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Abstract

We analyze the welfare consequences of a monopolist having additional information about con-

sumers�tastes, beyond the prior distribution; the additional information can be used to charge

di¤erent prices to di¤erent segments of the market, i.e., carry out "third degree price discrimina-

tion".

We show that the segmentation and pricing induced by the additional information can achieve

every combination of consumer and producer surplus such that: (i) consumer surplus is non-

negative, (ii) producer surplus is at least as high as pro�ts under the uniform monopoly price,

and (iii) total surplus does not exceed the e¢ cient gains from trade.

As well as characterizing the welfare impact of price discrimination, we examine the limits of

how prices and quantities can change under price discrimination. We also examine the limits

of price discrimination in richer environments with quantity discrimination and limited ability to

segment the market.
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1 Introduction

A classic and central issue in the economic analysis of monopoly is the impact of discriminatory pricing

on consumer and producer surplus. A monopolist engages in third degree price discrimination if he uses

additional information about consumer characteristics to o¤er di¤erent prices to di¤erent segments

of the aggregate market. A large and classical literature (reviewed below) examines the impact of

particular segmentations on consumer and producer surplus, as well as on output and prices.

In this paper, we characterize what could happen to consumer and producer surplus for all possible

segmentations of the market. We know that at least two points will be attained. If the monopolist

has no information beyond the prior distribution of valuations, there will be no segmentation. The

producer charges the uniform monopoly price and gets the associated monopoly pro�t, which is a lower

bound on producer surplus; consumers receive a positive surplus, the standard information rent. This

is marked by point A in Figure 1. On the other hand, if the monopolist has complete information about

the valuation of the buyers, then he can completely segment the market according to true valuations.

This results in perfect or �rst degree price discrimination. The resulting allocation is e¢ cient, but

consumer surplus is zero and the producer captures all of the gains from e¢ cient trade. This is marked

by point B in Figure 1.

Figure 1: The Surplus Triangle of Price Discrimination

To begin with, we can identify some elementary bounds on consumer and producer surplus in

any market segmentation. First, consumer surplus must be non-negative as a consequence of the

participation constraint; a consumer will not buy the good at a price above his valuation. Second, the
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producer must get at least the surplus that he could get if there was no segmentation and he charged

the uniform monopoly price. Third, the sum of consumer and producer surplus cannot exceed the total

value that consumers receive from the good, when that value exceeds the marginal cost of production.

The shaded right angled triangle in Figure 1 illustrates these three bounds.

Our main result is that every welfare outcome satisfying these constraints is attainable by some

market segmentation. This is the entire shaded triangle in Figure 1. The point marked C is where

consumer surplus is maximized; in particular, the producer is held down to his uniform monopoly

pro�ts, and consumers get the residual of the social surplus from an e¢ cient allocation. At the point

marked D, social surplus is minimized by holding producer surplus down to uniform monopoly pro�ts

and holding consumer surplus down to zero.

We can explain these results most easily in the case where there is a �nite set of possible consumer

valuations and the cost of production is zero. The latter is a normalization we will maintain throughout

most of the paper. We will �rst explain one intuitive way to maximize consumer surplus, i.e., realize

point C. The set of market prices will consist of every valuation less than or equal to the uniform

monopoly price. Suppose that we can divide the market into segments corresponding to each of these

prices in such a way that (i) in each segment, the consumers�valuations are always greater than or

equal to the price for that segment; and (ii) in each segment, the producer is indi¤erent between

charging the price for that segment and charging the uniform monopoly price. Then the producer is

indi¤erent to charging the uniform monopoly price on all segments, so producer surplus must equal

uniform monopoly pro�t. The allocation is also e¢ cient, so consumers must obtain the rest of the

e¢ cient surplus. Thus, (i) and (ii) are su¢ cient conditions for a segmentation to maximize consumer

surplus.

We now describe a way of constructing such a market segmentation iteratively. Start with a "lowest

price segment" where a price equal to the lowest valuation will be charged. All consumers with the

lowest valuation go into this segment. For each higher valuation, a share of consumers with that

valuation also enters into the lowest price segment. While the relative share of each higher valuation

(with respect to each other) is the same as in the prior distribution, the proportion of all of the

higher valuations is lower than in the prior distribution. We can choose that proportion between zero

and one such that the producer is indi¤erent between charging the segment price and the uniform

monopoly price. We know this must be possible because if the proportion were equal to one, the

uniform monopoly price would be pro�t maximizing for the producer (by de�nition); if the proportion

were equal to zero� so only lowest valuation consumers were in the market� the lowest price would be
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pro�t maximizing; and, by keeping the relative proportions above the lowest valuation constant, there

is no price other than these two that could be optimal. Now we have created one market segment

satisfying properties (i) and (ii) above. But notice that the consumers not put in the lowest price

segment are in the same relative proportions as they were in the original population. In particular, the

original uniform monopoly price will be optimal on this "residual segment." We can apply the same

procedure to construct a segment in which the market price is the second lowest valuation: put all the

remaining consumers with the second lowest valuation into this market; for higher valuations, put a

�xed proportion of remaining consumers into that segment; choose the proportion so that the producer

is indi¤erent between charging the second highest valuation and the uniform monopoly price. This

construction iterates until it reaches the uniform monopoly price at which point we have recovered

the entire population and we have attained point C. An analogous construction� reported in the

paper� shows how to attain point D.

We also have a deeper geometric proof of our main result. This argument establishes an even

stronger result: Any point where the monopolist is held down to his uniform monopoly pro�ts�

including outcomes A, C, and D in Figure 1� can all be achieved with the same segmentation! In

this segmentation, consumer surplus varies because the monopolist is indi¤erent between charging

di¤erent prices. This argument gives a deeper insight into why our results are true. Consider the set

of all markets where a given monopoly price is optimal. This set is convex, so any aggregate market

with the given monopoly price can be decomposed as a weighted sum of markets which are extreme

points of this set, which in turn de�nes a segmentation. These extremal markets must take a special

form. In any extremal market, the monopolist will be indi¤erent to setting any price in the support

of consumers� valuations. Thus, each subset of valuations that includes the given monopoly price

generates an extreme point. If the monopolist charges the uniform monopoly price on each extreme

segment, we get point A. If he charges the lowest value in the support, we get point C, and if he

charges the highest value we get point D.

Thus, we are able to demonstrate that points B, C, and D can be attained. Every point in

their convex hull, i.e., the shaded triangle in Figure 1, can also be attained simply by averaging the

segmentations that work for each extreme point, and we have a complete characterization of all possible

welfare outcomes.

While we focus on welfare implications, we can also completely characterize possible output levels

and derive implications for prices. An upper bound on output is the e¢ cient quantity, and this is

realized by any segmentation along the e¢ cient frontier. In particular, it is attained in any consumer
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surplus maximizing segmentation. In such segmentations, prices are always (weakly) below the uniform

monopoly price. We also attain a lower bound on output. Note that the monopolist must receive

at least his uniform monopoly pro�ts, so this pro�t is a lower bound on social surplus. We say a

segmentation is conditionally e¢ cient if, conditional on the amount of output sold, the allocation of

the good is socially e¢ cient. Such segmentations minimize output for a given level of social surplus. In

fact, we construct a social surplus minimizing segmentation that is conditionally e¢ cient and therefore

attains a lower bound on output. In this segmentation, prices are always (weakly) higher than the

uniform monopoly price.

Using our result for discrete distributions, we are able to prove similar results for any market

that has a well-behaved distribution of consumers�valuations. A convergence result establishes the

existence of segmentations that attain points C and D for any Borel measurable distribution. When the

distribution over values has a density, we can construct market segmentations analogous to those for

discrete values. These segmentations involve a continuum of segments which are indexed by a suggested

market price for each segment. Conditional on a given price, there is a mass point of consumers with

valuation equal to the market price, with valuations above (for consumer surplus maximization) and

below (for social surplus minimization) distributed according to densities. The densities are closed

form solutions to di¤erential equations.

We contribute to a large literature on third degree price discrimination, starting with Pigou (1920).

This literature examines what happens to prices, quantity, consumer surplus, producer surplus and

social welfare as the market is segmented. Pigou (1920) considered the case of two segments with linear

demand, where both segments are served when there is a uniform price. In this special case, he showed

that output does not change under price discrimination. Since di¤erent prices are charged in the two

segments, this means that some high valuation consumers are replaced by low valuation consumers,

and thus social welfare decreases. We can visualize the results of Pigou (1920) and other authors in

Figure 1. Pigou (1920) showed that this particular segmentation resulted in a west-northwest move

(i.e., move from point A to a point below the negative 450 line going through A). A literature since then

has focused on identifying su¢ cient conditions on the shape of demand for social welfare to increase or

decrease with price discrimination. A recent paper of Aguirre, Cowan, and Vickers (2010) uni�es and

extends this literature1 and, in particular, identi�es su¢ cient conditions for price discrimination to

either increase or decrease social welfare (i.e., move above or below the negative 45� line through A).

Restricting attention to market segments that have concave pro�t functions and an additional property

1Key intervening work includes Robinson (1933), Schmalensee (1981) and Varian (1985).
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("increasing ratio condition") that they argue is commonly met, they show that welfare decreases if

the direct demand in the higher priced market is at least as convex as that in the lower priced market;

welfare is higher if prices are not too far apart and the inverse demand function in the lower priced

market is locally more convex than that in the higher priced market. They note how their result ties in

with an intuition of Robinson (1933): concave demand means that price changes have a small impact

on quantity, while convex demand means that prices have a large impact on quantity. If the price rises

in a market with concave demand and falls in a market with convex demand, the increase in output

in the low-price market will outweigh the decrease in the high price market, and welfare will go up.

Our paper also gives su¢ cient conditions for di¤erent welfare impacts of segmentation. However,

unlike most of the literature, we allow for segments with non-concave pro�t functions. Indeed, the

segmentations giving rise to extreme points in welfare space (i.e., consumer surplus maximization

at point C and social surplus minimization at point D) rely on non-concave pro�t functions. This

ensures that the type of local conditions highlighted in the existing literature will not be relevant. Our

non-local results suggest some very di¤erent intuitions. Of course, consumer surplus always increases

if prices drop in all markets. We show that for any demand curves, low valuation consumers can

be pooled with the right number of high valuation consumers to give the producer an incentive to

o¤er prices below the monopoly price. Moreover, this incentive can be made arbitrarily weak, so that

consumers capture the e¢ ciency gain.

The literature also has results on the impact of segmentation on output and prices. On output,

the focus is on identifying when an increase in output is necessary for an increase in welfare. Although

we do not analyze the question in detail in this paper, a given output level is associated with many

di¤erent levels of producer, consumer and social surplus. We do identify the highest and lowest

possible output over all market segmentations. On prices, Nahata, Ostaszewski, and Sahoo (1990)

o¤er examples with non-concave pro�t functions where third degree price discrimination may lead

prices in all market segments to move in the same direction; it may be that all prices increase or all

prices decrease. We show that one can create such segmentations for any demand curve. In other

words, in constructing our critical market segmentations, we show that it is always possible to have all

prices fall or all prices rise (with non-concave pro�t functions in the segments remaining a necessary

condition, as shown by Nahata, Ostaszewski, and Sahoo (1990)).

If market segmentation is exogenous, one might argue that the segmentations that deliver extremal

surpluses are special and might be seen as atypical. But to the extent that market segmentation is

endogenous, our results can be used to o¤er predictions about what segmentations might arise. For
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example, consider an internet company with a large amount of data about the valuations of a large

numbers of consumers. If the internet company sold this information to producers who would use it

to price discriminate, they have an incentive to sell as much information as possible. But suppose

that the internet company instead chose to release the information for free to producers in order to

maximize consumer welfare (perhaps because of regulatory pressure or a longer term business model).

Our results describe how such a consumer minded internet company would endogenously choose to

segment the market. In particular, they would have an incentive to segment the market in such a way

that pro�ts were not concave.2

We also consider the extension of our results to two important environments. First, we ask what

would happen if each consumer demands more than one unit of the good, so there is scope for second

degree price discrimination in concert with market segmentation. Consumers vary in their marginal

utility for quantity, and in each segment, the producer can screen using quantity-price bundles, as in

Maskin and Riley (1984). We derive a closed form characterization of the set of attainable consumer

and producer surplus pairs. Now, the earlier extreme results that e¢ cient and zero consumer surplus

segmentations holding producer surplus to the prior information pro�t exist no longer hold. But there

continues to be a very large set of feasible welfare outcomes, and thus scope for market segmentation

to be Pareto-improving or Pareto-worsening.

Second, we consider the case where there are exogenous limits on the kind of market segments

that can be induced. This would be the case if the monopolist is limited to access information about

particular consumer characteristics, and those characteristics are associated with characteristic-speci�c

demand curves. The monopolist�s information would induce segments that are convex combinations

of the underlying demand curves. This gives rise to problems that are intermediate between our main

results, where any segmentation is possible, and the classical price discrimination literature (reviewed

above and summarized and extended by Aguirre, Cowan, and Vickers (2010)), where there is an

exogenous division of the market. The literature compares outcomes under full discrimination and no

discrimination, whereas we consider the range of outcomes possible under partial segmentation, where

the monopolist imperfectly observes which division of the market he is facing. We give examples

with intermediate results, in which the set of possible welfare outcomes is larger than in the classical

2A subtlety of this story, however, is that this could only be done by randomly allocating consumers with the same

valuation to di¤erent segments with di¤erent prices. Thus consumers who knew their valuations would still have an

incentive to misreport them to a benevolent intermediary, and thus they would still have an incentive (although perhaps

a more subtle one) to conceal their valuations in anticipation of their later use in price discrimination, as in recent work

of Taylor (2004) and Acquisti and Varian (2005).
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literature but less permissive than our benchmark unrestricted model.

Our work has a methodological connection to two strands of literature. Kamenica and Gentzkow

(2011)�s study of "Bayesian persuasion" considers how a sender would choose to transmit information

to a receiver, if he could commit to an information revelation strategy before observing his private

information. They provide a characterization of such optimal communication strategies as well as

applications. If we let the receiver be the producer choosing prices, and let the sender be a planner

maximizing some weighted sum of consumer and producer surplus, our problem belongs to the class

of problems analyzed by Kamenica and Gentzkow (2011). They show that if one plots the utility of

the "sender" as a function of the distribution of the sender�s types, his highest attainable utility can

be read o¤ from the "concavi�cation" of that function.3 The concavi�cation arguments are especially

powerful in the case of two types. While we do not use concavi�cation arguments in our main result

at all, we use them directly in our two type analysis of second degree price discrimination and partial

segmentation.

Bergemann and Morris (2013a) examine the general question, in strategic many-player settings, of

what behavior could arise in an incomplete information game if players observe additional information

not known to the analyst. They show that behavior that might arise is equivalent to an incomplete

information version of correlated equilibrium termed "Bayes correlated equilibrium". Bergemann and

Morris (2013a) explore the one-player version of Bayes correlated equilibrium, and its connection to the

work of Kamenica and Gentzkow (2011) and others. In Bergemann and Morris (2013b), these insights

were developed in detail in the context of linear-quadratic payo¤s and normal distributed uncertainty.

Using the language of Bergemann and Morris (2013a), the present paper considers the game of a

producer making take-it-or-leave-it o¤ers to consumers. Here, consumers have a dominant strategy

to accept all o¤ers strictly less than their valuation and reject all o¤ers strictly greater than their

valuation, and we select for equilibria in which consumers accept o¤ers that make them indi¤erent.

We characterize what could happen for any information structure that players might observe, as long as

consumers know their own valuations. Thus, we identify possible payo¤s of the producer and consumers

in all Bayes correlated equilibria of the price setting game. Thus, our results are a striking application

of the methodologies of Bergemann and Morris (2013a), (2013b) and Kamenica and Gentzkow (2011)

to the general problem of price discrimination.

3Aumann and Maschler (1995), show that the concavi�cation of the (stage) payo¤ function represents the limit

payo¤ that an informed player can achieve in a repeated zero sum game with incomplete information. In particular,

their Lemma 5.3, the "splitting lemma", derives a partial disclosure strategy on the basis of a concavi�ed payo¤ function.
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We present our main result in the case of discrete values in Section 2. We �rst give a charac-

terization of the welfare set using the extremal segmentations described above. In addition to this

abstract argument, we also provide a constructive approach that demonstrates the range of segmenta-

tions that can arise. The constructive arguments also allow us to characterize other consequences of

discrimination, e.g., bounds on output. In Section 3, we extend our results to general settings with a

continuum of values, so that there is a continuous demand curve. The discrete and continuum analyses

are complementary: while they lead to the same substantive conclusions and economic insights, the

arguments and mathematical formulations look very di¤erent, so we �nd it useful to report both cases

independently. In Section 4, we analyze a version of the quantity discriminating monopolist with two

types, and we then analyze price discrimination when there are exogenous limitations on how the

market can be segmented. In Section 5, we conclude.

2 The Limits of Discrimination: The Discrete Case

A monopolist sells to a continuum of consumers, each of whom demands one unit of the good being

sold. We normalize the constant marginal cost of the good to zero. In the current section, we assume

that there are K possible values vk 2 V � R+ that the consumers might have with:

0 < v1 < � � � < vk < � � � < vK .

A market is a vector x = (x1; :::; xK) specifying the proportion of consumers with each of the K

valuations. Thus market x corresponds to a step demand function, where
P
j�k
xj is the demand for

the good at any price in the interval (vk�1; vk] (with the convention that v0 = 0). The set of possible

markets X is the K-dimensional simplex,

X ,
(
x 2 RK+

�����
KX
k=1

xk = 1

)
.

We denote the given aggregate market by

x� 2 X: (1)

We hold the aggregate market x� �xed in the analysis and use stars to indicate properties of the

aggregate market.

We say that price vk is optimal for market x if the expected revenue from price vk satis�es:

vk
X
j�k

xj � vi
X
j�i
xj for all i = 1; :::; K. (2)
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We write Xk for the set of markets where price vk is optimal,

Xk ,
(
x 2 X

�����vkX
j�k

xj � vi
X
j�i
xj for all i = 1; :::; K

)
.

Let v� , vi� be the optimal (i.e., revenue maximizing) uniform price vi� for the aggregate market

x�. For the entire analysis, it does not matter if there are multiple optimal uniform prices; any one

will do. For notational convenience we shall assume that there is a unique optimal price, and hence

that the inequality (2) is strict. Note that this implies that x� 2 X� , Xi�. The maximum feasible

surplus is

w� ,
KX
k=1

x�kvk, (3)

i.e., all consumers purchase the good (as they all value it above marginal cost). Uniform price producer

surplus is then

�� ,
 

KX
k=i�

x�k

!
v� = max

i2f1;:::;Kg

 
KX
j=i

x�j

!
vi. (4)

Uniform price consumer surplus is

u� ,
KX
k=i�

x�k (vk � v�) .

We will also be interested in the lowest output q required to generate social surplus of at least the

uniform price producer surplus ��. This will come from selling to those with the highest valuations;

thus in particular, there must be a critical valuation vi such that the good is always sold to all consumers

with valuations above vi and never sold to consumers with valuations below vi. Thus letting i and

� 2 (0; 1] uniquely solve:

�x�i vi +
KX

k=i+1

x�kvk = �
�, (5)

we obtain a lower bound on output which is given by:

q , �x�i +
KX

k=i+1

x�k. (6)

The additional variable � 2 (0; 1] allows us to randomize the decision to sell to the buyers at threshold
value vi and hence to achieve equality (5) in this �nite setting.
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2.1 A Simple Uniform Example

We will use a simple example to illustrate results in this section. Suppose that there are �ve possible

valuations, 1; 2; 3; 4 and 5, with equal proportions. Thus K = 5, vj = j, and x�j =
1
5
for each j.

In this case, simple calculations show that feasible social surplus is w� = 1
5
(1 + 2 + 3 + 4 + 5) = 3.

The uniform monopoly price is v� = 3 = i�. The uniform monopoly pro�t is then �� = 3
5
� 3 = 9

5
,

consumer surplus is u� = 1
5
(3� 3) + 1

5
(4� 3) + 1

5
(5� 3) = 3

5
, and deadweight loss is 3� 9

5
� 3

5
= 3

5
.

The minimum output is q= 2
5
. The consumer and producer surplus for this example is illustrated in

Figure 2.

Figure 2: The Surplus Triangle of Price Discrimination: The Uniform Example

2.2 Segmentation and Pricing Strategy

A segmentation is a division of the social market into di¤erent markets. Thus, a segmentation � is

a simple probability distribution on X, with the interpretation that � (x) is the proportion of the

population in market x. A segmentation can be viewed as a two stage lottery on outcomes f1; :::; Kg
whose reduced lottery is x�. Writing supp for the support of a distribution, the set of possible

segmentations is given by8<:� 2 �(X)
������
X

x2supp(�)

� (x) � x = x�; jsupp (�)j <1

9=; .
We restrict attention to �nitely many segments, hence jsupp (�)j <1, which is without loss of gener-
ality in the present environment with �nitely many valuations. A pricing strategy for a segmentation
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� speci�es a price in each market in the support of �,

� : supp (�)! � fv1; :::; vKg ; (7)

which gives a distribution over prices for every market. A pricing strategy is optimal if, for each x,

vk 2 supp(�(x)) implies x 2 Xk, i.e. all prices charged with positive probability must maximize

pro�t on market x. If a pricing rule puts probability 1 on price v, we will simply write �(x) = v, and

otherwise �k(x) is the probability of charging price vk in market x. A segmentation � and pricing

strategy � together determine the outcomes that we care about, namely the joint distribution of prices

and consumers�valuations. An example of a segmentation and an associated optimal pricing rule is

given by the case of perfect price discrimination. In this case the pricing strategy is deterministic in

every segment, and we have �ve market segments with �ve associated prices as illustrated in the table

below:
value 1 value 2 value 3 value 4 value 5 price weight

market 1 1 0 0 0 0 1 1
5

market 2 0 1 0 0 0 2 1
5

market 3 0 0 1 0 0 3 1
5

market 4 0 0 0 1 0 4 1
5

market 5 0 0 0 0 1 5 1
5

total 1
5

1
5

1
5

1
5

1
5

:

More generally, the consumer surplus with a segmentation � and a pricing rule � is given by:

X
x2supp(�)

� (x)
KX
k=1

KX
j=k

�k (x)xj (vj � vk) ;

the producer surplus is X
x2supp(�)

� (x)

KX
k=1

KX
j=k

�k (x)xjvk;

and the output is X
x2supp(�)

� (x)

KX
k=1

KX
j=k

�k (x)xj.

Our �rst result is a linear algebraic characterization of the set Xk of markets where price vk

is optimal. Write Vk for the set of non-empty subsets of fv1; :::; vKg containing vk. We will write
V � , Vi�. A subset S 2 Vk represents a �nite (support) set of valuations including vk. Now for every
support set S 2 Vk, we de�ne a market xS : xS =

�
::::; xSi ; :::

�
2 X,with the properties that (i) no
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consumer has a valuation outside the set S; and (ii) the monopolist is indi¤erent between charging any

price in S. Thus, for every support set S 2 Vk, we de�ne the market xS by the indi¤erence conditions
that for all vi 2 S 2 Vk :

vj
X
j�i
xSj = vk

X
j�k

xSk , (8)

and the inclusiveness condition: X
fjjvj2S g

xSj = 1. (9)

Now, for every S, there exists a unique solution to the above condition (8) and (9), which can be

described explicitly in terms of the element of set S. For any S 2 Vk write minS and maxS for the
smallest and largest element of S and, for each element vi 2 S di¤erent from maxS, write � (vi; S) for
the smallest element of S which is greater than vi. For every S 2 Vk, the uniquely de�ned market xS

given by:

xSi ,

8>>><>>>:
0, if vi =2 S;

minS
�
1
vi
� 1

�(vi;S)

�
, if vi 6= maxS;

minS
maxS

, if vi = maxS:

(10)

There are a �nite set of such markets for every Vk. We next show that all markets x 2 Xk in which vk

is an optimal price are convex combinations of these extreme points xS.

Lemma 1 (Extremal Segmentation)

Xk is the convex hull of
�
xS
�
S2Vk

Proof. Xk is a �nite-dimensional compact and convex set, so by the Krein-Milman theorem it

is equal to the convex hull of its extreme points. We will show that every extreme point of Xk is

equal to xS for some S 2 Vk. First observe that if vi is an optimal price for market x, then xi > 0.
Otherwise the monopolist would want to deviate to a higher price if

PK
j=i+1 xj > 0 or a lower price if

this quantity is zero, either of which contradicts the optimality of vi.

Now, the set Xk is characterized by the linear constraints that for any x 2 Xk:

KX
i=1

xi = 1;

the nonnegativity constraints

xi � 0, for all i,
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and the optimality (of price vk) constraint: 
KX
i=j

xi

!
vj �

 
KX
i=k

xi

!
vk for i 6= k.

Any extreme point of Xk must lie at the intersection of exactly K of these constraints. One active

constraint is always
PK

i=1 xi = 1, and since vk is an optimal price, the non-negativity constraint xk � 0
is never active. Thus, there are exactly K � 1 active non-negativity and pricing constraints for i 6= k.
But as we have argued, we cannot have both the optimality and non-negativity constraints bind for

a given i, so for each i 6= k precisely one of the non-negativity and optimality constraints is binding.
This pro�le of constraints de�nes xS, where S is the set valuations which are optimal prices for the

seller.

Thus for the given aggregate market x� 2 X� there are segmentations of x� which have support on

the markets xS for S 2 V � as de�ned above in (10) only. We refer to any market xS as an extremal
market, and to any segmentation consisting only of extremal markets as an extremal segmentation.

In general, there will be many such segmentations. Our main result using extremal segmentations

does not depend on which one we choose. In our uniform example, the segmentation of the uniform

market x� described in the table below represents one such extremal segmentation. This segmentation

is the solution to particular segmentation algorithm, a �greedy�like algorithm formally described in

the next subsection.

value 1 value 2 value 3 value 4 value 5 weight

market f1; 2; 3; 4; 5g 1
2

1
6

1
12

1
20

1
5

2
5

market f2; 3; 4; 5g 0 1
3

1
6

1
10

2
5

3
10

market f2; 3; 4g 0 1
3

1
6

1
2

0 1
10

market f3; 4g 0 0 1
4

3
4

0 2
15

market f3g 0 0 1 0 0 1
15

total 1
5

1
5

1
5

1
5

1
5

: (11)

2.3 Limits of Price Discrimination on Welfare

For a given market x, we de�ne the minimum pricing rule �(x) to deterministically chargemin (supp (x))

and, similarly, we de�ne the maximum pricing rule � (x) to deterministically charge max (supp (x)).

We observe that the minimum pricing rule always implies an e¢ cient allocation in the market x and

the maximum pricing rule implies an allocation in the market x where there is zero consumer surplus.
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Theorem 1 (Minimum and Maximum Pricing)

In every extremal segmentation, minimum and maximum pricing strategies are optimal; producer sur-

plus is �� under every optimal pricing strategy; consumer surplus is zero under the maximum pricing

strategy and consumer surplus is w� � �� under the minimal pricing strategy.

Proof. By construction of the extremal markets, any price in S is an optimal price in market

xS. This implies that minimum and maximum pricing rules are both optimal. Since always setting

the price equal to v� is optimal, producer surplus must be exactly �� in any extremal segmentation.

Consumer surplus is always zero under the maximum pricing strategy. Since the minimal pricing rule

always gives social surplus w� and producer surplus is ��, consumer surplus must be the di¤erence

w� � ��.
The above result only refers to aggregate consumer surplus over all valuations. But in fact, the

minimum and maximum pricing strategies under every extremal segmentation allow the same predic-

tions to hold pointwise, i.e. for every valuation of the consumer. That is, in the minimum pricing

strategy, the expected net utility for every valuation type of the buyer is (weakly) larger than with

uniform pricing in the aggregate market. Conversely, in the maximum pricing strategy, the expected

net utility for every valuation type of the buyer is (weakly) smaller than with uniform pricing in the

aggregate market. With the maximum pricing rule � (x), this follows directly from the construction of

the maximum pricing rule. After all, only the buyer with the highest value in the segment x purchases

the product under the maximum pricing rule but has to pay exactly his valuation. Hence, the expected

net utility conditional on a purchase is zero, but so is the expected net utility without a purchase. All

valuations are weakly worse o¤ relative to the uniform price in the aggregate market. There, every

buyer with a valuation vi > v� received a strictly positive information rent. As for the minimum

pricing rule �(x), �rst we observe that all e¢ cient trades are realized as opposed to only those with a

value equal or above the uniform price vi � v�; second by construction of the minimum pricing rule

�(x), all sales are realized at prices below or equal to v�. So we have:

Corollary 1 (Pointwise Consumer Surplus )

In every extremal segmentation, for every valuation vi, the expected net utility is (weakly) larger in

the minimum pricing strategy; and (weakly) smaller in the maximum pricing strategy than under the

uniform price in the aggregate market.

Now, if we consider segmentations di¤erent from the extremal segmentation, then it still remains

true that for any segmentation and optimal pricing rule, producer surplus must be at least ��, consumer
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surplus must be at least zero, and the sum of producer surplus and consumer surplus must be at most

w�. And the set of attainable producer surplus and consumer surplus pairs must be convex. So we

have:

Corollary 2 (Surplus Triangle)

For every (�; u) satisfying � � ��, u � 0 and � + u � w�, there exists a segmentation and an optimal
pricing rule with producer surplus � and consumer surplus u.

There is a large multiplicity of segmentations and pricing rules that attain the maximal consumer

surplus and minimal social surplus. We now provide a construction for a canonical "greedy" extremal

segmentation. First put as much mass as we can on the market xsupp(x
�), i.e., the extremal market in

which the monopolist is indi¤erent to charging all prices in the support of x�. At some point, we will

run out of mass for some valuation in supp (x�). We then proceed with a new segment that puts as

much mass as possible on the extremal market corresponding to all remaining valuations; and so on.

More formally, we can describe the greedy algorithm as follows. Let F be the distribution function

of the aggregate market with support V . We shall construct a sequence of sets, S0; :::; SG 2 V � with
G � K � 1, which are initialized at S0 = V and satisfy strict set inclusion: Sg+1 ( Sg. Suppose we

"run" the greedy algorithm from time 0 to time 1. Write H (v; t) for the cumulative probability mass

left at time t under the greedy algorithm. Thus H (v; t) is weakly increasing in v for all t and we set

H (v; 0) = F (v) ; for all v 2 V ;
H (vK ; t) = 1� t; for all t 2 [0; 1] :

(12)

We write S (t) for the subset of values v 2 V where probability mass remains at time t. Thus

S (t) , fvk 2 V jH (vk; t)�H (vk�1; t)g > 0: (13)

By extension, we de�ne for every support set S (t), the distribution function F S(t) (v) associated with

the probability distribution of the extremal market xS(t) as de�ned earlier by (10). And now let

dH (v; t)

dt
, �F S(t) (v) . (14)

Now, clearly, if we start at t = 0, then S (0) = S0 = V . By construction of the greedy algorithm

H (v; t), there must exist a �rst time � 1 � 1, where S0 = S (t) 6= S (� 1) for all 0 � t < � 1. We set

S1 , S (� 1), and by Lemma 1, S1 2 S�. Now, clearly, S1 ( S0, and we continue to eat into the

distribution H (v; t), but now removing probability only on the smaller support set S1. Clearly, there
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are at most K � 1 reductions of the support set Sg until we reach a singleton set. At each step g of
the induction, we can appeal to Lemma 1 to observe that the remaining support Sg has the inclusion

property Sg 2 V �. But since F S(t) (vK) = 1 for all t, it follows that at time t = 1, there is zero residual
probability left, and hence we have achieved a complete segmentation of the aggregate market.

The greedy algorithm uses the insight of Lemma 1 by constructing a sequence of segments, such

that along the sequence, the number of active pricing constraints is strictly decreasing, and the number

of active nonnegativity constraints is strictly increasing. More precisely, each segment g has a distinct

number of non-negativity constraints active, namely at least g, and conversely each segment g, has

a distinct number of pricing constraints active, namely at most (K � 1) � g. Generically, at each
stopping time only a single non-negativity constraint switches from being inactive to active, and then

the above statement involving "at most" are exact statements. In our uniform example, the greedy

algorithm gives rise to the segmentation (11) displayed above. If we apply either the minimum pricing

rule � (x) or the maximum pricing rule � (x) to the above segmentation, then we get the following

prices, displayed in the second to last and last column, respectively:

value 1 value 2 value 3 value 4 value 5 weight � (x) � (x)

market f1; 2; 3; 4; 5g 1
2

1
6

1
12

1
20

1
5

2
5

1 5

market f2; 3; 4; 5g 0 1
3

1
6

1
10

2
5

3
10

2 5

market f2; 3; 4g 0 1
3

1
6

1
2

0 1
10

2 4

market f3; 4g 0 0 1
4

3
4

0 2
15

3 4

market f3g 0 0 1 0 0 1
15

3 3

total 1
5

1
5

1
5

1
5

1
5

1

:

2.4 Direct Segmentations

We observe that in the greedy segmentation of the uniform examples above, there are multiple segments

in which the same price is charged under either the minimum or the maximum pricing rule. In fact,

if the price vk is optimal in markets x and x0, then vk is optimal in the merged market as well:

�(x)

�(x) + �(x0)
x+

� (x0)

� (x) + � (x0)
x0

Thus, we could merge markets so that a given price is charged in only one segment. More generally,

a direct segmentation has at most K segments, one for each possible price vk, where xk 2 Xk and
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k �(x

k)xk = x�. The direct pricing strategy is the identity mapping, i.e. �k(x
k) = 1. (In contrast to

the extremal markets where the upper case superscript S in xS referred to the support, here the lower

case superscript k in xk refers to price vk charged in the direct segment xk.) It should be clear that

the direct pricing strategy is optimal for direct segmentations constructed in this way, and whenever

we refer to a direct segmentation in the subsequent discussion, it is assumed that the monopolist will

use direct pricing.

Extremal segmentations and direct segmentations are both rich enough classes to achieve any equi-

librium outcome, where again an outcome is a joint distribution of prices and valuations. In particular,

if a segmentation and optimal pricing rule (�; �) induce a given outcome, then there is both an ex-

tremal segmentation and optimal pricing strategy (�0; �0) and a direct segmentation �00 (and associated

direct pricing strategy �00) that achieve the same outcome. To �nd an extremal segmentation, each

market x 2 supp(�) can itself be decomposed using extremal markets with a segmentation �x, using
only those indi¤erence sets S which contain supp(�(x)). The extremal segmentation of (�; �) is then

de�ned by:

�0(xS) ,
X

x2supp(�)

�(x)�x(x
S);

and the corresponding pricing rule is

�0k(x
S) , 1

�0(xS)

X
x2supp(�)

�(x)�x(x
S)�k(x):

Similarly, the direct segmentation xk can be de�ned by

�00(xk) ,
X

x2supp(�)

�(x)�k(x);

and the composition of each direct segment xk is given by

xk , 1

�00(xk)

X
x2supp(�)

�(x)�k(x) � x:

In the uniform example, the direct segmentation corresponding to the consumer surplus maximizing

greedy extremal segmentation is:

value 1 value 2 value 3 value 4 value 5 price weight

market 1 1
2

1
6

1
12

1
20

1
5

1 2
5

market 2 0 1
3

1
6

1
5

3
10

2 2
5

market 3 0 0 1
2

1
2

0 3 1
5

total 1
5

1
5

1
5

1
5

1
5

1

;
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where the markets for prices 4 and 5 are degenerate. The direct segmentation corresponding to the

social surplus minimizing greedy extremal segmentation is:

value 1 value 2 value 3 value 4 value 5 price weight

market 3 0 0 1 0 0 3 1
15

market 4 0 1
7

3
14

9
14

0 4 7
30

market 5 2
7

5
21

5
42

1
14

2
7

5 7
10

total 1
5

1
5

1
5

1
5

1
5

1

; (15)

where the markets for prices 1 and 2 are degenerate.

Direct segmentations are well suited to the exploration of some of the alternative segmentations

that attain the welfare bounds. Let us give a formal description of the �rst segmentation described

in the introduction attaining maximum consumer surplus. For each k � i�, let market xk have the

features that (i) the lowest valuation in the support is vk; (ii) all values of vk+1 and above appear in

the same relative proportion as in the aggregate population:

xki ,

8>>>><>>>>:
0; if i < k;

1� k
X
i�k+1

x�i ; if i = k;

kx
�
i ; if i > k;

(16)

where k 2 [0; 1] uniquely solves 
x�k + k

 
KX

i=k+1

x�i

!!
vk = k

 
KX
i=i�

x�i

!
v�.

By construction of the above equality, both vk and v� are optimal prices for segment xk. We can

always construct a segmentation of the aggregate market x� that uses only
�
xk
�i�
k=1
. We establish the

construction inductively, letting

�
�
x1
�
, x�1
x11

(17)

and

�
�
xk
�
,
x�k �

P
i<k

� (xi)xik

xkk
: (18)

We can verify that this segmentation generates maximum consumer surplus by charging in segment

xk the price vk. The direct pricing rule is optimal and gives rise to an e¢ cient allocation. Because the

monopolist is always indi¤erent to charging v�, producer surplus is ��.
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Proposition 1 (Consumer Surplus Maximizing Direct Segmentation)

There exists a direct segmentation and an optimal pricing rule where producer surplus is ��, consumer

surplus is w� � �� and the output is socially e¢ cient.

In the uniform example, this construction gives rise to the following segmentation:

value 1 value 2 value 3 value 4 value 5 price weight

market 1 5
9

1
9

1
9

1
9

1
9

1 9
25

market 2 0 1
3

2
9

2
9

2
9

2 12
25

market 3 0 0 1
3

1
3

1
3

3 4
25

total 1
5

1
5

1
5

1
5

1
5

1

:

2.5 Limits of Price Discrimination on Output

While our focus has been on welfare outcomes, we can also report tight results about output. The

consumer surplus maximizing segmentations are e¢ cient, and therefore maximize output among all

segmentations and optimal pricing rules. To minimize output, we hold social surplus down to �� while

also ensuring that the allocation is conditionally e¢ cient, so that the object is always sold to those

who value the object the most. Note that our earlier segmentation (15) attaining minimum social

surplus had some consumers with valuation 3 facing price 3 and thus buying the good but also had

some consumers with valuation 4 facing price 5, and thus not buying the good. The total proportion of

consumers buying the good is 5
12
. But we noted earlier that we attain the minimum producer surplus

�� = 9
5
by selling only to those with valuations 4 and 5 which implies total output 2

5
< 5

12
. Below is

a segmentation and optimal pricing rule in the example which attains minimum social surplus while

only selling to those with valuations 4 and 5:

value 1 value 2 value 3 value 4 value 5 price weight

market 4 8
45

8
45

2
15

2
5

0 4 1
2

market 5 2
9

2
9

4
15

0 2
5

5 1
2

total 1
5

1
5

1
5

1
5

1
5

1

:

More generally, we can always construct a direct segmentation using an inductive, but more subtle

algorithm as in (17)-(18) that attains the output lower bound de�ned by condition (6). In the resulting

conditionally e¢ cient direct segmentation there will be zero consumer surplus and producer surplus ��.

In fact, consumers with valuations strictly above i purchase the good at a price equal to their valuation,
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and consumers with valuation i must purchase the good with probability �, paying their valuation

if they purchase the good. Consumers with valuations below i will not purchase the good. For the

consumer surplus maximizing segmentation, we started by de�ning the segment with the lowest price

and worked our way up through prices. To minimize output and social surplus, we adopt a di¤erent

construction that starts by placing the highest value consumer in a segment with price equal to his

own value. We then work our way down through the values. Consumers with a given value will be

apportioned out to all of the segments with weakly higher prices.

Proposition 2 (Quantity Minimizing Direct Segmentation)

There exists a segmentation and optimal pricing rule where producer surplus is ��, consumer surplus

is 0 and output is q.

Proof. We construct a direct segmentation that achieves the minimum output. We de�ned

i 2 f1; :::; Kg and � 2 (0; 1] as the unique solution of (5), identifying the conditionally e¢ cient and
quantity minimizing allocation that attains the uniform monopoly pro�t. We now de�ne a particular

conditionally e¢ cient segmentation. We denote by yki the probability mass of valuation vi consumers

in segment k (which will be charged price vk). Because of our "top-down" construction, it will be

easier to work directly with the object yi, since we will not know how large each market should be

until the induction terminates. Once the yk are de�ned, we can easily recover the market sizes and

weights by �
�
xk
�
,
PK

i=1 y
k
i , and x

k
i , yki =�

�
xk
�
. For k > i, let

yki ,

8>><>>:
0; if i < k;

x�i ; if i = k;

0; if i > k:

(19)

For k = i, let

yii ,

8>>>>>><>>>>>>:

0; if i < i;

�x�i ; if i = i;
y
i
i(vi�vi)

KX
l=i+1

yll(vl�vi)

(1� �)x�i if i > i;
(20)

and iteratively de�ne for k = i� 1; i� 2; :::; 1 :

yki ,

8>>>>>><>>>>>>:

0; if i < i;

vky
k
k�vi

KX
j=i+1

ykj

KX
l=i

0B@vlyll�vi
KX

j=i+1

yli

1CA
x�i if i � i:

(21)
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The segmentation, de�ned by (19)-(21) satis�es feasibility by construction. To wit, the ratios appearing

in (20) and (21) are strictly positive and de�ne shares that sum up to one. This will follow inductively

from incentive compatibility, as

vky
k
k � vi

KX
j=i+1

yki > vky
k
k � vi+1

KX
j=i+1

yki :

The right-hand side is non-negative if incentive compatibility is satis�ed. Now it remains to verify

incentive compatibility. The non-trivial conditions we need to check are that pro�ts cannot be increased

by deviating from price vk for k � i to a lower price. Consider the case where k > i. First, observe
that for each i = 1; :::; i� 1:

KX
l=i

 
vly

l
l � vi

KX
j=i+1

ylj

!
=

KX
l=i

vly
l
l � vi

KX
j=i+1

x�j , by feasibility

= v�
KX
j=i�

x�j � vi
KX

j=i+1

x�j , by construction of i

> vi

KX
j=i

x�j � vi
KX

j=i+1

x�j , by de�nition of i
�

= vix
�
i .

Note that the inequality is strict, since v� is the unique uniform monopoly price. (We could have

alternatively made it the highest monopoly price, if there are multiple.) We then have from (21) that

yki =

vky
k
k � vi

KX
j=i+1

ykj

KX
l=i

 
vlyll � vi

KX
j=i+1

ylj

!x�i :

It now follows from the above inequality, which reads as:

KX
l=i

 
vly

l
l � vi

KX
j=i+1

ykj

!
> vix

�
i ; (22)

that after replacing the rhs by the lhs of (22) that, after cancelling terms that:

yki <
vky

k
k

vi
�

KX
j=i+1

ykj ;
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for all k > i � i. Re-arranging this expression, we have

vi

KX
j=i

ykj < vky
k
k ,

verifying incentive compatibility for k > i > i. The same argument goes through with k = i or k = i,

with suitable allowance for the fact that yii = �x�i .

The algorithm in the proof deserves some explanation. We start with the de�nition of i and � in

hand, so we already know which consumers will purchase the good at which prices. This pins down the

distribution of consumers to markets for valuations higher than i. According to the inductive hypoth-

esis, we have successfully assigned consumers for valuations above i without violating the optimality

of price vk on segment yk. The proof shows that there is always enough "room" across all markets to

distribute consumers with valuation vi to markets without violating incentive compatibility, which is

the content of equation (22). In fact, when this inequality is strict, there is more slack than we need

and there are multiple ways to distribute the vi consumers. The proof adopts one particular allocation

rule, which is to make yki =x
�
i proportional to the amount of slack that would exist in market k if no

more consumers were assigned, which is exactly vkky
k
k � vi

PK
j=i+1 y

k
j . This has implications for the

structure of the segmentation. Note that the monopolist will be indi¤erent between vk and v� in each

market, so when we get to i = i� � 1, the slack in market k is

vky
k
k � vi��1

KX
j=i�

ykj = vky
k
k

�
1� v�

vi��1

�

The term in the parentheses is common to all k, so the slacks are proportional to vkykk . Inductively,

this will be true for every valuation less than i�, and the distribution of valuations below the monopoly

price in each market will be proportional to the prior. We will see that these features have analogues

in the continuous construction of the next section.

3 The Limits of Discrimination: The Continuum Case

We now extend the arguments to a setting with a continuum of values. We construct segmented

markets that mirror those in the environment with �nitely many values. Thus we consider a continuum

of buyers, each buyer identi�ed by his valuation v, which are distributed on an interval [v; v] = V � R+
according to a Borel probability measure x (dv). The corresponding distribution function is F (v) ,
x ([v; v]).
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In the �nite environment, the extremal segments xS with support S 2 S�, in which the seller

is indi¤erent between all the values o¤ered as prices in the set S, played a central role. In the

continuum environment, a complete description of these segments is rather involved, as the support of

any extremal segment does not necessarily have to be connected. Thus, there will be extremal segments

whose distribution function have a countable number of discontinuities. As we observed in the �nite

case, the characterization of the surplus triangle (see Corollary 2) can be achieved with either extremal

or direct segmentations, and in this section we use the direct segmentations to establish the consumer

surplus maximizing and the social surplus minimizing segmentation. We �rst state an existence result

of minimal and maximal segmentations for arbitrary Borel probability measure x (dv), Theorem 3. We

then narrow our analysis to aggregate markets with di¤erentiable distribution functions, for which we

explicitly construct the minimal and maximal segmentations. The resulting segmentations, given in

Proposition 3 and 4, mirror those in the �nite environment, Proposition 1 and 2, respectively.4

We shall assume (as in the discrete case, without loss of generality) that there is a unique uniform

monopoly price p� = v�. The monopoly pro�t under the uniform price v� is �� , v� (1� F (v�)), and
the social surplus and consumer surplus (under the uniform monopoly price v�) are given by:

w� ,
vZ
v

v x (dv) ; and u� ,
vZ

v�

(v � v�)x (dv) .

3.1 Direct Segmentations

In a direct segmentation, each segment is uniquely associated with a "suggested" price p 2 V , and every
price p 2 V is at most quoted once. A pricing rule in a direct segmentation is a Borel measurable

mapping � : V ! V that maps the prices that index the direct segments into the prices that are

o¤ered to consumers. Without loss of generality, we restrict attention to pure strategies in which

each segment p is charged a possibly di¤erent price p0 = � (p). The identity mapping, in which the

suggested and realized prices agree, is denoted by �I . For a given Borel measure � on V �V , the space
of recommended prices and realized valuations, the pro�t of the �rm who uses the pricing rule � is

�(�; �) ,
Z
(v;p)2V 2

�(p)Iv��(p)�(dv; dp):

4The proofs for the environment with a continuum of values are by necessity more elaborate than in the �nite

environment, and are all collected in the appendix for online publication.
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The net utility of the consumers is given by:

u(�; �) ,
Z
(v;p)2V 2

(v � �(p)) Iv��(p)�(dv; dp):

We write �(�) , �(�; �I) and u(�) , u(�; �I). We say that � is a direct segmentation of x if it satis�es
the aggregation constraint:

�(Y � V ) = x(Y ); (23)

for all measurable subsets Y � V , and it also satis�es the optimality of the direct pricing strategy:

�(�) � �(�; �), for every pricing rule �. We say that the measure x (dv) is simple if F is a step function
(and thus a �nite set of valuations arise with probability 1). We know that for any discrete distribution

over valuations, we can construct direct segmentations that hit both the consumer surplus upper bound

and welfare lower bound, see Proposition 1 and 2. These results can be restated as follows:

Corollary 3 (Simple Measures)

If the measure x(dv) is simple, then there exist direct segmentations, �(dv; dp) and �(dv; dp), that

achieve the consumer surplus upper bound and the social surplus lower bound, respectively.

Now consider any Borel measure x and associated distribution function F . We can approximate

F by a sequence of step functions Fk that converge to F pointwise at all points of continuity, with

associated measures xk. For each xk, we can �nd a direct segmentation, denoted by �k, that maximizes

the consumer surplus and a direct segmentation, denoted by �k that minimizes social surplus. As the

following result shows, these sequences of direct segmentations have convergent subsequences, and

importantly, the limits of the subsequences are shown to be direct segmentations as well.

Theorem 2 (Direct Segmentations)

There exist direct segmentations � and � of x that attain the upper bound on consumer surplus and

the lower bound on social surplus, respectively.

The above theorem simply asserts the existence of direct segmentations that achieve the relevant

bounds for general measures x (dv) and associated distributions F (v). If F is di¤erentiable, with an

associated density function f , then we can describe speci�c algorithms to attain the lower bound on

social surplus and the upper bound on consumer surplus.
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3.2 Consumer Surplus (and Output) Maximizing Segmentation

We now describe a segmentation in which the consumer surplus is w���� and output is maximal and
equal to one. For every price p 2 [v; v�], there will be a market segment associated with price p, in
the sense that it is revenue maximizing to o¤er the product at price p. Each segment p is constructed

so that the distribution of valuations, denoted by Fp (v), satis�es four properties: it (i) has zero mass

below p, (ii) has a mass point at p, (iii) is proportional to the prior distribution above p, and (iv) the

mass point at p is just large enough to make the seller indi¤erent between p and v�. Thus we require

that the revenue for o¤ering price p and price v� is the same: p = v� (1� Fp (v�)) :The unique solution
to the above four conditions is given by the direct segment Fp (v):

Fp (v) ,

8>><>>:
0; if v � v < p;

1� p(1�F (p))
v�(1�F (v�)) ; if v = p;

1� p(1�F (v))
v�(1�F (v�)) ; if p < v � �v:

(24)

To complete the description of the market segmentation, we need to specify the distribution of the

buyers across the price segments. We write H for the distribution (and h for the corresponding

density) over the prices [v; v�] associated with the segments. Given the upper triangular structure of

the segments, and the fact that in each segment the density of valuations is proportional to the original

density, it is su¢ cient to insist that for all v 2 [v; v�] ; we haveZ v

v

p

v� (1� F (v�))f (v)h (p) dp+
�
1� v (1� F (v))

v� (1� F (v�))

�
h (v) = f (v) . (25)

In other words, the density f (v) of every valuation v in the aggregate is recovered by integrating over

the continuous part of the segmented markets, as v is present in every segmented market p with p < v,

and the discrete part, which is due to the presence of the valuation v in the segmented market p with

p = v.

At this point, it is not obvious that the construction of the distribution H based on the condition

(25) should generally succeed. In particular, as we build up H (p) by integrating from below, and

thus attempt to absorb the residual density of valuation v in the market segment p = v, we might be

confronted with two separate issues. First, it could be that we run out of probability to complement

the mass point p = v < v� with higher valuations necessary to construct the indi¤erence (24). Second,

it could be that we arrive at p = v� and still have a positive residual probability Pr (v � v�) to allocate,
which again would not allow us to establish the speci�c segment p = v�, Fv� (v).
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But, in fact the condition (25) implicitly de�nes a separable ordinary di¤erential equation whose

unique solution, given the boundary condition H (v�) = 1, is given by:

H (p) , 1� exp
�
�
Z p

s=0

sf (s)

(1� F (v�)) v� � (1� F (s)) sds
�
. (26)

Thus, there exists an equilibrium segmentation that attains the upper bound on the consumer surplus

in the continuum model that mirrors the earlier result for the case of a �nite number of valuations,

see (16).

Proposition 3 (Consumer Surplus Maximizing Segmentation)

There exists a direct segmentation, represented by segments Fp (v) and a distribution over segments

H (p), where producer surplus is ��, consumer surplus is w� � �� and output is socially e¢ cient.

The distribution H (p) implements a particular set of segmented markets which achieve the e¢ cient

allocation with the largest possible consumer surplus. Clearly, just as in the �nite environment, it is not

the unique market segmentation which maximizes consumer surplus and yields an e¢ cient allocation,

and extremal segmentations as described in the previous section could also be constructed in the

continuum environment which would achieve the same consumer surplus. In the �nite environment,

we described a greedy algorithm that generated a particular extremal segmentation. The greedy

algorithm has a natural translation into a continuum of values which is described in detail in the

working paper version, see Bergemann, Brooks, and Morris (2013).

The explicit construction of the direct segmentation and the distribution over prices H (p) allow us

to con�rm the results stated earlier in Corollary 1. The consumer surplus maximizing segmentation

induced by H (p), while maximizing the aggregate consumer surplus, also increases the expected utility

of the consumers pointwise, i.e. conditional on the valuation of the consumer. In fact, the very

construction of the segmentation H (p) allows us to conclude that the expected sales price, conditional

on the valuation v of the consumer, is increasing in the valuation of the consumer.

3.3 Social Surplus (and Output) Minimizing Segmentation

Next, we propose an explicit construction of an output minimizing segmentation for an arbitrary

aggregate market F (v). This construction is similar in spirit to the proof of Proposition 2. We again

write h(p) for the "size" of the market with price p, and Fp(v) for the conditional distribution of

valuations on market p. As in the �nite environment, we adopt a construction that starts by placing
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the highest value consumer in a segment with price equal to his own value. We then work our way

down through the values. Consumers with a given value will be apportioned out to all of the segments

with weakly higher prices. For this reason, we do not know how large each segment will be until

we reach the lowest valuation. Thus, it is convenient to work with the upper cumulative probability

1� Fp(v) of every segment p, and we de�ne the density of valuations v or higher in the segment p by:

Gp(v) , h(p)(1� Fp(v)): (27)

This quantity is analogous to the upper sums of yk used in the discrete case. After Gp (v) is obtained

for all v, we can recover h (p) from h (p) = Gp (0), and obtain the distribution over prices as:

H (p) =

Z p

v=0

Gv (0) dv;

and Fp (v) = 1� (Gp (v) =h (p)).
Let bv denote the critical valuation v which achieves the monopoly pro�t �� under perfectly dis-

criminatory pricing: Z 1

v=bv v f(v)dv = �
�,

and set q = 1 � F (bv) (which is the equivalent of (6) in the �nite environment). We construct the
segments Gp (v) for each p � bv as follows. We set Gp(v) , 0 for v > p. For bv < v � p, set Gp(v) = f(p).
For v� < v < bv, Gp(v) is de�ned by the di¤erential equation:

gp(v) = f(v)
p f(p)� v Gp(v)

v�(1� F (v�))� v(1� F (v)) : (28)

This is the analogue of the proportional allocation scheme in the previous section: we allocate a share

of f (v) to market p that is proportional to the "slack" in the incentive constraint pf (p) � v Gp (v).
The denominator is the integral of this slack over all markets. Note that when we get to v�, the slack

goes to zero and the weights are not de�ned. Nonetheless, the di¤erential equation is well de�ned for

v > v�. For v � v�, we set
Gp(v) = (1� F (v))

Gp(v
�)

1� F (v�) : (29)

This also mirrors the discrete construction, in which markets are proportional to the prior below the

monopoly price. Note that Gp (p) = f (p) if p � bv, and Gp (v) = 0 for v > p or p < bv, and so expected
pro�t will be Z

V

Z
v�p
v Gp (v) dvdp =

Z
p�bv p f(p)dp = �

�;
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and output will be exactly q. Hence, if Gp (v) is incentive compatible, then it will minimize output.

The revenue of the monopolist in market segment p if he sets price v is given by vGp(v), so the incentive

compatibility requirement says that v Gp (v) � p Gp (p) = p f(p) for all p:

Proposition 4 (Social Surplus Minimizing Segmentation)

There exists a direct segmentation, represented by segments Gp (v) (and associated Fp (v)) and distrib-

ution over segments H (p), that results in a conditionally e¢ cient equilibrium segmentation which has

zero consumer surplus, producer surplus of �� and output q.

We illustrate the preceding results with an example given by the uniform density on the unit

interval [0; 1]. In this case, the uniform monopoly price is v� = 1
2
. The consumer surplus maximizing

segmentation as derived in Proposition 3, leads to an associated distribution function of prices H (p)

given by:

H (p) = 1� 1� p
1� 2pe

� 2p
1�2p , for p 2

�
0;
1

2

�
. (30)

By contrast, the segmentation of the consumer in the surplus minimizing allocation as described by

Proposition 4 leads to a distribution function of prices given by:

H (p) = 2p2 � 1, for p 2
�
1p
2
; 1

�
.

The distributions of prices induced by these distinct direct segmentations are displayed below in Figure

3a, where the upper curve represents the surplus maximizing, the lower curve the surplus minimizing

distribution of prices.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

H(p)

Figure 3a: Distribution of Prices
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Figure 3b: Distribution of Sales

The surplus minimizing and maximizing distributions represent optimal pricing policies for distinct

segmentations of the same aggregate market. But even though they share the same aggregate market,

we �nd that have very di¤erent structure. In fact, the supports of prices do not overlap at all. These
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distinct price distributions also lead to very di¤erent allocations. The surplus maximizing pricing

policy generates all e¢ cient sales, and hence the distribution of sales, Q (v) = v exactly replicates

the aggregate distribution F (v), and in the current example, the uniform distribution. By contrast,

the surplus minimizing distribution truncates sales for values v below 1=
p
2. As we described in

Proposition 4, the allocation is conditionally e¢ cient, and hence Q (v) = v � 1=
p
2 for v 2 [1=

p
2; 1],

and zero elsewhere. These di¤erent patterns of sales are displayed in Figure 3b, where the upper curve

represents the surplus maximizing, the lower curve the surplus minimizing distribution of prices.

4 Discrimination and Segmentation: A Second Approach

So far, the construction of the extremal segmentations that generated the frontier of welfare outcomes

relied on two features of the environment. First, each consumer demanded a single unit of the good;

and second, the market could be segmented in an arbitrary manner consistent with the aggregation

requirement. In this section, we develop a di¤erent perspective on price discrimination that does not

rely on these assumptions. This permits us to investigate our original question in even broader settings:

What is the set of possible welfare outcomes over a range of feasible market segmentations?

In the earlier sections, a segment represented the willingness to pay for a single unit of the good by

di¤erent consumers. But a segment could just as well measure the willingness to pay of a single agent

who demands more than one unit. In this case, the optimal selling mechanism is not a posted price

but rather consists of a menu of quantity-price bundles to screen consumers, i.e. second degree price

discrimination. Using the tools of this section, we will analyze markets in which the seller employs a

combination of market segmentation and screening.

Pushing in a di¤erent direction, much of the existing literature on price discrimination has con-

sidered two (or �nitely many) exogenously given market segments and asked what would happen if

uniform pricing was relaxed to complete discrimination across the segments. There is an intermediate

case in which the monopolist can only segment based on noisy signals about the segments, rather

than the true underlying segments. The noisy signals e¤ectively induce segments which are convex

combinations of the original, exogenous segments. We refer to this as partial segmentation and we will

give examples of the set of welfare outcomes that can be generated by partial segmentation.

In this section, we restrict attention to the case where there are only two possible types of consumer.

This allows us to use a concavi�cation argument used in Kamenica and Gentzkow (2011) to construct

optimal information structures from the point of view of maximizing any weighted sum of consumer and
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producer surplus. Thus, this section both examines the substantive question of the robustness of our

analysis, by allowing a richer class of segmentations, as well as documenting a di¤erent methodology

for analyzing the problem.

4.1 Second Degree Price Discrimination

Up to now, we have considered models in which each buyer demands at most a single unit of the

product. We consider a general consumption problem in which the consumer has preferences over a

continuum of quantities, and in which the monopolist may use a more complicated mechanism to screen

consumers. We shall therefore look at a model of quantity discrimination and allow for fully nonlinear

tari¤s in each segment. Importantly, the nonlinear tari¤s can and will vary across segments. Thus, the

results of this section explore what happens when both second and third degree price discrimination

are possible.

We now consider a binary version of the model analyzed in the seminal paper by Maskin and Riley

(1984), and we can alternatively give our analysis a quality discrimination interpretation, as in the

work of Mussa and Rosen (1978). Suppose then that a good can be produced at a variety of quantities

q 2 R+. The utility function of an agent with type v is given by:

u (v; q; t) , vpq � t,

Hence, utility is concave in the quantity consumed. A proportion � of consumers have low willingness-

to-pay, vl > 0, while proportion 1 � � have high willingness-to-pay, with vh > vl. The �rm has

a positive and constant marginal cost of production of c > 0. It follows that the socially e¢ cient

quantity to produce is given by

q� (v) ,
� v
2c

�2
;

and e¢ cient social surplus is given by

v
p
q� (v)� cq� (v) = v2

4c
:

As before, we are interested in identifying all combinations of consumer and producer surplus that

could arise as a result of some market segmentation. With complete information, the producer extracts

all the surplus and gets the full gains from trade:

w (�) = �
v2l
4c
+ (1� �) v

2
h

4c
,



32

By contrast, if the producer has zero information beyond the prior distribution of the consumers,

then the optimal screening solution is for the producer to "exclude" the low valuation buyers if their

proportion � is su¢ ciently small:

� � b� , 1� vl
vh
,

and to sell the socially e¢ cient quantity q� (vh) to the high valuation buyer while extracting the entire

surplus. On the other hand, if the proportion of low valuation buyers is high, i.e., � � �̂, then the

high type is again sold the e¢ cient quantity q� (vh), but now the low type consumer receives quantity:

ql (�) ,
�
vl � (1� �) vh

2�c

�2
;

and pays

tl (�) , vl
(vl � (1� �) vh)

2�c
;

while the high type pays

th (�) ,
(vh � vl)2 + �vhvl

2�c
:

Thus, as a function of the composition � of the aggregate market, producer surplus is

� (�) ,

8<: (1� �) v
2
h

4c
, if � � 1� vl

vh
;

1
4�c

�
(vh � vl)2 � �vh (vh � 2vl)

�
; if � � 1� vl

vh
;

(31)

and consumer surplus is

u (�) ,

8<: 0, if � � 1� vl
vh
;

1��
2�c

(vh � vl) (vl � (1� �) vh) if � � 1� vl
vh
:

(32)

In Figure 4a we illustrate the pro�t � (�) and its concavi�cation �� (�), which are the lower and upper

curve, respectively. Similarly, the consumer surplus u (�), as well as its concavi�ed versions u� (�) are

displayed in Figure 4b by the lower curve and the upper curve respectively, all for vl = 1; vh = 2; c =

1=2.
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Figure 4a: � and

concavi�ed ��
Figure 4b: u and

concavi�ed u�

These illustrations immediately indicate some elementary properties of the pro�t maximizing or

consumer surplus maximizing segmentations, which hold true for all values 0 < vl < vh and c > 0.

The concavi�ed pro�t function �� (�) strictly dominates the convex pro�t function � (�) and hence

the seller always prefers pure segmentation, i.e. segments which contain either only low or only high

valuations customers. By contrast, it is indicated by the concavi�ed consumer surplus function that

the maximal consumer surplus is attained without any segmentation with a large share � of low

valuation buyers, whereas a small share � of low valuation buyers requires market segmentation to

achieve maximal consumer surplus. Given the binary type space, a segment is uniquely identi�ed by

the proportion of low valuation buyers. We denote by s a segment with a fraction  of low valuation

buyers.

We now describe the construction of the entire equilibrium payo¤ set. We describe the entire

frontier of the equilibrium payo¤ set as the solution to a weighted welfare maximization problem,

where we attach the weights �u and �� to the consumer and producer surplus respectively. Thus, the

objective function is �uu (�) + ��� (�). We shall restrict attention to the case where �u > 0, however,

the analysis extends to zero or negative weight on consumer surplus in a straightforward manner. With

the restriction to �u > 0, it is convenient to normalize the weight of the consumer surplus: �u , 1,

and vary the weight of the producer surplus, setting �� , � 2 R+, and thus the weighted sum is:

w� (�) , u (�) + �� (�) : (33)

The concavi�cation of the weighted sum w� (�) is given by a linear segment that connects w� (0) with

an interior point of the function w� (�), and a tangency point ��, that is uniquely determined as a
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function of the weight �:

�� =
(vh � vl) (2� �)
(2� �) vh � vl

: (34)

Proposition 5 (Segmentation and Second Degree Price Discrimination)

The weighted welfare sum w� (�) is maximized by :

1. for � > 1, pure segmentation; the population is divided into segments with s with  2 f0; 1g;

2. for � � 1, mixed segmentation;

(a) if � < ��, the population is divided into two segments s with  2 f0; ��g;

(b) if � � ��, the population is pooled in a single segment s�.

Proof. The weighted welfare sum w� (�) given by:

w� (�) =

8<: 1
4c
�v2h (1� �) ; if � � 1� vl

vh
;

1
4c�
�
�
(vh � vl)2 � �vh (vh � 2vl)

�
+ 1

2c�
(vh � vl) (vl � vh (1� �)) (1� �) ; if � > 1� vl

vh
:

The concavi�cation of w� (�), denoted by w�� (�), is given by a linear segment that connects w� (0)

with an interior point of the function w� (�), where the linear function has the form

l (�) , � 1
4c
v2h + ��,

and the tangency point �� and the slope of the linear segment � are obtained by the unique solution

of the tangency condition: l (�) = w� (�) ; l0 (�) = w0� (�), which uniquely determines � and �� as

follows

�� ,
((2� �) (vh � vl))
(vh � vl) + (1� �) vh

; � ,
1

4c

v2l � (2� �)�v2h
2� � :

We verify that the contact by the linear segment occurs in the interval (0; 1) ; i.e.

�� =
(vh � vl) (2� �)
(2� �) vh � vl

� 1,

and thus �nd that
(vh � vl) (2� �)
(2� �) vh � vl

� 1, � � 1.

which establishes the results.

Using this characterization, we can explicitly compute the set of equilibrium consumer and producer

surplus pairs. For any given �, we know that the expected payo¤s must be contained in a triangle
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as before: social surplus cannot be more than w� (�), consumer surplus is at least 0 and producer

surplus is at least � (�). But in contrast to the earlier analysis with linear rather than concave utility

in the quantity, the set of equilibrium payo¤s that can arise in some form of segmentation is given by

a strictly smaller set, namely the shaded area, and hence a strict subset of the surplus triangle.

We focus on the consumer surplus maximizing segmentation and the comparison with the equi-

librium surplus in the aggregate market. If there are few buyers with a low valuation, then in the

aggregate market, the seller will not o¤er a product to the low valuation agents. We refer to this as

the case of the exclusive prior. Here, in the equilibrium without any additional information, the seller

extracts all the surplus from the high valuation buyers, and the equilibrium is socially ine¢ cient. An

important consequence of the exclusive prior is that any non-trivial segmentation will increase social

surplus, and hence strictly increase the revenue of the seller and weakly increase the surplus of the

buyers. Importantly, in cases where there is non-trivial screening, any attempt to increase the surplus

of the buyers, and hence their information rent, leads to an ine¢ cient allocative decision by the seller.

In consequence, the e¢ cient frontier can only be reached with perfect segmentation s 2 fs0; s1g, as
illustrated for � = 1=3 in Figure 5a.

If the prior probability � is above the critical point b�, then the seller starts o¤ering a low quantity
version of the product to the low value buyers in the aggregate market, the case of the inclusive prior.

In contrast to the case of the exclusive prior, there now exist segmentations which strictly improve

the revenue of the seller while lowering consumer surplus. As before the e¢ cient frontier can be

attained only through perfect segmentation. Eventually, as � increases above �� > b�, the equilibrium
in the aggregate market leads to the largest possible consumer surplus. In fact, any segmentation

now increases the revenue of the seller and strictly decreases the surplus of the buyers. We have

thus arrived at an environment where segmentation (and hence additional information for the seller)

unambiguously increases his revenue and decreases consumer surplus. This is illustrated for � = 0:9

in Figure 5b.

Finally, if the share � of low value buyers is between b� and ��, then there are segmentations of the
aggregate market, in particular those involving s0 and s��, that can increase both the pro�ts of the

seller and the surplus of the buyers. The resulting equilibrium set then displays features of both of

the above sets. Namely, there are segmentations that increase both the consumer�s and the producer�s

as in the exclusive prior, but the Bayes Nash equilibrium of the aggregate market already leaves the

consumer with some information rent, just as in the above case of the inclusive prior with a large
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proportion � of low value buyers.5

Figure 5a: Quantity

discrimination, exclusive

prior.

Figure 5b: Quantity

discrimination, inclusive

prior.

4.2 Partial Segmentation

We conclude with a distinct interpretation of the quantity discriminating monopolist, which allows us

to link the present analysis more closely to the traditional analysis of third degree price discrimination.

We continue with the binary type model, but now take each type to represent a separate market with

a distinct demand function given by qi(p), with i = l; h. The aggregate demand function is given by:

q(p) , �ql(p) + (1� �) qh(p);

where � represent the share of the �low�demand market l. Our analysis follows the approach taken

in the previous subsection. We start by computing consumer and producer surplus as a function of �.

Then, for every possible (positive) weight of consumer and producer surplus, we �nd the concavi�cation

of the weighted sum of these two objectives. This is a versatile technique that can be used to solve

for the potential welfare consequences of partial segmentation for any demand speci�cation. We will

use the remainder of this section to exhibit the (numerical) solution of two prominent examples that

have been considered in the literature.
5We analyzed the problem of quantity discrimination with concave utility functions and linear cost function. In fact,

already in the model with a single unit demand, i.e. without quality discrimination, but increasing aggregate costs, the

above quali�cations regarding the set of attainable equilibrium payo¤s obtain.
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Linear Demand The classic example of market segmentation is that of two markets with linear

demand. This example was �rst explored in Pigou (1920), who famously concluded that uniform

price and full segmentation both result in the same output, but full segmentation allocates the good

ine¢ ciently and reduces welfare. In the linear example of Pigou (1920), demand is given in market

i 2 fl; hg by:

qi(p) =

8<: 0; if p � bi;
bi � p; if 0 � p < bi;

and we set bl = 1 and bh = b � 1 +
p
2. If the share of the low demand market is su¢ ciently small, or

� � b(b� 2)
(b� 1)2 , b�;

then it is optimal to exclude the low demand segment in the aggregate market by setting the uniform

price p� = b
2
. By contrast, if � � b�, then in the aggregate market it is optimal to serve both segments

at a price

p� =
b� (b� 1)�

2
:

We can readily compute producer and consumer surplus as:

� (�) =

8<: (1� �)
�
b
2

�2
; if � � ��;�

b�(b�1)�
2

�2
; if � > ��;

and

u (�) =

8<:
1��
2

�
b
2

�2
; if � < b�

1��
2

�
b� b�(b�1)�

2

�2
+ �

2

�
1� b�(b�1)�

2

�2
; if � � b�q:

For an inclusive prior � > b�, the frontier of welfare outcomes is generated by two families of segmen-
tations: the �rst consists of perfect discrimination, where one segment has demand qh and the other

has demand ql. The second family is indexed by:

� 2
�
0;
1� �
1� b�

�
;

and consists of a segment of size � with demand b�ql + (1� b�)qh, and a segment of size 1� � that has
demand ql + (1 � )qh where  = ���b�q

1�� . Note that � = 0 corresponds to a single segment which is

the aggregate market, and � = 1��
1�b� corresponds to having one segment consist of only low demand

consumers. Below we illustrate in Figure 6a the attainable equilibrium surplus set for b = 1+
p
2 and

� = 2
3
.
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Figure 6a: Pigouvian

Surplus Set

Figure 6b: Logistic Demand

Surplus Set

We see that even in this simple setting, there is a large set of possible welfare outcomes that can

result from partial segmentation. Nonetheless, uniform pricing remains the best for consumers, and

full segmentation is necessarily best for the producer.

Logistic Demand Our second example is drawn from Cowan (2012) and here demand follows the

logistic function for i 2 fl; hg:
qi(p) =

1

1 + exp (p� ai)
,

with ah > al > 0. With logistic demand, both markets are always served, full discrimination always

raises welfare, and under fairly general conditions full discrimination raises consumer surplus as well

(see Cowan (2012), (2013)).

For this demand speci�cation, there is no closed form expression for the optimal price as a function

of �. Nonetheless, it is straightforward to compute the optimal price numerically. We illustrate in

Figure 6b the attainable equilibrium surplus set for ah = 3, al = 1, and � = 0:5.

Similar to the Pigouvian example, the frontier of the welfare set is generated by two families of

segmentations: A family where one of the segment has only high demand consumers, and a family

where one segment has only low demand consumers. Both consumer surplus and welfare rise with full

discrimination. Interestingly, consumer surplus is not maximized at full discrimination, but rather at

a partial segmentation where one segment has only high demand consumers.

The takeaway from these examples is that even with restrictions on the form of segmentation,

such as a convex combination of two given segments, there will generally be a large set of possible

welfare outcomes due to partial segmentation. Many objectives, e.g., maximizing consumer surplus,
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will be achieved by segmentations that give the monopolist an intermediate level of information about

demand.

5 Conclusion

It was the objective of this paper to study the impact of information on the e¢ ciency and the distri-

bution of surplus in a canonical setting of monopoly price discrimination. We showed that additional

information above and beyond the prior distribution can have a substantial e¤ect on producer and

consumer surplus. In general, there are many directions in which welfare could move relative to the

benchmark of a uni�ed market. We showed that while additional information can never hurt the seller,

it can lead social and consumer surplus to both increase, both decrease, or respectively increase and

decrease. The range of these predictions is established without any restrictions on the distribution in

the aggregate market, and in particular does not rely on any regularity or concavity assumption with

respect to the aggregate distribution or pro�t function.

Exactly which form of market segmentation arises in practice is no doubt in�uenced by many

factors, which may include technological and legal limitations on how information can be collected and

used. In an age in which individuals are increasingly concerned about the preservation of privacy, it is

important to understand the welfare consequences that may result from companies amassing data on

consumers�preferences. Our �ndings indicate that the relationship between e¢ ciency and information

can only be understood in the context of how data will be used, and this crucially depends on the

preferences of those who collect the information. Thus, a natural and important direction for future

research is to better understand which forms of price discrimination will endogenously arise, and for

whose bene�t.
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6 Appendix for Online Publication

We establish Theorem 2 through a sequence of lemmas that begin by establishing general results about

sequences of direct segmentations. In the following, we take f�kg to be a convergent subsequence that
converges to �.

Lemma 2 For any sequence f�kg of direct segmentations on fxkg, there exists � and a subsequence
f�klgsuch that �kl ) �.

Proof. Since V 2 is a compact metric space, the space of Borel measures on V 2 is compact in the

weak topology. Moreover, this topology is metrizable with the Prokhorov metric. Compact metric

spaces are sequentially compact, so a subsequence of �k converges to some �.

The limit � is a measure on V 2, but at this point it is not clear that it is a direct segmentation. Weak

convergence guarantees that the expectation of any continuous function on V 2 under �k converges to

its expectation under �. But pro�t is not a continuous function; it has a discontinuity where v = p.

Indeed, there will be pricing rules for which � (�k; �) converges to something strictly less than � (�; �).

Nonetheless, for any �, there exists a �0 such that � (�k; �
0) does converge to � (�; �0), and � (�; �0) is

close to � (�; �).

Lemma 3 Suppose f�kg are direct segmentations such that �k ) �. Then for any � > 0 and pricing

rule �, there exists a pricing rule �0 such that

�(�; �0) > �(�; �)� �;

and

�(�k; �
0)! �(�; �0):

Proof. By Lusin�s theorem, for every ~�, there exists a continuous function �~� that is continuous

and coincides with � except on a set of measure ~�. Here, the measure is taken to be the marginal

measure of � on p, denoted �p(dp), i.e. for any Borel set Y � V , �p (Y ) = � (V � Y ). Note that
j�(�; �~�)� �(�; �)j < ~��v.
Now de�ne b�t , maxf0; �~�� t~�g for t 2 (0; 1). In other words, b�t is �~� translated down by t~�, with

truncation at zero. De�ne epi(h) , f(v; p) 2 V 2jv � h(p)g to be the epigraph of the Borel function
h : V ! V .
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Claim: If �~" 6= 0, there exists a t � 0 such that �(@epi(b�t)) = 0. For each t � 0, the @epi(b�t) are
disjoint sets; if �(@epi(b�t)) > 0 for all t, then taking the union over all such sets we would �nd that
the set V 2 has in�nite measure.

If �~" 6= 0, take any t such that �(@epi(b�t)) = 0, and let �0 = b�t. Otherwise, we can set �0 = �~" = 0.
Let Y = epi(�0). Note that the set Y is compact (being the epigraph of a continuous function) and

�-continuous. Write �kjY and �jY for the respective measures restricted to Y .
Claim: �kjY ) �jY . This is true if �kjY (Z) ! �jY (Z) for all Z � Y such that �jY (@Z) = 0.

Since �(@Y ) = 0, and @Z � Y (since Y is closed), then any �jY -continuous Z must also be �-

continuous, since �(@Z) = �(@Z \ @Y ) + �(@Z n @Y ) = �jY (@Z n @Y ) = �jY (@Z) = 0. Thus,

�kjY (Z) = �k(Z)! �(Z) = �jY (Z), and we are done.
Note that the function �0 is continuous when restricted to Y (since �0 itself is continuous). Since

�kjY ) �jY and �0 is zero outside of Y , we have

lim
k!1

� (�k; �
0) = lim

k!1

Z
V 2
�0(p)1v��0(p)�k(dv; dp)

= lim
k!1

Z
Y

�0(p)�kjY (dv; dp)

= lim
k!1

Z
Y

�0(p)�k(dv; dp)

=

Z
Y

�0(p)�(dv; dp)

=

Z
V 2
�0(p)1v��0(p)�(dv; dp)

= � (�; �0) :

And �nally, observe that �~� � ~� < �0 � �~�, so

�(�; �0) =

Z
V 2
�0(p)1v��0(p)�(dv; dp)

�
Z
V 2
�0(p)1v��~�(p)�(dv; dp)

= �(�; �~�)�
Z
V 2
(�~�(p)� �0(p))1v��~�(p)�(dv; dp)

� �(�; �~�)� ~�
Z
V 2
1v��~�(p)�(dv; dp)

� �(�; �~�)� ~�:

Thus,

�(�; �0) � �(�; �)� (�v + 1)~�
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So taking ~� < �
�v+1
, we have the desired result.

The �rst condition says that �0 achieves a payo¤ for the monopolist within � of �. The second

condition is that the payo¤ from � is continuous in the limit. Using this result, we can prove properties

of the limit measure �.

Lemma 4 Suppose f�kg are direct segmentations of fxkg such that �k ) r and xk ) x. Then � is

a direct segmentation of x. Moreover, u(�k)! u(�) and �(�k)! �(�).

Proof. First we show that � has x as a marginal measure. Take any continuous and bounded

function �(v) on V . Then clearly
R
V 2
�(v)�k(dv; dp) =

R
V
�(v)xk(dv)!

R
V
�(v)x(dv). But �(v) is a con-

tinuous function of (v; p) as well, so
R
V 2
�(v)�k(dv; dp)!

R
V 2
�(v)�(dv; dp). Thus,

R
V 2
�(v)�(dv; dp) =R

V
�(v)x(dv) for all continuous and bounded �(v), and we are done.

Note that (v � p)1v�p is continuous in v and p, so u(�k) ! u(�) follows from weak convergence.

To see that �(�k)! �(�), observe that p1v�p is upper semi-continuous, so lim supk!1 �(�k) � �(�).
Suppose the inequality is strict. Then by the previous Lemma, for every � > 0 there exists a pricing rule

�0 such that �(�k; �
0)! �(�; �0) � �(�)� �. But �(�k) � �(�k; �0), since �k is a direct segmentation,

a contradiction. Hence �(�k)! �(�).

Finally, we show that �(�) � �(�; �) for all pricing rules �. If not, again we can �nd an �0 such
that �(�; �0) > �(�) and �(�k; �

0) ! �(�; �0). But �(�k) � �(�k; �
0), so limk!1 �(�k) > �(�), a

contradiction.

We are now able to establish Theorem 2.

Proof of Theorem 2. Take � to be a limit of a subsequence of �k, and � to be a limit of a

subsequence of �k. We know that these limits exist and they are direct segmentations, and that � and

u converge continuously. All that remains to show is that � and u converge to the bounds for x.

For all k, we have �(�k) = maxp p(1�Fk(p)). So we can show that maxp p(1�Fk(p))! maxp p(1�
F (p)). Take v� to be the solution to maxp p(1 � F (p)). Since F has countably many discontinuities,
for every � > 0 there is a p� > v� such that F is continuous at p�, and v�(1�F (v�))�p�(1�F (p�)) < �.
Since p� is a continuity point, by weak convergence Fk(p�)! F (p�), so

lim
k!1

max
p
p(1� Fk(p)) � lim

k!1
p�(1� Fk(p�))

= p�(1� F (p�))

� v�(1� F (v�))� �
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showing that limk!1maxp p(1�Fk(p)) � maxp p(1�F (p)). Write pk for a solution tomaxp p(1�Fk(p));
the pk live in the compact set V , so there is a subsequence that converge to some p̂. Again, there is a

p� > p̂ at which F is continuous and

p�(1� F (p�)) = lim
k!1

p�(1� Fk(p�))

� lim
k!1

pk(1� Fk(pk))� �

and we are done.

Clearly u(�k) = 0 for all k, so u(�) = 0. Also, we know that u(�k) =
R
V
v xk(dv) � �(�k). Since

�(v) = v is a continuous function, u(�k)!
R
V
v x(dv)� �(��), and we are done.

Proof of Theorem 3. We verify that the solution (26) of the density:

h (p) =
(1� F (p�)) f (p) p�

(1� F (p�)) p� � (1� F (p)) pe
�

pZ
s=0

sf(s)
(1�F (p�))p��(1�F (s))sds

. (35)

solves the balancing condition:Z v

v

p

p� (1� F (p�))f (v)h (p) dp+
�
1� v (1� F (v))

p� (1� F (p�))

�
h (v) = f (v) . (36)

Thus inserting (35) into (36) we get:

Z v

v

p

p� (1� F (p�))f (v)
(1� F (p�)) f (p) p�

(1� F (p�)) p� � (1� F (p)) p

0@� pZ
s=0

sf (s)

(1� F (p�)) p� � (1� F (s)) sds

1A dp +

+

�
p� (1� F (p�))� v (1� F (v))

p� (1� F (p�))

�
(1� F (p�)) f (p) p�

(1� F (p�)) p� � (1� F (p)) pe
�

pZ
s=0

sf(s)
(1�F (p�))p��(1�F (s))sds

= f (v) ,

or

Z v

v

pf (p)

(1� F (p�)) p� � (1� F (p)) pe
�

pZ
s=0

sf(s)
(1�F (p�))p��(1�F (s))sds

dp = 1� e
�

vZ
s=0

sf(s)
(1�F (p�))p��(1�F (s))sds

.

So, after integration by parts, we get:

Z v

v

pf (p)

(1� F (p�)) p� � (1� F (p)) pe
�

pZ
s=0

sf(s)
(1�F (p�))p��(1�F (s))sds

dp = 1� e
�

vZ
s=0

sf(s)
(1�F (p�))p��(1�F (s))sds

.
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So, if we de�ne

H (p) = 1� e
�

pZ
s=0

sf(s)
(1�F (p�))p��(1�F (s))sds

then

h (p) = H 0 (p) =
pf (p)

(1� F (p�)) p� � (1� F (p)) pe
�

pZ
s=0

sf(s)
(1�F (p�))p��(1�F (s))sds

and so Z v

0

H 0 (p) dp = [H (p)]v0 = H (p)�H (0) .

The distribution function H (p) is everywhere continuous, and in particular does not have a mass point

at p = p� as the integral in the exponential diverges, that is

lim
p!p�

Z p

0

sf (s)

(1� F (p�)) p� � (1� F (s)) sds =1.

For the divergence of the integral, it is su¢ cient to establish that the term inside the integral grows

su¢ ciently fast as p! p�:
sf (s)

(1� F (p�)) p� � (1� F (s)) s:

By the p�test for divergence: Z 1

0

1

xp
dx

is convergent if and only if p < 1. It thus follows that the integral always diverges, (as it relies on the

square rather than the linear term, due to the �rst condition), and hence there is no mass point at the

optimal price v�. Namely, we can approximate the above ratio, using the quadratic polynomial:

f (x) = f (x0) + f
0 (x0) (x� x0) +

1

2
f 00 (x0) (x� x0)2

and applying it to the function X (s) as de�ned below:

X (s) , (1� F (s)) s;

we get

X 0 (s) = (1� F (s))� f (s) s; X 00 (s) = �2f (s)� f 0 (s) s;

and thus we have the following approximation, using the fact the 0�th term and the 1�st term vanish,
(the later due to the �rst order condition):

pf (p)

(2f (p�) + f 0 (p�) p�) (p� p�)2
:



46

The approximation rate is quadratic rather than sublinear and hence the integral diverges as p! p�.

Proof of Theorem 4. Write G(v) = 1 � F (v), and let Gp(v) be the density of consumers
who are o¤ered price p and have valuation at least v. Set Gp(v) = f(p) for p 2 [v̂; �v] and v 2 [v̂; p]
and Gp(v) = 0 for v > p. Note that for v � v̂,

R �v
v̂
Gp(v)dp =

R �v
v
f(p)dp = G(v). We construct

Gp(v) for v < v̂. We want to maintain Gp(v0) <
v f(v)
v0 . To that end, let gp(v) = d

dt
Gp(t)

��
t=v
. If

v G(v) < v� G(v�), set

gp(v) = g(v)
p f(p)� v Gp(v)
v� G(v�)� v G(v) ;

and otherwise set gp(v) =
p f(p)
v2
.

Claim 1:
R �v
v̂
Gp(v)dp = G(v). We already argued that this is true for v � v̂. For v < v̂, noteZ �v

v̂

Gp(v)dp =

Z �v

v̂

�
Gp(v̂) +

Z v̂

v

gp(t)dt

�
dp

= G(v̂) +

Z v̂

v

Z �v

v̂

gp(t)dp dt

= G(v̂) +

Z v̂

v

g(t)
v�G(v�)� t

R �v
v̂
Gp(t)dp

v�G(v�)� t G(t) dt:

By induction, if
R �v
v̂
Gp(t)dp = G(t) for all t < v, then it must be true for v as well, since the weight on

g(t) inside the integral is 1. Since it�s true for v = v̂, we are done.

Claim 2: Gp(v) � p f(p)
v

for all p and v. Suppose not, and let v0 be the largest v at which v Gp(v)

goes above p f(p) for some p, i.e. v Gp(v) > v0Gp(v0) = p f(p) for all v 2 (v0 � �; v0). Since Gp(v) is
di¤erentiable, it must be that

d

dt
[t Gp(t)]

����
t"v0

= �v0gp(v0) +Gp(v0) < 0:

Note that Gp(v0) � 0, since v Gp(v) � p f(p) for v � v0, and therefore gp(v) is positive on that region.
For the derivative at v0 to be negative, we would then need that v0gp(v0) > Gp(v0). However, from the

de�nition of gp(v) it�s clear that if v0G(v0) < v�G�(v), gp(v0) = 0, which would be a contradiction. If

v0G(v0) � v�G(v�), then gp(v0) = p f(p)
v02 , so

�v0gp(v0) +Gp(v0) = �
p f(p)

v0
+Gp(v

0) = 0;

again a contradiction. Hence, it must be that Gp(v) � p f(p)
v

for all v.
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Claim 3: v�Gp(v�) = p f(p). Follows easily from the previous two claims, sinceZ �v

v̂

p f(p)dp = v�G(v�)

=

Z �v

v̂

v�Gp(v
�)dp;

and Gp(v�) � p f(p)
v� for every p, so in fact they must be equal (almost everywhere).

In fact, it is always the case that Gp(v) = G(v)
Gp(v�)
G(v�) for v < v

�, for then

g(v)
v�Gp(v

�)� vGp(v)
v�G(v�)� vG(v) = g(v)

v�Gp(v
�)� vG(v)Gp(v

�)
G(v�)

v�G(v�)� vG(v)

= g(v)
Gp(v

�)

G(v�)
=
dGp
dv

so the ODE is satis�ed. The general solution for v > v� is

Gp(v) = e
R 1
v

xg(x)dx
v�G(v�)�xG(x)dx

 
e�

R 1
v̂

xg(x)
v�G(v�)�xG(x)dx + p

Z v

v̂

e�
R 1
x

yg(y)
v�G(v�)�yG(y)dyg(x)

v�G(v�)� xG(x) dx

!
;

and hence, the segments are linear interpolations between Gv̂(v) and G1(v).


