi(x) ∈ [0, 1] is the probability that he receives good i

(for i = 1, ..., k), and s(x) is the payment that the seller receives from the

buyer. When the buyer reports his valuation x truthfully, his payoff is b(x) =
∑k

i=1 qi(x)xi − s(x) = q(x) · x− s(x), where q(x) ≡ (q1(x), ..., qk(x)), and the

seller’s payoff is5 s(x). A mechanism (q, s) is individually rational (IR) if

b(x) ≥ 0 for all x ∈ D and it is incentive compatible (IC ) if b(x) ≥ q(y) ·

x − s(y) for all x, y ∈ D. By the Revelation Principle, the maximal revenue

from the distribution F is Rev(F) := sup EF [s(x)] , where x is distributed

according to F , and the supremum is over all IC and IR mechanisms (q, s).

If (q, s) is IC, then it is useful to extend the buyer’s payoff function b from

D to all Rk by b(x) := sup(p,t)∈R(p · x− t), where R := {(q(x), s(x)) : x ∈ D}

is the range of (q, s). So defined, b is a convex function, being the pointwise

supremum of affine functions. The IC property of (q, s) ensures that the

4R denotes the real line, Rk the k-dimensional Euclidean space, and Rk
+ = {x ∈ Rk :

x ≥ 0} its nonnegative orthant. Negative valuations are not ruled out.
5In the literature this is called transfer, cost, price, or revenue, and denoted by t, c, p,

and so on. We hope that using the mnemonic s for the seller’s final payoff and b for the
buyer’s final payoff will avoid confusion.

3



values of b remain unchanged on D, and also ensures that b is finite for every

x ∈ Rk. Henceforth, “the buyer’s payoff function b” will mean the above

extension of b to all of6 Rk.

Let f be a real convex function defined on Rk. The directional derivative

at x ∈ Rk in the direction y ∈ Rk is f ′(x; y) := limδ→0+(f(x + δy)− f(x))/δ.

Since f is convex, f ′(x; y) always exists. If 0 ≤ f(x + z) − f(x) ≤
∑k

i=1 zi

holds for every x, z ∈ Rk with z ≥ 0 then the function f is nondecreasing

and nonexpansive.7

Let Bk be the collection of all real functions on Rk that are nondecreasing,

nonexpansive, and convex.

2 Seller-Favorable Mechanisms

When maximizing revenue one may without loss of generality consider only

mechanisms that are “seller-favorable,” which means that whenever the buyer

is indifferent he chooses an outcome that maximizes the seller’s revenue (i.e.,

ties are broken by the buyer in favor of the seller). Formally, an incentive-

compatible mechanism (q, s) with buyer’s payoff function b is seller-favorable

if there is no other incentive-compatible mechanism (q̄, s̄) having the same

payoff function b for the buyer (i.e., q̄(x) · x − s̄(x) = b(x) for all x in D)

and such that s̄(x) ≥ s(x) for every x ∈ D, with strict inequality for some x.

In this section we will see that the restriction to seller-favorable mechanisms

simplifies the analysis (it circumvents nondifferentiability issues); moreover,

seller-favorable mechanisms arise not only from revenue-maximization con-

siderations, but also from strict implementation.8

The characterization of IC mechanisms (q, s) as being those whose as-

signment function, q, is a subgradient of the buyer’s convex payoff function

is well known (starting with Rochet 1985). It is an inconvenient and often

technically annoying fact that the buyer’s convex payoff function, while dif-

6The domain D is irrelevant, as any IC mechanism can be extended to the whole space
Rk (see footnote 12 below).

7For convex f, this is equivalent to 0 ≤ ∂f(x)/∂xi ≤ 1 for all i and all x where the
derivative exists (i.e., a.e.).

8See the last paragraph of Remark (a) at the end of this section.

4



ferentiable almost everywhere, need not be differentiable everywhere. Proofs

that are otherwise simple and elegant often require detours through subgra-

dient selection arguments.9

Such detours can be avoided when one restricts attention to seller-favorable

mechanisms. The reason is that the buyer’s payoff function is not differen-

tiable only when he is indifferent between a number of reports. But if the

mechanism (q, s) is seller-favorable, the buyer’s truthful report must max-

imize the seller’s payoff among all of the buyer’s optimal reports. As we

show, this implies that q(x) · x = b′(x; x) for every buyer valuation10 x ∈ D.

Consequently, in a seller-favorable mechanism the buyer’s payoff function, b,

completely determines the seller’s payoff function s at every x ∈ D, whether

a point of differentiability of b or not, and s(x) = b′(x; x)−b(x) for all x ∈ D.

Lemma 1 If (q, s) is IC then the buyer’s payoff function b belongs to Bk and

s(x) ≤ b′(x; x) − b(x) for every x ∈ D.

Proof. Recall (Section 1.1) that b is a convex function and b(x) = sup(p,t)∈R(p·

x− t), where R = {(q(x), s(x)) : x ∈ D} is the range of (q, s). IC also implies

that the range of s(·) is bounded. Thus, R̄, the closure of R, is a compact

subset of [0, 1]k × R, and so for every x ∈ Rk there is (p∗(x), t∗(x)) ∈ R̄ such

that b(x) = p∗(x) · x − t∗(x) (for x ∈ D take (p∗(x), t∗(x)) = (q(x), s(x)).

Therefore, for every x, y ∈ Rk we get

b(y) − b(x) ≥ (p∗(x) · y − t∗(x)) − (p∗(x) · x − t∗(x)) = p∗(x) · (y − x), (1)

which says that p∗(x) is a subgradient of11 b at x. Thus, p∗(x) ·x ≤ sup{p ·x :

p ∈ ∂b(x)} = b′(x; x) and so s(x) = q(x) ·x−b(x) ≤ b′(x; x)−b(x) for every12

9E.g., Lemma A.4 in Manelli and Vincent (2007).
10This formula holds even when D is a finite set since b is a convex function defined on

all of Rk. Hence b′(x;x) is well defined for every x ∈ Rk, and in particular for x ∈ D.
11For a convex function f on Rk, a vector p ∈ Rk is a subgradient of f at x ∈ Rk if

f(y) − f(x) ≥ p · (y − x) for all y ∈ Rk. Letting ∂f(x) denote the set of subgradients of
f at x (which is always a nonempty closed set), we have f ′(x; y) = sup{p · y : p ∈ ∂f(x)}
(see Rockafellar 1970).

12Note that (p∗, t∗) is an IC mechanism on all of Rk that extends the given IC mecha-
nism (q, s) on D. This shows that it is without loss of generality to require the incentive
constraints to hold on all of Rk, and not merely on D.
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x ∈ D.

Taking y = x+ z with z ≥ 0 in (1) implies that 0 ≤ p∗(x) · z ≤ b(x+ z)−

b(x) ≤ p∗(x + z) · z ≤
∑k

i=1 zi, and so b is nondecreasing and nonexpansive.

Lemma 2 Let b ∈ Bk. Then there is an IC mechanism (q̄, s̄) such that the

buyer’s payoff function is b and the seller’s payoff is s̄(x) = b′(x; x) − b(x)

for all x.

Proof. Being nondecreasing, nonexpansive, and convex on Rk, the function

b satisfies 0 ≤ b(x) − b(x − z) ≤ p · z ≤ b(x + z) − b(x) ≤
∑k

i=1 zi for

every x ∈ Rk, every p ∈ ∂b(x), and every z ∈ Rk
+. In particular, ∂b(x) ⊂

[0, 1]k and so b′(x; x) = supp∈∂b(x) p · x is attained at some q̄(x) ∈ [0, 1]k, i.e.,

b′(x; x) = q̄(x) · x. Define s̄(x) := b′(x; x) − b(x) = q̄(x) · x − b(x). Then

q̄(y) · y − s̄(y) = b(y) ≥ q̄(x) · (y − x) + b(x) = q̄(x) · y − s̄(x) (using the

definitions of s̄(y) and s̄(x), and q̄(x) ∈ ∂b(x)), and so (q̄, s̄) is IC.

Together, Lemmas 1 and 2 imply the following.

Corollary 3 Let (q, s) be an IC mechanism with buyer’s payoff function b.

Then (q, s) is seller-favorable if and only if q(x) · x = b′(x; x) and s(x) =

b′(x; x) − b(x) for every x.

Consider now the problem of maximizing the seller’s expected revenue

subject to individual rationality (IR) for the buyer (i.e., b ≥ 0). Since it is

without loss of generality to restrict attention to seller-favorable mechanisms,

a consequence of Corollary 3 is the following.

Corollary 4 The seller’s maximal expected revenue is

Rev(F) = sup
b∈Bk,b≥0

EF [b′(x; x) − b(x)] . (2)

Remarks. (a) Strict implementation. Given any IC mechanism (q, s), there

are numerous ways to eliminate, at arbitrarily small cost, the problem of the
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buyer having only weak incentives to report truthfully. For example, one

can introduce an arbitrarily small positive probability that, after the buyer

reports his valuation, the given (IC) mechanism is replaced by a random

reserve price on each good.

Another alternative is to choose any arbitrarily small ε > 0, and use

instead the mechanism (q, (1 − ε)s) (it need not be IC), which amounts

to giving a constant discount (fraction ε) on all prices. This mechanism

guarantees to the seller, for any optimal choices of the buyer, a payoff of

at least (1 − ε)s(x) for every valuation x of the buyer.13 Thus, the seller is

guaranteed at least 1−ε times his payoff in the original mechanism, regardless

of which optimal report the buyer makes.14

In fact, the (q, (1 − ε)s) mechanism guarantees to the seller not merely

(1−ε)s(x) for every x, but (1−ε)s̄(x) = (1−ε)(b′(x; x)−b(x)), the maximal

seller-favorable payoffs, for every15 x (indeed, in the argument of footnote

13 replace (q(x), s(x)) with a (q(z), s(z)) that satisfies b′(x; x) = q(z) · x and

s(z) = q(z) · x − b(x)).

(b) Boundary points. Let C ⊂ Rk be a convex set that includes D, the

support of F , let x̄ be a boundary point of C, and let λ 6= 0 belong to the

normal cone to C at x̄, i.e., λ·x̄ ≥ λ·x for every x ∈ C. If λ·x̄ ≥ 0 and (q, s) is

seller-favorable, then we can assume w.l.o.g. that q̄ := q(x̄) is maximal in the

direction λ, i.e., q̃ := q̄ + ελ /∈ [0, 1]k for every ε > 0. Indeed, q̃ ∈ ∂b(x̄) (since

λ ·(x− x̄) ≤ 0 and q̄ ∈ ∂b(x̄)), and so b′(x̄; x̄) ≥ q̃ · x̄; but q̃ · x̄ ≥ q̄ · x̄ = b′(x̄; x̄)

(by Corollary 3) and so b′(x̄; x̄) = q̃ · x̄ and we can replace q̄ by q̃. Moreover,

13If y is an optimal report of a buyer with valuation x (as in the proof of Lemma 1, one
may need to consider the closure of the range of (q, (1 − ε)s)), then

q(y) · x − (1 − ε)s(y) ≥ q(x) · x − (1 − ε)s(x)

= [q(x) · x − s(x)] + εs(x)

≥ [q(y) · x − s(y)] + εs(x)

(by IC of (q, s)). Hence s(y) ≥ s(x) (subtract and divide by ε), and so the seller’s payoff,
(1 − ε)s(y), is at least (1 − ε)s(x).

14Thus the possibility of multiple optimal reports for the buyer, which is sometimes
described as problematic (see for instance footnote 3 in Manelli and Vincent 2007), in fact
isn’t.

15Thus the tie-breaking rule in favor of the seller is obtained as the limit of any optimal
behavior of the buyer in the perturbed mechanisms.
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if λ · x̄ > 0 then q̃ · x̄ > q̄ · x̄ = b′(x̄; x̄), a contradiction, and so q̄ must be

maximal in the direction λ.

In particular, we have:

• w.l.o.g. qi(x̄) = 0 when x̄i = 0 (take λ = −e(i), where e(i) ∈ Rk
+ is the

i-th unit vector);

• qi(x̄) = 1 when x̄i = max{xi : x ∈ C} > 0 (for instance, if C = [0, 1]k,

then qi(x̄) = 1 when x̄i = 1; take λ = e(i));

• maxi qi(x̄) = 1 when
∑

i x̄i = max{
∑

i xi : x ∈ C} > 0 (for instance, if

C is the unit simplex in Rk
+; take λ = (1, 1, ..., 1)).

(c) b′(x; x) = limδ→0+(b((1 + δ)x) − b(x))/δ is the right-derivative of the

function t → b(tx) at16 t = 1, and s(x) = b′(x; x)−b(x) is the right-derivative

of the function t → b(tx)− tb(x) at t = 1 (these functions relate to the local

returns to scale of b). If b(0) = 0 (which, when maximizing revenue, can

always be assumed when17 C ⊂ Rk
+), then b′(x; x) ≥ b(x) and18 s(x) ≥ 0

(i.e., there are no positive transfers from seller to buyer).

3 Nonmonotonicity: Increasing Values May

Decrease Revenue

When the buyer’s values for the goods increase, what happens to the seller’s

maximal revenue? It stands to reason that the revenue should also increase,

as there is now more value for the seller to “extract.”19 While this can easily

be seen to be true when there is one good,20 it is perhaps a surprise that

16In the one-dimensional case (k = 1) we have b′(x;x) = xb′+(x). A useful property is
∫

t2

t1
b′(tx; tx)dt = b(t2x) − b(t1x) (cf. Rockafellar 1970, Corollary 24.2.1).

17If b(0) > 0 then the revenue from b̃(x) = b(x)− b(0) is higher by the amount b(0) than
the revenue from b.

18Since 0 = b(0) ≥ b(x) + q(x) · (0 − x) = −s(x).
19What we compare is the maximal revenue from two given distributions, one having

higher values than the other (formally, this means first-order stochastic dominance).
20Another case where the revenue is easily seen to increase is when all valuations increase

uniformly by the same amount (i.e., each x is replaced by x + z for a fixed vector z ¢ 0).
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it no longer holds when there are multiple goods. As a consequence, if the

distribution F of the buyer’s valuation is not precisely known, but a certain

lower bound F0 to F is given (in the first-order stochastic dominance sense),

then computing the optimal revenue for F0 does not necessarily yield a lower

bound on the optimal revenue for F .

3.1 Monotonicity for one good

When there is only one good, i.e., k = 1, incentive compatibility (IC) implies

that a buyer with a higher valuation pays no less than a buyer with a lower

valuation. Thus increasing the valuation of the buyer can only increase the

revenue.

Proposition 5 When there is one good, i.e., k = 1, if F2 fist-order stochas-

tically dominates F1 then Rev(F2) ≥Rev(F1).

Proof. First, we claim that every IC mechanism is monotonic in the sense

that the seller’s payoff increases weakly with the buyer’s value: if x > y

then s(x) ≥ s(y). Indeed, for all x, y, the IC inequalities at x and at y imply

(q(x) − q(y))x ≥ s(x) − s(y) ≥ (q(x) − q(y))y; when x > y it follows that

q(x) − q(y) ≥ 0 and thus s(x) − s(y) ≥ 0.

Second, the first-order stochastic dominance implies that EF1
[s(x)] ≤

EF2
[s(x)] for every IC mechanism, since s is a nondecreasing function.

Remark. Note that Proposition 5 also follows easily from Myerson’s

(1981) characterization of the optimal revenue when there is one good as

Rev(F ) = supp≥0 p · (1 − F (p)); however, the proof above shows that the

monotonicity of the revenue holds not only for optimal mechanisms, but also

for any incentive-compatible mechanism.

3.2 Nonmonotonicity for multiple goods

Now, does the above hold when there are more goods? That is, does increas-

ing the buyer’s valuations yield higher revenue to the seller? The surprising

answer is that this is no longer true when there is more than one good.
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x1

x2
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0

x1 − 1

x2 − 2

x1 + x2 − 4

Figure 1: The nonmonotonic mechanism (3)

When there are multiple goods one can construct examples of IR and

IC mechanisms that are not monotonic.21 Take for instance the mechanism

where the buyer is offered a choice among the following four outcomes: get

nothing and pay nothing (with payoff = 0); or get good 1 for price 1 (with

payoff = x1 − 1); or get good 2 for price 2 (with payoff = x2 − 2); or get both

goods for price 4 (with payoff = x1 + x2 − 4); thus,

b(x1, x2) = max{0, x1 − 1, x2 − 2, x1 + x2 − 4}. (3)

See Figure 1 for the regions in the buyer’s valuation space where each outcome

is chosen. If the valuation of the buyer is, say, (1.3, 2.4), then his optimal

choice is to pay 2 for good 2, whereas if his values increase to, say, (1.7, 2.6),

then his optimal choice is to pay 1 for good 1. Thus the seller receives a

lower payment (1 instead of 2) when the buyer’s values increase.

The more difficult question is whether this nonmonotonicity can also oc-

cur for the maximal revenue. The two examples below, a simpler one where

21The first such example was constructed with Noam Nisan.
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the unique optimal mechanism is precisely the above deterministic mecha-

nism22 (3) but the valuations of the two goods are correlated, and a more

complicated one where the valuations of the two goods are independent and

identically distributed, show that the maximal revenue can indeed be non-

monotonic.

Example E1. For every 0 ≤ α ≤ 1/4, let Fα be the following distribution

on R2:

Fα =























(1, 1), with probability 1/4,

(1, 2), with probability 1/4 − α,

(2, 2), with probability α,

(2, 3), with probability 1/2.

As α increases, probability mass is moved from (1, 2) to (2, 2), and so Fα first-

order stochastically dominates Fα′ when α > α′. Nevertheless, the maximal

revenue Rev(Fα) decreases with α (in the region 0 ≤ α ≤ 1/12).

Proposition 6 In Example E1: for every 0 ≤ α ≤ 1/12,

Rev(Fα) = 11/4 − α.

Proof. First, the revenue of 11/4 − α is achieved by the mechanism with b

given by (3): (1/4) · 1 + (1/4 − α) · 2 + α · 1 + (1/2) · 4 = 11/4 − α.

Second, we show that a higher revenue cannot be obtained. Consider the

following inequalities:

q11
1 + q11

2 − s11 ≥ 0 1

q12
1 + 2q12

2 − s12 ≥ q11
1 + 2q11

2 − s11 1/2

2q22
1 + 2q22

2 − s22 ≥ 2q11
1 + 2q11

2 − s11 3α

2q23
1 + 3q23

2 − s23 ≥ 2q11
1 + 3q11

2 − s11 1/4 − 3α

2q23
1 + 3q23

2 − s23 ≥ 2q12
1 + 3q12

2 − s12 1/4 + α

2q23
1 + 3q23

2 − s23 ≥ 2q22
1 + 3q22

2 − s22 2α

(4)

(the first inequality is IR at (1, 1), and the others are various IC constraints).

Multiplying these inequalities by the multipliers on the right (which are all

22This explains the reason for including the outcome x1 + x2 − 4 in the mechanism.
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nonnegative when 0 ≤ α ≤ 1/12) and then adding them up yields:

− (3/4 − 3α) q11
2 − 2αq12

1 + (1/4 − 3α) q12
2 + 2αq22

1 + q23
1 + (3/2)q23

2

≥ (1/4)s11 + (1/4 − α) s12 + αs22 + (1/2)s23.

The right-hand side is precisely the expected revenue at Fα, and the left-hand

side is at most 0+0+(1/4−3α)+2α+1+3/2 = 11/4−α (since q11
2 , q12

1 ≥ 0

and q12
2 , q22

1 , q23
1 , q23

2 ≤ 1). Therefore the revenue cannot exceed 11/4−α, and

so the revenue of 11/4 − α achieved by b of (3) is indeed maximal.

To get some intuition: the mechanism of (3) is:

Valuation Outcome

x = (x1, x2) q(x) = (q1(x), q2(x)) s(x)

(1, 1) (0, 0) 0

(2, 2) (1, 0) 1

(1, 2) (0, 1) 2

(2, 3) (1, 1) 4

(5)

When the value of good 1 goes up (e.g., from x = (1, 2) to x′ = (2, 2)), the

probability of getting good 1 also goes up (i.e., q1(x
′) = 1 > 0 = q1(x));

this is always so, as it is a consequence of the convexity of the buyer’s payoff

function b). However, at the same time the probability of getting good 2 may

go down (e.g., q2(x
′) = 0 < 1 = q2(x)); moreover, it can do so in such a

way that the allocation is worth less to the buyer, and so his payment to the

seller goes down (i.e., s(x′) = 1 < 2 = s(x)).

Remarks. (a) The mechanism (5) is the unique optimal mechanism at

each Fα with 0 ≤ α < 1/12; indeed, in order to get the revenue of 11/4 − α

one needs all relevant inequalities to become equalities (thus q11
2 = q12

1 = 0

and q12
2 = q23

1 = q23
1 = q23

2 = 1, which together with (4) as equalities can be

easily shown to yield q11
1 = 1, q22

2 = 0, s11 = 1, s12 = 2, s22 = 1, s23 = 4—

which is precisely (5)).
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(b) Any small enough perturbation of the example—such as having full

support on a square like [0, 3]2, or increasing all valuations as α increases—

will not affect the nonmonotonicity, since the inequality Rev(F0) > Rev(F1/12)

is strict.

3.3 Nonmonotonicity for independent and identically

distributed goods

We now provide an example of nonmonotonicity where the goods are inde-

pendent and identically distributed.

Example E2. Let F1 and F2 be the following one-dimensional distributions:

F1 =































10, with probability 4
15

,

46, with probability 1
90

,

47, with probability 1
3
,

80, with probability 7
30

,

100, with probability 7
45

.

F2 =











































10, with probability 2399
9000

,

13, with probability 1
9000

,

46, with probability 1
90

,

47, with probability 1
3
,

80, with probability 7
30

,

100, with probability 7
45

.

Clearly F2 first-order stochastically dominates F1 (since F2 is obtained from

F1 by moving a probability mass of 1/9000 from 10 to 13), which of course

implies that F2 × F2 first-order stochastically dominates F1 × F1. However,

the optimal revenue from F1 × F1 turns out to be higher than the optimal

revenue from F2 × F2.

Proposition 7 In Example E2:

Rev(F1 × F1) ≈ 69.47145 > Rev(F2 × F2) ≈ 69.47126.

Proof. Maximizing revenue for a distribution with finite support is a linear

programming problem (the unknowns are the qi(x) and s(x) for all x in the

support, the constraints are the IR and IC inequalities, and the objective

function is the expected revenue). Using Maple yields the following.
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The unique23 optimal mechanism for F2 × F2 consists of 11 outcomes

(ordered in the table below according to increasing payment to the seller s):

Valuations Outcome

x q(x) s(x)

(10, 10), (10, 13), (13, 10), (13, 13),

(10, 46), (46, 10), (13, 46), (46, 13), (46, 46),

(13, 47), (47, 13), (10, 47), (47, 10)

(0, 0) 0

(46, 47) ( 32
1187

, 384
13057

) 34240
13057

≈ 2.6

(47, 46) ( 384
13057

, 32
1187

) 34240
13057

≈ 2.6

(47, 47) ( 35
1187

, 35
1187

) 3258
1187

≈ 2.7

(13, 80) ( 32
1187

, 5647
5935

) 90672
1187

≈ 76.4

(80, 13) (5647
5935

, 32
1187

) 90672
1187

≈ 76.4

(46, 80) ( 35
1187

, 5647
5935

) 90810
1187

≈ 76.5

(80, 46) (5647
5935

, 35
1187

) 90810
1187

≈ 76.5

(10, 80), (10, 100), (13, 100) (0, 1) 80

(80, 10), (100, 10), (100, 13) (1, 0) 80

(46, 100), (100, 46),

(47, 80), (80, 47), (47, 100), (100, 47),

(80, 80), (80, 100), (100, 80), (100, 100)

(1, 1) 126

For F1×F1 the same mechanism is optimal; however, the 5th and 6th outcomes

are not used (the value 13 has probability 0) and may be dropped. This

yields:

Rev(F1 × F1) =
408189937

5875650
= 69.47145... ,

Rev(F2 × F2) =
30614162731

440673750
= 69.47126... .

23Uniqueness is proved using the dual linear progamming problem, as in the previous
sections.
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The nonmonotonicity of the payments is seen at s(10, 80) > s(13, 80), s(46, 80)

and s(80, 10) > s(80, 13), s(80, 46).

4 Lotteries and Revenue

In the case of a single good (i.e., k = 1), in order to maximize revenue

it suffices to consider deterministic mechanisms (specifically, “posted-price”

mechanisms; see Myerson 1981). That is not so in the multi-good case.

Examples where the optimal mechanism requires randomization (i.e., in some

of the outcomes the probability of getting a good is strictly between 0 and 1)

have been provided by Thanassoulis (2004) (in the slightly different context

where the buyer’s demand is limited to one good), Pycia (2006), Manelli

and Vincent (2006, 2007),24 and Pavlov (2011, Example 3(ii)). However,

most of these examples are relatively complicated and require non-trivial

computations, and it is not clear why and how randomization helps only

when there are multiple goods.

We will provide two examples that are simple and transparent enough

that the need for randomization becomes clear. In the first, the values of

the two goods are correlated; in the second, the values are independent and

identically distributed.

4.1 Lotteries for multiple goods

Consider the following example with two goods and three possible valua-

tions25 (the values of the two goods are correlated).

24Manelli and Vincent (2007) provide an example (Example 1) of an “undominated
mechanism” that requires lotteries. While it is clear that an undominated mechanism is
optimal for some distribution F , it is claimed there (Theorem 9) that any undominated
mechanism is optimal for some distribution with independent goods (i.e., a product dis-
tribution). However, there is an error in the proof of Theorem 9, as the set of product
distributions (specifically, the set G in their proof) is not convex.

25Pycia (2006) solves the seller’s problem when there are exactly two valuations and
shows that randomizations may be needed. For instance, when the valuations are (2, 3)
and (6, 1) with equal probabilities, the unique optimal mechanism gives buyer (2, 3), for
the total price of 4, good 2 and a 1/2 chance of getting good 1; and gives buyer (6, 1)
both goods for the total price of 7. However, we have found that Example E3, with
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Example E3. Let F be the following two-dimensional probability distribu-

tion:

F =











(1, 0), with probability 1/3,

(0, 2), with probability 1/3,

(3, 3), with probability 1/3.

Proposition 8 The mechanism (q, s) defined by

Valuation Outcome

x q(x) s(x)

(1, 0) (1
2
, 0) 1

2

(0, 2) (0, 1) 2

(3, 3) (1, 1) 5

(6)

with

b(x1, x2) = max

{

0,
1

2
x1 −

1

2
, x2 − 2, x1 + x2 − 5

}

(7)

is the unique revenue-maximizing IC and IR mechanism for F of Example

E3.

Thus, the buyer can get both goods for price 5, or get good 2 for price

2, or get good 1 with probability 1/2 for price 1/2; the optimal revenue is

5/2 = 2.5. It can be shown26 that if the seller were restricted to deterministic

mechanisms (where each qi is either 0 or 1), then the optimal revenue would

decrease to 7/3 = 2.33... (which is attained for instance by selling separately,

at the optimal-single-good prices of 3 for good 1 and 2 for good 2). A

detailed explanation of the role of randomization, and why it is needed only

when there are multiple goods, follows the proof below.

Proof. Let 〈(α1, β1); σ1〉, 〈(α2, β2); σ2〉, and 〈(α3, β3); σ3〉 be the outcome

〈(q1(x), q2(x)); s(x)〉 at x = (1, 0), (0, 2), and (3, 3), respectively (thus αi, βi ∈

three possible valuations, provides slightly more transparent insights (as there is a clearer
separation between the IC and IR constraints).

26See footnote 27.
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[0, 1]). The objective function is S := σ1 + σ2 + σ3 (this is 3 times the

revenue). Consider the relaxed problem of maximizing S subject only to the

individual rationality constraints at (1, 0) and (0, 2), and to the two incentive

compatibility constraints at (3, 3), i.e.,

α1 − σ1 ≥ 0,

2β2 − σ2 ≥ 0,

3α3 + 3β3 − σ3 ≥ 3α1 + 3β1 − σ1,

3α3 + 3β3 − σ3 ≥ 3α2 + 3β2 − σ2.

These inequalities can be rewritten as:

σ3 + 3α1 + 3β1 − 3α3 − 3β3 ≤ σ1 ≤ α1,

σ3 + 3α2 + 3β2 − 3α3 − 3β3 ≤ σ2 ≤ 2β2.

Therefore, in order to maximize S = σ1 + σ2 + σ3 we must take σ1 = α1 and

σ2 = 2β2, which gives:

σ3 ≤ 3α3 + 3β3 − 2α1 − 3β1,

σ3 ≤ 3α3 + 3β3 − 3α2 − β2.

Thus we must take α3 = β3 = 1, β1 = α2 = 0, and then σ3 = min{6 −

2α1, 6 − β2}, and so S = α1 + 2β2 + min{6 − 2α1, 6 − β2} = min{2β2 −

α1, β2 + α1} + 6. Since S is increasing in β2 we must take β2 = 1, and then

S = min{2−α1, 1 + α1}+ 6 is maximized at27 α1 = 1/2. This is pecisely the

mechanism (6), which is easily seen to satisfy also all the other IR and IC

constraints.

To understand the use of randomization, consider the outcome

〈(1/2, 0); 1/2〉 at x = (1, 0) in (6): it is a lottery ticket that costs 1/2 and gives

27For deterministic mechanisms (i.e., αi, βi ∈ {0, 1}), everything is the same up to this
point, but now S is maximized at both α1 = 0 and α1 = 1; the optimal revenue for
deterministic mechanisms is thus S/3 = 7/3.
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a 1/2 probability of getting good 1; alternatively,28 it is a 1/2 − 1/2 lottery

between getting good 1 for the price 1 (i.e., 〈(1, 0); 1〉), and getting nothing

and paying nothing (i.e., 〈(0, 0); 0〉). It is thus the average of these two deter-

ministic outcomes, and we now consider what happens when we replace the

lottery by either one of them (see Table 1 below). It turns out that in both

cases the revenue strictly decreases. In the first case, replacing 〈(1/2, 0); 1/2〉

by 〈(1, 0); 1〉 forces the price of the bundle to decrease to 4 (otherwise the

(3, 3)-buyer would switch from paying 5 for the bundle to paying 1 for good

1); therefore the net change in the revenue is 1/3 · (1 − 1/2) + 1/3 · (4 − 5),

which is negative.29 In the second case, replacing 〈(1/2, 0); 1/2〉 by 〈(0, 0); 0〉

results in the loss of the revenue from the (1, 0)-buyer, without, however,

increasing the revenue from the (3, 3)-buyer: indeed, if we were to increase

the bundle price, then (3, 3) would switch to 〈(0, 1); 2〉, i.e., would get good 2

for price 2 (and, if we were to drop this outcome 〈(0, 1); 2〉 altogether in order

to increase the bundle price to 6, the total revenue would again decrease).30

x q(x) s(x) q(1)(x) s(1)(x) q(2)(x) s(2)(x)

(1, 0) (1
2
, 0) 1

2
(1, 0) 1 (0, 0) 0

(0, 2) (0, 1) 2 (0, 1) 2 (0, 1) 2

(3, 3) (1, 1) 5 (1, 1) 4 (1, 1) 5

Table 1: Replacing a lottery outcome when there are two goods

It is instructive to compare this with a similar example but with a single

good. Assume the values are x = 1, 0, 3, with equal probabilities of 1/3

each (just like good 1 in Example E3). Take the mechanism with outcomes

〈1/2; 1/2〉, 〈0; 0〉, 〈1; 2〉 (see Table 2 below); it is easy to see that it is IC and

IR, and its revenue is 5/6. The lottery outcome 〈1/2; 1/2〉—get the good with

probability 1/2 for price 1/2—is the average of 〈0; 0〉 and 〈1; 1〉. Replacing the

lottery 〈1/2; 1/2〉 by 〈1; 1〉 lowers the revenue to 2/3: the 3-buyer switches

28Because of risk-neutrality.
29The buyer’s payoff function in this mechanism is b(1)(x) = max{x1 − 1, x2 − 2, x1 +

x2 − 4}.
30The buyer’s payoff function in this mechanism is b(2)(x) = max{0, x2−2, x1 +x2−5}.
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to 〈1; 1〉. Replacing the lottery 〈1/2; 1/2〉 by 〈0; 0〉 increases the revenue to

1: the 3-buyer is now offered, and chooses, 〈1; 3〉. The revenue of 5/6 of the

original mechanism with the lottery outcome is precisely the average of the

revenues from these two resulting mechanisms, 2/3 and 1 (this averaging

property holds at each valuation x).

x q s q(1) s(1) q(2) s(2)

1 1
2

1
2

1 1 0 0

0 0 0 0 0 0 0

3 1 2 1 1 1 3

Table 2: Replacing a lottery outcome when there is one good

This is a general phenomenon when there is only one good: the revenue

from a mechanism that includes an outcome that is a probabilistic mixture

of two outcomes (a “lottery outcome”) is the average of the revenues ob-

tained by replacing the lottery with each one of these two outcomes and

then adapting the remaining outcomes.31 Formally, this is the counterpart of

expressing the corresponding b ∈ B1 as an average of two functions in B1; in

the example above, b(x) = max{0, x/2− 1/2, x− 2} is the 1/2− 1/2 average

of b(1)(x) = max{0, x − 1} and b(2)(x) = max{0, x − 3}. Thus lotteries are

indeed not needed when there is only one good.

Example E3 illustrates why this is not the case for multiple goods: re-

placing the lottery outcome with 〈(0, 0); 0〉 yields the mechanism (q(2), s(2)),

whose revenue is lower than that of (q, s) (whereas replacing 〈1/2; 1/2〉 with

〈0; 0〉 yields a higher revenue). In fact, the function b of (7) is an extreme

point in B2 (in particular, it is not the average of b(1) and b(2)).

This is exactly where having more than one good matters. In the case

of one good there is only one binding constraint per value x, namely, the

outcome chosen by the next lower value. Consequently, dropping an outcome

(such as a lottery outcome) chosen by x enables the seller to increase the rev-

31This statement, which is easily proved in general, provides another proof of Myerson’s
result that in the one-good case it suffices to consider deterministic mechanisms.
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enue obtained from all higher-valuation buyers, as they can no longer switch

to the outcome that has been removed and they strictly prefer their own

outcome to any of the outcomes chosen by values below x. In contrast, when

there are multiple goods, such an increase in revenue may not be possible be-

cause there may be multiple binding constraints per each valuation x (in our

example, buyer (3, 3) is indifferent between reporting truthfully and report-

ing either (1, 0) or (0, 2)). These buyer types may switch to other outcomes

that involve other goods, and so the total revenue may well decrease.

Next, how does a lottery outcome increase revenue? The seller would like

to earn positive revenue from selling good 1 to the (1, 0) buyer, but without

jeopardizing the higher revenue obtained from selling the bundle of both

goods to the (3, 3) buyer (and, as we have seen, he cannot increase the price

of the bundle because of the “good 2 for price 2,” alternative, i.e., 〈(0, 1); 2〉).

If the price of good 1 is above 1 then (1, 0) will not buy it; if it is below

1, then (3, 3) will switch from buying the bundle to buying good 1 (since

his payoff will increase from 1 to 2 or more).32 Thus selling good 1 does not

help. What does help is selling only a fractional part of good 1, which has the

effect of making this option less attractive to the high-valuation buyer (3, 3)

(since his possible gain is smaller: it is only that fraction of the difference in

values). Thus, the two conflicting desiderata—getting some revenue from a

low-valuation buyer, and not jeopardizing the higher revenue from a higher-

valuation buyer—are reconciled by offering for sale fractions of the goods, i.e.,

lotteries. In the present example, that optimal fraction turns out to be 1/2;

it comes from balancing the incentives between the two goods (specifically,

it is the ratio of two value differences, 3− 2 for good 2 and 3− 1 for good 1;

see the Proof of Proposition 8 above).33

Finally, we note that mechanism design is a sequential game, with the

seller moving first. In such games, the use of randomization may in general

be strictly advantageous to the first mover (take for instance the sequential

32As we saw above, lowering the price of the bundle to 4 (while keeping the price of
good 1 at 1) will not help either, because the total revenue decreases.

33Thus one can easily get other probabilities by changing the values. Moreover, the
example is highly robust: it has a large neighborhood where the optimal mechanisms
always require lotteries.

20



“matching pennies” game). Thus, the surprising fact here is not that ran-

domizations can increase revenue (when there are multiple goods), but that

they cannot do so when there is only one good.34,35

4.2 Lotteries for independent and identically distributed

goods

We now provide a simple example where lotteries are necessary to achieve

the maximal revenue for two goods that are independent and identically

distributed.

Example E4. Let F be the following one-dimensional probability distribu-

tion:

F =











1, with probability 1/6,

2, with probability 1/2,

4, with probability 1/3,

and take two independent F -distributed goods, i.e., F = F × F.

Proposition 9 The mechanism (q, s) defined by

Valuations Outcome

x q(x) s(x)

(1, 1) (0, 0) 0

(2, 1) (1
2
, 0) 1

(1, 2) (0, 1
2
) 1

(1, 4), (4, 1), (2, 2), (2, 4), (4, 2), (4, 4) (1, 1) 4

(8)

with

b(x1, x2) = max

{

0,
1

2
x1 − 1,

1

2
x2 − 1, x1 + x2 − 4

}

(9)

is the unique optimal mechanism for F = F × F of Example E4.

34We thank Bob Aumann for this comment.
35Pycia (2006) shows how in the multiple-goods case non-deterministic mechanisms are

generically needed to maximize revenue.
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Proof. First, the revenue from the mechanism (8) is easily computed: it

equals 61/18.

Second, take the following inequalities, which are various individual ra-

tionality and incentive compatibility constraints36:

q11
1 + q11

2 − s11 ≥ 0 3

q12
1 + 2q12

2 − s12 ≥ 0 8

2q21
1 + q21

2 − s21 ≥ 0 8

2q22
1 + 2q22

2 − s22 ≥ 0 17

q12
1 + 2q12

2 − s12 ≥ q11
1 + 2q11

2 − s11 1

2q21
1 + q21

2 − s21 ≥ 2q11
1 + q11

2 − s11 1

2q22
1 + 2q22

2 − s22 ≥ 2q12
1 + 2q12

2 − s12 3

2q22
1 + 2q22

2 − s22 ≥ 2q21
1 + 2q21

2 − s21 3

q14
1 + 4q14

2 − s14 ≥ q12
1 + 4q12

2 − s12 3

4q41
1 + q41

2 − s41 ≥ 4q21
1 + q21

2 − s21 3

2q22
1 + 2q22

2 − s22 ≥ 2q14
1 + 2q14

2 − s14 1

2q22
1 + 2q22

2 − s22 ≥ 2q41
1 + 2q41

2 − s41 1

2q24
1 + 4q24

2 − s24 ≥ 2q22
1 + 4q22

2 − s22 8

4q42
1 + 2q42

2 − s42 ≥ 4q22
1 + 2q22

2 − s22 8

4q44
1 + 4q44

2 − s44 ≥ 4q24
1 + 4q24

2 − s24 2

4q44
1 + 4q44

2 − s44 ≥ 4q42
1 + 4q42

2 − s42 2

(10)

Multiplying each inequality by the weight on the right and adding up yields:

s11 + 3s12 + 3s21 + 9s22 + 2s14 + 2s41 + 6s24 + 6s42 + 4s44

≤ 2q22
1 + q14

1 + 10q41
1 + 8q24

1 + 24q42
1 + 16q44

1 (11)

+ 2q22
2 + 10q14

2 + q41
2 + 24q24

2 + 8q42
2 + 16q44

2 .

The left-hand side turns out to be precisely 36 times the expected revenue of

the seller for the distribution F = F×F , i.e., 36EF [s(x)] , and the right-hand

side is bounded from above by 122 (replace all q1 and q2 there by their upper

bound of 1). Therefore EF [s(x)] ≤ 122/36 = 61/18. Recalling that 61/18 is

36These specific inequalities and their corresponding multipliers below were obtained by
solving the dual of the linear programming problem of maximizing the revenue.
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precisely the revenue of the mechanism (8) shows that (8) is optimal.

Finally, to see that (8) is the only optimal mechanism: by the proof above,

for the maximal revenue of 61/18 to be achieved, all the inequalities must

become equalities. First, all the q1 and q2 appearing on the right-hand side

of (11) must equal 1:

1 = q22
1 = q14

1 = q41
1 = q24

1 = q42
1 = q44

1 (12)

= q22
2 = q14

2 = q41
2 = q24

2 = q42
2 = q44

2 .

Second, the inequalities in (10), which are now equalities, yield after substi-

tuting (12):

s44 = s24 = s42 = s22 = s14 = s41 = 4, s12 = s21 = 1, s11 = 0,

q11
1 = q11

2 = q12
1 = q21

2 = 0, q21
1 = q12

2 =
1

2
.

Together with (12) this yields precisely the mechanism (8).

It can be checked that the maximal revenue achievable by a deterministic

mechanism is 10/3 (obtained by the mechanism with price 2 for each good).
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