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Abstract

Why did evolution not give us a utility function that is offspring alone? Why do we

care intrinsically about other outcomes, such as food, and what determines the intensity

of such preferences? A common view is that such other outcomes enhance fitness and

the intensity of our preference for a given outcome is proportional to its contribution

to fitness. We argue that this view is incomplete. Specifically, we show that in the

presence of informational asymmetries, the evolutionarily most desirable preference for

a given outcome is determined not only by the significance of the outcome, but by the

Agent’s degree of ignorance regarding its significance. Our model also sheds light on

the phenomena of peer effects and prepared learning, whereby some peer attitudes are

more influential than others.
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1 Introduction

Despite a steady trickle of research on the issue over the last 20 years, it remains unconven-

tional to consider the biological basis of utility or preferences.1 This approach holds out the

promise of generating a utility function with the key economic properties of being exogenous

and invariant. At first blush, such a biologically derived utility would value commodities

in accordance with their impact on fitness– we should value food, for example, in terms of

its marginal contribution to biological success. However, on reflection, a serious conceptual

problem arises– why have we been made to care about anything other than offspring?2 Why,

that is, if we are rational and intelligent, are we not programmed to like only offspring and

then to treat food, for example, as purely instrumental, as a means to an end? There seems

little doubt that there are many biologically intermediate goods that are nevertheless valued

intrinsically. In modern times, indeed, we readily sacrifice expected offspring to increase con-

sumption of other commodities. The recent “demographic transition,”during which incomes

rose but fertility fell is dramatic prima facie evidence on this score.

We consider a solution to this conundrum in terms of information. On the one hand,

there are relevant aspects of the environment that are “recurrent signals” in the sense of

having a long evolutionary history. For example, sunlight has long had an effect in aiding

Vitamin D production and thereby enhancing health and fitness.3 Nature then has had the

opportunity to incorporate a liking for the sun in the utility function. On the other hand,

there are relevant aspects of the environment that are “transient signals” in the sense of

being local in time and space, and having arisen only rarely before, or perhaps never. These

signals might concern likely locations in which to sunbathe, for example. Natural selection

could not have been brought to bear directly on these aspects of the environment.

We assume that utility is shaped by Nature in the light of the recurrent signals only. The

individual maximizes the expectation of his utility, conditioning on both the recurrent and

transient signals, but using arbitrary beliefs. We derive two general results. First, despite

Nature’s inability to anticipate the transient signal, and despite the Individual’s holding

arbitrary beliefs, the equilibrium action chosen by the Individual is the best possible in

the sense of maximizing expected fitness conditional on both signals. Second, the resulting

marginal utility of an action is determined not by the marginal contribution of that action

1Robson (2001) argues that a utility function serves as a method for Nature to partially decentralize
control, thus achieving a flexible response to novelty.

2The number of offspring is assumed to be appropriately adjusted for quality throughout the paper.
3The full importance of Vitamin D was only recently recognized.
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to fitness, but by the Individual’s degree of ignorance regarding such contribution.

Our theoretical approach is an instance of the principal-agent problem. In this inter-

pretation, the principal (Nature), maximizes the productivity of the agent (Individual) by

choosing the agent’s utility function. While the principal-agent perspective is illuminating,

there are no formal techniques or results that can be directly imported from the existing

literature.4 In fact, the specific principal-agent problem we consider is not meaningful in

conventional economic applications. Most significantly, we assume that (i) the principal has

the power to fully shape the agent’s preferences, (ii) all actions of the agent are contractible,

and (iii) the principal has information that cannot be directly communicated to the agent,

despite the parties having parallel interests in the information.

A paper that can be described in analogous terms is Samuelson & Swinkels (2006), who

also consider an environment in which both Nature and the Individual possess relevant

information. In an ideal case, the Individual would maximize expected fitness. In their

work, unlike ours, there is an emphasis on second-best solutions that provide a rationale for

behavioral biases.

Our focus throughout is on “primary”rather than “secondary”arguments of utility. That

is, we consider arguments that are desired as ends in themselves rather than as means to

an end. There are many primary arguments, of course. For example, Linden’s list includes

food, prestige, temperature, a view, and sex (see Linden, 2011). Bentham lists 26 categories

of “simple”pleasures and pains (Bentham, 1789). Perhaps the most salient example of a

secondary argument is money, which is fundamentally only a means to an end from the

perspective of the individual.5

The remainder of the paper is organized as follows:

Section 2 outlines the basic model and considers a different direct mechanism by which

evolution could implement the optimal choice. We dismiss as unrealistic the possibility that

the Individual’s beliefs match the true distribution. This leaves us with a mechanism in

which Nature shapes utility in the light of her recurrent information and the individual

maximizes expected utility conditional on arbitrary beliefs.

4In spirit, ours is a model of delegation. See, for example, Holmstrom (1984), Aghion & Tirole (1997),
Dessein (2002), Alonso & Matouschek (2008), and Armstrong & Vickers (2010).

5Not all of Bentham’s categories seem clearly primary. For example, he nominates wealth as a simple
pleasure, but then defends this choice in terms of what the money can buy.
Since since money is a very familiar means, it induces a rather automatic response. It was once thought

that the fMRI signature of money could not be distinguished from that of sex. However, Sescousse et al.
(2010) show that money and sex have subtly distinct fMRI signatures, reflecting the instrumental role of
money.
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Section 3 considers the problem of existence of a utility function that guarantees first-best

actions. Although existence is delicate in a continuous formulation, it is a straightforward

question in a discrete approximation.

Section 4 relies on a continuous formulation while placing a monotone structure on the

problem. We show that optimal choice can be generated by a utility function that has a

simple additive form.

Section 5 considers various simple examples with quadratic fitness functions and normal

distributions for the signals. These examples illustrate that the marginal utility of a given

action depends on the precision of the recurrent signals relative to the precision of the

transient ones. In a labor-leisure example, the perceived cost of effort may vary with the

task, although its actual fitness cost does not.

Section 6 shows how the present framework can be readily adapted to consider the evolu-

tion of interdependent preferences. We derive a “desire for conformity.”In a simple example,

we show how greater precision for the recurrent signal relative to the transient signal may

lead to a greater weight being placed on another individual’s choice. This is of interest in

light of the psychological literature on “prepared learning.”

Section 7 discusses a type of preference misalignment that is likely to arise in modern

times owing to modern humans being more knowledgeable, relative to our hunter-gather

ancestors, of the link between actions and fitness. We argue that when our ancestors under-

estimated (overestimated) the marginal fitness value of a given action, modern humans will

select an excessively large (small) action relative to its fitness-maximizing level. Section 8

concludes.

2 Model

There are two players: a principal (Nature) and an agent (the Individual). The agent faces

a one-shot opportunity to produce fitness y ∈ R (representing quality-adjusted offspring).
Fitness is a function of the Individual’s action x ∈ RN and an underlying state σ ∈ R:

y = ϕ(x, σ).

The players have only partial knowledge of the state. That knowledge has two compo-

nents: s ∈ R and t ∈ R. These components represent, respectively, recurrent and transient
aspects of the environment. The essential distinction is that the utility function given to the
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Individual can depend on the recurrent component, s, but not on the transient component,

t. From Nature’s point of view, the (“true”) distribution of σ conditional on (s, t) is given

by the pdf f(σ | s, t); from the Individual’s point of view, the (“subjective”) distribution of

σ conditional on t is given by the pdf g(σ | s, t).
A more detailed interpretation of s and t is as follows. On the one hand, s represents

observed aspects of the environment whose implications have remained constant over evolu-

tionary time.6 For example, s might represent exposure to sunlight. Exposure to UV light,

in particular, aids in the production of Vitamin D, which is essential for health. The pdf f

incorporates the true effect of sunlight on fitness. The individual, however, can be largely or

completely ignorant of this causal chain, having arbitrary beliefs as captured by the pdf g.

The recurrent nature of this causal chain means, however, that Nature can shape the utility

function in the light of s.

On the other hand, t represents observed aspects of the environment that may be im-

portant but have a one-off quality. For instance, a hunter observes the exact position and

strength of his prey, as well as the current abundance of alternative sources of food. By

observing these precise local conditions, in the language of Binmore (1994), the individual

serves as Nature’s “eyes.”The rarity, or even complete novelty, of such an aspect means that

Nature cannot shape utility in the light of t.

If t is transient, how can evolution generate a choice that is optimal given the true

distribution conditional on t as well as s? If t represents completely unrestricted novelty,

there is no hope of attaining optimality. For this to be possible, there must be a suitable

restriction on the novelty. Consider the following example. For simplicity, suppose there

is no s signal, but only t. Further, suppose t is a perfectly accurate signal of the state, σ,

which is the exact direction in which game is to be found. If the Individual hunts for game

in that direction, choosing then an action x = t, fitness is 1; otherwise, it is zero. Since

the exact direction is plausibly rare or entirely novel, the utility function under the present

approach cannot be made conditional on t. It seems, nevertheless, highly plausible that an

animal would evolve, via an appropriate reward for fitness, to hunt in the direction of the

signal, t.

This scenario is then consistent with the present approach, in which Nature’s criterion

6It need not be that s itself is unchanging over time. For example, Nature knows that, if you are warm,
cold drinks would be helpful; if you are cold, hot. Nature makes the appropriate drink seem pleasurable
in each circumstance. Kandel et al. (2000) describe the neurological basis of this phenomenon. This
corresponds to conditionning upon an s that can have a number of possible realizations that vary over time.
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employs the true distribution of the state given each signal, namely, that σ = t, and the

optimal action is taken for each value of t.

The model proceeds in three stages:

1. Nature selects a utility function U(x, y, s) for the Individual which can depend on the

as yet undetermined realization of s but not on that of t. The goal of the principal is

to maximize the agent’s true expected fitness, as expressed via the pdf f .

2. The signals s, t are realized.

3. The agent learns his utility function U, observes s, t and selects an action x. The goal of

the agent is to maximize his expected utility conditional on the information available

to him, as expressed in the pdf g.

4. The state σ is drawn and the payoffs of both players —fitness for the principal and

utility for the agent —are realized.

We interpret this setting as a metaphor for the long-run outcome of an evolutionary

process in which the utility functions of humans are heritable and are the object of natural

selection. Over time, through a trial-and-error process, those individuals endowed with

utility functions that best promote their own fitness dominate the population. Rather than

explicitly modelling such trial-and-error process, we suppose Nature can directly “choose”

a fitness-maximizing utility function for each human being. In this metaphor, Nature has

had time to learn the recurrent features of the evolutionary environment (represented by s).

That is, evolution has had time to shape the utility function appropriately.

From the principal’s perspective, the ideal choice of x solves

max
x

Ef [y | s, t] , (1)

where Ef means that the expectation is taken with respect to the true pdf f. For simplicity,
we assume that, for each pair (s, t), this problem has a unique solution, denoted x∗(s, t). If

a function U implements x∗(s, t) for all (s, t), we say it is optimal.

The Individual is fully informed

If the Individual is fully informed, so that g = f, his objective is

max
x

Ef [U(x, y, s) | s, t] . (2)

6



A trivially optimal utility function is then

U(y) ≡ y,

which perfectly aligns the agent’s objective (2) with the principal’s objective (1).

Such resolution, however, is not a realistic description of humans. Most obviously, per-

haps, we do not value only offspring intrinsically, viewing sex, for example, purely as an

instrumental means to the end of producing more offspring. Less obviously, but perhaps

more convincingly, consider how the experimental results of Wedekind et al. (1995) imply

that our utility functions have arguments other than fitness. These results are that males

with compatible immune systems appear to smell good to women. In the language of Barash

(1979), a pleasant smell produces a “whispering within”that motivates them to select such

mates. This amounts to this smell being an argument of utility. We are not born knowing

that compatibility between parental immune systems is relevant to the fitness of offspring,

or with any knowledge about how to check such compatibility.

The Individual is not fully informed

When the Individual holds arbitrary beliefs g his problem becomes

max
x

Eg [U(x, y, s) | s, t] = max
x

∫
U(x, y, s)g(σ | s, t)dσ,

where Eg means that the expectation is taken with respect to the subjective pdf g, and where
y = ϕ(x, σ). Note that t affects the Individual’s decision exclusively though the conditional

distribution of σ, whereas s serves also as a parameter of the utility function.

In the remainder of the paper, we restrict attention to this scenario. We will show that

this mechanism is constrained optimal, for hunter-gatherers, so there would have been no

selection pressure for modification.

3 First-Best Implementation —Finite Case

In general, a basic theoretical question is whether there exists a function Ū that depends

only on x, σ, and s and that satisfies the integral equation∫
ϕ(x, σ)f(σ|s, t)dσ =

∫
Ū(x, σ, s)g(σ|s, t)dσ,
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where the functions ϕ(x, σ), f(σ|s, t) and g(σ|s, t) have been specified exogenously. If y =

ϕ(x, σ) were strictly monotonic in σ, for each x, then the existence of a function U(x, y, s)

that implements the fitness-maximizing action x∗(s, t) for all s, t would be a consequence.

However, the existence of a solution for Ū(x, σ, s) to such a “Fredholm equation of the first

kind”(Hochstadt (1973)) is a delicate issue.

The choice of a continuous formulation over a discrete one here is mainly a matter of

convenience. Indeed, from a conceptual point of view, a discrete formulation seems unob-

jectionable. In such a formulation, existence can be readily addressed. Suppose, then, that

σ and t are restricted to {1, ..., S}. Given s, the problem is to find Ū(x, σ, s) such that

∑
σ

1×S︷ ︸︸ ︷
ϕ(x, σ)

S×S︷ ︸︸ ︷
f(σ|s, t) =

∑
σ

1×S︷ ︸︸ ︷
Ū(x, σ, s)

S×S︷ ︸︸ ︷
g(σ|s, t), for all x.

This equation has a unique solution for the row vector

1×S︷ ︸︸ ︷
Ū(x, σ, s) if and only if the matrix

S×S︷ ︸︸ ︷
g(σ|s, t) is non-singular, which is a condition that holds generically.7

More generally, σ and t might be restricted to finite sets of different sizes, {1, ..., S} and
{1, ..., T}. Perhaps the plausible alternative case is where the number of signals is less than

the number of states, and so S > T . That is, there are more unknowns, as in

1×S︷ ︸︸ ︷
Ū(x, σ, s), than

there are equations, where there is one for each signal, t. If the matrix

S×T︷ ︸︸ ︷
g(σ|s, t) has full rank,

T , then there is again no problem of existence; rather there is an issue of multiplicity– there

are many solutions for

1×S︷ ︸︸ ︷
Ū(x, σ, s).

We have then proved a simple but illuminating result–

Proposition 1 Suppose S ≥ T. If matrix

S×T︷ ︸︸ ︷
g(σ|s, t) has full rank, T , there exists a solution

for the row vector

1×S︷ ︸︸ ︷
Ū(x, σ, s).

The approach we take below renders this discussion moot. We maintain the continuous

7Generically in RS2 , the matrix

S×S︷ ︸︸ ︷
g(σ|t) has a nonzero determinant. Now normalize each column by

dividing by the sum of the entries in that column to obtain

S×S︷ ︸︸ ︷
g(σ|t). This normalization does not affect the

determinant.
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formulation, but we sidestep the most general issue of existence by imposing substantive

additional structure. This structure is mainly intended to generate a tractable model, and

to make available further results, but, as a side effect, it ensures existence.

4 A Monotone Environment

We revert to seeking an optimal utility function of the form U(x, y, s). We first relax the

requirement of matching the entire function
∫
ϕ(x, σ)f(σ|s, t)dσ, asking only that expected

utility be maximized by x∗(s, t). That is, we require only that, given s,

x∗(s, t) = arg max
x

∫
ϕ(x, σ)f(σ|s, t)dσ = arg max

x

∫
U(x, y, s)g(σ|s, t)dσ, for all t

This relaxation of the restrictions on utility is helpful. It is reasonable as well, since there

would have been be no biological selection that did more than this.

Assumption 1 i) The pdf f(σ|s, t) is continuously differentiable in (s, t) and strictly in-

creasing, in the sense of first-order stochastic dominance, in s and in t.8

ii) The pdf g(σ|s, t) is continuously differentiable in (s, t) and strictly increasing, in the

sense of first-order stochastic dominance, in s and in t.

iii) Fitness ϕ(x, σ) is twice continuously differentiable and strictly concave in x.9

iv) Increasing the state σ increases the marginal product of each action: ϕxiσ(x, σ) > 0,

for i = 1, ..., N.

v) Actions are complements in that ϕxixj(x, σ) ≥ 0, for all i, j = 1, ..., N, i 6= j.

Lemma 1 Under Assumption 1, x∗i (s, t) is differentiable and
∂x∗i (s,t)
∂s

> 0,
∂x∗i (s,t)
∂t

> 0, for

all i. Furthermore, if x̂(s, t) = arg maxx
∫
ϕ(x, σ)g(σ|s, t)dσ, it similarly follows that x̂i(s, t)

is differentiable and ∂x̂i(s,t)
∂s

> 0, ∂x̂i(s,t)
∂t

> 0, for all i.

Proof. See the Appendix.

The Main Result in the Monotone Environment

In order to set the stage for this result, consider an arbitrary x ∈ RN . We associate to
the component xi the value of t ∈ R such that the ith component of x∗(s, t) is xi.

8Specifically, we require that
∫
v(σ)∂f(σ|s,t)∂s dσ > 0 for all continuous and strictly increasing functions v;

similarly for t.
9Specifically, we require that the matrix of second derivatives of ϕ(·, σ) is everywhere negative definite.
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Definition 1 Let ti : R× R→ R be such that x∗i (s, ti(xi, s)) ≡ xi, for all i.

We now demonstrate the existence of a simple utility function which is uniquely maxi-

mized at the optimal x.

Theorem 1 Under Assumption 1, for all s, t the following utility function implements x∗(s, t)–

U(x, y, s) = y + α(x, s) = ϕ(x, σ) + α(x, s).

The “adjustment term”is

α(x, s) =
∑
i

αi(xi, s)

where

αi(xi, s) = −
∫ xi

0

∫
ϕxi(x

∗(s, ti(z, s)), σ)g(σ|s, ti(z, s))dσdz.10

Proof. See Appendix.

This is the simplest utility function that delivers x∗(s, t), in that α(x, s) is determinis-

tic (independent of σ), additively separable from y and across the components of x. Note

also that such an additive term must depend on both x and s and thus cannot be further

simplified.

Proof in One Dimension

When x is one-dimensional, so N = 1, the first-order condition becomes∫
ϕx(x, σ)g(σ|s, t)dσ −

∫
ϕx(x

∗(s, t(x, s)), σ)g(σ|s, t(x, s))dσ = 0.

Since t(x, s) is the value of t that induces x as the solution to the constrained optimum,

it follows that x∗(s, t(x, s)) = x. Hence if x = x∗(s, t) then t(x, s) = t and this first-order

condition is satisfied. Further, if x < x∗(s, t), then t(x, s) < t. Since g(σ|s, t) is increasing in
t in the sense of first-order stochastic dominance, it follows that

∫
ϕx(x, σ)g(σ|s, t(x, s))dσ >∫

ϕx(x, σ)g(σ|s, t)dσ, so that marginal expected utility is then positive. Similarly, if x >

x∗(s, t), then marginal expected utility is negative. Hence x = x∗(s, t) is the global maximizer

of expected utility.

Sketch of Proof in Two Dimensions

The case in which x is two-dimensional serves to demonstrate the intuitive idea of the

general proof, although the general case is substantially more complex technically. With

10The lower limit in the outer integral is taken to be 0 to ensure convergence.
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N = 2, the first-order conditions for maximizing expected utility are∫
ϕxi(x, σ)g(σ|s, t)dσ =

∫
ϕxi(x

∗(s, ti(xi, s)), σ)g(σ|s, ti(xi, s))dσ for i = 1, 2.

As required, these first-order conditions are satisfied by x = x∗(s, t) since this implies

ti(xi, s) = t, for i = 1, 2.

Indeed, it follows that x = x∗(s, t) is the unique global maximum. To see why, consider

any x 6= x∗(s, t). Figure 1 describes the directions in which expected utility unambiguously

increases. These directions can be established by signing the corresponding derivatives.

These directions lie in the NE quadrant and the SW quadrant relative to x∗(s, t). There are

two representative cases to consider. Case i) x ≥ x∗(s, t). In this case, Figure 2 sketches how

it is possible to move from x to x∗(s, t) in a fashion that increases expected utility. That

is, first reduce the coordinate that is too large relative to being on the x∗(s, ·) curve. Then
move along this curve x∗(s, ·) to x∗(s, t). (The case in the SW quadrant where x ≤ x∗(s, t)

is analogous.) Case ii) x1 ≥ x∗1(s, t) and x2 < x∗2(s, t). Refer to Figure 3. Consider a path

from x to x∗(s, t) that first increases x2 to x∗2(s, t), as in Step 1 in Figure 3, and then reduces

x1 to x∗1(s, t), as in Step 2. Step 2 is a limiting case from Figure 1 where expected utility

must increase, but Step 1 is apparently ambiguous. Consider, however, Step 1’, where x2
increases to x∗2(s, t), with x1 = x∗1(s, t). Expected utility must increase in Step 1’since it

is again a limiting case from Figure 1. The assumption that ϕx1x2(x, σ) ≥ 0 implies that

expected utility must increase by at least as much in Step 1 as it does in Step 1’, so it must

increase in the two-step process– first Step 1 and then Step 2. The case in which x lies in

the NW quadrant is analogous, so the sketch of the proof is complete.

Observations

Note that this particular decomposition of utility generates a particular trade-offbetween

y and x, so the individual would sacrifice expected offspring for, say, more food. Furthermore,

this decomposition into y and x is unique, within the additively separable class, even though

y is itself a function of x as y = ϕ(x, σ), under the additional assumption that utility cannot

depend directly on σ.

Remark 1 A measure of the contribution of Nature to the Individual’s decision is(∫
ϕxi(x

∗(s, t), σ)g(σ|s, t)dσ
)2

.

11



This measure is expressed purely in terms of the fitness function and so is independent

of the utility representation. It is a measure of how much the optimal choice of x∗(s, t)

involves “adjusting”the Individual’s preferences away from expected fitness, generating then

derivatives of expected offspring that differ from zero.

5 Examples

Consider first the case ofN = 1 and the simple quadratic fitness function ϕ(x, σ) = −(x−σ)2.

Suppose further that the state has a diffuse prior, so that σ ∼ N(µ0,∞) loosely speaking.

For Nature, s = σ + εs where εs ∼ N(0, vs), and t = σ + εt, where εt ∼ N(0, vt) and εs and

εt are independent. For the Individual, s = σ+ ε′s where ε
′
s ∼ N(0, v′s), and t = σ+ ε′t where

ε′t ∼ N(0, v′t) and ε
′
s and ε

′
t are independent.

The true mean of σ after observing both s and t is11

µ∗ = λs+ (1− λ)t where λ =
1
vs

1
vs

+ 1
vt

∈ (0, 1),

so that λ is the precision of Nature’s information relative to that of the Individual. With a

quadratic fitness, the optimal x is, in general, the mean of the distribution of σ. Hence, it

follows that x∗(s, t) = λs+ (1− λ)t.

The mean of σ from the Individual’s point of view is

µ′ = γs+ (1− γ)t where γ =

1
v′s

1
v′s

+ 1
v′t

∈ (0, 1).

Using the general formula α(x, s) = −
∫ x ∫

ϕx(z, σ)g(σ|s, t(z, s))dσdz where λs + (1 −
λ)t(z, s) = z, so t(z, s) = z−λs

1−λ , we have

U(x, y, s) = y − λ− γ
1− λ (x− s)2.

Thus the (positive or negative) weight put on the term −(x− s)2, which reflects how the
individual’s choices are adjusted away from those that maximize expected fitness, depends

on λ and γ.

11Assuming that the variance of the prior distribution of σ is infinite implies that the mean of this prior
is irrelevant.
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If 1 > λ > γ, then the individual is induced to make a choice that puts a greater weight

on s than does µ′. If, in the limit, 1 = λ > γ, then x = s, since the transient signal t is then

irrelevant.

If γ > λ > 0, then the individual is induced to make a choice that puts a lower weight

on s than does µ′. If, in the limit, γ > λ = 0, then x = t, since the recurrent signal s is then

irrelevant.

In this example, the adjustment of the Individual’s utility is measured by

Eg
[
ϕxi(x

∗(s, t), σ)|s, t
]2

= (Eg [σ|s, t]− Ef [σ|s, t])2

= (λ− γ)2 (t− s)2

Hence

E
[
Eg
[
ϕxi(x

∗(s, t), σ)|s, t
]2]

= (λ− γ)2 (vs + vt) .

When λ 6= γ, the Individual sacrifices fitness, as judged using his beliefs, in order to

obtain higher intrinsic utility from x.

The magnitude of this effect increases in |λ− γ|.
An Anecdote

To illustrate the implications of the relative precision of the information held by Nature

and that held the Individual, consider the situation faced by an individual hiking across

Baffi n Island.12 There are two main dangers faced on such a trek– polar bears and rivers.

Of these, bears are more psychologically salient. A hiker inevitably worries more about

encountering a bear than encountering a river. However, although rivers are less dangerous

per encounter, there are many more encounters with them and the aggregate danger posed

by rivers exceeds that posed by polar bears. One needs to take river crossings seriously.

In terms of the current model, it seems reasonable, on the one hand, that the information

held by Nature concerning bears is rather precise relative to any information available to the

Individual. Indeed, polar bears belong to the category of large carnivores with sharp yellow

fangs and claws that one is instinctively afraid of. There are not many suffi ciently good

reasons to voluntarily approach a polar bear. That is, in terms of the example, it may well

be that 1 ≈ λ > γ, so that the transient signal is essentially irrelevant. On the other hand,

rivers can be useful. Thus the information held by the agent may well be decisive. There are

12A more familiar example concerns rats’behavior in the face of either snakes or flowers, as in the literature
on prepared learning. See the next section.

13



indeed many suffi ciently good reasons to cross a river, and the overall evolutionary strategy

is to rely to a much larger extent on the agent’s assessment of the local circumstances. Thus,

γ > λ ≈ 0, and so x is heavily dependent on t.

An Example of Labor-Leisure Choice

Assume that fitness y = ϕ(x, σ) = σx − c(x), where x is effort, σx is a material output

and c(x) is the cost of effort.

Suppose Ef [σ|s, t] = λs + (1 − λ)t and Eg [σ|s, t] = γs + (1 − γ)t as obtained in the

previous example.

An optimal utility function is now

U(x, y, s) = y − λ− γ
1− λ [c(x)− sx] .

To interpret this function, suppose s represents the state of the immune system, and

λ > γ. After illness, the immune system is depleted, so we assume s < t. The model

predicts less effort in this circumstance.

Indeed, it is believed that, after illness, cytokines are released that inhibit effort, and the

individual exhibits “anhedonia.”Evidence for the inhibitory role of cytokines comes from

experiments that involve injecting cytokines into healthy rats. This makes them expend less

effort for a given reward. (See Trivers, 2011.)

In this case, the Individual perceives a cost of effort that varies as λ varies with the

task, even though the actual fitness cost of effort is invariant. It seems psychologically

plausible, for example, that the perceived effort involved in walking 10km is less when there

is a magnificent view than when walking to work.

6 Application to Conformity and Prepared Learning

Consider now how the present approach yields a framework for considering the evolution

of interdependent preferences.13 Consider two individuals who choose sequentially, with

Individual 1 choosing in the light of the recurrent signal, s, and her transient signal, t1,

and Individual 2 choosing in the light of the recurrent signal, his transient signal, t2 and

13Samuelson (2004) is a key antecedent in the literature on relative consumption. He also supposes that
the observable but inherently irrelevant consumption of others conveys information about an unobservable
but relevant state. In contrast to the model here, Samuelson adopts an informational structure in which
there is no counterpart to the information of Nature and therefore no counterpart to the application to
prepared learning outlined below.
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Individual 1’s choice, x1. The transient signals are independent, so observing x1 is useful

to Individual 2. Given the appropriate utility function, Individual 1 effectively maximizes∫
ϕ(x1, σ)f(σ|s, t1)dσ by choosing x∗1(s, t1). This appropriate utility is

U1(x1, y1, s) = y1 + α(x1, s) = ϕ(x1, σ) + α(x1, s)

where α(x1, s) = −
∫ x1

0

∫
ϕx(z, σ)g1(σ|s, t1(z, s))dσdz, for all t, given s,

exactly as in Theorem 1, where the pdf g1(σ|s, t1) represents Individual 1’s beliefs. Following
from Assumption 1, a key property is that ∂x∗1(s,t1)

∂t1
> 0, so Individual 2 can infer t1 from any

possible observed value of x1. We can then formulate Individual 2’s beliefs and choices in

terms of x1.

Consider now Individual 2’s ideal choice, x∗2(s, x1, t2), given s, x1, and t2. This is the

choice that maximizes
∫
ϕ(x2, σ)h(σ|s, x1, t2)dσ. In this expression, h represents the true

pdf for σ conditional on s, x1, and t2. Assume that increases in any of s, x1 or t2 increase

the distribution for σ in the sense of first-order stochastic dominance. The problem facing

Individual 2 remains analogous to that described in detail in Section 4, with s and x1 together

playing the role that was played by s alone and t2 playing the role of t.

Extending Theorem 1 to this context, it follows that there exists a utility function whose

expectation under Individual 2’s beliefs, given by the pdf g2(σ|s, x1, t2), is uniquely maxi-
mized by x∗2(s, x1, t2) of the form

U2(x2, y2, s, x1) = y2 + β(x2, s, x1).

The following captures a “conformity”or “anticonformity”effect–

Definition 2 Define the (marginal) peer effect as ∂β(x2,s,x1)
∂x2∂x1

. If this peer effect is positive–
∂2β(x2,s,x1)
∂x2∂x1

> 0, an increase in the action taken by Individual 1 spurs an increase in the

marginal utility of the action taken by Individual 2, and there is a conformity effect . If this

peer effect is negative– ∂2β(x2,s,x1)
∂x2∂x1

< 0, there is an anticonformity effect .

An Example on Prepared Learning

Suppose fitness for each individual is quadratic, of the form ϕ(x, σ) = −(x−σ)2. Suppose

that σ ∼ N(µ0,∞), s ∼ N(σ, vs), and ti ∼ N(σ, vt), i = 1, 2, where s, t1 and t2 are

independent. The optimal choice for 1 is then x∗1 = λ1s + (1 − λ1)t1, for λ1 = r
1+r
∈ (0, 1),

where r = 1
vs
/ 1
vt
is the true precision of the recurrent signal relative to that of the transient
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signal. Given beliefs by the Individual 1, this choice can be implemented by a suitable

utility function, as described above, but the precise form of this function is not relevant to

the present focus, which is on Individual 2.

Consider then Individual 2. The optimal choice for 2 in the light of s, t1 and t2 is

x∗2 = λ2s+ (1−λ2) t1+t22 , where λ2 = r
2+r
∈ (0, 1). There is an interesting implication of these

optimal choices that is independent of Individual 2’s beliefs. Note that x∗2 can be expressed

as

x∗2 =
1 + r

2 + r
x1 +

r

2 + r
t2,

where there is no explicit dependence of x∗2 on s. An increase in x1 spurs a positive but

less-than-matching increase in x2. The weight put on x1 in this expression for x∗2 is uniquely

determined by the optimal weight that needs to be put on t1. The absence of s in the above

expression follows since the relative weight that x∗2 puts on s and t1 is the same as the relative

weight that x∗1 puts on these two signals.

Consider some relevant results from the psychology literature on prepared learning. Mon-

keys do not exhibit an inborn fear of snakes or of flowers (less surprisingly). However, they

readily learn to be afraid of snakes if they observe another monkey acting fearfully in the

presence of a snake. It is much more diffi cult to teach them similarly to be afraid of flowers

(Cook and Mineka, 1989, for example).

The example sheds light on these phenomena. Suppose that r, the precision of the

recurrent signal relative to the transient signal, increases. It follows that Individual 2 is

more responsive to Individual 1’s choice.14 That is, individuals are more influenced by peer

choices concerning snakes, where the recurrent signal seems to be relatively precise, than

they are by those concerning flowers, where it is less so.

Consider now the peer effect. This brings in the beliefs of Individual 2. Suppose that

these beliefs are described by σ ∼ N(µ′0,∞), s ∼ N(σ, v′s), x1 ∼ N(σ, v′x) and t2 ∼ N(σ, v′t),

so that E (σ|g2(σ|s, x1, t2) = γs+ µx1 + (1− γ − µ)t2, for some γ, µ > 0 where γ + µ < 1.15

It follows that the choice of x∗2 is implemented by the utility function

U2 = y2 − k(x2 − δs− (1− δ)x1)2, where k = (1 + r)− (2 + r)(γ + µ) and δ = −γ
k
.

The peer effect in this example is 2k(1 − δ) = 2k + 2γ, which can be either positive or

14Namely, 1+r2+r is increasing in r.

15Indeed, γ =
1
v′s

1
v′s
+ 1
v′x
+ 1
v′t

, and µ =
1
v′x

1
v′s
+ 1
v′x
+ 1
v′t

.
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negative. In either case, since dk
dr

= 1 − γ − µ > 0, the peer effect is greater, the larger is

the precision of Nature’s signal for the recurrent signal relative to the transient one. That

is, the peer effect is larger if it is positive to start with, or less negative if it is negative to

start with.

This result implies that the observations concerning prepared learning, as derived above

for optimal choices, would apply in a modern environment despite the application of different

beliefs that do not yield evolutionarily optimal choice. The topic of how the adjustment term

in utility would manifest itself in modern choices that fail to be evolutionarily optimal is taken

up next.

7 Application to Decisions in the Modern Environ-

ment

There are vast differences between the ancestral environment in which our basic preferences

evolved and the present environment. A central, though informal, claim in the literature on

evolutionary psychology is that such differences have led to “misalignments”in our prefer-

ences in the sense that we frequently make fitness-reducing choices. Notably, the preference

misalignments studied thus far belong to a single category: those originating in technological

advances that have increased both the general availability of resources and our control over

reproduction. Common examples cited in the literature include the tendency of modern

humans to consume excessive amounts of sugar and fat and their tendency to use contra-

ceptives. In terms of our model, such misalignments would readily arise upon altering the

Individual’s fitness function while holding his beliefs and utility function constant.

In this section, we investigate a different category of preference misalignments: those

originating from our improved understanding, relative to our hunter-gather ancestors, of the

link between actions and fitness. In our model, as we illustrate below, such misalignments

arise when changing the Individual’s beliefs while holding her fitness and utility functions

constant. Such misalignments generate a set of testable, revealed preference, predictions of

the model.

For concreteness, we consider the problem of a perfectly-knowledgeable Individual who

understands that the state σ is distributed according to f, not g, and is nevertheless endowed

with an “ancestral”utility function. In this exercise, for simplicity, we assume that the fitness

function ϕ is the same for the ancestral and modern environments.
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Specifically, consider a monotone environment with N = 1, a quadratic fitness function

ϕ(x, σ) = −(x−σ)2, and g 6= f.Moreover, suppose the Individual is endowed with the utility

function in Theorem 1:

U(x, y, s) = y + α(x, s),

where α(x, s) =
∫ x
0

∫
2(z − σ)g(σ|s, t(z, s))dσdz for all x, s.

Lemma 2 Consider a perfectly-knowledgeable Individual who solves, for all s, t,

max
x

Ef [ϕ(x, σ) | s, t] + α(x, s).

The Individual’s optimal choice, denoted xM(s, t), satisfies:

1. Given s, t, xM(s, t) is greater (smaller) than x∗(s, t) whenever Ef [σ | s, t] is greater
(smaller) than Eg [σ | s, t] .

2. Suppose further that Ef [σ | s, t] = λs + (1− λ)t and Eg [σ | s, t] = γs + (1− γ)t for

some λ, γ ∈ (0, 1) . Given s, t, ∂
∂s
xM(s, t) is greater (smaller) than ∂

∂s
x∗(s, t) whenever

λ is greater (smaller) than γ.

Proof. Fix s, t. The Individual’s objective is strictly concave and the corresponding first-

order condition is

Ef [σ | s, t]− Eg [σ | s, t(x, s)] = 0.

Part 1 of the lemma follows from noting that Eg [σ | s, t(x, s)] is increasing in x and Eg [σ | s, t(x, s)] =

Eg [σ | s, t] when x = x∗(s, t).

For part 2 of the lemma, we apply the Implicit Function Theorem to the Individual’s

first-order condition to obtain

∂

∂s
xM(s, t) = −

∂
∂s
t(x, s)

∂
∂x
t(x, s)

+
∂
∂s
Ef [σ | s, t]− ∂

∂s
Eg [σ | s, t(x, s)]

∂
∂t
Eg [σ | s, t(x, s)] ∂

∂x
t(x, s)

=
∂

∂s
x∗(s, t) + (λ− γ)

1− λ
1− γ ,

which establishes the desired result.

Part 1 of the lemma indicates that when the Individual’s ancestors underestimated (over-

estimated) the marginal fitness value of a given action, this Individual will select, once per-

fectly informed, an excessively large (small) action relative to its fitness-maximizing level.
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An example is a modern human who sunbathes excessively upon learning that sunlight aids

his production of Vitamin D. The Individual faces a double incentive: a primitive intrinsic

preference for sunlight and a recently-acquired knowledge of its fitness benefits.

Part 2 of the lemma indicates that when the Individual’s ancestor had beliefs Eg [σ | s, t]
that under-reacted (over-reacted) to increases in s, this individual, once perfectly informed,

will over-react (under-react) to increases in s. Consider the following example in which s is

the observed action of a peer. Suppose a modern human develops an excessive aversion (a

phobia) toward a spider upon learning that a peer fears that spider. We can understand this

aversion in the light of our approach as arising from two independent reasons. First, there is

an evolved utility adjustment that is triggered by his peer’s fear– that is, prepared learning

as in the previous section. Second, there is an effect on his beliefs of his peer’s fear, since

this fear signals that the spider is likely to be poisonous– as considered in this section.

8 Conclusions

The motivating question that we began with was: Supposing, for the sake of argument, that

we are intelligent and rational, why is our evolved utility not simply offspring? We formulated

a principal-agent model in which both Nature and the individual observed two signals– one

recurrent and one transient– that bear on the fitness consequences of the agent’s choices.

The agent, however, has arbitrary beliefs about the implications of the signals. One abstract

option would be for Nature to explicitly and directly communicate her accurate beliefs to

the agent, who could then choose optimally by maximizing expected fitness in the light of

these beliefs. This option, however, is simply not realistic.

Alternatively, we consider the more realistic option that Nature shapes the utility function

in the light of the recurrent signal. The individual then maximizes the expectation of this

utility conditional her rather arbitrary beliefs. We show, remarkably enough, that this option

could also generate optimal choice in the context of the model. That this is the method

actually in evidence, despite the existence of a more direct way of achieving the same end,

may then have been harmless phylogenetic happenstance.

We considered why utility is a “whispering within” urging individuals to take actions

that reflect the evolutionary wisdom of a multitude of ancestors, in addition to accounting

for local on-the-spot information. In our examples, the loudness of the whisper, or the force

of push delivered by Nature, derives from the relative precision of the signals for Nature as
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compared to the relative precision of the two signals from the point of view of the individual.

In vastly changed modern conditions– not the least of which involves contraception– the

mechanism may no longer be evolutionarily optimal. Nevertheless, the legacy of this mech-

anism is plausible– namely utility functions that convey evolutionary information, rather

than explicit transmission of the raw statistical information.

9 Appendix– Proofs

9.1 Proof of Lemma 1.

The function x∗(s, t) is characterized by the first-order conditions∫
ϕxi(x

∗(s, t), σ)f(σ|s, t)dσ = 0, for i = 1, ..., N.

Hence ∑
j

Aij
∂x∗j(s, t)

∂t
= bi for i = 1, ..., N,

where

Aij =

∫
ϕxixj(x

∗(s, t), σ)f(σ|s, t)dσ and bi = −
∫
ϕxi(x

∗(s, t), σ)
∂f(σ|s, t)

∂t
dσ < 0.

The n × n matrix A is symmetric, negative definite, and has non-negative off-diagonal el-

ements. Hence −A is a Stieltjes matrix, which must have a symmetric and non-negative

inverse (see Varga (1962, p. 85)). Hence A−1 must be a symmetric and non-positive matrix.

Since 
∂x∗1(s,t)
∂t

...
∂x∗N (s,t)

∂t

 = A−1b,

it follows that
∂x∗j (s,t)

∂t
≥ 0, for j = 1, ..., N. Further, since A−1 is non-singular, it cannot have

any row be entirely zero, and it must indeed be that
∂x∗j (s,t)

∂t
> 0, for j = 1, ..., N.

The proof that
∂x∗j (s,t)

∂s
> 0, for j = 1, ..., N is analogous, as are the corresponding

properties of x̂(s, t).
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9.2 Proof of Theorem 1

Select an arbitrary s. To simplify notation, we drop the dependence of x∗(·) and α(·) on s.
Define, for all x and t,

V (x; t) = E [ϕ(x, σ) | t] + α(x),

where the expectation is taken over σ using the pdf g.

We wish to show that V (x∗(t), t) > V (x, t) for all t and all x 6= x∗(t).

Remark 2 Properties of V (x; t). For all i and all t:

1. ∂
∂xi
V (xi, x−i; t) is weakly increasing in x−i for all xi.

2. ∂
∂xi
V (x; t) is strictly increasing in t for all x.

3. ∂
∂xi
V (x∗(t); t) = 0.

Proof. From the definitions of V (·) and α(·) we obtain

∂

∂xi
V (x; t) = E

[
ϕxi(xi, x−i, σ) | t

]
− E

[
ϕxi(x

∗(ti(xi)), σ) | ti(xi)
]
. (3)

For property 1, note that the first term on the R.H.S. of (3) is weakly increasing in x−i
(since, by assumption, ∂2

∂xi∂xj
ϕ(x, σ) ≥ 0 for all x, σ and all i 6= j), and the second term is

independent of x−i.

For property 2, note that the first term on the R.H.S. of (3) is increasing in t (since,

by assumption, ∂2

∂xi∂σ
ϕ(x, σ) > 0 for all x, σ and all i, and the pdf g is increasing in t in

first-order stochastic dominance), and the second term is independent of t.

For property 3, note that ti(x∗i (t)) = t (by definition) and therefore

E
[
ϕxi(x

∗(t), σ) | t
]

= E
[
ϕxi(x

∗(ti(xi)), σ) | ti(xi)
]
.

Now select an arbitrary t and an arbitrary x 6= x∗(t). Let τ i = ti(xi) for all i. Assume,

WLOG, that τ 1 ≤ τ 2 ≤ ... ≤ τN . Also, select two numbers τ 0 and τN+1 such that τ 0 ≤
min{τ 1, t} and τN+1 ≥ max{τN , t}.
Define

M+ = {i : xi ≥ x∗i (t)} ,

M− = {i : xi < x∗i (t)} .
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Note that

V (x ∨ x∗(t); t) =

V (x; t) +
∑
n∈M−

∫ min{τn+1,t}

τn

d

dτ
V (x∗i≤n(τ), xi>n; t)dτ ,

and

V (x ∨ x∗(t); t) =

V (x∗(t); t) +
∑
n∈M+

∫ τn

max{τn−1,t}

d

dτ
V (x∗i∈M−(t), xi∈Mn

+
, x∗i≥n(τ); t)dτ ,

where Mn
+ is defined as the set {i ∈M+ : i < n} .

It follows that

V (x∗(t); t)− V (x; t) =
∑
n∈M−

∫ min{τn+1,t}

τn

d

dτ
V (x∗i≤n(τ), xi>n; t)dτ (4)

−
∑
n∈M+

∫ τn

max{τn−1,t}

d

dτ
V (x∗i∈M−(t), xi∈Mn

+
, x∗i≥n(τ); t)dτ .

We begin by showing that V (x∗(t); t) ≥ V (x; t), for which we proceed in two steps.

Step 1. We show that all terms in the first sum of (4) are nonnegative. Fix n ∈ M−.
For all τ ∈ (τn,min {τn+1, t}) (a possibly empty interval) we have

d

dτ
V (x∗i≤n(τ), xi>n; t) = (5)∑

j≤n

∂

∂xj
V (x∗i≤n(τ), xi>n; t) · d

dτ
x∗j(τ)

≥
∑
j≤n

∂

∂xj
V (x∗i≤n(τ), xi>n(min {τn+1, t}); t) ·

d

dτ
x∗j(τ)

≥
∑
j≤n

∂

∂xj
V (x∗i≤n(τ), xi>n(min {τn+1, t}); min {τn+1, t}) ·

d

dτ
x∗j(τ) > 0.

(Recall that d
dτ
x∗j(τ) > 0 for all j.)

The first weak inequality in (5) follows from property 1 of the remark: xi ≥ xi(min {τn+1, t})
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for all i > n implies

∂

∂xj
V (x∗i≤n(τ), xi>n; t) ≥

∂

∂xj
V (x∗i≤n(τ), xi>n(min {τn+1, t}); t) for all j ≤ n.

The second weak inequality in (5) follows from property 2 of the remark: t ≥ min {τn+1, t}
implies

∂

∂xj
V (x∗i≤n(τ), xi>n(min {τn+1, t}); t) ≥

∂

∂xj
V (x∗i≤n(τ), xi>n(min {τn+1, t}); min {τn+1, t}) for all j ≤ n.

Finally, the strict inequality in (5) follows from combining all three properties of the

remark: τ < min {τn+1, t} implies x∗i (τ) < x∗i (min {τn+1, t}) for all i and therefore

∂

∂xj
V (x∗i≤n(τ), xi>n(min {τn+1, t}); min {τn+1, t}) ≥

∂

∂xj
V (x∗(τ); min {τn+1, t}) >

∂

∂xj
V (x∗(τ); τ) = 0 for all j ≤ n.

Step 2. We show that all terms in the second sum of (4) are nonpositive. Fix n ∈ M+.

Note that for all τ ∈ (max {τn−1, t} , τn) (a possibly empty interval) we have

d

dτ
V (x∗i∈M−(t), xi∈Mn

+
, x∗i≥n(τ); t) = (6)∑

j≥n

∂

∂xj
V (x∗i∈M−(t), xi∈Mn

+
, x∗i≥n(τ); t) · d

dτ
x∗j(τ)

≤
∑
j≥n

∂

∂xj
V (x∗i<n(max {τn−1, t}), x∗i≥n(τ); t) · d

dτ
x∗j(τ)

≤
∑
j≥n

∂

∂xj
V (x∗i<n(max {τn−1, t}), x∗i≥n(τ); max {τn−1, t}) ·

d

dτ
x∗j(τ) < 0.

The first weak inequality in (6) follows from property 1 of the remark:
(
x∗i∈M−(t), xi∈Mn

+

)
≤
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x∗i<n(max {τn−1, t}) implies

∂

∂xj
V (x∗i∈M−(t), xi∈Mn

+
, x∗i≥n(τ); t) ≤

∂

∂xj
V (x∗i<n(max {τn−1, t}), x∗i≥n(τ); t) for all j ≥ n.

The second weak inequality in (6) follows from property 2 of the remark: t ≤ max {τn−1, t}
implies

∂

∂xj
V (x∗i<n(max {τn−1, t}), x∗i≥n(τ); t) ≤

∂

∂xj
V (x∗i<n(max {τn−1, t}), x∗i≥n(τ); max {τn−1, t}) for all j ≥ n.

Finally, the strict inequality in (6) follows from combining all three properties of the

remark: τ > max {τn−1, t} implies x∗i (τ) > x∗i (max {τn−1, t}) for all i and therefore

∂

∂xj
V (x∗i<n(max {τn−1, t}), x∗i≥n(τ); max {τn−1, t}) ≤

∂

∂xj
V (x∗(τ); max {τn−1, t}) <

∂

∂xj
V (x∗(τ); τ) = 0 for all j ≥ n.

We now show that V (x∗(t); t) > V (x; t). Since x 6= x∗(t) there exists either an n ∈ M−
such that the interval (τn,min {τn+1, t}) is nonempty, or an n ∈ M+ such that the interval

(max {τn−1, t} , τn) is nonempty (or both). In the former case, it follows from step 1 above

that at least one of the integrals in the first sum of (4) is positive. In the latter case, it follows

from step 2 above that at least one of the integrals in the second sum of (4) is negative.
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Figure 1: Directions of Expected Utility Increase 
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Figure 2: Case i) x  x*(s, t )
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Figure 3: Case ii) x1  x1*(s, t ) and x2 < x2*( s, t )
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