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(Ir)Rational Exuberance: Optimism, Ambiguity and
Risk

Anat Bracha∗ and Donald J. Brown†

June 18, 2013

Abstract

The equilibrium prices in asset markets, as stated by Keynes (1930): “...will
be fixed at the point at which the sales of the bears and the purchases of the bulls
are balanced.”We propose a descriptive theory of finance explicating Keynes’
claim that the prices of assets today equilibrate the optimism and pessimism of
bulls and bears regarding the payoffs of assets tomorrow.
This equilibration of optimistic and pessimistic beliefs of investors is a conse-

quence of investors maximizing Keynesian utilities subject to budget constraints
defined by market prices and investor’s income. The set of Keynesian utilities
is a new class of non-expected utility functions representing the preferences of
investors for optimism or pessimism, defined as the composition of the investor’s
preferences for risk and her preferences for ambiguity. Bulls and bears are defined
respectively as optimistic and pessimistic investors. (Ir)rational exuberance is
an intrinsic property of asset markets where bulls and bears are endowed with
Keynesian utilities.

JEL Classification: D81, G02, G11

Keywords: Keynes, Bulls and bears, Expectations, Asset markets

1 Introduction

“Irrational exuberance,”following Alan Greenspan, describes “unduly escalated asset
values.”Robert Shiller (2000; second edition 2005), in his now classic book, explains
irrational exuberance in the stock- and the real estate-markets by invoking 12 factors
taken from sociology, psychology and economics. Despite the contrast between the
rich account Shiller proposes for irrational exuberance and the minimalism of our
models of financial markets and investor’s psychology, we propose a rational model of
(ir)rational exuberance in asset markets. That is, the behavior of bulls and bears is
rational in the standard economic sense of agents maximizing (non-expected) utility
subject to a budget constraint, defined by market prices and the agent’s income. This
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new class of non-expected utilities, labeled Keynesian utilities, incorporates investor’s
preferences for optimism. Keynesian utility is an empirically tractable and descriptive
characterization of an investor’s preferences in financial markets, where she is either
a bull or a bear. Simply put, bulls are optimists who believe that market prices will
go up, while bears are pessimists who believe that market prices will go down. The
equilibrium prices in asset markets, as stated by Keynes (1930): “. . . will be fixed at
the point at which the sales of the bears and the purchases of the bulls are balanced.”
The market prices today therefore equilibrate the odds expected by bulls and bears
of the payoffs tomorrow. Keynesian utilities are defined as the composition of the
investor’s preferences for risk and her preferences for ambiguity, where preferences for
risk and preferences for ambiguity are assumed to be independent. If U(x) denotes
preferences for risk, and J(y) denotes preferences for ambiguity then

U : X ⊆ RN++ → Y ⊆ RN++

and
J : Y ⊆ RN++ → R

where
x→ J ◦ U(x)

is the composition of U and J , denoted J ◦ U(x).
In our model, bulls are investors endowed with convex Keynesian utilities and

bears are investors endowed with concave Keynesian utilities. It follows from convex
analysis that these specifications are equivalent to investors being bulls if and only if
they have optimistic beliefs about the future payoffs of state-contingent claims and
investors are bears if and only if they have pessimistic beliefs about the future payoffs
of state-contingent claims.

Table 1 below summarizes the types of Keynesian utilities, where the cells are
investors’ preferences for optimism and pessimism. An investor who is both risk
averse and ambiguity averse is a bear, i.e., a pessimist. Similarly, an investor who is
both risk seeking and ambiguity seeking is a bull, i.e., an optimist. These cases, the
diagonal cells of the table, are the symmetric Keynesian utilities and the off-diagonal
cells of the table are the asymmetric Keynesian utilities.

Table 1: Keynesian Preferences
Keynesian preferences Risk-averse Risk-seeking
Ambiguity-averse Bears Asymmetric
Ambiguity-seeking Asymmetric Bulls

Economists probably believe bears have Keynesian utilities that are the compo-
sition of ambiguity-averse preferences and risk-averse preferences or that bulls have
Keynesian utilities that are the composition of ambiguity-seeking preferences and
risk-seeking preferences, where we assume that both U and J are monotone. This
observation follows from the theorems in convex analysis on the convexity or concavity
of the composition of monotone convex or concave functions, see section 3.2 in Boyd
and Vandenberghe (2004). It may be surprising to economists that for asymmetric
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Keynesian utilities, given α, the proxy for risk, and β, the proxy for ambiguity, that
there exists a state-contingent claim x̂, “the reference point,” where for quadratic
utilities of ambiguity and risk, J ◦ U(x) is concave or pessimistic on

[x̂,+∞] ≡ {x ∈ RN+ : x ≥ x̂}

and J ◦ U(x) is convex or optimistic on

(0, x̂] ≡ {x ∈ RN+ : x ≤ x̂}.

That is, an investor with quadratic utilities of ambiguity and quadratic utilities
of risk is a bull for “losses,”and a bear for “gains,”reminiscent of the shape of risk
preferences in prospect theory (see Kahneman 2011).

In the next section we briefly review the theory of affective decision making (ADM)
which incorporates optimism bias as proposed by Bracha and Brown (2012). In Sec-
tions 3 and 4 we consider separable and quadratic specifications of utilities for risk
and ambiguity to illustrate Keynesian utilities where optimists are not always risk
and ambiguity seeking and pessimists are not always risk and ambiguity averse. In
the final section of the paper, we explicate Keynes’claim that the prices of assets to-
day equilibrate the optimism and pessimism of bulls and bears regarding the payoffs
of assets tomorrow. We consider market equilibrium in asset markets where investors
are endowed with Keynesian utilities. We prove the existence of a competitive equi-
librium, in a exchange economy with two states of the world, where market prices
reflect the payoffs of future asset realizations as perceived by bears who diversify and
bulls who speculate, i.e., invest only in assets with optimistic payoffs. Nevertheless,
with a continuum of bulls their aggregate demand is typically diversified. In a para-
metric, exchange economy with two states of the world and two types of bulls we
derive the comparative statics of the unique competitive equilibrium.

Finally, a few words about the notions of risk, uncertainty, ambiguity, and op-
timism as they are used in this paper. For Bernoulli (1738) risk means we know
the probabilities of tomorrow’s state of the world. For Keynes (1937) uncertainty
means we do not know the probabilities, in fact the notion of probability of states of
the world tomorrow may be meaningless. Ellsberg (1961) introduced the notion of
ambiguity as the alternative notion to risk, where we are ignorant of the probability
of states of the world tomorrow. For Ellsberg there are two kinds of uncertainty: risk
and ambiguity. These are the conventions we follow.

Optimism (pessimism) as proposed in Bracha and Brown refers to the investor’s
perceived probability, which is skewed towards the more favorable (unfavorable) out-
come and is defined with respect to state-utility vectors. The formulation of Bracha
and Brown is an elaboration of the notion of optimism bias introduced by Bracha
(2005) in her analysis of insurance markets. The contribution of ADM is the presen-
tation of a new class of preferences that provides a formal definition of optimism bias,
where the representation of ADM utilities as biconjugates of convex functions is sim-
ilar to the formal definition of ambiguity aversity in the representation of variational
preferences, introduced by Maccheroni, Marinacci, Rustichini (2006), as biconjugates
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of concave functions. This similarity suggests that in Bracha and Brown optimism
bias and ambiguity seeking have the same formal expression.

In this paper, we define optimism (pessimism) with respect to future outcomes of
state-contingent claims, not state-utility vectors, where optimism (pessimism) refers
to the investor’s perceived beliefs today regarding the relative likelihood of large
versus small payoffs of a state-contingent claim tomorrow. Optimism (pessimism) is
now a function of both the investor’s attitudes towards risk and her attitudes towards
ambiguity.

2 Optimism Bias and Preferences for Ambiguity

Ambiguity-neutral or subjective expected utility functions, originally proposed by
Savage (1954), as the foundation of Bayesian statistics, are a class of preferences
where the probability of an event is independent of the prize offered contingent on
that event. It therefore “... does not leave room for optimism or pessimism to play
any role in the person’s judgment” (Savage 1954; p. 68). This claim is inconsistent
with the view of Keynes who, as we previously noted, thought of the market price
as a balance of the sales of bears, the pessimists, and the purchases of bulls, the
optimists. And it is also not the view of Ellsberg (1961), whose explanation of his
famous Ellsberg paradox is that subjective probabilities depends on payoffs and is
therefore consistent with the notions of optimism or pessimism bias. Influenced by
Keynes and Ellsberg, Bracha and Brown (2012) proposed formal definitions of each
bias, where

J(U(x)) ≡ max
π∈RN++

[
∑

π · U(x) + J∗(π)]

is the Legendre—Fenchel biconjugate of the optimistic utility function J(U(x)) and

J(U(x)) ≡ min
π∈RN++

[
∑

π · U(x) + J∗(π)]

is the Legendre-Fenchel biconjugate of the pessimistic utility function J(U(x)). If
F (y) is a vector-valued map from RN into RN , then F is strictly, monotone increasing
if for all x and y ∈ RN :

[x− y] · [F (x)− F (y)] > 0.

If F (y) is a vector-valued map from RN into RN ,then F is strictly, monotone de-
creasing if for all x and y ∈ RN :

[x− y] · [F (x)− F (y)] < 0.

Bracha and Brown observed that J(z) is strictly convex in z where z = U(x) iff
∇zJ(z) is a strictly, monotone increasing map of z and J(z) is strictly concave in z
where z = U(x) iff ∇zJ(z) is a strictly, monotone decreasing map of z. See section
5.4.3 in Ortega and Rheinboldt (1970) for proof. If ∇zJ(z) is a strictly monotone
increasing map of z, then the investor beliefs are skewed towards the higher utility
outcomes of a given action, i.e., she is optimistic and if ∇zJ(z) is a strictly, monotone
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decreasing map of z, then the investor beliefs are skewed towards the lower utility
outcomes of a given action, i.e., she is pessimistic. It follows from the envelope
theorem,

∇zJ(z) = arg max
π∈RN++

[
∑

π · U(x) + J∗(π)] = π̂, where

J(U(x)) = max
π∈RN++

[
∑

π · U(x) + J∗(π)] =
∑

π̂ · U(x) + J∗(π̂)]

and
∇zJ(z) = arg min

π∈RN++
[
∑

π · U(x) + J∗(π)] = π̂, where

J(U(x)) = min
π∈RN++

[
∑

π · U(x) + J∗(π)] =
∑

π̂ · U(x) + J∗(π̂)]

If z = U(x), then it follows from ADM that the mathematical equivalence between
the convexity of J(z) with respect to z and the increasing monotonicity of the
gradient map ∇zJ(z) implies the behavioral equivalence between ambiguity seeking
and optimism bias. It also follows from variational preferences that the mathemat-
ical equivalence between the concavity of J(z) with respect to z and the decreasing
monotonicity of the gradient map ∇zJ(z) implies the behavioral equivalence between
ambiguity aversity and pessimism bias

In our 2012 paper, optimism (pessimism) is defined with respect to state-utility
vectors, U(x), which are unobservable. For empirical applications of optimism bias
and pessimism bias in asset markets, we require definitions of optimism or pessimism
for investors choosing state-contingent claims x. As we demonstrated in our previous
paper, the notions of optimism or pessimism depend on the structure of the investor’s
utility function. If the Keynesian composite utility function is convex (concave) in
x then the investor is optimistic (pessimistic). It follows from the envelope theo-
rem applied to the Legendre—Fenchel biconjugate representation of convex (concave)
functions, that the gradient of the investor’s utility function with respect to x is a
strictly monotone increasing (decreasing) map. The value of the gradient at x is the
investor’s perceived probability distribution for x. This definition of optimism or pes-
simism with respect to state-contingent claims is no longer a function of ambiguity
attitudes alone; rather, it depends on both the investor’s risk and ambiguity atti-
tudes. This is an immediate consequence of the chain rule in computing the gradient
of the composite Keynesian utility function. In the next two sections we illustrate
this joint dependence for additively separable and quadratic Keynesian utilities. In
this section, we define optimistic and pessimistic Keynesian utilities J ◦ U(x) over
state-contingent claims x.For bulls,

J ◦ U(x) ≡ max
π∈RN++

[
∑

π · x+ J∗(π)]

the Legendre—Fenchel conjugate of J ◦U(x), where J∗(π) is a smooth convex function
on RN++ and

J∗(π) ≡ max
x∈RN++

[
∑

π · x+ J ◦ U(x)].
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For bears,
J ◦ U(x) ≡ min

π∈RN++
[
∑

π · x+ J∗(π)]

the Legendre—Fenchel conjugate of J◦U(x), where J∗(π) is a smooth concave function
on RN++, and

J∗(π) ≡ min
x∈RN++

[
∑

π · x+ J ◦ U(x)].

As in Bracha and Brown, it follows from the envelope theorem,

∇xJ ◦ U(x) = arg max
π∈RN++

[
∑

π · x+ J∗(π)] = π̂, where

J ◦ U(x) = max
π∈RN++

[
∑

π · x+ J∗(π)] =
∑

π̂ · x+ J∗(π̂)]

and
∇xJ ◦ U(x) = arg min

π∈RN++
[
∑

π · x+ J∗(π)] = π̂, where

J ◦ U(x) = min
π∈RN++

[
∑

π · x+ J∗(π)] =
∑

π̂ · x+ J∗(π̂)].

The odds expected today by bulls or bears of the market prices tomorrow, for the
state-contingent claim x̂ is derived from the odds defined by ∇xJ ◦ U(x̂). That is,

∇xJ ◦ U(x)

‖∇xJ ◦ U(x)‖1
=

π̂

‖π̂‖1
∈ ∆0,

the interior of the probability simplex . Hence ∇xJ ◦U(x) and ∇xJ◦U(x)
‖∇xJ◦U(x)‖1

define the
same perceived betting odds that a given payoff of x will be realized. If J(U(x))
is ambiguity-seeking and U(y)and U(z) differ in only state t of the world, where
u(vt) > u(zt), the optimistic investor “perceives”that

Pr(u(vt)

1− Pr(u(vt))
>

Pr(u(zt))

1− Pr(u(zt))

and J(U(v)) > J(U(z)) consistent with Ellsberg’s explanation of ambiguity-seeking
behavior. Hence ambiguity-seeking investors are bulls. If J(U(x)) is ambiguity-
averse and U(y)and U(z) differ in only state t of the world, where u(vt) > u(zt).The
pessimistic investor “perceives”that

Pr(u(vt))

1− Pr(u(vt))
<

Pr(u(zt))

1− Pr(u(zt))

and J(U(v)) < J(U(z)) consistent with Ellsberg’s explanation of ambiguity-averse
behavior. Hence ambiguity-averse investors are bears.
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3 Separable Utilities for Risk and Ambiguity

In this section we examine the relationship between optimism/pessimism and risk
and ambiguity attitudes in the case of additively-separable Keynesian utility. We
start by taking a parametric example. Specifically, we consider utility functions on
the space of state-contingent claims and utility functions on the space of state-utility
vectors. That is,

J ◦ U(x) ≡
s=N∑
s=1

j ◦ u(xs)

J(U(x)) ≡
s=N∑
s=1

j(u(xs))

where

x ≡ (x1, x2, .., xN ), U(x) ≡ (u(x1), u(x2), ..., u(xN )) and j ◦ u(xs) ≡ xαβs .

If
u(xs) ≡ xβs then j ◦ u(xs) ≡ xαβs and j(u(x)) ≡ [(xβs )]α.

With this example, it is easy to see that optimistic or pessimistic investors, that
is investors with convex or concave composite Keynesian utilities, can result from
different combinations of risk and ambiguity attitudes. For instance, if β 6 2, then
u(xs) is concave in xs. If αβ 6 2, then α 6 2/β and j ◦u(xs) is concave in xs. Hence,
the composite utility function j ◦ u(xs) is pessimistic. If α > 2, then j(u(xs)) is
convex in u(xs). In this case, J ◦U(x) is concave in x and J(U(x))is convex in U(x)

If β 6 2, then u(xs) is concave in xs. If αβ > 2, then α > 2/β and j ◦ u(xs) is
convex in xs. Hence, the composite utility function j ◦ u(xs) is optimistic. If α > 2,
then j(u(xs)) is convex in u(xs). In this case, J ◦ U(x) is convex in x and J(U(x))
is convex in U(x). These examples show that since the value of αβ determines if the
investor is endowed with a pessimistic or optimistic Keynesian utility functions, it is
possible that investors can be pessimistic or optimistic over state-contingent claims
and be risk averse and ambiguity seeking over state-utility vectors.

We now present a nonparametric example of Keynesian utilities, where we again
consider additively-separable utility functions of the form

J ◦ U(x) ≡
s=N∑
s=1

j ◦ u(xs)

where u : R+ → R+ and j : R+ → R+. Here is a family of nonparametric examples.
If J ◦ U(x) is additively separable, then

∂J(y)

∂ys
=
dj(ys)

dys

and
∂J ◦ U(x)

∂xs
=
dj(ys)

dys

dys
dxs
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where ys = u(xs); x = (x1, x2, .., xN ) and y = (y1, y2, .., yN ).To check if J ◦ U(x) is
strictly concave in x, we compute the Hessian of J ◦ U(x), where we use the chain
rule:

∂2J ◦ U(x)

∂xs∂xr
=
∂
(
∂J◦U(x)
∂xr

)
∂xs

=
∂
(
dj(yr)
dyr

dyr
dxr

)
∂xs

=
∂
(
dj(yr)
dyr

dyr
dxr

)
∂xs

= 0 if s 6= r.

The diagonal of the Hessian

∂2J ◦ U(x)

∂x2
s

=

(
d2j(ys)

dy2
s

)(
dys
dxs

)2

+

(
dj(ys)

dys

)(
d2ys
dx2

s

)
for 1 ≤ s ≤ N

where
d2j(ys)

dy2
s

> 0 and
d2ys
dx2

s

< 0 for 1 ≤ s ≤ N.

Hence the Hessian matrix
∂2J ◦ U(x)

∂xs∂xr

is negative definite at x iff(
d2j(ys)

dy2
s

)(
dys
dxs

)2

+

(
dj(ys)

dys

)(
d2ys
dx2

s

)
< 0 for 1 ≤ s ≤ N.

In fact, every smooth, additively-separable concave (convex) utility function over
state-contingent claims can be represented as a Keynesian utility function. That is,
we now show: If F (x1, x2, ..., xN ) ≡

∑j=N
j=1 f(xj) is a smooth, monotone, concave

(convex) utility function on RN++ then F (x1, x2, ..., xN ) be represented as the compo-
sition of the investor’s concave (convex) preferences for risk and her concave (convex)
preferences for ambiguity. This representation is unique modulo the investor’s pref-
erences for risk.

Theorem 1 If f(w) is a smooth, monotone concave univariate function of w and
y = g(w) is a smooth, monotone concave univariate function of w. Then there exist
a smooth, monotone concave univariate function of y, h(y), such that for all w:

f(w) = h ◦ g(w).

Proof. Applying the chain rule

df

dw
≡ dh

dy

dy

dw
.

That is,
dh

dy
≡
[
df

dw

] [
dy

dw

]−1

.

Hence

h(y)− h(y0) ≡
∫ y

y0

dh

dy
dy ≡

∫ w

w0

[
df

dw

] [
dy

dw

]−1

dw
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where
y = g(w) and y0 = g(w0)

h(y) is smooth and monotone

If d
2f
dw2
≡ d2h

dy2

[
dy
dw

]2
+ dh

dy
d2y
dw2

thend
2h
dy2
≡
[
d2f
dw2
− dh

dy
d2y
dw2

]
/
[
dy
dw

]2
.

Hence

d2h
dy2

< 0⇔ d2f
dw2

< dh
dy

d2y
dw2

=
[
df
dw

] [
dy
dw

]−1
d2y
dw2
⇔ d2f

dw2
/ dfdw < d2y

dw2
/ dydw ⇔

d
dw ln

[
df
dw/

dy
dw

]
< 0⇔ ln

[
df
dw/

dy
dw

]
< K0 ⇔ df

dw < [expK0] dydw where K0 = ln
[
df
dw/

dy
dw

]
w0

That is, h(y) is concave on (y0,+∞). A similar argument suffi ces for convex f and
g.

4 Quadratic Utilities for Risk and Ambiguity

In this section we analyze the case of quadratic utilities and give the conditions
under which the investor is optimistic or pessimistic. Here we show that for some
class of asymmetric Keynesian utilities, that is when the investor is risk averse yet
ambiguity seeking or vice versa, there are regions where the investor is optimistic and
others where the investor is pessimistic. The intuition for the analysis in this section
derives from the following example of the composition of two quadratic univariate
polynomials, where we compute higher order derivatives of the composite function
using chain rules for higher derivatives attributed to Faa di Bruno – see Johnson
(2000) for the history. Here we follow the exposition in Spindler (2005). If

U(x) = β0 + β1x+ β
2x

2 ⇒ ∇xU(x) = β1 + βx⇒ ∇2
xU(x) = β ⇒ ∇3

xU(x) = 0

J(y) = α0 + α1y + α
2 y

2 ⇒ ∇yJ(y) = α1 + αy ⇒ ∇2
yJ(y) = α⇒ ∇3

yJ(y) = 0

then we denote the composition as J ◦ U(x). We use the chain rule to compute the
higher order derivatives of J ◦ U(x)

∇xJ ◦ U(x) = [∇U(x)J ◦ U(x)][∇xU(x)]

∇2
xJ ◦ U(x) = [∇2

U(x)J ◦ U(x)][∇xU(x)]2 + [∇U(x)J ◦ U(x)][∇2
xU(x)]

∇2
xJ ◦ U(x) = α[∇xU(x)]2 + [∇U(x)J ◦ U(x)]β

∇3
xJ ◦ U(x) = 2α[∇2

xU(x)][∇xU(x)] + [∇2
U(x)J ◦ U(x)][∇xU(x)]β = 3αβ[∇xU(x)]

∇4
xJ ◦ U(x) = 3αβ2

∇Kx J ◦ U(x) = 0 for K ≥ 5.

If [∇U(x)J ◦ U(x)] > 0, ∇xU(x) > 0 and sign(α) = sign(β) > 0, then ∇xJ ◦ U(x) >

0 and ∇2
xJ ◦ U(x) > 0.That is, J ◦ U(x) is a monotone, convex function of x. If
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∇U(x)J ◦U(x)] > 0, ∇xU(x) > 0 and sign(α) = sign(β) < 0, then ∇xJ ◦U(x) > 0 and
∇2
xJ◦U(x) < 0. That is, J◦U(x) is a monotone, concave function of x. We reduce the

multivariate case to the univariate case by assuming that the symmetric Keynesian
utilities of bulls and bears are specified by monotone, convex or concave quadratic
multivariate polynomials where the Hessians are positive or negative definite diagonal
matrices with equal eigenvalues.

We propose semiparametric specifications of preferences for risk and preferences
for ambiguity, defined by scalar proxies for risk and ambiguity: β and α. Piecewise
linear-quadratic functions were introduced by Rockafellar (1988). A function f :
RN → R̄ is called piecewise linear-quadratic if the domain of f can be represented as
the union of finitely many polyhedral sets, where relative to each set f(x) is of the
form 1

2xDx+ d · x+ δ, where δ ∈ R, d ∈ RN and D ∈ RN×N is a symmetric matrix.
A special case is where the domain of f consists of a single set. Concave quadratic
utility functions were introduced by Shannon and Zame (2002) in their analysis of
indeterminacy in infinite dimension general equilibrium models. f(x) is a concave
quadratic function if for all y and z :

f(y) < f(z) +∇f(z) · (y − z)− 1
2K ‖y − z‖

2 , where K > 0.

In addition,we assume that

min
z≤Θ
∇f(z) > 0, where Θ is the social endowment.

J ◦U(x) is the composition of a smooth, concave quadratic map U(x),where U(x) is
a diagonal N ×N matrix for each x ∈ RN++ and a smooth, convex quadratic function
J(y). If u : R+ → R+, then

U(x) ≡ (u(x1), u(x2), ..., u(xN ))

is the state-utility vector for the state-contingent claim

x = (x1, x2, ..., xN ).

If z = [z1, z2, ..., zN ] and w = [w1, w2, ..., wN ], then

z · w ≡ [z1w1, z2w2, ..., zNwN ]

is the Hadamard or pointwise product of z and w. If we define the gradient of
state-utiliy vector U(x) as the vector

∇xU(x) ≡ [∂u(x1), ∂u(x2), ..., ∂u(xN )]

then by the chain rule

∇xJ ◦ U(x) = [∇xU(x)] · [∇U(x)J(U(x))].

If
G(x) = z(x) · w(x),

10



where z(x) and w(x) ∈ RN++, then Bentler and Lee (1978) state and Magnus and
Neudecker (1985) prove that

∇xG(x) = ∇xz(x)diag(w(x)) +∇xw(x)diag(z(x))

The following analysis in this section derives from the following representation of
∇2
xJ ◦ U(x):

∇2
xJ ◦ U(x) = ∇x([∇xU(x)] · [∇U(x)J(U(x))])

= [∇2
U(x)J(U(x))](diag[∇xU(x)])2 + [∇2

xU(x)]diag[∇U(x)J(U(x))].

If U(x) is a concave quadratic map and J(y) is a convex quadratic function, then

∇2
xU(x) = −diag(β) < 0

and
∇2
yJ(y) = diag(α) > 0/

If A and B areNxN symmetric matrices then A - B iffA−B is negative semidefinite,
denoted: [A−B] . 0, where

∇2
xJ ◦ U(x) . 0 iff diag(α)diag[∇xU(x)]2 − diag(β)diag[∇U(x)J(U(x))] . 0

See matrix inequalities in section A.5.2 in Boyd and Vandenberghe for a discussion
of the partial ordering . on the linear vector space of N × N symmetric matrices.
For diagonal N ×N matrices E and F :

E . F ⇔ E ≤ F.

If Keynesian utilities are the composition of quadratic utilities for risk and quadratic
utilities for ambiguity, then all higher order derivatives, i.e., greater than four, are
zero. Hence this class of Keynesian utilities have representations as fourth order
multivariate Taylor polynomials. These results follow from repeated application of
the chain rule to derivatives of the Keynesian utilities.

Theorem 2 If J ◦U(x) is the composition of quadratic utilities for risk and quadratic
utilities for ambiguity,where

diag(β) = diag[∇2
xU(x)] and diag(α) = diag[∇2

U(x)J(U(x)]

then ∇Kx J ◦ U(x) ≡ 0 for K ≥ 5.

Proof. If
∇xJ ◦ U(x) = [∇xU(x)] · [∇U(x)J(U(x))].

then

∇2
xJ ◦ U(x) = diag(α)(diag[∇xU(x)])2 + diag(β)diag[∇U(x)J(U(x))]

11



∇3
xJ ◦ U(x) = 3diag(β)diag(α)diag[∇xU(x)]

∇4
xJ ◦ U(x) = 3[diag(β)]2[diag(α)]

∇Kx J ◦ U(x) = 0 for K ≥ 5.

In Theorems 2 and 3, we characterize asymmetric Keynesian utilities, where we
prove the existence of a reference point x̂ that partitions RN+ into the standard four
quadrants, with the reference point x̂ as the origin. J ◦ U(x) is concave in quadrant
I,where quadrant I ≡ {x ∈ RN+ : x ≥ x̂} and convex in quadrant III, where quadrant
III ≡ {x ∈ RN+ : x ≤ x̂} The Hessian of J ◦ U(x) is indefinite in quadrants II and
IV . That is, ∇2

xJ ◦U(x) is indefinite on RN+/{(x̂,+∞]∪(0, x̂]}. J ◦U(x) is optimistic
for “losses,” i.e., x ≤ x̂ and pessimistic for “gains,” i.e., x ≥ x̂, analogous with the
shape of the utility of risk in prospect theory – see figure 10 in Kahneman (2011). In
Theorems 4 and 5, we characterize symmetric Keynesian utilities or optimistic and
pessimistic investors.

Theorem 3 If J◦U(x), is the composition of U(x) and J(y),where (a) (y1, y2, ..., yN ) ≡
y = U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone, smooth, concave, diagonal
quadratic map from RN++ onto RN++, with the proxy for risk, −β < 0, (b) J(y) is
a monotone, smooth, convex quadratic function from RN+ into R, with the proxy for
ambiguity, α > 0, (c)

∇2
xJ ◦ Û(x) = diag(α)(diag[∇xÛ(x)])2 − diag(β)diag[∇U(x)J(Û(x))]: Chain Rule

then there exists a reference point x̂ such that the financial market data D is ratio-
nalized by the composite function J(U(x)) with two domains of convexity: (x̂,+∞]
and (0, x̂], where J ◦ U(x) is concave on (x̂,+∞] and J ◦ U(x) is convex on (0, x̂].

Proof.
∇2
xU(x) = −diag(β) where β > 0: Risk-Averse

∇2
U(x)J(U(x)) = diag(α) where α > 0: Ambiguity-Seeking

∇2
xJ ◦ U(x) = diag(α)(diag[∇xU(x)])2 − diag(β)diag[∇U(x)J(U(x))]: Chain Rule

lim
‖x‖∞→∞

∥∥diag[∇U(x)J(U(x))]−1diag[∇xU(x)]2
∥∥
∞ = 0

diag[∇U(x)J(U(x))]−1diag[∇xU(x)]2 ≤ diag[∇U(x)J(U(x̂))]−1diag[∇xU(x̂)]2 ≤ diag[βα ]: Bears

lim
x→0

∥∥diag[∇U(x)J(U(x))]diag[∇xU(x)]−2
∥∥
∞ = 0

diag[∇U(x)J(U(x))]−1diag[∇xU(x)]2 ≤ diag[∇U(x)J(U(x̂))]diag[∇xU(x̂)]−2 ≤ diag[αβ ]: Bulls
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Theorem 4 If J◦U(x), is the composition of U(x) and J(y),where (a) (y1, y2, ..., yN ) ≡
y = U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone, smooth, convex, diagonal quadratic
map from RN++ onto RN++ with the proxy for risk, β > 0, (b) J(y) is a monotone,
smooth, concave quadratic function from RN+ into R with the proxy for risk, −α < 0,
(c)

∇2
xJ ◦ Û(x) = −diag(α)(diag[∇xÛ(x)])2 + diag(β)diag[∇U(x)J(Û(x))]: Chain Rule

then there exists a reference point x̂ such that the financial market data D is ratio-
nalized by the composite function J(U(x)) with two domains of convexity: (x̂,+∞]
and (0, x̂], where J ◦ U(x) is concave on (x̂,+∞] and J ◦ U(x) is convex on (0, x̂].

Proof.
∇2
xU(x) = diag(β) where β > 0: Risk-Seeking

∇2
Û(x)

J(U(x)) = −diag(α) where α > 0: Ambiguity-Averse

∇2
xJ ◦ Û(x) = −diag(α)(diag[∇xÛ(x)])2 + diag(β)diag∇U(x)J(Û(x))]: Chain Rule

lim
‖x‖∞→∞

∥∥∥diag[∇U(x)J(Û(x))]diag[∇xÛ(x)]−2
∥∥∥
∞

= 0

diag[∇U(x)J(Û(x))]diag[∇xÛ(x)]−2 ≤ diag[∇U(x)J(Û(x̂))]diag[∇xÛ(x̂)]−2 ≤ diag[αβ ]: Bears

lim
‖x‖→0

∥∥∥diag[∇U(x)J(Û(x))]−1diag[∇xÛ(x)]2
∥∥∥
∞

= 0

diag[∇U(x)J(Û(x))]diag[∇xÛ(x)]−2 ≤ diag[∇U(x)J(Û(x̂))]diag[∇xÛ(x̂)]−2 ≤ diag[βα ]: Bulls.

Theorem 5 If J◦U(x), is the composition of U(x) and J(y),where (a) (y1, y2, ..., yN ) ≡
y = U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone, smooth, concave, diagonal
quadratic map from RN++ onto RN++, with the proxy for risk, −β < 0, (b) J(y) is
a monotone, smooth,concave quadratic function from RN++ into R,with the proxy for
ambiguity, −α < 0, (c)

∇2
xJ ◦ Û(x) = −diag(α)(diag[∇xÛ(x)])2 − diag(β)diag[∇U(x)J(Û(x))]: Chain Rule.

then J ◦ U(x) is concave on RN++.

Proof.
∇2
xU(x) = −diag(β) where β > 0: Risk-Averse

∇2
Û(x)

J(U(x)) = −diag(α) where α > 0: Ambiguity-Averse

∇2
xJ ◦ U(x) = −diag(α)(diag[∇xU(x)])2 − diag(β)diag[∇U(x)J(U(x))] < 0: Bears.
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Theorem 6 If J◦U(x), is the composition of U(x) and J(y),where (a) (y1, y2, ..., yN ) ≡
y = U(x) ≡ (u(x1), u(x2), ..., u(xN )) is a monotone, smooth, convex, diagonal quadratic
map from RN++ onto RN++, with the proxy for risk, β > 0, (b) J(y) is a monotone,
smooth, convex quadratic function from RN++ into R,with the proxy for ambiguity,
α > 0, (c)

∇2
xJ ◦ Û(x) = diag(α)(diag[∇xÛ(x)])2 + diag(β)diag[∇U(x)J(Û(x))]: Chain Rule

then J ◦ U(x) is convex on RN++.

Proof.
∇2
xU(x) = −diag(β) where β > 0: Risk-Averse

∇2
Û(x)

J(U(x)) = −diag(α) where α > 0: Ambiguity-Averse

∇2
xJ ◦ U(x) = diag(α)(diag[∇xU(x)])2 + diag(β)diag[∇U(x)J(U(x))] > 0: Bulls.

5 Equilibrium Prices in Asset Markets

Recall the Keynesian aphorism: “The equilibrium prices in asset markets will be
fixed at the point at which the sales of the bears and the purchases of the bulls
are balanced.” In this final section, we explicate Keynes’ claim that the prices of
assets today equilibrate the optimism and pessimism of bulls and bears regarding
the payoffs of assets tomorrow. We assume, that the consumption sets of investors
are convex, open subsets of RN containing the positive orthant and that investors
maximize smooth, monotone concave or smooth, monotone convex Keynesian utility
subject to a budget constraint. The budget constraint is defined by market prices
and the investor’s income.

Bears maximize a smooth, monotone, concave (pessimistic) Keynesian utility;
deriving the asset demand of bears is therefore a standard application of the Karush—
Kuhn—Tucker (KKT) Theorem, where in our case the Slater constraint qualification
is trivially satisfied (see Boyd and Vandenberghe (2004)). For this reason, the first
order conditions for a saddle-point of the Lagrangian are necessary and suffi cient for
optimality. For bears, the utility maximizing optimum may be in the interior of the
positive orthant. where the expected odds today, by bears, of tomorrow’s market
prices are equal to the odds determined by today’s market prices.

Bulls maximize a monotone, convex (optimistic) Keynesian utility subject to a
budget constraint. This is quite a different problem: the optimum in this case is
achieved at an extreme point of the budget set (Rockafellar 1970). If there are only
two states of the world, where the market prices are (1,1) and the investor’s income is
1, then the extreme points of the budget set are (0,0), (0,1) and (1,0). For a monotone
convex utility function, the optimum is achieved at (0,1) or (1,0), the corners of the
budget line. More generally, the utility maximizing optimum for bulls is always on
the boundary of the positive orthant, i.e., bulls speculate on the most optimistic
outcomes.

14



We consider a two period investment model with two states of the world, where
x = (x1, x2) is a state-contingent claim and today’s state prices are (p1, p2).

Example 7 If the investor’s income today is I and she is endowed with convex Key-
nesian utilities, UBulls(x), then her optimal investment problem is (P ):

max{UBulls(x) | −x1 ≤ 0,−x2 ≤ 0, p · x− I ≤ 0}

where the Fritz John Lagrangian for constrained maximization

L(x1, x2, λ0, λ1, λ2, λ3) ≡ λ0UBulls(x)− λ1[−x1]− λ2[−x2]− λ3[p · x− I]

Theorem 8 [Fritz John ]: If x∗is a local maximizer of (P ) then there exists multi-
pliers λ∗ ≡ (λ∗0, λ

∗
1, λ
∗
2, λ
∗
3) � 0 such that:

λ∗0(∂x1UBulls(x
∗), ∂x2UBulls(x

∗)) = (−λ∗1 + λ∗3p1,−λ∗2 + λ∗3p2),

where λ∗0 = 1, by Theorems 19.12 in Simon and Blume.

Corollary 9 Corollary 10 (a) If x∗ = (0, x∗2), then

λ∗0(∂x1UBulls((0, x
∗
2)), ∂x2UBulls((0, x

∗
2)) = (−λ∗1 + λ∗3p1, λ

∗
3p2)

It follows that some bulls are more optimistic than the market that tomorrow’s state
of the world is state 2. That is,

∂x2UBulls((0, x
∗
2))

∂x1UBulls((0, x
∗
2))

=
λ∗3p2

−λ∗1 + λ∗3p1
>
p2

p1

(b) If x∗ = (x∗1, 0),then

λ∗0(∂x1UBulls((x
∗
1, 0)), ∂x2UBulls((x

∗
1, 0)) = (λ∗3p1,−λ∗2 + λ∗3p2)

It follows that the other bulls are more optimistic than the market that tomorrow’s
state of the world is state 1. That is,

∂x1UBulls((x
∗
1, 0))

∂x2UBulls((x
∗
1, 0))

=
λ∗3p1

−λ∗2 + λ∗3p2
>
p1

p2

Example 11 If the investor’s income today is I and she is endowed with concave
Keynesian utilities UBears(x), then her optimal investment problem is (P ):

max{UBears(x) | x1 ≥ 0, x2 ≥ 0, I − p · x ≥ 0}

where the KKT Lagrangian for constrained maximization

L(x1, x2, λ) ≡ UBears(x) + λ3[I − p · x] + λ1x1 + λ2x2.
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Theorem 12 [Karush—Kuhn—Tucker] If Slater’s constraint qualification is satisfied
then x∗ is a maximizer of (P ), where x∗ ∈ RN+ , iff there exists a multipliers λ∗ ≡
(λ∗3, λ

∗
1, λ
∗
2) � 0 such that:

(∂x1UBears(x
∗), ∂x2UBears(x

∗)) = (λ∗3p1 − λ∗1, λ∗3p2 − λ∗2).

Corollary 13 (a) If x∗ = (0, x∗2),then

(∂x1UBears((0, x
∗
2)), ∂x2UBears((0, x

∗
2)) = (λ∗3p1 − λ∗1, λ∗3p2).

It follows that some bears are more pessimistic than the market that tomorrow’s state
of the world is state 1. That is,

∂x1UBears((0, x
∗
2))

∂x2UBears((0, x∗2))
=
λ∗3p1 − λ∗1
λ∗3p2

<
p1

p2

(b)If x∗ = (x∗1, 0), then

(∂x1UBears(x
∗), ∂x2UBears(x

∗)) = (λ∗3p1 − λ∗1, λ∗3p2).

It follows that other bears are more pessimistic than the market that tomorrow’s state
of the world is state 2. That is,

∂x2UBears((x
∗
1, 0))

∂x1UBears((x∗1, 0))
=
λ∗3p2 − λ∗2
λ∗3p1

<
p2

p1

Theorem 14 (a) At the market prices (p1, p2), some bulls trade Arrow—Debreu state-
contingent claims for state 2 with bears for Arrow—Debreu state-contingent claims for
state 1. That is,

∂x2UBulls((0, x
∗
2))

∂x1UBulls((0, x
∗
2))

>
p2

p1
≥ ∂x2UBears((x

∗
1, 0))

∂x1UBears((x∗1, 0))

(b) At the market prices (p1, p2), other bulls trade Arrow—Debreu state-contingent
claims for state 2 with other bulls for Arrow—Debreu state-contingent claims for state
1. That is,

∂x2UBulls((0, x
∗
2))

∂x1UBulls((0, x
∗
2))

>
p2

p1
>
∂x2UBulls((x

∗
1, 0))

∂x1UBulls((x
∗
1, 0))

.

(c) At the market prices (p1, p2), some bulls trade Arrow—Debreu state-contingent
claims for state 1 with bears for Arrow—Debreu state-contingent claims for state 2.
That is,

∂x1UBulls((x
∗
1, 0))

∂x2UBulls((x
∗
1, 0))

>
p1

p2
≥ ∂x1UBears((0, x

∗
2))

∂x2UBears((0, x∗2))
.

(d) At the market prices (p1, p2), other bulls trade Arrow-Debreu state-contingent
claims for state 1 with other bulls for Arrow—Debreu state-contingent claims for state
2. That is,

∂x1UBulls((x
∗
1, 0))

∂x2UBulls((x
∗
1, 0))

>
p1

p2
>
∂x1UBulls((0, x

∗
2))

∂x2UBulls((0, x
∗
2))

.
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Corollary 15 The important difference between the investments of bulls and bears
is that bulls only speculate, but bears may speculate or diversify. That is,

x∗Bulls = (x∗1, 0) or x∗Bulls = ((0, x∗2))

and

x∗Bears = (x∗1, 0) or x∗Bears = ((0, x∗2)) or
∂x1UBears(x

∗)

∂x2UBears(x∗)
=
p1

p2
, where x∗ ∈ RN++.

The last two examples, suggests a neoclassical model of (ir)rational exuberance in
asset markets, where investors are bulls and bears who maximize Keynesian utilities
subject to budget constraints, defined by market prices and the investor’s income.
Consequently, bulls speculate and “bet” on the optimistic realization tomorrow of
state 2 or state 1, but bears diversify and choose a portfolio with Arrow—Debreu
state-contingent claims for both states. The aggregate demand of bulls is diversified.
That is, the aggregate demand of the bulls is the “average”of the demands of the bulls
expecting state 2 to be realized tomorrow and the demands of the bulls expecting
state 1 to be realized tomorrow. Hence the aggregate demand of bulls is typically in
RN++

Theorem 16 If there is a finite number of investor classes, where in each class
investors have the same income and in each class, there is a continuum of bulls
with different utilities and a continuum of bears with the same utilities, then market
clearing competitive prices exist in asset markets.

Proof. For each vector of market prices, the asset demands of optimistic investors
are concentrated on the corners of their common budget line. The sum of the means
of these distributions over all income classes is the aggregate demand of bulls at the
given market prices. In the two states of the world example, we assume a fraction ρ of
the subclass of bulls with income I demand (0, x∗2(p, I)) and a fraction (1− ρ) of the
subclass of bulls with income I demand (x∗1(p, I), 0). Hence the aggregate demands
at market prices p for the subclass of optimistic investors with income I is

(1− ρ)(x∗1(p, I), 0) + ρ(0, x∗2(p, I)) = [(1− ρ)(x∗1(p, I), ρ(0, x∗2(p, I))] > 0.

The aggregate demands of the subclass of pessimistic investors or bears is the sum of
the means of the distribution of their demands over all income classes. Neoclassical
competitive market prices clear the asset markets if the sum of aggregate demands
of bulls and bears at these prices equals the aggregate supply of assets.

Example 17 Here is an example of existence of a competitive equilibrium in an ex-
change economy with two states of the world.. There is a continuum of bulls indexed
on [0, 1] and a continuum of bears indexed on [0, 1]. The sum of the average endow-
ments of the bulls, ΘBulls, and the average endowments of the bears, ΘBears, define
the average social endowment Θ ≡ ΘBulls +ΘBears. We construct the associated Edge-
worth box, where the X-axis is the payoff of the average social endowment in state 1
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and the Y -axis is the payoff of the average social endowment in state 2. Zero is the
origin of the positive orthant for bulls, i.e., x ≥ 0 and Θ is the origin of the positive
orthant for bears, i.e., y ≤ Θ. If p = (p1, p2) is any vector of positive state prices, i.e.,
the payoffs of the A−D securities tomorrow, where p ·ΘBulls ≡ I and p ·ΘBears ≡ J ,
then as in the earlier example there exists a fraction ρ ∈ (0, 1) of bulls who demand
the asset with payoffs (1p1, 0) and a fraction (1− ρ) ∈ (0, 1) of bulls who demand the
asset with payoffs (0, 1/p2). Hence aggregate demand of the bulls at state prices p is

z ≡
(
ρ
I

p1
, (1− ρ)

I

p2

)
.

In the Edgeworth box, z is a point on the interior of the budget line p · x = I, where
x = (x1, x2) is a state-contingent claim in the positive orthant for bulls. In this
example, if every bear maximizes utility subject to the budget constraint p · y = J ,
where y = Θ−x and z is a state-contingent claim in the positive orthant for the bulls
, then [p; z,Θ − z] is a competitive equilibrium in any exchange economy, where all
bears are endowed with the same concave utility function U(y) and

Θ− z = arg max
p·y=J

U(y).

Of course, a much less restrictive existence proof of a competitive equilibrium in an
exchange economy with a continuum of traders is the well-known existence theorem
of Aumann (1969), where agents need not be endowed with convex preferences, i.e.,
quasi-concave preferences, and consumption sets are RN+ .

Example 18 Here is an example of comparative statics in an exchange economy
with two states of the world, where there is one type of bears and two types of bulls.
Bulls and bears have additively-separable utilities, hence representable as Keynesian
utilities by Theorem 1. Both types of bulls have the same income LBull, hence the
same budget set for any pair of market prices. Bears are endowed with Cobb—Douglas
utilities, so their demands are never at the corners of the budget line, but bulls are
endowed with smooth, monotone quadratic, convex utilities and their demands are
only at the corners. The distribution of bulls is defined by ρ ∈ [0, 1]. ρ is the % of
type 1 bulls. Type 1 bulls only demand A−D securities for state 1. (1− ρ) is the %
of type 2 bulls. Type 2 bulls only demand A−D securities for state 2. The demand
functions for the bears are

XBear(p1, p2; IBear) =

(
αIBear

p1
,
βIBear

p2

)
where α+ β = 1 and α, β > 0.

The demand functions for the bulls are

XBull1(p1, p2; IBull) = ρ

([
IBull

p1

]2

, 0

)
and XBull2(p1, p2; IBull) = (1−ρ)

(
0,

[
IBull

p2

]2
)
.

Hence XBull(p1, p2; IBull), is the aggregate demand of the bulls ,where

XBull(p1, p2; IBull) ≡ XBull1(p1, p2; IBull)+XBull2(p1, p2; IBull) =

(
ρ

[
IBull

p1

]2

, (1− ρ)

[
IBull

p2

]2
)
.
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If state 2 is the numeraire, i.e.,

p2 = 1 and p1 > 0

then it follows from Walras’ law that it suffi ces to find p1 such that the market for
state 1 clears. If

ρ[
IBull

p1
]2 +

αp1IBear

p1
= ω1,

where ω ≡ (ω1, ω2) is the social endowment,then the equilibrium price

p1 =
αIBear ± ([αIBear]

2 + 4ρ[IBull]
2ω1)1/2

2ω1
,

where the critical value for ρ is 0. That is,

if ρ→ 0 then p1 → 0 or p1 →
αIBear

ω1
where p1 ≤ 0 is infeasible.

The unique, feasible equilibrium price

p1(ρ) ≡ αIBear + ([αIBear]
2 + 4ρ[IBull]

2ω1)1/2

2ω1
,

where p1(ρ) is a strictly concave,monotone function of ρ on (0, 1].
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