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Abstract

An Agent who owns information that is potentially valuable to a Firm bargains for its

sale, without commitment and certification possibilities, short of disclosing it. We propose a

model of gradual persuasion and show how gradualism helps mitigate the hold-up problem

(that the Firm would not pay once it learns the information). An example illustrates how

it is optimal to give away part of the information at the beginning of the bargaining, and

sell the remainder in dribs and drabs. The Agent can only appropriate part of the value of

information. Introducing a third-party allows her to extract the maximum surplus.
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1 Introduction

In the late 1960s, Italian inventor Aldo Bonassoli and Count Alain de Villegas contacted Elf,

the French public oil company, to sell their discovery: a device that could detect oil fields from

the air. Early tests were spectacularly successful. Contracts worth 200m Swiss Francs (in 1976),

and 250m Swiss Francs (in 1978) were signed as tests proceeded, with the agreement of both

French president Valery Giscard d’Estaing and Prime Minister Raymond Barre.

Unfortunately, the device was a hoax, exposed in 1979.1 The story of the “Great Oil Sniffer

Hoax” was made public in December 1983. Elf never completed paying for the final contract,

but nevertheless had spent over $150m.

But one cannot blame the “inventors” to be careful. Who has not heard of Robert Kearns,

the inventor of the intermittent windshield wiper systems, who was a little too forthcoming with

information about his invention with engineers of Ford?

This dilemma, known as the Arrow information paradox (1959) is the subject of this paper.

The potential buyer of information needs to know its value before purchasing it since otherwise

she may end up paying for a hoax. But often the only way to verify the information is to

transmit it fully and once the seller has this detailed knowledge, she has no incentives to pay

for it. This problem has obvious economic implications, as rewarding innovative activity is key

in encouraging it. It is a problem not just for inventors, but owners of information in general:

hedge funds claim to have special investment techniques which, of course, they cannot disclose;

similarly, experts have confidential sources of information. Scientists and engineers claim to have

superior and valuable knowledge –again, which cannot be disclosed.

We provide a game-theoretic analysis of the interaction between a buyer (Firm) and a seller

(Agent) and examine when and how information should be transmitted, and payments made.

In doing so, we determine how much of the information value can be appropriated by the seller,

and how this problem is mitigated if sufficiently elaborate ways of transmitting information can

1The early tests were successful because the inventors had an inside contact at Elf, who gave them maps of the
oil fields that were being surveyed. The alleged map displayed by the device’s screen was simply a photograph.
This was also how the hoax was uncovered: the two inventors routinely photocopied objects that were then placed
behind a wall. Magically, the image of the object behind the wall appeared on the screen. Until an engineer bent
the object, a ruler, right before it was placed behind the wall.
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be applied, or a third party, such as a trusted intermediary, can be involved.

The game of information sale that we consider is dynamic. Within a round, the players make

voluntary payments and then the Agent can disclose some information to the Firm. We assume

that information is verifiable and divisible. In particular, in our model the Agent has one of two

types (i.e., she is knowledgeable or not) and the information transmission is modeled as tests to

verify the Agent’s information. Verifiability of information means that each test has a known

difficulty: the competent Agent can always pass it (in the baseline model), but the incompetent

Agent passes it with a probability commensurate to its difficulty. Easier tests have a higher

probability of being passed by an incompetent Agent. Divisibility of information means that

there is a rich set of tests with varying difficulties. There is no commitment on either side.

We construct tight bounds on the limits of the competent Agent’s payoff as the number of pos-

sible communication rounds grows to infinity (they also establish bound on the difference of the

competent and incompetent payoffs, which might be the relevant measure for those applications

in which incentives to acquire information are explicitly taken into account). We characterize

three such bounds: when we consider only pure-strategy equilibria (in which a competent Agent

always passes the test), when we allow for mixed-strategy equilibria, and finally when we allow

for tests so hard that even a competent Agent may occasionally fail. The latter case is equivalent

to allowing for a trusted intermediary.

Lack of commitment creates a hold-up problem: since the Agent is selling information, once

the Firm learns it, it has no reason to pay for it. Therefore, it seems at first difficult to make

the Firm pay different amounts to different types, since such screening would inform the Firm

about the Agent’s type and lead it to renege on payments. Although we can make the Firm pay

for a piece of information, it is necessary that it pays before it learns it.

That leads to our first main result that “splitting information” generally increases the com-

petent Agent’s payoff. That is, the competent Agent’s payoff is higher in equilibria in which she

takes two tests in a sequence (and is paid for each separately) than if she takes both of them at

once (which is equivalent to taking one harder test). That intuition underlies the structure of the

best equilibrium in pure strategies in our leading example: first, an initial chunk of information

is given away for free that makes the Firm very uncertain about the Agent’s competence. Then
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the Agent sells information in dribs and drabs and gets paid a little for each bit. Although the

expression for the limit payoff depends on the assumption that there is a rich set of tests and

arbitrarily many rounds of communication, the benefit of splitting does not depend on either

assumption.

Second, we show how randomization can help improve the performance of the contract. In the

best pure-strategy equilibrium the incompetent Agent collects on average a non-trivial amount of

payments, which leaves room for improvement. We first show that using (non-observable) mixed

strategies can help by taking advantage of the fact that the competent Agent and the Firm may

have different (endogenous) risk attitudes (more precisely, that the sum of their continuation

payoffs need not be concave). An important practical implication is that the competent Agent

can gain from the possibility that the Firm’s belief that she is competent might go down during

the bargaining process.

Performance can be further improved if the players have access to tests that both Agents’

types can fail with positive probability, or alternatively, if parties have access to a trusted inter-

mediary that can “noise up” the test’s outcome. In fact, we prove that, with the help of such a

third-party, the Agent can appropriate the maximum surplus (Theorem 3).

Our finding that selling information gradually is beneficial to the seller should (in terms of

providing the highest incentives to acquire information) come as no surprise to anyone who was

ever involved in consulting. The free first consultation is also reminiscent of standard business

practice. The further benefits of intermediation might be more surprising. Yet it is indeed

common practice to hire third parties to evaluate the value of information. This third-party

structure is used as a “buffer” to ensure that the buyer does not have access to any unnecessary

confidential information about the seller at any point during the sales process.2

Most of the paper analyzes the information sales problem for the specific payoff structure

that arises in a simple example in which the Agent’s information is decisive for a Firm’s optimal

decision that is explicitly modeled. However, there is nothing particular about this example.

We generalize our results to arbitrary specifications of how the Firm’s payoff varies with its

2We thank Rann Smorodinsky for sharing his experience in this respect. As a seller of software, the sale
involved no less than three third parties specialized in this kind of intermediation –Johnson-Laird, Inc., Construx
Software and NextGeneration Software Ltd.
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belief about the Agent’s competence. This specification could arise from decision problems that

are more complicated than the binary one considered in the example. We prove that selling

information in small bits is profitable as long as this payoff function is star-shaped, that is, as

long as its average is increasing in the belief. Moreover, we show that, with rich enough tests,

the type-1 Agent can extract the entire expected value quite generally.

The paper is related to the literature on hold-up, for example Gul (2001) and Che and

Sákovics (2004). One difference is that in our game what is being sold is information and hence

the value of past pieces sold depends on the realization of value of additional pieces. Moreover,

we assume that there is no physical cost of selling a piece of information and hence the Agent

does not care per se about how much information the Firm gets or what action it takes. In

contrast, in Che and Sákovics (2004) each piece of the project is costly to the Agent and the

problem is how to provide incentives for this observable effort rather than unobservable effort in

our model. Finally, our focus is on the different ways of information transmission, which is not

present in any of these papers.

The formal maximization problem, and in particular the structural constraints on information

revelation, are reminiscent of the literature on long cheap talk. See, in particular, Forges (1990)

and Aumann and Hart (2003), and, more generally, Aumann and Maschler (1995). As is the case

here, the problem is how to “split” a martingale optimally over time. That is, the Firm’s belief is

a martingale, and the optimal strategy specifies its distribution over time. There are important

differences between our paper and the motivation of these papers, however. In particular, unlike

in that literature, payoff-relevant actions are taken before information disclosure is over, since the

Firm pays the Agent as information gets revealed over time. In fact, with a mediator, the Agent

also makes payments to the Firm during the communication phase. As in Forges and Koessler

(2008), messages are type-dependent, as the Agent is constrained in the messages she can send

by the information she actually owns. Cheap-talk (i.e. the possibility to send messages from

sets that are type-independent) is of no help in our model. Rosenberg, Solan and Vieille (2009)

consider the problem of information exchange between two informed parties in a repeated game

without transfers, and establish a folk theorem. In all these papers, the focus is on identifying

the best equilibrium from the Agent’s perspective in the ex ante sense, before her type is known.
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In our case, this is trivial and does not deliver differential payoffs to the Agent’s types (i.e., a

higher payoff to the competent type).

The martingale property is distinctive of information, and this is a key difference between our

set-up and other models in which gradualism appears. In particular, the benefits of gradualism

are well known in games of public goods provision (see Admati and Perry, 1991, Compte and

Jehiel, 2004 and Marx and Matthews, 2000). Contributions are costly in these games, whereas

information disclosure is not costly per se. In fact, costlessness is a second hallmark of information

disclosure that plays an important role in the analysis. (On the other hand, the specific order of

moves is irrelevant for the results, unlike in contribution games.) The opportunity cost of giving

information away is a function of the equilibrium to be played. So, unlike in public goods game,

the marginal (opportunity) cost of information is endogenous. Relative to sales of private goods,

the marginal value of information cannot be ascertained without considering the information as

a whole, very much as for public goods.

Our focus (proving one’s knowledge) and instrument (tests that imperfectly discriminate for

it) are reminiscent of the literature on zero-knowledge proofs, which also stresses the benefits

of repeating such tests. This literature that starts with the paper of Goldwasser, Micali and

Rackoff (1985) is too large to survey here. A key difference is that, in that literature, passing

a test conveys information about the type without revealing anything valuable (factoring large

numbers into primes does not help the tester factoring numbers himself). In many economic

applications, however, it is hard to convince the buyer that the seller has information without

giving away some of it, which is costly –as it is in our model.

Indeed, unlike in public goods games, or zero-knowledge proofs, splitting information is not

always optimal. As mentioned, this hinges on a (commonly satisfied) property of the Firm’s

payoff, as a function of its belief about the Agent’s type.

Less related are some papers in industrial organization. Our paper is complementary to Anton

and Yao (1994 and 2002) in which an inventor tries to obtain a return to his information in the

absence of property rights. In Anton and Yao (1994) the inventor has the threat of revealing

information to competitors of the Firm and it allows him to receive payments even after she

gives the Firm all information. In Anton and Yao (2002) some contingent payments are allowed
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and the inventor can use them together with competition among firms to obtain positive return

to her information. In contrast, in our model, there are no contingent payments and we assume

that only one Firm can use the information.

Finally, there is a vast literature directly related to the value of information. See, among

others, Admati and Pfleiderer (1988 and 1990). Eső and Szentes (2007) take a mechanism design

approach to this problem, while Gentzkow and Kamenica (2011) apply ideas similar to Aumann

and Maschler (1995) to study optimal information disclosure policy when the Agent does not

have private information about the state of the world, but cares about the Firm’s action.

2 The Main Example

We start with a simple example in which we explicitly model how the Firm’s value for the

Agent’s information arises from a decision problem. Later sections take this value as exogenous

data.

2.1 Set-Up

There is one Agent (she) and a Firm (it). The Agent is of one of two possible types: ω ∈
Ω := {0, 1} , she is either competent (1) or not (0). We also refer to these as type-1 and type-0.

The Agent’s type is private information. The Firm’s prior belief that ω = 1 is p0 ∈ (0, 1).

The game is divided into K rounds of communication (we focus on the limit as K grows

large), followed by an action stage. In the action stage the Firm must choose either action I

(“Invest”) or N (“Not Invest”). Not Investing yields a payoff of 0 independently of the Agent’s

type. Investing yields a payoff of 1 if ω = 1 and −γ < 0 if ω = 0. That is, investing is optimal

if the Agent is competent, as such an Agent has the know-how (or information) to make the

investment thrive; however, if the Agent is incompetent, it is safer to abstain from investing.

In each of the K rounds of communication timing is as follows. First, the Firm and the Agent

choose a monetary transfer to the other player, tAk and tFk , respectively.
3 Second, after these

3The Reader might wonder why we allow the Agent to pay the Firm. After all, it is the Agent who owns the
unique valuable good, information. Such payments will turn out to be irrelevant when only pure strategies are
considered, but will play a role in the second part of the paper with more complex communication.
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simultaneous transfers, the Agent chooses whether to reveal some information by undergoing

a test.4 We propose the following concrete model of gradual persuasion/communication using

tests. We assume that for every m ∈ [0, 1], there exists a test that the competent Agent passes

for sure, but that the incompetent Agent passes with probability m. The level of difficulty, m,

is chosen by the Agent and observed by the Firm.5 If the Firm’s prior belief about the Agent

being competent is p and a test of difficulty m is chosen and passed, the posterior belief is

p′ =
p

p+ (1− p)m
.

Thus, the range of possible posterior beliefs as m varies is [p, 1] (if the test is passed). An

uninformative test corresponds to the case m = 1. If the Agent fails the test, then the Firm

correctly updates its belief to zero. To allow for rich communication, tests of any desired precision

m are available at each of the K rounds, and their outcomes are conditionally independent.

In words, by disclosing information, the Agent affects the Firm’s belief that she is competent.

Persuasion can be a gradual process: after the Agent discloses some information, the Firm’s

posterior belief p′ can be arbitrary, provided the prior belief p is not degenerate. But the Firm uses

Bayesian updating. Viewed as a stochastic process whose realization depends on the disclosed

information, the sequence of posterior beliefs is a martingale from the Firm’s point of view.6

For now, we do not allow the competent Agent to flunk the test on purpose, nor do we consider

tests so difficult that even the competent Agent might fail them. Describing strategies in terms

of martingales (see footnote 6), this means that we restrict attention to processes whose sample

paths are either non-decreasing, or absorbed at zero. We discuss these richer communication

4Nothing hinges on this timing. Payments could be made sequentially rather than simultaneously, and occur
after rather than before the test is taken.

5Because the level of difficulty is determined in equilibrium, it does not matter that the Agent chooses it rather
than the Firm.

6More abstractly, as in the literature on repeated games with incomplete information, we can think of an
Agent’s strategy as a choice of a martingale –the Firm’s beliefs– given the consistency requirements imposed by
Bayes’ rule. For concreteness, we model this as the outcome of a series of tests whose difficulty can be varied.
Alternatively, we may think of information as being divisible, and the Agent choosing how much information
to disclose at each round; the incompetent Agent might be a charlatan who might be lucky or skilled enough
to produce some persuasive evidence, as in the Great Oil Sniffer Hoax. While the particular implementation of
information transmission is irrelevant for the purpose of equilibrium analysis, it is somewhat simpler to describe
the game using tests, as it does not require a continuum of types –charlatans of varying skill levels.
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possibilities in the second part of the paper.

2.2 Histories, Strategies and Payoffs

More formally, a (public) history of length k is a sequence

hk = {(tAk′, tFk′, mk′, rk′)}k−1
k′=0,

where (tAk′, t
F
k′, mk′, rk′) ∈ R

2
+ × [0, 1]× {0, 1}. Here, mk is the difficulty of the test chosen by the

Agent in stage k and rk is the outcome of that test (which is either positive, 1, or negative, 0).

The set of all such histories is denoted Hk (set H0 := ∅).

A (behavior) strategy σF for the Firm is a collection ({τFk }K−1
k=0 , α

F ), where (i) τFk is a prob-

ability transition τFk : Hk → R+, specifying a transfer tFk := τF (hk) as a function of the (public)

history so far, as well as (ii) an action (a probability transition as well), αF : HK → {I, N} after

the K-th round. A (behavior) strategy σA for the Agent is a collection {τAk , µA
k }K−1

k=0 , where (i)

τAk : Ω × Hk → R+ is a probability transition specifying the transfer tAk := τA(hk) in round k

given the history so far and given the information she has, (ii) µA
k : Ω × Hk × R

2
+ → [0, 1] is a

probability transition specifying the difficulty of the test (i.e., the value of m), as a function of

the Agent’s type, the history up to the current round, and the transfers that were made in the

round. All choices are possibly randomized.

These definitions imply that there is no commitment on either side: the Firm (and the Agent)

can stop making payments at any time, and nothing compels the Agent to disclose information

if she prefers not to.

In terms of payoffs, we assume there is neither discounting nor any other type of frictions

during the K rounds (for example, taking the tests is free). Absent any additional information

revelation, the Firm’s optimal action is to invest if and only if its belief p that her type is 1

satisfies

p ≥ p∗ :=
γ

1 + γ
.
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Hence, its payoff from the optimal action is given by

w(p) := (p− (1− p)γ)+,

where x+ := max{0, x}. While our analysis covers both the case in which the prior belief p0 is

below or above p∗, we have in mind the more interesting case in which p0 is smaller than p∗. The

payoff w(p) is the Firm’s outside option. Here, given the motivating investment decision, the

specific outside option reduces to a call option. This is the distinguishing feature of our main

example. In our general results we cover a richer class of outside option specifications.

The Agent does not value the knowledge that she potentially holds, nor does she care about

the Firm’s investment decision. All she cares about is getting paid. The Firm cares about the

payoff from the investment decision, net of any payments to the Agent. Given some final history

hK (which does not include the Firm’s final action to invest or not), type-ω Agent’s realized

payoff is the sum of all net transfers over all rounds, independently of her type:

Vω(hK) =

K−1
∑

k=0

(τFk − τAk ).

Given type ω, the Firm’s overall payoff results from its action, as well as from the sum of net

transfers. If the Firm chooses the safe action, it gets

W (ω, hK , N) =

K−1
∑

k=0

(τA
k − τF

k ).

If instead the Firm decides to invest, it receives

W (ω, hK , I) =
K−1
∑

k=0

(τAk − τFk ) + 1 · 1ω=1 − γ · 1ω=0,

where 1A denotes the indicator function of the event A.

A prior belief p0 and a strategy profile σ := (σF , σA) define a distribution over Ω×HK×{I, N},
and we let V (σ),W (σ), or simply V,W , denote the expected payoffs of the Agent and the Firm,
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respectively, with respect to this distribution. When the strategy profile is understood, we also

write V (hk),W (hk) for the players’ continuation payoffs, given history hk. We further write

V0, V1, for the payoff to the Agent, when we condition on the type ω = 0, 1.

The solution concept is perfect Bayesian equilibrium, as defined in Fudenberg and Tirole

(1991, Definition 8.2).7 We assume that players have access to a public randomization device at

the beginning of each round (a draw from a uniform distribution), as this facilitates an argument

in a proof. The best equilibrium that we identify (whether in pure or mixed strategies, or with

a mediator) turns out not to take advantage of this device, so that results do not depend on it.

A central assumption of our model is that information revealed by successful tests is valuable:

if the Firm decides to stop making payments once its belief reaches some level p, its expected

payoff is given by w(p) and that is increasing (at least over some range) in p. There are cases

in which tests can be conducted whose outcome reveals nothing valuable. (As is the case with

“zero-knowledge proofs” which could be captured in our model by taking w (p) equal to 0 for all

p < 1 and w (1) = 1.) In practice, however, it is difficult to think of demonstrations (blueprints,

prototypes, etc.) that do not involve some valuable information leakage. A competent Agent

might still be useful to the Firm after she produces sufficient evidence to convince the Firm that

she is competent. There is no problem for her in getting compensated for the value that she

might retain in this way; our interest is in the value that she might give away in the process of

convincing the Firm. For example, while proving that the Agent knows how to solve a particular

problem may not give the Firm the full solution, it would give the Firm confidence that the

problem is solvable and even some hints about the direction it would need to follow to find the

solution on its own.

2.3 Preliminary Remarks

This game admits a plethora of equilibria, but our focus is on identifying the best equilibrium

for the competent Agent. It is not difficult to motivate our interest in this equilibrium. After

all, rewarding agents for their expertise is socially desirable if acquiring this knowledge is costly.

7Fudenberg and Tirole define perfect Bayesian equilibria for finite multistage games with observed actions only.
Here instead, both the type space and the action sets are infinite. The natural generalization of their definition
is straightforward and omitted.
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Clearly, there are many ways to model this information acquisition stage prior to the game.

Our working paper develops a particular example. As such, the equilibria we construct can

be interpreted as the best relational contracts for the competent Agent subject to different

restrictions on the communication technology and self-enforcing constraints.

As usual, how good payoffs can be sustained on the equilibrium path depends on the worst

punishment payoffs that are consistent with a continuation equilibrium. In our game, after every

history there is a “babbling” equilibrium in which the Agent never undergoes a test (i.e., chooses

m = 1 in each period), and neither the Agent nor the Firm make payments. This gives the

Agent a payoff of 0, and the Firm a payoff of w(p), its outside option. This equilibrium achieves

the lower bound on the payoffs of all the participants simultaneously, so it is the most potent

punishment available. This implies that it is without loss of generality that we can restrict

attention to equilibria in which any observable deviation triggers reversion to this equilibrium

(the Firm getting then its outside option w(p) given its belief once the deviation occurs). To

induce compliance, it suffices to make sure that all players receive at least their minmax payoff

(0 and w(p)) at any time.

If the Firm assigns probability p to the type-1 Agent, then, from its point of view, the expected

total surplus is at most p · 1 + (1 − p) · 0 = p (this is in the best possible scenario in which it

eventually takes the right investment decision). Hence, given some equilibrium, any history hk

and resulting belief p, continuation payoffs must satisfy

pV1(hk) + (1− p) V0(hk) +W (hk) ≤ p. (1)

With only one round of communication, K = 1, both types of the Agent have to receive the

same payoff in any equilibrium so V1 ≤ p−w (p) in this case. By (1), p−w (p) is also the upper

bound on the average, or ex ante payoff of the Agent.

How much can gradual communication improve V1? By (1), given that W (hk) ≥ w(p) and

V0(hk) ≥ 0, the type-1 Agent cannot receive more than 1−w(p)/p. Clearly p−w(p) < 1−w(p)/p

whenever w(p) < p, so the upper bound is strictly larger than the maximum ex ante payoff. Can

we improve on the latter?

Before we present the analysis that answers this question, we make two observations.
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First, it is worth pointing out that, in some cases, maximizing the incentives to acquire in-

formation is not about maximizing the type-1 Agent’s payoff V1, but the difference V1 − V0. But

the two objectives coincide. This can be seen in three steps: first, in terms of the Agent’s equi-

librium payoffs (V0, V1), there is no loss of generality in assuming that the equilibrium achieving

this payoff is efficient, i.e., that it satisfies (1) with equality: disclosing the type in the last period

on the equilibrium path does not affect the Agent’s payoff and only makes compliance with the

equilibrium strategy more attractive to the Firm. Second, if (1) holds as an equality, then

V1 − V0 =
V1 +W − p0

1− p0
.

Hence, maximizing the difference in the types’ payoffs amounts to maximizing the sum V1 +W .

Third, maximizing V1 is equivalent to maximizing V1 +W . This is because payoffs between the

principal and the Agent can be transferred one-to-one via the first payment that the Firm makes:

if W > w(p0), we can decrease W and increase V1 by the same amount by requiring the Firm

to make a larger payment upfront. Hence, in maximizing V1 +W over all equilibria, there is no

loss in assuming that W = w(p0), a fixed quantity, and so in maximizing V1 only.

Second, while we characterize the equilibrium maximizing V1 (or V1 − V0), one may be in-

terested in other equilibrium payoffs. A partial characterization is as follows. The Firm cannot

hope for more than p, the entire surplus, and there is a trivial equilibrium that achieves this

upper bound: on path, no payment is ever made, and the Agent reveals her type in the last

period (m = 0). There is an equally simple equilibrium that achieves the maximum ex ante

payoff of the Agent, pV1 + (1 − p)V0: the Firm is expected to pay the difference p0 − w(p0) in

the initial period, and the agent reveals her type (m = 0) if and only if the Firm makes this

payment. In this game, the strategy that maximizes this ex ante payoff of the informed player

is trivial, unlike in standard games with incomplete information (see Aumann and Maschler,

1995). Because the type-1 Agent can always mimic the type-0 Agent in the choice of m (and

once a test is failed Agent’s payoff is 0), the competent type payoff must be at least as large as

the incompetent’s. This implies that the best equilibrium for the type-0 Agent maximizes the

Agent’s ex ante payoff.
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✲
p0 p0 p∗ p′ 1

Figure 1: A feasible action

3 Pure Strategies

We now turn to the focus of the analysis: what equilibrium maximizes the payoff of the type-1

Agent, and how much of the surplus can she appropriate? Note that this maximum payoff is

non-decreasing in K, the number of rounds: players can always choose not to make transfers or

disclose any information in the first round. Hence, for any p0, the highest equilibrium payoff for

the type-1 Agent has a well-defined limit as K → ∞ that we seek to identify.

In this section we assume that the type-1 Agent always passes any test she takes. She is not

allowed to “flunk” the test on purpose, a possibility that we will allow in Section 4: there we

enrich the description of the game to allow the agent to choose whether to pass the test after

she chooses the difficulty m. In that richer game the analysis in this section is equivalent to

restricting attention to pure strategies.

From the Firm’s point of view, its posterior will take one of two values: either it jumps from

p0 up to some p′, if the test is successful. Or it jumps down to zero. This is illustrated in Figure

1. The two arrows indicate the two possible posterior beliefs. As mentioned, viewed from the

Firm’s perspective, this belief must follow a martingale: the Firm’s expectation of its posterior

belief must be equal to its prior belief. This is not the case from the Agent’s point of view. Given

her knowledge of the type, she assigns different probabilities to these posterior beliefs than the

Firm. If she is competent, she knows for sure that the belief will not decrease over time. If she

is incompetent, the expectation of the posterior belief is below p0, as she does not know whether

she will be lucky in taking the test (the process is then a supermartingale).

Instead of describing the information part of an equilibrium outcome by the tests taken so far
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{mk} and their results, we can equivalently describe it by martingale splitting, i.e. the sequence

of Firm’s beliefs that the type is 1, conditional on all tests so far. As long as the Agent passes the

tests, the Firm’s equilibrium beliefs follow a non-decreasing sequence {p0, . . . , pK+1} starting at

the Firm’s prior belief, p0, and ending at pK+1 = 1 (assuming, without loss, that the equilibrium

is efficient). If the Agent fails a test, the posterior drops to zero.

An equilibrium must also specify payments. It turns out that the type-1 Agent’s payoff

decreases if the Firm is ever granted any payoff in excess of its outside option. On the one hand,

the Agent could demand more in earlier rounds by promising to leave some surplus to the Firm

in later rounds. On the other hand, the willingness-to-pay of the Firm for this future surplus is

lower than the cost of such a promise to the type-1 Agent. The reason is that the Firm assigns

a lower probability than the type-1 Agent to the posterior increasing (and payments once the

posterior drops to zero are not individually rational). Finally, it is not hard to see that there is

no point here in having the Agent make any payments. To sum up, if the Firm’s belief in the

next round is either pk+1 or 0, given the current belief pk, then the equilibrium specifies that the

Firm pays her willingness-to-pay

EF [w(p
′)]− w(pk),

where p′ is the (random) belief in the next round, with possible values 0 and pk+1, and EF [·] is
the expectation operator for the Firm.

This leaves us with the determination of the sequence of posterior beliefs.8

3.1 The Main Example: A Geometric Analysis

We already know that it is possible for the Agent to appropriate some of the value of her

information, but the question is whether she can get more than p0−w(p0), which is just as much

as the type-0 Agent gets in the equilibrium we constructed so far.

Consider first the case K = 1. In this case, the highest equilibrium payoff to the type-1 Agent

is indeed equal to p0−w(p0). Suppose that a successful test takes the posterior to p1 ≥ p0. Using

8In addition, an equilibrium must also specify how players behave off the equilibrium path. As discussed, the
most effective punishment for deviations is reversion to the babbling equilibrium, and this is assumed throughout.
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the martingale property, it must be that the probability that the posterior is p1 is p0/p1, because

p0 =
p0
p1

· p1 +
p1 − p0

p1
· 0.

hence, the Firm is willing to pay

EF [w(p
′)]− w(p0) =

p0
p1
w (p1)− w (p0) ≤ p0 − w (p0) ,

where the inequality follows from w(p1) ≤ p1. Setting p1 to 1 is best, as it makes the inequality

tight: with one round, revealing all information is optimal.

Note that, when p0 ≤ p∗, w(p0) = 0, and the highest payoff in one round that the type-1

Agent can achieve is the prior p0, which is increasing in p0 ≤ p∗. This suggests one way to

improve on the payoff with two rounds. In the first round, the Agent takes a test whose success

leads to a posterior of p∗ for free. Indeed, the Firm is not willing to pay for a test that does not

affect its outside option. In the second round, the equilibrium of the one-round game is played,

given the belief p∗. This second and only payment yields

p∗ − w(p∗) = p∗ > p0.

This is illustrated in the right panel of Figure 2. The lower kinked line is the outside option w,

the upper straight line is total surplus, p. Hence, the payment in the second round is given by

the length of the vertical segment at p∗ in the right panel, which is larger than the payment with

only one round, given by the length of the vertical segment at p0.

To sum up: the Agent gives away a chunk of information for free, making the Firm really

unsure whether investing is a good idea. Then she charges as much as she can for the disclosure

of all her information.

Is the splitting that we described optimal with two periods to go? As it turns out, it is so if

and only if p0 < (p∗)2. But there are many other ways of splitting information with two periods

to go that improve upon the one-round equilibrium, and among them, splits that also improve

over the one-period equilibrium when p0 > p∗. The optimal strategy is given at the end of this
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Figure 2: Revealing information in two steps

subsection.

Can we do better with more rounds? Consider Figure 3. As shown on the left panel, infor-

mation is revealed in three stages. First, the belief is split into 0 and p∗. Second, at p∗ (assuming

this belief is reached), it is split in 0 and p′. Finally, at p′, it is split in 0 and 1. The right

panel shows how to determine the type-1 Agent’s payoff. The two solid (red) segments represent

the maximum payments that can be demanded at the second and third stage. (No payment is

made in the first, as the splitting does not affect the Firm’s outside option.) Their added lengths

measures the type-1 Agent’s payoff. Compare with our two-stage equilibrium, in which all infor-

mation is disclosed once the belief reaches p∗: the payment is equal to the length of the vertical

segment between the outside option w at p∗ and the chord connecting (0, 0) and (1, 1) evaluated

at p∗ (i.e., the lower red segment, plus the dotted segment). The payoff with three stages is

larger, as the chords from the origin to the point (p, w(p)) become steeper as p increases. We

could go on: information splitting is beneficial. Figure 4 illustrates the total payoff that results

from a splitting that involves many small steps (which is the sum of all vertical segments).

Does it follow that the competent Agent extracts the maximum value of information as

K → ∞? Unfortunately, no: see the right panel of Figure 4. As the Firm’s belief goes from

p − dp to p, the Firm must pay (using the martingale property, the test must be passed with
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Figure 3: Revealing information in three steps: evolution (left) and payoff (right)

probability p−dp
p

)
p− dp

p
w (p)− w (p− dp) ,

yet its outside increases by w(p)−w(p−dp). The type-1 Agent gives up the difference w(p)dp/p

in the process. This foregone payoff need not be large when the step size dp is small, but then

again, the smaller the step size, the larger the number of steps involved. Note that this foregone

payoff does not benefit the Firm, which is always charged its full willingness-to-pay. The type-0

Agent reaps this payoff. As a result, her payoff does not vanish, even as K → ∞.

What does the maximum payoff converge to as K → ∞? Plugging in the specific form of w

from our leading example, the payment for a splitting of p into p′ ∈ {0, p+ dp} is

p

p+ dp
w (p+ dp)− w (p) =

p

p+ dp
((p+ dp)− γ(1− p− dp)))− (p− γ(1− p)) = γ

dp

p
+O(dp2),

where O(x) < M |x| for some constant M and all x. If the entire interval [p∗, 1] is divided in this
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Figure 4: Revealing information in many steps (left); Foregone profit at each step (right)

fashion into smaller and smaller intervals, the resulting payoff to the competent Agent tends to

∫ 1

p∗
γ
dp

p
= γ(ln 1− ln p∗) = −γ ln p∗.

This suggests that the limiting payoff is independent of the exact way in which information

(above p∗) is divided up over time, as long as the mesh of the partition tends to zero.
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Figure 5: Revealing information in many steps (left); Payoff as a function of K (right).
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Lemma 1 As K → ∞, the maximum payoff to the type-1 Agent in pure strategies tends to, for

p0 < p∗,

V p
1 (p0) := −γ ln p∗.

This lemma follows as immediate corollary from the next one. Note that this payoff is

independent of p0 (for p0 < p∗). Indeed, the first chunk of information, leading to a posterior

belief of p∗ if K is large enough, is given away for free. It does not affect the Firm’s outside

option, but it makes the Firm as unsure as can be about the right decision. From that point on,

the Agent starts selling information in excruciatingly small bits, leaving no surplus whatsoever

to the Firm, as in the left panel of Figure 5.

We conclude this subsection by the explicit description of the equilibrium that achieves the

maximum payoff of the type-1 Agent, as a function of the number of rounds and the prior belief

p0. Here, (x)
− := −min{0, x} ≥ 0.

Lemma 2 The maximum equilibrium payoff of the type-1 Agent in a game with K rounds is

recursively given by

V1,K(p0) =







Kγ(1− p
1/K
0 )− (p0 − γ(1− p0))

− if p0 ≥ (p∗)
K

K−1 ,

V1,K−1(p
∗) if p0 < (p∗)

K

K−1 ,

for K > 1, with V1,1 (p0) = γ(1− p0)− (p0 − γ(1− p0))
−. On the equilibrium path, in the initial

round, the type-1 Agent reveals a piece of information leading to a posterior belief of

p1 =







p
K−1

K

0 if p0 ≥ (p∗)
K

K−1 ,

p∗ if p0 < (p∗)
K

K−1 ,

after which the play proceeds as in the best equilibrium with K − 1 rounds, given prior p1.

Note that, fixing p0 < p∗, and letting K → ∞, it holds that p0 < (p∗)
K

K−1 for all K large

enough, so that, with enough rounds ahead, it is optimal to set p1 = p∗ in the first, and then

to follow the sequence of posterior beliefs (p∗)
K−1

K , (p∗)
K−2

K , . . . , 1, and the sequence of posteriors
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successively used becomes dense in [p∗, 1]. Therefore, with sufficiently many rounds, the equilib-

rium involves progressive disclosure of information, with a first big step leading to the posterior

belief p∗, given the prior belief p0 < p∗, followed by a succession of very small disclosures, leading

the Firm’s belief gradually up all the way to one. The right panel of Figure 5 shows how the

payoff varies with K.

Note also that, for any K and any equilibrium, if p and p′ > p are beliefs on the equilibrium

path, then V0(p
′) − V1(p

′) ≤ V0(p) − V1(p), as long as only the Firm makes payments. Indeed,

going from p to p′, the type-1 Agent forfeits the payments that the Firm might have made over

this range of beliefs (hence V1(p
′) < V1(p)), while the type-0 Agent only forfeits them in the

event that she is able to pass the test: hence she loses less, and might even gain (for instance,

she might not have been able to pass the first free test at p < p∗). As a result, the type-1 Agent

has a preference for lower beliefs, relative to the type-0 Agent. Having to give away information

is more costly to an Agent who knows that she owns it. This plays an important role once mixed

strategies are considered.

3.2 General Outside Options

Assuming that the outside option is given by a call option, as in our main example, leads to

closed-form expressions. However, the analysis can be generalized. Suppose that the payoff of

the Firm (gross of any transfers) as a function of its posterior belief p after the K rounds is a

non-decreasing continuous function w(p), and normalize w(0) = 0, w (1) = 1. We further assume

that w (p) ≤ p, for all p ∈ [0, 1], for otherwise full information disclosure is not socially desirable.

This payoff can be thought as the reduced-form of some decision problem that the Firm faces,

as in our baseline model. In that case, w must be convex, but since it is a primitive here, we do

not assume so.

Recall that the best equilibrium with many rounds called for a first burst of information

released for free (assuming p < p∗), after which information is disclosed in dribs and drabs. One

might wonder whether this is a general phenomenon.

The answer, as it turns out, depends on the shape of the outside option. It is in the interest

of the type-1 Agent to split information as finely as possible for any prior belief p0 if and only
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if the function w is (strictly) star-shaped, i.e., if and only if the average, w(p)/p, is a strictly

increasing function of p.9 More generally, if a function is star-shaped on some intervals of beliefs,

but not on others, then information will be sold in small bits at a positive price for beliefs in the

former type of interval, and given away for free as a chunk in the latter. In our main example,

w is not star-shaped on [0, p∗], as the average value w(p)/p is constant (and equal to zero) over

this interval. However, it is star-shaped on [p∗, 1]. Hence our finding.

Let us first consider a star-shaped outside option. If in a given round the Firm’s belief goes

from p to either (p+ dp) or 0, the Agent can charge up to

p

p+ dp
w(p+ dp)− w(p) = (w′(p)− w(p)/p)dp+O(dp2)

for it.10 Given the Firm’s prior belief p0, the type-1 Agent’s payoff becomes then (in the limit,

as the number of rounds K goes to infinity)

∫ 1

p0

[w′(p)− w(p)/p]dp = w(1)− w(p0)−
∫ 1

p0

w(p)dp/p,

which generalizes the formula that we have seen for the special case w(p) = (p − (1 − p)γ)+.11

That is, the type-1 Agent’s payoff is the area between the marginal payoff of the Firm and its

average payoff.

To see that splitting information as finely as possible is best in that case, fix some arbitrary

interval of beliefs [p, p̄], and consider the alternative strategy under which the posterior belief of

the Firm jump from p to p̄, the payment from the Firm to the Agent in that round is given by

p

p̄
w(p̄)− w(p).

9This condition already appears in the economics literature in the study of risk (see Landsberger and Meilijson,
1990). It is weaker than convexity: the function p 7→ pα is star-shaped for α > 1, but only convex for α ≥ 2.

10In case w (p) is not differentiable, then w′ (p) is the right-derivative, which is well-defined in case w is star-
shaped.

11In our main example, w is (globally) weakly star-shaped: that is, the function p 7→ w(p)/p is only weakly
increasing. The formula for the maximum payoff in the limit K → ∞ is the same whether there is a jump in the
first period or not. But for any finite K, splitting information disclosures over the range [p0, p

∗] is suboptimal, as
it is a “wasted period,” whose cost only vanishes in the limit.
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If instead this interval of beliefs is split as finely as is possible, the payoff over this range is

w(p̄)− w(p)−
∫ p̄

p

w(p)

p
dp.

Hence, splitting is better if and only if

1

p̄− p

∫ p̄

p

w(p)

p
dp ≤ w(p̄)

p̄
, (2)

which is satisfied if the average w(p)/p is increasing.

Equation (2) also explains why splitting information finely is not a good idea if the average

outside option is strictly decreasing over some range [p, p̄], as the inequality is reversed in that

case. What determines the jump? As mentioned, the payoff from a jump is pw(p̄)/p̄ − w(p),

while the marginal benefit from finely splitting information disclosures at any given belief p

(in particular, at p̄ and p) is w′(p) − w(p)/p. Setting the marginal benefits equal at p and p̄,

respectively, yields that
w(p̄)

p̄
=

w(p)

p
and w′(p̄) =

w(p̄)

p̄
.

See Figure 6. The left panel illustrates how having two rounds improves on one round. Starting

with a prior belief p0, the highest equilibrium payoff the type-1 Agent can receive in one round

is given by the dotted black segment. If instead information is disclosed in two steps, with an

intermediate belief p1, the type-1 Agent’s payoff becomes the sum of the two solid (red) segments,

which is strictly more, since w(p)/p is strictly increasing. The right panel illustrates the jump in

beliefs that occurs over the relevant interval when w(p)/p is not strictly increasing, as occurs in

our leading example for p < p∗.

There is a simple way to describe the maximum resulting payoff. Given a non-negative

function f on [0, 1], let

sha f

denote the largest weakly star-shaped function that is smaller than f . In light of the previous

discussion (see right panel of Figure 6), the following result should not be too unexpected.
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Figure 6: Splitting information with an arbitrary outside option

Theorem 1 The maximum equilibrium payoff to the type-1 Agent in pure strategies tends to, as

K → ∞,

V p
1 (p0) = 1− sha w (p̂0)−

1
∫

p̂0

sha w (p) dp/p,

where p̂0 := min {p ∈ [p0, 1] : w (p) = sha w (p)}.

That is, the same formula as in the case of a star-shaped function applies, provided one applies

it to the largest weakly star-shaped function that is smaller than w. In words, the maximum

payoff to the type-1 Agent is the area between the marginal and the average outside option of

the Firm, after “regularizing” this outside option by considering the largest weakly star-shaped

function below it.12

The proof also elucidates the structure of the optimal information disclosure policy, at least

in the limit. Let

Iw := cl {p ∈ [0, 1] : sha w (p) = w (p) and w(p)/p is strictly increasing at p} .
12There is an obvious analogy with results in the literature in marginal pricing, in which, not surprisingly,

star-shaped functions play an important role as well.
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In our main example, sha w(p) = w(p) for all p, but Iw = [1/2, 1]. Then the set of on-path beliefs

as K → ∞ held by the firm is contained, and dense, in Iw if Iw 6= ∅. If Iw = ∅, any policy is

optimal.

Note that this result immediately implies that the highest payoff to the type-1 Agent is higher,

the lower the outside option w. That is, if we consider two functions w, w̃ such that w ≥ w̃,

then the corresponding payoffs satisfy V p
1 ≤ Ṽ p

1 . The “favorite” outside option for the Agent

is w(p) = 0 for all p < 1, and w(1) = 1 (though this does not quite satisfy our maintained

continuity assumptions). In that case, the type-1 Agent appropriates the entire surplus. This

is the case considered in the literature on “zero-knowledge proofs:” the revision in the Firm’s

belief that successive information disclosures entail does not affect its willingness-to-pay.

4 Mixed Strategies and Mediation

So far, we have assumed that the competent Agent always passes the test, which implies that

the Firm’s posterior belief is either non-decreasing, or absorbed at zero.

There are two reasons why even the competent Agent may fail. First, she may be able to

choose to flunk the test (it turns out that such option may improve upon the equilibria considered

so far). In practice, it is hard to see what prevents an Agent from failing intentionally a given

test: software can be crippled or slowed down, prototypes can be damaged or impaired, imprecise

or even incorrect answers can be given. To model this possibility, we add a third dimension to the

Agent’s strategy; namely, in every round, after a test has been privately performed, the Agent

has the choice, in case of a success, to report a failure. As further notation is not needed, we refer

the interested Reader to the working paper for a formal definition. Because the model considered

in Section 3 corresponds to the special case in which the competent Agent always passes the test

–the only interesting pure strategy in the extended model– we refer to this version as the model

with mixed strategies.

A second reason for why a competent Agent might fail a test is simply that the test might

be noisy, or very hard. One might devise procedures that are so difficult that even knowledge-

able agents might be occasionally unsuccessful; not many recognized experts provide correct
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predictions every time.

There is an important difference between these two cases. In the first case, a competent Agent

who fails the test must be willing to fail. In the second case, she might just not be able to pass

it. Hence, in the first case, equilibrium imposes more stringent requirements than in the second.

Clearly, we can model the second case by allowing for a more general technology, i.e., tests that

are parameterized by two probabilities, (m0, m1), where mω is the probability with which the

type-ω Agent passes the test. From a game-theoretic point of view, this is equivalent to allowing

for a (disinterested) mediator in the baseline model: the competent Agent always passes the test,

whose outcome is observed by the mediator, but not by the Firm. Then, the mediator chooses

whether to report whether the test was successful or not to the Firm. Our description follows

the second approach, and we refer to this version as the model with mediation.

While the “game-theoretic” mediator is an abstraction that does not require a third-party

to be involved, but merely the necessary technology (a trustworthy noisy channel whose output

depends on the outcome of the test), it is worth stressing that such intermediaries are actually

being involved in sales of intellectual property. As mentioned in the introduction, there are law

firms, consulting firms and specialized companies that are hired for the purpose of estimating

and certifying the value of intellectual property and facilitating technological transfers.

While mixed strategies turn out to be less valuable than mediators, the fundamental principle

for why lower posterior beliefs can be useful is the same in both cases. The next subsection

provides an illustration.

4.1 The Value of Lower Posteriors: An Illustration

Consider the main example, in which the outside option is a simple call option, and consider

γ = 1 and the limiting case K = ∞. Using the best pure-strategy equilibrium (for the type-1

Agent) as a benchmark, the type-1 Agent has a payoff function given by − ln p for p > p∗, and

− ln p∗ for p ≤ p∗.

Suppose that the Firm and the Agent agree to the following (self-enforcing) scheme. If the

test fails, the posterior belief falls to p−∆, for some ∆ > 0. If the test succeeds, the posterior

belief jumps to p + ∆. Pick ∆ such that p∗ < p − ∆ < p + ∆ < 1. Such posterior beliefs are
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achieved by mixing by the type-1 Agent (or by a mediator on her behalf), given that the type-0

Agent will disclose that the outcome of the test is a success whenever she is lucky. Because the

possible posterior beliefs are symmetric around p, the two events (that information gets disclosed

or not) must be equally likely from the Firm’s point of view.

The new twist is that, in the event that the posterior belief drops to p − ∆, the Agent is

expected to pay the Firm an amount X > 0. No payment is made by the Agent if the posterior

belief increases to p+∆. Because both posterior beliefs are equally likely, the Firm is willing to

pay X/2 upfront in exchange for this contingent future payment, and the equilibrium calls for

the Firm to make this payment in addition to the familiar term that corresponds to the variation

in its expected outside option.

Such a side-payment is neutral from the point of the view of the Firm: after all, the upfront

payment is fair, given the odds that the posterior goes up or down. But it is not fair from

the Agent’s point of view: because the posterior belief is more likely to go down if the Agent

is incompetent, by definition of the posterior belief, this implies that the incompetent Agent is

more likely to have to pay back than the competent Agent. In this fashion, some payoff gets

shifted from the incompetent to the competent Agent.

There are two constraints on the size of this payment X . First, it cannot exceed the con-

tinuation payoff of the type-0 Agent, for otherwise she would renege on the back payment in

case she fails the test. That is, X ≤ V0(p − ∆), where V0 is her continuation payoff. Second,

in the case the mixing is performed by the (type-1) Agent, rather than by a mediator, it must

be that the Agent is actually indifferent between passing or failing the test. In this case, as-

suming that after this payment play resumes according to the best pure strategy equilibrium

described above, the continuation payoffs after this payment are − ln(p + ∆) and − ln(p − ∆)

respectively; hence, we must set X so as to exactly offset this difference in continuation payoffs,

i.e., X = ln(p+∆)− ln(p−∆). This certainly satisfies X < V0(p−∆) if ∆ is small enough. As

mentioned, because V0 − V1 (the difference in payoffs in the best equilibrium) is increasing in p,

this implies that the type-0 Agent is happy to claim she passes the test whenever she is lucky.

The left panel of Figure 7 illustrates how the mixing works, starting from a given belief p > p∗.

Given that the Firm pays X/2 upfront, and that, by construction, the continuation payoff of
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the type-1 Agent is the same whether the posterior belief goes up or down (namely, ln(p−∆)),

her expected payoff is

ln(p+∆)− ln(p−∆)

2
+ ln(p−∆) = − ln(p+∆) + ln(p−∆)

2
> − ln p,

where the strict inequality follows from Jensen’s inequality. Hence, we have just improved on

our limit payoff V1(p) = − ln p.

What is the key to this improvement, and how much can such schemes improve on the

competent Agent’s payoff? It turns out to depend on the curvature of the sum of the Firm’s

and competent Agent’s payoffs. Let V m
0 (p) and V m

1 (p) denote the limiting payoffs as K → ∞
in the best equilibrium that uses mixed (or pure) strategies and define h(p) := V m

1 (p) + w(p). if

V m
0 (p) = 0 for some p, the incompetent Agent would no longer make any payments; by (1), this

implies that h(p) = h̄(p) := 1− (1− p)w(p)/p (h̄ is the bound from (1) and V0 ≥ 0). This would

yield the highest possible payoff to the competent Agent, given the Firm’s outside option. So

suppose that h < h̄ on some interval around p, and for the sake of contradiction, assume that h

is not concave on this interval, i.e. there exists p1 < p < p2 such that

h(p) <
p2 − p

p2 − p1
h(p1) +

p− p1
p2 − p1

h(p2).

We generalize the previous scheme to this case: the agent pays V m
1 (p1)−V m

1 (p2) to the principal

if and only if the posterior drops to p1, and play reverts then (or if the posterior belief turns

out to be p2) to the equilibrium that achieves V m
1 . The type-1 Agent is indifferent between both

posterior beliefs, and so is willing to randomize. Given her assessment of the likelihood of each

of these events, the Firm is willing to pay upfront

p2 − p

p2 − p1
[w(p1) + V m

1 (p1)− V m
1 (p2)] +

p− p1
p2 − p1

w(p2)− w(p),

as this is the difference between its expected continuation payoff and its current outside option.

The type-1 Agent’s payoff V̂1(p) consists then of this payment and her continuation payoff V m
1 (p2),

28



so that, adding up,

h(p) ≥ V̂1(p) + w(p) =
p2 − p

p2 − p1
[w(p1) + V m

1 (p1)− V m
1 (p2)] +

p− p1
p2 − p1

w(p2) + V m
1 (p2)

=
p2 − p

p2 − p1
h(p1) +

p− p1
p2 − p1

h(p2).

Note that the participation constraint for the incompetent Agent, V m
0 (p1) > V m

1 (p1)−V m
1 (p2) is

always satisfied if p1, p2 are close enough to p and V m
0 (p1) > 0, and so h must be locally concave

at any p at which V m
0 (p) > 0.13

The concavity of the sum of the payoffs of the competent Agent and the Firm in the best

equilibrium should not be surprising: if it were convex, a lottery could increase their joint payoff,

at the expense of the incompetent Agent. The upfront payment by the Firm, followed by the

contingent payment by the Agent is the simplest way of implementing such a lottery.

To summarize: using contingent payments in the way described improves the competent

Agent’s payoff, and this can be done as long as the type-0 Agent’s payoff is not zero, and, in case

the type-1 Agent is actually required to perform the randomization herself, as long as h is not

locally concave. Equilibrium imposes additional constraints on the type-1 Agent’s payoff, which

is the subject of the next subsection.

4.2 Maximum Payoff with Mixed Strategies and Mediation

4.2.1 Mixed Strategies

First, consider the case of mixed strategies. Two constraints have been derived on the limiting

value of h, the sum of the payoffs of the Firm and the competent agent. First, it must be less

than h̄ = 1 − (1 − p)w(p)/p, as implied by feasibility given that the type-0 Agent’s payoff is

non-negative. Second, on any interval on which h < h̄, the function h must be locally concave.

There is a third constraint on h that is rather obvious: h must exceed w, the outside option of

the Firm, as the type-1 Agent’s payoff is non-negative.

13This hinges on continuity of V m
1

and V m
0
; V m

1
is continuous because it is always possible to use the same

disclosure strategy starting at p2 as the continuation strategy given p1 would specify from the first posterior belief
above p2 onward; the first payment must be adjusted, but the continuity in payoffs as p1 → p2 then follows from
the continuity of w. Continuity of V m

0
follows from the continuity of V m

1
.
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Figure 7: Construction of the scheme (left); Maximum limit payoff V m
1 + w, γ = 1 (right).

Finally, the basic splitting of Section 3 delivers one more restriction, namely, the function h

must be no steeper than w(p)/p. We can always split the prior belief p0 into the posterior beliefs

in {0, p1}, p1 > p0. The Firm is willing to pay p0w(p1)/p1 −w(p0) for such a test, so that, at the

very least,

V m
1 (p0) ≥

p0
p1
w(p1)− w(p0) + V m

1 (p1),

or
h(p1)− h(p0)

p1 − p0
≤ w(p1)

p1
. (3)

If h were known to be differentiable, this would reduce to the requirement that h′(p) be smaller

than w(p)/p. More generally, chords connecting points (p0, h(p0)) and (p1, h(p1)) must be flatter

than the ray with slope w(p1)/p1.

As it turns out, equilibrium imposes no additional restriction on h, as we show in Appendix.14

What is the smallest function that satisfies these four requirements?15 In our main example, some

14Roughly, any function satisfying these properties cannot be improved upon with one more round, even with
mixed strategies. Because the payoff of the type-1 Agent is increasing in her continuation payoff, this means
that the highest limiting payoff must be below this function. Conversely, the limiting payoff must satisfy these
properties. Hence, it follows that this lowest function is the limiting payoff.

15One might wonder why the smallest function h satisfying the requirements is the appropriate one; this is
because, starting from the highest equilibrium payoff with one round, and applying the two schemes that we have
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algebra gives that

V m
1 (p) =







2
√
γ(
√
1 + γ −√

γ)− w(p) if p < pm :=
√
p∗,

1− w(p)/p if p ≥ pm.

The smallest function hm is shown on the right panel of Figure 7 in the case γ = 1. The following

corollary records the limiting value for prior beliefs below p∗.

Lemma 3 As K → ∞, the maximum payoff to the type-1 Agent in mixed strategies tends to,

for p0 < p∗,

V m
1 (p0) = 2

√
γ(
√

1 + γ −√
γ) < 1.

That is, full extraction occurs for high enough (p ≥ pm, in which case V m
0 (p) = 0) but

not for low beliefs. Still, even for p < pm, this is a marked improvement upon pure strategies.

Because the competent Agent gains from mixed strategies, and the Firm does not lose from

them, it must be that the type-0 Agent loses. For p ≤ pm, her payoff function is given by

V0(p) = 1 + (p ln p)/(1− p) (for γ = 1).

How about more general outside options? The logic is robust: let hm be the smallest function

satisfying the four requirements above (which is well-defined, as the lower envelope of functions

satisfying the requirements satisfies them as well). The following theorem elucidates the role of

hm.

Theorem 2 Assume that w is weakly star-shaped. As K → ∞, the maximum payoff to the

type-1 Agent in mixed strategies tends to:

V m
1 (p0) = hm(p0)− w(p0).

To emphasize, the result does not assume that only tests or schemes that we have described

so far can be used. It shows that, at least as the number of rounds is sufficiently large, these

suffice.

described, we recursively obtain higher values for h as the number of rounds increases, but we cannot “overtake”
the smallest function that satisfies the four requirements.

31



4.2.2 Mediation

It turns out that a similar reasoning can be used to characterize the maximal V1 in case a

mediator can send noisy messages based on the test results (or the Agent has access to noisy

tests). The only difference is that the scheme that involves payments by the Agent in case

the posterior drops is no longer constrained by the indifference of the competent Agent, which

imposed that h was locally concave whenever h fell short of the upper bound h̄. So we are left

with the other three restrictions on the function h. It turns out, as before, that the solution

is given by the smallest function satisfying these requirements. The maximum payoff has a

particularly simple expression, and the result does not require w to be star-shaped.

As the next theorem states, the type-1 Agent can extract all the surplus from the type-0

Agent as well as the Firm, up to its outside option.

Theorem 3 As K → ∞, the maximum payoff to the type-1 Agent with an intermediary tends

to:

V int
1 (p0) = 1− w(p0)

p0
.

In our main example, this means that, for p0 < p∗, the maximum payoff of the competent

Agent is 1 –and there is nothing left to improve upon.

5 Final Remarks

This paper describes self-enforcing contracts based on gradual persuasion to facilitate sale

of information. Clearly, in real-life applications, the mechanism that we describe is limited by

the extent to which information is divisible, or tests are available. On the other hand, it can be

facilitated by repeated interactions and reputation-building. Although it may not appear that

way at first glance, we claim that the logic of our result is quite robust in several dimensions,

discussed below.

1. We have assumed that taking a test entails no cost to the Agent. If tests are costly, our

results would continue to hold as long as taking a test is contractible. Otherwise, the
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standard hold-up logic applies: in the last round, the Agent would not take the test. Hence

the Firm would not pay, and the equilibrium would unravel. Che and Sákovics (2004)

suggest the following solution: if the equilibrium concept is epsilon-equilibrium and easier

tests are cheaper (for example, if we interpret harder tests as taking many easier tests at

once), then gradualism would restore the desired outcome. Here, gradualism helps resolve

the problem of the Agent holding up the Firm, while our paper shows how gradualism

helps resolving the opposite hold-up.

2. Suppose that the Agent cares to some extent that the Firm takes the correct action (say,

her payoff increases by some small ε > 0). Then, in the one-shot game, the Agent will

reveal all her information, and so the Firm has no incentive to pay. In this case as well,

there is unravelling. But this unraveling argument does not extend to the infinite-horizon

game, and it is possible to construct equilibria in our leading example in which the Agent

is paid for a gradual release of information. The value of ε restricts how extreme the Firm’s

posterior belief can become before the Agent discloses all information. Nevertheless, the

maximum equilibrium payoff to the competent Agent is continuous at ε = 0 .

3. If discounting took place with every round of communication, then there would be no benefit

in having arbitrarily many rounds. This is because the Agent faces a trade-off between

collecting more money overall and collecting it earlier, and because the Firm ultimately

prefers taking its outside option rather than waiting for another period, once the benefits

from waiting become small. Hence, in the best equilibrium, the number of rounds in which

communication actually takes place is bounded. However, as long as the players are not

too impatient, the best equilibrium still involves a gradual release of information, and the

number of rounds of active communication increases with the discount factor. It is easy

to see that, as discounting vanishes, the payoff to the competent Agent must tend to her

payoff in the undiscounted game. In our leading example, numerical simulations show that

for the pure-strategy case this convergence occurs at a geometric rate.

4. As mentioned in the introduction, our mechanism is reminiscent of zero-knowledge proofs.

But gradualism is a technological constraint in this literature. There is no counterpart
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to the Firm’s outside option, and the only objective is to convince the other party that

the Agent holds the information. It is as if w(p) = 0 for p < 1, and w(1) = 1, in which

case it is optimal to reveal all details but the “last key,” increasing the Firm’s posterior

close to 1, and then to sell just that remaining piece. Gradualism arises in our mechanism

precisely because the Firm’s outside option depends on its belief, as is plausible in most

economic applications. In fact, often the buyer has private information as well, and an

inventor always risks making herself obsolete by revealing additional information to the

Firm. Considering such a model, in which both parties hold private information, is left for

future research.
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A Proofs

Because mediation imposes one fewer constraints on the payoff function to be determined

than mixed strategies, as explained in Section 4.2.2, we prove the three theorems in the following

order: first, Theorem 1 (pure strategies), then Theorem 3 (mediation) and then Theorem 2

(mixed strategies).

A.1 Proof of Lemma 2 and Lemma 1

The proof of Lemma 2 is by induction on the number of rounds. Lemma 2 immediately

implies Lemma 1

Our induction hypothesis is that, with k ≥ 1 periods to go, and a prior belief p = p0, the

best equilibrium involves setting the next (non-zero) posterior belief, p1, equal to p1 = p
k−1

k if

p
k−1

k ≥ p∗ (i.e. if p ≥ (p∗)
k

k−1 for k ≥ 2), and equal to p∗ otherwise.16 Further, the type-1 Agent’s

maximal payoff with k rounds to go is equal to

V1,k(p) = kγ(1− p1/k)− (p− γ(1− p))− if p ≥ (p∗)
k

k−1 , and V1,k(p) = V1,k−1(p
∗) if p < (p∗)

k

k−1 .

Note that this claim implies that V1,k(p
∗) = kγ

(

1− (p∗)1/k
)

. Finally, as part of our induction

hypothesis, we claim the following. Given some equilibrium, let X ≥ 0 denote the payoff of the

Firm, net of its outside option, with k rounds left. That is, X := Wk(p)− w(p), where Wk(p) is

the Firm’s payoff given the history leading to the equilibrium belief p with k rounds to go. Let

V1,k(p,X) be the maximal payoff of the type-1 Agent over all such equilibria, with associated

belief p, and excess payoff X promised to the Firm (set V1,k(p,X) := −∞ if no such equilibrium

exists). Then we claim that V1,k(p,X) ≤ V1,k(p)−X. We first verify this with one round. Clearly,

16In this proof, when we say that the equilibrium involves setting the posterior belief p1, we mean that, from
the type-1 Agent’s point of view, the posterior belief will be p1, while from the point of view of the Firm, the
posterior belief will be a random variable p′ with possible values {0, p1} .
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if K = 1, it is optimal to set the posterior p1 equal to 1, which is p
K−1

K , the relevant specification

given that p
0

1 = 1 ≥ p∗. The payoff to the type-1 Agent is

V1,1 (p) = p− (p− γ(1− p))+ = γ(1− p)− (p− γ(1− p))−,

as was to be shown. Note that this equilibrium is efficient. This implies that V1,1(p,X) ≤
V1,1(p)−X, for all X ≥ 0, because any additional payoff to the Firm must come as a reduction

of the net transfer from the Firm to the Agent.

Assume that this holds with k rounds to go, and consider the problem with k + 1 rounds.

Of course, we do not know (yet) whether, in the continuation game, the Firm will be held to its

outside option.

Note that the Firm assigns probability p/p1 to the event that its posterior belief p′ will be

p1, because, by the martingale property, we have

p = EF [p
′] =

p

p1
· p1 +

p1 − p

p1
· 0.

This implies that, with k+1 rounds, the Firm is willing to pay at most t̄Fk+1 :=
p
p1
(w (p1) +X ′)−

w (p) , where X ′ is the excess payoff of the Firm with k rounds to go, given posterior belief p1.

Therefore, the payoff to the type-1 Agent is at most

V1,k+1(p) ≤ t̄Fk+1 + V1,k(p1;X
′) ≤ p

p1
(w (p1) +X ′)− w(p) + V1,k(p1)−X ′,

where the second inequality follows from our induction hypothesis. Note that, since p/p1 < 1,

this is a decreasing function of X ′: it is best to hold the Firm to its outside option when

the next round begins. Therefore, we maximize p
p1
w (p1) + V1,k(p1). Note first that, given the

induction hypothesis, all values p1 ∈ [p, (p∗)
k

k−1 ) yield the same payoff, because for any such p1,

V1,k(p1) = V1,k−1(p
∗). The remaining analysis is now a simple matter of algebra. Note that, for

p1 ∈ [(p∗)
k

k−1 , p∗) (which obviously requires p < p∗), the objective becomes (using the induction

hypothesis)

V1,k(p1) = kγ(1− (p1)
1/k)− (p1 − γ(1− p1))

−,
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which is increasing in p1, so that the only candidate value for p1 in this interval is p1 = p∗.

Consider now picking p1 ≥ p∗. Then we maximize

p

p1
(p1 − γ(1− p1)) + kγ(1− p

1/k
1 ),

which admits a unique critical point p1 = p
k

k+1 , achieving a payoff equal to (k+1)γ(1−p1/(k+1))+

p− γ(1 − p) = (k + 1)γ(1 − p1/(k+1)). Note, however, that this critical point satisfies p1 ≥ p∗ if

and only if p ≥ (p∗)
k+1

k .

Therefore, the unique candidates for p1 are {p∗,max{p∗, p k

k+1}, 1}. Observe that setting the

posterior belief p1 equal to max{p∗, p k

k+1} does at least as well as choosing either p∗ or 1. This

establishes the optimality of the strategy, and the optimal payoff for the type-1 Agent, with k+1

rounds to go.

Finally, we must verify that V1,k+1(p;X) ≤ V1,k+1(p)−X . Given that we have observed that

it is optimal to set X ′ = 0 in any case, any excess payoff to the Firm with k + 1 rounds to go is

best obtained by a commensurate reduction in the net transfer from the Firm to the Agent in the

first round (among the k+ 1 rounds). This might violate individual rationality for some type of

the Agent, but even if it does not, it still yields a payoff V1,k+1(p;X) no larger than V1,k+1(p)−X

(if it does violate individual rationality, V1,k+1(p;X) must be lower).

A.2 Proof of Theorem 1

Given a function f , the average function of f is denoted

fa (x) := f (x) /x.

Given a non-negative functionf on [0, 1], let sha f denote the largest weakly star-shaped function

that is smaller than f . This function is well-defined, because (i) if f1, f2 are two weakly star-

shaped functions lower than f , the pointwise maximum g (i.e. g(p) := max{f1(p), f2(p)}) is

star-shaped as well,17 and (ii) the limit of a convergent sequence of star-shaped functions is star-

17Given p1 < p2 , let g(p1) = fi(p1), g(p2) = fj(p2). Then ga(p2) = fa
j (p2) ≥ fa

i (p2) ≥ fa
i (p1) = ga(p1).
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shaped (Thm. 2, Bruckner and Ostrow, 1962), who also show that a star-shaped function must

be non-decreasing.

The theorem claims that the equilibrium payoff, given w, and ŵ := sha w, is given by

V p
1 (p0) = 1− ŵ (p̂0)−

1
∫

p̂0

ŵa (p) dp,

where p̂0 := min {p ∈ [p0, 1] : w (p) = sha w (p)}. Further, letting

Iw = cl {p ∈ [0, 1] : sha w (p) = w (p) and wa is strictly increasing at p} ,

we show that the set of beliefs held by the firm is contained, and dense, in Iw if Iw 6= ∅. If

Iw = ∅, any policy is optimal.

Let us start by showing that this payoff can be achieved asymptotically (i.e., asK → ∞). Let

Jw denote the complement of Iw, which is a union of disjoint open intervals. Let {(p−n , p+n )}n∈N
denote an enumeration of its endpoints. Finally, let p̌0 := min {p ∈ Iw, p ≥ p0}. Note that, for

all n, by continuity of w(using that ŵ(p+n )

p+n
= ŵ(p−n )

p−n
by definition of (p−n , p

+
n )),

ŵ
(

p+n
)

− ŵ
(

p−n
)

−
p+n
∫

p−n

ŵa (p) dp = p−n
(

wa
(

p+n
)

− wa
(

p−n
))

= 0.

Similarly, if p̂0 < p̌0,

ŵ (p̌0)− ŵ (p̂0)−
p̌0
∫

p̂0

ŵa (p) dp = 0.

Fix any sequence of finite subsets of points PK =
{

pKk : k = 0, . . . , K
}

⊆ Iw ∩ [p0, 1] (where

pKk is strictly increasing in k), for K ∈ N, with pK0 = p̌0, p
K
K = 1, such that pK becomes dense

in Iw as K → ∞. Consider the pure strategy according to which, in the first period, if p̌0 > p0,

the type-1 Agent gives away the information for free that leads to a posterior p̌0; afterwards, the

price paid in each period given that the posterior is supposed to move from pKk to pKk+1 is given by
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the maximum amount pKk
(

wa
(

pKk+1

)

− wa
(

pKk
))

. Failure to pay leads to no further disclosure,

and failure to disclose leads to no further payment. Given K, the payoff of following this pure

strategy is (by considering Riemann sums and using the equality from the previous equation)

K−1
∑

k=0

pKk
(

wa
(

pKk+1

)

− wa
(

pKk
))

→ 1− ŵ (p̌0)−
∫

Iw∩[p̌0,1]
ŵa (p) dp = 1− ŵ (p̂0)−

1
∫

p̂0

ŵa (p) dp.

Conversely, we show that (i) for any K, the best payoff given w is the same as for some

weakly star-shaped function smaller than w, and (ii) if w ≥ w̃, then V1 ≤ Ṽ1. The result follows.

Note that the payoff from the sequence of beliefs p1, p2, . . . , pK−1, pK = 1, starting from p0 is

given by

p0(w
a(p1)− wa(p0)) + p1(w

a(p2)− wa(p1)) + · · ·+ pK−1 · (wa(1)− wa(pK−1))

= 1− w(p0)− (1− pK−1)w
a(1)− · · · − (p1 − p0)w

a(p1),

so that

V1,K(p0) + w(p0) = 1−
K−1
∑

k=0

(pk+1 − pk)w
a(pk+1).

Note that maximizing V1,K(p) +w(p) and maximizing V1,K(p) are equivalent, so this amounts to

finding the sequence that maximizes the sum

1−
K−1
∑

k=0

(pk+1 − pk)w
a(pk+1),

with p0 = p. Because w ≤ w̃ implies wa ≤ w̃a, we have just established the following.

Lemma 4 Suppose that w̃ ≥ w pointwise. Then, for every K, and every prior belief p0,

Ṽ1,K(p0) ≤ V1,K(p0),

where Ṽ1,K(p0) and V1,K(p0) are the type-1 Agent’s payoffs given outside option w̃ and w, respec-

tively.
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To every sequence of beliefs p0, p1, . . . , pK = 1, we can associate the piecewise linear function wK

on [p0, 1] that obtains from linear interpolation given the points

(p0, w(p0)), (p1, w(p1)), . . . , (1, 1).

Lemma 5 For all K, p0, the optimal policy is such that the function wK is weakly star-shaped.

Proof: This follows immediately from the payoff from the formula for the price of a jump from

p1 to p2,

p1 (w
a (p2)− wa (p1)) .

Indeed, if p1, p2, p3 are consecutive jumps, it must be that doing so dominates skipping p2, i.e.

p1 (w
a (p2)− wa (p1)) + p2 (w

a (p3)− wa (p2)) ≥ p1 (w
a (p3)− wa (p1)) ,

or wa(p3) ≥ wa(p1). A similar argument applies to the first jump. �

Note finally that the payoff from the sequence {p1, . . . , pK} given w is the same as given wK .

The result follows. The asymptotic properties of the optimal policy follow as well.

We start with the theorem, which implies the lemma by a straighforward computation.

A.3 Proof of Theorem 3

The procedure used by the intermediary can be summarized by a distribution Fk(· | p) over
the Firm’s posterior beliefs, given the prior belief p, and given the number of rounds k. Due to

the fact that this distribution is known, the Firm’s belief must be a martingale, which means

that, given p,
∫

[0,1]

p′dFk(p
′ | p) = p, or

∫

[0,1]

(p′ − p)dFk(p
′ | p) = 0. (4)

To put it differently, Fk(·|p) is a mean-preserving spread of the Firm’s prior belief p. 18

18The notation [0, 1] for the domain of integration emphasizes the possibility of an atom at 0. This, however,
plays no role for payoffs, as there is no room for transfers once the prior drops to zero, and w(0) = 0, and we will
then revert to the more usual notation.
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Given such a distribution, and some equilibrium to be played in the continuation game for

each resulting posterior belief p′, how much is the Firm willing to pay up front? Again, this must

be the difference between its continuation payoff and its outside option, namely

t̄Fk :=

∫ 1

0

(w(p′) +X(p′))dFk(p
′ | p)− w(p),

where, as before, X(p′), or X ′ for short, denotes the Firm’s payoff, net of the outside option, in

the continuation game, given that the posterior belief is p′.

Assume that the distribution Fk(· | p) assigns probability q to some posterior belief p′. This

means that the Firm attaches probability q to its next posterior belief turning out to be p′. What

is the probability q1 assigned to this event by the type-1 Agent? This must be qp′/p, because

p′ = P[ω = 1 | p′] = pq1
q
,

where the first equality from the definition of the event p′, and the second follows from Bayes’

rule, given the prior belief p.

Therefore, the maximal payoff that the type-1 Agent expects to receive from the next round

onward is
∫ 1

0

V1,k−1(p
′, X ′)

p′

p
dFk(p

′ | p),

where, as before, V1,k−1(p
′, X ′) denotes the maximal payoff of the type-1 Agent, with k−1 rounds

to go, given that the Firm’s payoff, net of its outside option, is X ′ and its belief is p′.

Combining these two observations, we obtain that the payoff of the type-1 Agent is at most

∫ 1

0

(w(p′) +X ′)dFk(p
′ | p)− w(p) +

∫ 1

0

V1,k−1(p
′, X ′)

p′

p
dFk(p

′ | p), (5)

and our objective is to maximize this expression, for each p, over all distributions Fk(·|p), as well
as mappings p′ 7→ X ′ = X(p′) (subject to (4) and the feasibility of X ′).
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A.3.1 The Optimal Transfers

As a first step in the analysis, we prove the following.

Lemma 6 Fix the prior belief p and the number of remaining rounds k. The best equilibrium

payoff of the type-1 Agent, as defined by (5), is achieved by setting, for each p′ ∈ [0, 1], the Firm’s

net payoff in the continuation game defined by p′ equal to

X(p′) =







X∗(p′) if p′ < p,

0 if p′ ≥ p,

where

X∗(p′) :=
p′ (1− V1,k−1 (p

′))− w(p)

1− p′
.

The type-1 Agent’s continuation payoff is then given as

V1,k−1(p
′, X∗(p′)) = V1,k−1(p

′)−X∗(p′).

Proof : First of all, we must derive some properties of the function V1,k(p,X). Note that, as

observed earlier, we can always assume that the equilibrium is efficient: take any equilibrium,

and assume that, in the last round, on the equilibrium path, the type-1 Agent discloses her type.

This modification can only relax any incentive (or individual rationality) constraint. This means

that payoffs must satisfy (1) with equality, which provides a rather elementary upper bound on

the maximal payoff to the type-1 Agent: in the best possible case, the payoffs X and V0,k(p,X)

are zero, and hence we have

V1,k(p) ≤
p− w(p)

p
.

Our observation that the equilibrium that maximizes the type-1 Agent’s payoff also maximizes

the sum of the Firm’s and type-1 Agent’s payoffs is obviously true here as well. Hence, any

increase in X must lead to a decrease in V1,k(p,X) of at least that amount. As long as X is

such that V0,k (p,X) is positive, we do not need to decrease V1,k(p,X) by more than this amount,

because it is then possible to simply decrease the net transfer made by the Firm to the Agent

in the initial period by as much. Therefore, either V1,k(p,X) = V1,k(p)−X , if X is smaller than
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some threshold value X∗
k(p) (X

∗ for short), or V0,k(p,X) = 0. By continuity, it must be that, at

X = X∗,

p(V1,k(p)−X∗) +X∗ + w(p) = p, or X∗ =
p (1− V1,k (p))− w(p)

1− p
.

Therefore, for values of X below X∗, we have that V1(p,X) = V1,k(p) − X , and this payoff is

obtained from the equilibrium achieving the payoff V1,k(p) to the type-1 Agent, by reducing the

net transfer from the Firm to the Agent in the initial round by an amount X . For values of X

above X∗, we know that V0,k(p,X) = 0, so that

V1,k (p,X) ≤ 1− w(p) +X

p
.

We may now turn to the issue of the optimal net payoff to grant the Firm in the continuation

round. This can be done pointwise, for each posterior belief p′. The previous analysis suggests

that, to identify what the optimal value of X ′ is, it is convenient to break down the analysis into

two cases, according to whether or not X ′ is above X∗. Consider some posterior belief p′ in the

support of the distribution Fk(· | p). From (5), the contribution to the type-1 Agent’s payoff

from this posterior is equal to

w(p′) +X ′ + V1,k−1(p
′, X ′)

p′

p







= w(p′) +X ′ + (V1,k−1 (p
′)−X ′)p

′

p
if X ′ ≤ X∗(p′),

≤ w(p′) +X ′ +
(

1− w(p′)+X′

p′

)

p′

p
if X ′ > X∗(p′).

Note that, for X ′ > X∗ (p′), the upper bound to this contribution is decreasing in X ′, and since

this upper bound is achieved at X ′ = X∗(p′), it is best to set X ′ = X∗(p′) in this range. For

X ′ ≤ X∗(p′), this depends on p′: if p′ > p, it is best to set X ′ to zero, while if p′ < p, it is optimal

to set X ′ to X∗(p′). To conclude, the optimal choice of X ′ is

X(p′) =







X∗(p′) if p′ < p,

0 if p′ ≥ p,

as claimed. �
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The intuition behind this lemma is that to maximize V1, because the type-1 Agent assigns

a smaller probability to the posterior decreasing than the type-0 Agent, it is best to promise as

high a rent as possible to the Firm if the posterior belief is lower than the prior belief, and as low

as possible if it is higher. The function X∗ describes this upper bound. As in the example, this

bound turns out to be the entire continuation payoff of the type-0 Agent in the best equilibrium

for the type-1 Agent with k− 1 periods to go. We can express this bound in terms of the Firm’s

belief and the type-1 Agent’s continuation payoff, given that the equilibrium is efficient. Of

course, it is possible to give even higher rents to the Firm, provided that the equilibrium that

is played in the continuation game gives the type-0 Agent a higher payoff than the equilibrium

that is best for the type-1 Agent. The proof of this lemma establishes that what is gained in

the initial period by considering higher rents is more than offset by what must be relinquished

in the continuation game, in order to generate a high enough payoff to the type-0 Agent.

The key intuition here is that the type-1 Agent assigns a higher probability to the event that

the posterior belief will be p′ > p than does the Firm and conversely, a lower probability to the

event that p′ < p, because she knows that her type is 1. Therefore, the type-1 Agent wants to

offer the Firm an extra continuation payoff in the event that p′ < p (and collect extra money

for it now), and offer as small a continuation payoff as possible in the event that p′ > p. Given

that the Agent and the Firm have different beliefs, there is room for profitable bets, in the form

of transfers whose odds are actuarially fair from the Firm’s point of view, but profitable from

the point of view of the type-1 Agent. Such bets were not possible without the intermediary (at

least in pure strategies), because, at the only posterior belief lower than p, namely p′ = 0, there

was no room for any further transfer in this event (because there was no further information to

be sold).

A.3.2 The Value of an Intermediary

Having solved for the optimal transfers, we may now focus on the issue of identifying the

optimal distribution Fk(·|p). Plugging in our solution for X ′ into (5), we obtain that

V1,k(p) = sup
Fk(·|p)

∫ 1

0

vk−1(p
′; p)dFk (p

′ | p)− w(p), (6)
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where

vk−1(p
′; p) :=







w(p′) + p−p′

p
X∗ (p′) + p′

p
V1,k−1 (p

′) for p′ < p,

w(p′) + p′

p
V1,k−1 (p

′) for p′ ≥ p,

and the supremum is taken over all distributions Fk(· | p) that satisfy (4), namely, Fk(· | p) must

be a distribution with mean p.

This optimality equation cannot be solved explicitly. Nevertheless, the associated operator is

monotone and bounded above. Therefore, its limiting value as we let k tend to infinity, using the

initial value V1,0(p) = 0 for all p, converges to the smallest (positive) fixed point of this operator.

This fixed point gives us the limiting payoff of the type-1 Agent as the number of rounds grows

without bound.

It turns out that we can guess this fixed point. One of the fixed points of (6) is V1(p) =
p−w(p)

p
.

Recall that this value is the upper bound on V1,k(p) that we derived earlier, so it is the highest

payoff that we could have hoped for. We may now finally prove the theorem.

Proof of Theorem 3: Recall that the function to be maximized is

∫ p

0

[

w(p′) + V1,k−1(p
′)
p′

p
+

p− p′

p

p′(1− V1,k−1(p
′))− w(p′)

1− p′

]

dFk(p
′|p)

+

∫ 1

p

[

w(p′) + V1,k−1(p
′)
p′

p

]

dFk(p
′ | p)− w(p),

or re-arranging,

∫ p

0

[

1− p

p

p′w(p′) + p′V1,k−1(p
′)

1− p′
+

(p− p′)p′

p(1− p′)

]

dFk(p
′ | p) +

∫ 1

p

[

w(p′) + V1,k−1(p
′)
p′

p

]

dFk(p
′ | p)−w(p).

Let us define xk(p) := p − w(p) − pV1,k(p), and so multiplying through by p, and substituting,

we get

p− w(p)− xk(p) =

∫ p

0

[
1− p

1− p′
(p′w(p′) + p′ − w(p′)− xk−1(p

′)) +
(p− p′)p′

1− p′
]dFk(p

′ | p)

+

∫ 1

p

[pw(p′) + p′ − w(p′)− xk−1(p
′)]dFk(p

′ | p)− pw(p),
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or re-arranging,

xk(p) = p− w(p)−
∫ p

0

[
1− p

1− p′
((p′ − 1)w(p′)− xk−1(p

′)) + p′]dFk(p
′ | p)

−
∫ 1

p

[p′ − (1− p)w(p′)− xk−1(p
′)]dFk(p

′ | p) + pw(p).

This gives

xk(p) = (1− p)

∫ p

0

xk−1(p
′)

1− p′
dFk(p

′|p) +
∫ 1

p

xk−1(p
′)dFk(p

′ | p) + (1− p)

∫ 1

0

(w(p′)− w(p))dFk(p
′ | p).

Note that the operator mapping xk−1 into xk, as defined by the minimum over Fk(· | p) for

each p, is a monotone operator. Note also that x = 0 is a fixed point of this operator (consider

Fk(· | p) = δp, the Dirac measure at p). We therefore ask whether this operator admits a larger

fixed point. So we consider the optimality equation, which to each p associates

x(p) = min
F (·|p)

{(1− p)

∫ p

0

x(p′)

1− p′
dF (p′ | p) +

∫ 1

p

x(p′)dF (p′|p) + (1− p)

∫ 1

0

(w(p′)− w(p))dF (p′ | p)}.

It is standard to show that x is continuous on (0, 1). Further, consider the feasible distribution

F (·|p) that assigns probability 1/2 to p− ε, and 1/2 to p+ ε, for ε > 0 small enough. This gives

as upper bound

x(p) ≤ 1

2
· 1− p

1− p+ ε
x(p− ε) +

1

2
· x(p + ε) + (1− p)

(

w(p+ ε) + w(p− ε)

2
− w(p)

)

,

or

x(p) + (1− p)w(p) ≤ 1

2
· 1− p

1− p+ ε
(x(p− ε) + (1− p+ ε)w(p− ε))

+
1

2
(x(p + ε) + (1− p− ε)w(p+ ε)) + εw(p+ ε)

=
1

2
(x(p− ε) + (1− p+ ε)w(p− ε)) +

1

2
(x(p+ ε) + (1− p− ε)w(p+ ε))

+ ε

(

w(p+ ε)− w(p− ε)− x(p− ε)

1− p+ ε

)

.
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Suppose that x(p) > 0 for some p ∈ (0, 1). Then, since x is continuous, x > 0 on some interval

I. Because w is continuous, the last summand is then negative for all p ∈ I, for ε > 0 small

enough. This implies that the function z : p 7→ x(p) + (1− p)w(p) is convex on I, and therefore

differentiable a.e. on I. Re-arranging our last inequality, we have

2

(

w(p− ε)− w(p+ ε) +
x(p− ε)

1− p+ ε

)

+
z(p)− z(p− ε)

ε
≤ z(p+ ε)− z(p)

ε
.

Integrating over I, taking limits as ε → 0 and using the a.e. differentiability of z gives
∫

I
x(p)
1−p

≤ 0.

Because x is positive and continuous, it must be equal to zero on I. Because I is arbitrary, it

follows that x = 0 on (0, 1).

Because x is the largest fixed point of the optimality equation, and because the map defined

by the optimality equation is monotone, it follows that the limit of the iterations of this map,

applied to the initial value x0 : x0 (p) := p − w(p) − pV1,0(p), all p ∈ (0, 1), is well-defined and

equal to 0. Given the definition of x, the claim regarding the limiting value of V1,k follows. �

A.4 Proof of Lemma 3 and Theorem 2

We adapt the arguments from the proof of Theorem 3. Recall that w is assumed to be weakly

star-shaped (in particular, non-decreasing). Consider a mixed-strategy equilibrium. In terms of

beliefs, such an equilibrium can be summarized by a distribution Fk+1(· | p) that is used by

the Agent (on the equilibrium path) with k + 1 rounds left, given belief p, and the continuation

payoffs Wk(·) and Vk(·). As before, we may assume that the equilibrium is efficient, and so we can

assume that, given that the Firm obtains a net payoff of Xk (i.e., given that Wk = w(p) +Xk),

the type-1 Agent receives V1,k(p,Xk), the highest payoff to this type given that the Firm receives

at least a net payoff of Xk. Since V1,k maximizes the sum of the Firm’s and type-1 Agent’s payoff,

it holds that, for all k, p and X ≥ 0,

V1,k(p,X) ≤ V1,k(p)−X.
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The payoff V1,k+1(p) of the type-1 Agent is at most, with k + 1 rounds to go,

sup
Fk+1(·|p)

∫ 1

0

[

w(p′) +Xk(p
′) + V1,k(p

′, Xk(p
′))

p′

p

]

dFk+1(p
′ | p)− w(p),

where the supremum is taken over all distributions Fk+1(· | p) that satisfy
∫

[0,1]

(p′ − p)dFk+1(p
′ | p) = 0,

i.e. such that the belief of the Firm follows a martingale. To emphasize the importance of the

posterior p′ = 0, we alternatively write this constraint as
∫ 1

0
(p′ − p)dFk+1(p

′ | p) = pFk+1(0 | p),
where

∫ 1

0
dFk+1(p

′ | p) := 1− Fk+1(0 | p).
If the type-1 Agent randomizes, she must be indifferent between all elements in the support

of its mixed action, that is, for all p′ > 0 in the support of Fk+1(· | p), V1,k(p
′, X ′) = V k, for some

V k independent of p′. Assume (as will be verified) that in all relevant arguments, p′ and X ≥ 0

are such that it holds that

V1,k(p
′, X) = V1,k(p

′)−X.

Recall that this is always possible if X is small enough, cf. Lemma 6. Furthermore, for the type-0

Agent to go along, we must verify that V0,k ≥ X . By substitution, we obtain that V1,k+1(p) is at

most equal to

sup
Fk+1(·|p)

∫ 1

0

[

w(p′) + V1,k(p
′)− V k + V k

p′

p

]

dFk+1(p
′ | p)− w(p)

= sup
Fk+1(·|p)

∫ 1

0

[w(p′) + V1,k(p
′)] dFk+1(p

′ | p) + Fk+1(0 | p) min
p′∈supp Fk+1(·|p),p′>0

V1,k(p
′)− w(p).

So let V ∗
1 denote the smallest fixed point larger than 0 of the map T given by

T (V1)(p) = sup
F (·|p)

∫ 1

0

[w(p′) + V1(p
′)] dF (p′ | p) + Fk+1(0 | p) min

p′∈supp F (·|p),p′>0
V1(p

′)− w(p),

for which V ∗
1 (1)+w(1) = 1. The function V ∗

1 , and hence h∗ is continuous by standard arguments.
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As argued in the text, either h∗ := V ∗
1 +w is equal to h̄ at p, or it is locally concave at p. Indeed,

for any 0 < p1 < p < p2 ≤ 1,

V ∗
1 (p) + w(p) ≥ p2 − p

p2 − p1
(V ∗

1 (p1) + w(p1)) +
p− p1
p2 − p1

(V ∗
1 (p2) + w(p2)),

and by choosing p1, p2 close to p, the constraint (that X is small enough) is satisfied. Clearly,

also, h∗ is no steeper than p 7→ w(p)/p (given p < p′, consider the distribution F (· | p) that

splits p into {0, p′}, as explained in Subsection 4.1, so that h∗ is no steeper than w. That is, h∗

satisfies all four constraints from Section 4.2.1.

Recall that hm is defined to be the smallest function satisfying the four requirements. This

function is well-defined, because if h, h′ are two functions satisfying these requirements, the lower

envelope h′′ = min{h, h′} does as well, and if (hn), n ∈ N, is a converging sequence of functions

satisfying them, so does limn→∞ hn.

We now show that hm cannot be improved upon. By monotonicity of the operator T , it

follows that, starting from h0 := w and iterating, the resulting sequence h1 = T (h0 − w) + w,

h2 = T (h1 − w) + w, etc. must converge to hm.

To show that hm cannot be improved upon, it suffices to consider arbitrary two-point distri-

butions splitting p into p1 < p < p2.
19 If all three beliefs belong to an interval in which hm < h̄,

the result follows from the concavity of hm on such intervals. If p1 = 0, the result follows from

the fact that h∗ is no steeper than p 7→ w(p)/p. If p1 > 0 is such that hm(p1) = h̄(p1), such a

splitting is impossible, as V0(p1) = 0, and so the type-0 Agent would not pay X > 0, and hence

the type-1 Agent could not be indifferent. Hence, we are left with the case in which p1 > 0,

hm(p1) < h̄(p1), and hm(p̃) = h̄(p̃) for some p̃ ∈ [p1, p2], which can be further reduced to the case

hm(p2) = h̄(p2). The side bet X must equal V1(p1) − V1(p2), and because V0(p2) = 0, we have

V1(p2) = (p2 − w(p2))/p2. We must have

V0(p1) =
p1 − w(p1)− p1V1(p1)

1− p1
≥ X = V1(p1)− V1(p2).

19Note that, with arbitrarily many periods, we can always decompose more complicated distributions into a
sequence of two-point distributions. But the linearity of the optimization problem actually implies that two-point
distributions are optimal.
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This implies that h1(p1) ≤ 1− (1− p1)
w(p2)
p2

, or, rearranging, and using the formula for V1(p2),

w(p2)

p2
≤ 1− h(p1)

1− p1
.

Note, however, that, because h is no steeper than w(p)/p,

h(p1) ≥ h(p2)−
∫ p2

p1

wa(p)dp,

(recall that wa(p) := w(p)/p) and hence, replacing h(p1) and rearranging,

wa(p2) ≤
1

p2 − p1

∫ p2

p1

wa(p)dp,

a contradiction, given star-shapedness (if w is weakly star-shaped on the entire interval [p1, p2],

the bet is feasible, but worthless).
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