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1. Introduction

In the heart of decision theory underlies Savage’s [14] and Anscombe and Aumann’s

[1] Subjective Expected Utility (SEU ) theory. Among other standard axioms, Sav-

age’s theory hinges on the sure thing principle while that of Anscombe–Aumann’s on

the independence axiom. SEU theory states that a decision maker entertains a sub-

jective prior probability and uncertain alternatives (i.e., acts) are ranked according

to their expected utility. Starting with Ellsberg [4], abundance of thought and lab

experiments suggest that in the presence of subjective uncertainty, termed ambiguity,

individuals may be unable to entertain a prior belief and hence violate the sure thing

principle and the independence axiom. The main observation is that individuals are

not ambiguity neutral and exhibit preferences for hedging, a phenomena that is termed

ambiguity aversion (see Schmeidler [15] and Gilboa and Schmeidler [7]). Schmeidler

[15] proposed to weaken the independence axiom and assumed that it applies only for

comonotonic acts. He argued that comonotonic acts are structurally similar and hence

there should not be a strict preference for hedging. By weakening Anscombe and

Aumann’s independence axiom to comonotonic-independence, Schmeidler presented

Choquet Expected Utility (CEU ) theory: ambiguity is captured through a subjective

non-additive probability and alternatives are ranked according to their expected utility

which is calculated by the Choquet integral.

We take a different approach to independence. The main idea is the following.

Any act can be represented as a coin toss (a mixture) between betting on an event

and a ‘complementary’ act. Typically, there are different possibilities to decompose

an act this way. The independence axiom we employ requires that any act can be

decomposed to a bet and a complementary act in a way that the decision maker exhibits

ambiguity neutrality between them.1 Note that according to this axiom, ambiguity

neutrality is required to hold for a particular decomposition and not for all them.

Also, this particular decomposition depends on the decision maker and typically differs

1More formally, any act can be decomposed in such a way that the decision maker exhibits ambiguity

neutrality among al acts represented by the same bet and complementary act. For brevity, we use

the former wording throughout the Introduction.
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from one decision maker to another. We therefore refer to this axiom as subjective

codecomposable independence.

Our approach, that hinges on codecomposable independence, enables one to char-

acterize a large class of event-separable preferences. These preferences are represented

by a subjective non-additive probability that captures uncertainty and a general inte-

gration scheme according to which expected utility is calculated. The class of event-

separable preferences clearly contains CEU but also other economically meaningful

families of preferences. We show that by further assuming the ambiguity aversion ax-

iom, event-separable preferences are such that the concave integral (Lehrer [9]) is the

integration scheme by which acts are being evaluated. These are referred to as Concave

Expected Utility (CavEU ) preferences.

How to motivate our codecomposable independence approach beyond the results it

yields? First, codecomposable independence axiom can take different shapes, providing

new ways of characterizing existing models. Thus, this approach sheds new light

on known theories. For instance, given an act one could postulate that ambiguity

neutrality applies to decompositions that involve bets that are comonotonic with the

act. Such an axiom is sufficient to characterize the CEU model. Another version of

codecomposable independence axiom yields the SEU model. This version requires that

ambiguity neutrality would hold not only for a particular class of decompositions, but

to any decomposition to a bet and a complementary act.

This brings us to the second motivation for subjective codecomposable indepen-

dence. Comonotonic independence (Schmeidler [15]) suggests that comonotonic acts

are structurally ‘similar’, and therefore it is reasonable to assume that a decision maker

will not have a strict preference for hedging for such acts. This argument obviously ap-

plies to the comonotonic version of our codecomposable independence axiom.According

to this axiom, a decision maker has no choice but to be ambiguity neutral when a bet

and an act are comonotonic, since they are structurally similar. We find this assump-

tion rather strong; a decision maker might not find this particular structural similarity

sufficient to imply ambiguity neutrality.
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Subjective codecomposable independence allows a decision maker the freedom to

choose what similarity means and for which type of decompositions to exhibit ambigu-

ity neutrality. Thus, ambiguity attitude towards different decompositions is completely

subjective and may differ from one decision maker to another. Among the class of

event-separable preferences, the ambiguity averse preferences CavEU are more flexible

than CEU preferences in the sense that the acts among which ambiguity neutrality

applies are subjectively determined and are not dictated by pre-specified structural

similarity. This is why CavEU preferences are less vulnerable than CEU ones to

‘paradoxes’ such as those introduced by Machina [13].

To summarize, the contribution of the current paper is threefold. First, we intro-

duce a subjective codecomposable independence axiom that allows us to characterize

a general class of event-separable preferences. For such preferences ambiguity is cap-

tured through a non-additive probability and expected utility is determined according

to a general integration scheme (not necessarily the Choquet integral). Second, this

approach allows us to introduce a model of decision making that always respects am-

biguity aversion where uncertainty is captured through a non-additive probability.

Lastly, it provides sufficient conditions, which are weaker than the previous formula-

tions adhering to the independence axioms, to subjective and Choquet expected utility

models.

The rest of the paper is organized as follows. The next section provides an informal

discussion regarding Choquet expected utility, concave expected utility and some of

the differences between the two approaches. The formal framework of choice under

uncertainty is presented and the basic axioms are formulated in Section 3. Subjec-

tive codecomposablity and the emergence of a capacity are presented in Section 4.1.

Ambiguity aversion and CavEU preferences are discussed in Section 4.2 where a short

literature review appears in Section 4.3. The relation of codecomposablity to SEU

and CEU is present in Section 5. Lastly, Section 6 presents a recent paradox for CEU

preferences raised by Machina [13] and shows how CavEU accommodates the paradox.

All the proofs are in the appendix.
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2. Choquet and Concave Expected Utility

This section provides an informal discussion and (partial) comparison between the

concave and Choquet integrals. The formal study appears in the following sections.

Assume that the underlying domain of alternatives is the collection of (non-negative)

utility acts, or random variables2 given a state space S = {s1, ..., sn}. A capacity v over

the state space is a function that assigns a number to each event in a monotonic (with

respect to containment) fashion. We interpret the capacity v(E) of an event E as how

likely E is with respect to v. A finite collection (ai, Ei)i, where ai is a positive real

number and Ei is an event,3 is a decomposition of an act g if
∑

i ai1lEi
= g. That is, g

can be decomposed to the collection of simpler functions of the form ai1lEi
. Similarly to

the Lebesgue integral, the value of a decomposition (ai, Ei)i with respect to a capacity

v is simply
∑

i aiv(Ei).

For an act g, permute the state space by π : {1, ..., n} → {1, ..., n} such that π(i) ≥
π(j) if g(si) ≥ g(sj). That is, g(sπ−1(i)) is increasing with i. The Choquet integral of

g with respect to a capacity v is

(1)

∫ C

gdv = g(sπ−1(1))v({sπ−1(1), ..., sπ−1(n)})+

+
n∑
i=2

(g(sπ−1(i))− g(sπ−1(i−1))v({sπ−1(i), ..., sπ−1(n)}).

From the right hand side of Eq. 1, the Choquet integral of g with respect to v is the

value of a particular decomposition of g of the form
(
g(sπ−1(1)), {sπ−1(1), ..., sπ−1(n)}

)
,(

g(sπ−1(2))− g(sπ−1(1)), {sπ−1(2), ..., sπ−1(n)}
)
, ...,

(
g(sπ−1(n))− g(sπ−1(n−1)), {sπ−1(n)}

)
. We

refer to such a decomposition as the Choquet decomposition. Preferences � over the

domain discussed are CEU if they can be represented by the Choquet integral with

respect to a capacity. That is there exists a capacity v such that g � h if and only if∫ C
gdv ≥

∫ C
hdv.

2That is, we assume for the sake of simplicity that the vNM utility index was already identified.

31lE is the indicator function of the event E.
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Clearly, every alternative has more than one decomposition, the Choquet decom-

position being one of them. The concave integral
∫ Cav

gdv of a random variable g is

defined as the maximum value over all decompositions of g.

To illustrate how CavEU may be different than CEU, consider the following example.

Let the state space be S = {s1, ..., s4} and define a capacity v over the state space as fol-

lows: v(s) = 1
12

for every state s, v({s1, s2}) = v({s1, s3}) = v({s2, s3}) = v({s1, s4}) =

1
6
, v({s2, s4}) = v({s3, s4}) = 3

12
, v({s1, s2, s3}) = v({s1, s3, s4}) = v({s2, s3, s4}) =

1
3
, v({s1, s2, s4}) = 5

6
and v(S) = 1. Note that the contribution of the state s2 to any

event that contains neither s1 nor s2 is greater than the contribution of s1. Formally,

for any event E that does not contain the states s1, s2, v(E ∪ {s1}) ≤ v(E ∪ {s2}).
Moreover, the inequality is strict when E = {s4}. In this sense, under the belief v the

state s2 is more likely than s1.

Now, consider the random variables f = (0, 1, 2, 3) and g = (1, 0, 2, 3). Note that f

and g differ only in states s1 and s2. f assigns the lower outcome to the less likely state

and the higher outcome to the more likely one. It is the opposite case for g; it assigns

the higher outcome to the less likely state. It is plausible then that preferences based on

the capacity v would rank f over g. Nevertheless, the Choquet integral of both f and

g is 8
12

:
∫ C

fdv = v({s2, s3, s4}) + v({s3, s4}) + v({s4}) = v({s1, s3, s4}) + v({s3, s4}) +

v({s4}) =
∫ C

gdv. That is, CEU preferences represented by the capacity v rank f and

g indifferent. However, CavEU preferences rank f strictly preferred to g:
∫ Cav

fdv =

v({s2, s4})+2v({s3, s4}) = 9
12
> 8

12
= v({s1, s3, s4})+v({s3, s4})+v({s4}) =

∫ Cav
gdv.

The capacity v above can be presented as v(E) = mini pi(E) for every event E, where

p1 = ( 1
12
, 1
12
, 1
6
, 2
3
), p2 = ( 1

12
, 2
3
, 1
12
, 1
6
), p3 = ( 1

12
, 2
3
, 1
6
, 1
12

) and p4 = (2
3
, 1
12
, 1
12
, 1
6
). That is

the capacity, as a modeling tool of perception of ambiguity, displays pessimism. In this

case it is natural to assume that the decision maker will exhibit ambiguity aversion.

Nevertheless, the Choquet integral with respect to this capacity does not exhibit such

aversion.4 On the other hand, the concave integral does. As will be formally shown,

the example above is a generic one in the sense that the capacity representing any

CavEU preferences can always be constructed as the minimum of measures over the

4The capacity v as defined in the example is not a convex one. According to Schmeidler [15] the

Choquet integral with respect to v does not adhere to ambiguity aversion.
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state space. In contrast, the Choquet integral with respect to such capacities typically

does not exhibit ambiguity aversion.

3. Environment

Consider a decision making framework in which an object of choice is an act from

the state space to utility outcomes. More formally, let S be a finite non–empty set of

states of nature. An act is a function from S to R+. The collection of acts is denoted by

F with typical elements being f, g, h. Abusing notation, for an act f ∈ F and a state

s ∈ S, we denote by f(s) the constant act that assigns the utility f(s) to every state of

nature. Utils (and constant acts) will be typically denoted by a, b, c. Mixtures (convex

combinations) of acts are performed pointwise. That is, if f, g ∈ F and δ ∈ [0, 1], then

δf + (1 − δ)g is the act in F that yields δf(s) + (1 − δ)g(s) utility for every s ∈ S.

Mixtures coefficients will be denoted by δ, α, etc.

In our framework, a decision maker is associated with a binary relation � over F
representing his ranking. � is the asymmetric part of the relation. That is f � g if

f � g but it is not true that g � f . ∼ is the symmetric part, that is f ∼ g if f � g

and g � f .

We interpret f(s) as the payoff induced by act f ∈ F in state s ∈ S and assume it

is the utility exerted by the decision maker if f is chosen and s is the realized state.

That is, we assume that the vNM utility function of the decision maker has already

been identified.5

A binary relation � is reflexive if f ∼ f for every act f . � is complete if for every

f, g ∈ F , either f � g or g � f . It is transitive if for f, g, h ∈ F , f � g and g � h imply

f � h. The following is a list of assumptions (axioms) regarding a binary relation �
over acts. We will postulate these assumption throughout.

Preference. � is reflexive, complete and transitive.

5One can also consider the restatement by Fishburn [6] of the classical Anscombe-Aumann [1] set-

up. In that case, standard axioms imply that the vNM utility index can be identified and that the

formulation of alternatives as utility acts, as we do here, is well defined. Such results have have been

established in many papers and we here rely on such results for convenience and brevity.
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Monotonicity. For every f, g ∈ F , f(s) ≥ g(s) for all s ∈ S implies f � g.

Continuity. For every f ∈ F the sets {g ∈ F : g � f} and {g ∈ F : g � f} are closed.

4. Decomposability and Ambiguity Aversion

4.1. A Capacity Emerges. A bet is an act that yields some utility b ∈ R+ over an

event E ⊆ S and the utility 0 over the complement event. Such a bet will be denoted

by bE. An act which is not a bet can always be represented as a convex combination,

or a decomposition, of some bet and another act. That is, for f ∈ F we can find a bet

bE, an act f ′ and δ ∈ [0, 1] such that f = δbE + (1− δ)f ′. Of course such bet bE, and

therefore f ′ and δ, need not be unique. The following axiom states that for at least

one such decomposition to bE and f ′, the preference relation satisfies independence

over [bE, f
′] = {αbE + (1− α)f ′ : δ ∈ [0, 1]}. The axiom can be restated as follows: if

f, g, h ∈ F are all similar, in the sense that they can call be decomposed to a bet bE

and an f ′, then independence involving f, g, h holds.

Subjective Codecomposable Independence. For every non-bet act f , there exist a bet

bE and f ′ such that f ∈ [bEf , f ′] and � satisfies independence over [bEf , f ′].

To explore the implication of subjective codecomposable independence we need to

present some notations and definitions. A capacity v over S is a function v : 2S → [0, 1]

satisfying: (i) v (φ) = 0 and v(S) = 1; and (ii) K ⊆ T ⊆ N implies v (K) ≤ v (T ).

We say that a binary relation� over all acts F admits a decomposition representation

if there exist:

1. a functional V : F → R that represents �;

2. a capacity v : 2S → [0, 1], such that

V (f) =
∑

aEv(E) for some
∑

aE1lE = f,

where aE > 0; and

A (finite) collection {(aE, E) : a > 0, E ⊆ S} is a decomposition of f if
∑
aE1lE = f .

Given a capacity v over events, the value of such a decomposition is
∑
aEv(E). Thus,

a binary relation admits a decomposition representation if an act is ranked according

to the value, with respect to the capacity, of one of its decompositions into bets.
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Before stating a result that provides a representation for subjective codecomposable

independence, note that the axiom does not have a take on mixtures with the constant

bet 0. We formulate an additional axiom that states explicitly that.

Worst-Outcome Independence. � satisfies independence over [0, f ] for every act f .

Theorem 1. Let � be a binary relation over F satisfying preferences, monotonic-

ity, continuity, worst-outcome independence and subjective codecomposable indepen-

dence. Then � admits a decomposition representation.

Theorem 1 states that given standard assumptions, worse-outcome independence

and subjective codecomposable independence, a binary relation admits a decomposition

representation. The axioms are sufficient to identify a non-additive belief and the fact

that alternatives are ranked according to the value of one of their decompositions.

However, subjective codecomposable independence is a weak assumption; it is not pos-

sible to determine exactly what is the decomposition according to which an alternative

is ranked. A question is whether adding more structure to such preferences can yield

interesting and natural aggregation mechanisms that are different than Choquet.

4.2. Ambiguity Aversion and Concave Expected Utility. Since Schmeidler [15]

and Gilboa and Schmeidler [7] ambiguity aversion is one of the most studied phe-

nomenon in the theory of decision making. Unlike Schmeidler [15] who focused on

comonotonic-independence, we here wish to impose ambiguity aversion while assum-

ing only subjective codecomposable independence.

Ambiguity Aversion. For every f, g ∈ F , if f ∼ g then δf + (1 − δ)g � g for every

δ ∈ [0, 1].

Lehrer [9] presented an integration scheme for capacities based on concavity: the

concave integral of an act f : S → R+ with respect to a capacity v is defined by∫ Cav

fdv = max
{∑

aEv(E) :
∑

aE1lE = f, aE > 0
}
.
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The difference between Choquet integral and the concave integral is that, the latter

considers all possible decompositions while the former takes into account only those

with a chain structure.

We refer to preferences � over all acts F as CavEU if there exist a capacity v : 2S →
[0, 1], such that for all f, g ∈ F

f � g ⇐⇒
∫ Cav

fdv ≥
∫ Cav

gdv.

The following result states that along with the standard assumptions, worst-outcome

independence, subjective codecomposable independence and ambiguity aversion prefer-

ences can be represented by the concave integral.

Theorem 2. Let � be a binary relation over F . Then the following are equivalent:

1. � are preferences that satisfy monotonicity, continuity, worst-outcome indepen-

dence, subjective codecomposable independence and ambiguity aversion; and

2. � is CavEU.

For a capacity v, define v̂(E) =
∫ Cav

1lEdv. v̂ is termed the totally balanced cover

of v. If v̂ = v we say that v is totally balanced. A capacity v is said to be exhibiting

pessimism if it can be written as a minimum of measures. That is, there exist a finite

collection of measures {µi}i such that v = mini µi. The following is our uniqueness

result regarding the representation of CavEU preferences.

Proposition 1. Let � be CavEU. Then: 1. there exists a unique totally balanced

capacity v representing �; 2. there exists a unique capacity v′ exhibiting pessimism

that represents �. Furthermore, v = v′.

4.3. How Does It Fit in the Lit? There are numerous models of choice under un-

certainty. The most related ones are confidence preferences presented by Chateauneuf

and Faro [3], maxmin expected utility (MEU ) that were axiomatized by Gilboa and

Schmeidler [7] and, of course, CEU preferences.

CavEU are clearly a particular case of confidence preferences, but require more struc-

ture since not every confidence preferences satisfy the decomposability property. To see

this, consider MEU preferences, which are a particular case of confidence preferences.
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Not every MEU preference relation can be represented as a (concave) integral; MEU

satisfy translation covariance (due to the c-independence axiom) while it is clear from

subjective codecomposable independence that it does not have to be satisfied by CavEU.

The subclass of CavEU preferences that do admit an MEU representation are those

that can be represented with a capacity having a large core (see, Lehrer [9]).6 This

brings us to CEU preferences. Schmeidler [15] that the Choquet integral is a concave

one if and only if the capacity is convex. Hence we have that when the capacity is not

convex CavEU and CEU differ. In addition, due to Lehrer [9] and Teper and Lehrer

[11], CEU and CavEU coincide if and only if the capacity representing the preferences

is convex (and in this case it is also MEU ).

The latter point emphasizes that given ambiguity aversion, the class of CavEU pref-

erences is more general than that of CEU. In Section 6 we illustrate this point by

discussing an example by Machina [13] and showing that CavEU can explain behavior

that may lead to a “paradox” for CEU.

5. Codecomposable Independence and Expected Utility Models

It is interesting to see the relation between the codecomposable independence ap-

proach to existing models. Clearly, both SEU and CEU are particular classes of

preferences admitting a decomposition representation. In what follows, we provide

stronger versions of our independence axiom that will yield exactly SEU and CEU.

Fix an act f . Recall that subjective codecomposable independence states that inde-

pendence holds over at least one interval [bE, f
′] that contains f . The following axiom

postulates that for every such decomposition to bE and f ′, the preference relation

satisfies independence over [bE, f
′].

Codecomposable Independence. For every bet bE and act f ′, � satisfies independence

over [bE, f
′].

Assuming codecomposable independence along with the axioms specified above allows

us to formulate the following result.

6The definition of large core is due to Sharkey [16].
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Proposition 2. The following two statements are equivalent:

1. � satisfies preference, continuity, monotonicity and codecomposable independence;

2. � admits an SEU representation.

Proposition 2 states that given the standard axioms, codecomposable independence

allows us to identify a subjective probability with respect to which the decision maker

calculates the expected utility of the different alternatives and ranks them accordingly.

Note that worst-out independence is no longer needed as it is implied by codecomposable

independence.

For an act f and a utility level a ∈ R+, let Ef
a = {s ∈ S : f(s) ≥ a} be the event in

which f performs better that a. We refer to such an event as a cumulative event for f .

When considering a cumulative event for an act f , we may ignore the utility level at

times and write Ef . A weaker codecomposable independence axiom can be formulated

taking into account only decomposition of acts to bets over (respectively) cumulative

events.

Cumulative Codecomposable Independence. For every act f , bet bEf and f ′ such that

f ∈ [bEf , f ′], � satisfies independence over [bEf , f ′].

The axiom postulates that if f, g, h ∈ F can all be decomposed to a bet bEf and

an f ′, then independence involving f, g, h holds. Note that f, g and h are comono-

tonic. Resulting from such weakening of codecomposable independence is the following

proposition. Again, worst-out independence is implied by cumulative codecomposable

independence.

Proposition 3. The following two statements are equivalent:

1. � satisfies preference, continuity, monotonicity and cumulative codecomposable

independence;

2. � admits a CEU representation.

6. On an Example by Machina

Machina [13] in a recent paper “exploits” the structural event-separability (in partic-

ular, tail separability, as he refers to it) exhibited by CEU preferneces and constructs
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several examples, in the spirit of Ellsberg, in which such preferences can not accommo-

date choices that may be considered natural. This has been reinforced by L’Hardion

and Placido [12] who showed that a large number of subjects exhibit such choices. As

discussed in the Introduction, CavEU are more flexible than CEU preferences in the

sense that event-separability is subjective and is not pre-specified structurally. This is

why CavEU preferences are less vulnerable than CEU ones to such ‘paradoxes’.

One of Machina’s examples is the following. Consider an urn containing 100 balls,

each marked with a number from 1 through 4. All you know is that there are 50 balls

that are marked either 1 or 2, and 50 balls that are marked either 3 or 4. You are

being offered a pair of bets f and g, as described in Table 1, that depend on a draw of

one ball from the urn.7 In addition you are being offered another pair of bets h and k

that depend as well on a draw of one ball from the urn.

Table 1. The Reflection Example

Bet s1 s2 s3 s4

f 0 200 100 100

g 0 100 200 100

h 100 200 100 0

k 100 100 200 0

Machina notices that by tail separability, as he refers to it, CEU maximizer prefers

f to g if and only if she prefers h to k. From the tables above it is clear that acts h and

k are obtained from f and g by a pair of common-outcome tail shifts; CEU preferences

cannot explain a “reversal” such as the preference of f over g and at the same time

the preference of k over h.

CavEU preferences can accommodate the reversal of preferences indicated by Machina.8

If v(s2) > v(s3) = 0, v(s2, s3, s4) > v(s2, s3) + v(s3, s4) and v(s2, s4) = v(s2) then

7Even though the analysis would go through if entries are monetary, we consider utils for brevity

and simplicity.
8In an unpublished manuscript, Lehrer [10] shows that the concave integral can accommodate the

other reversal, that is, the preference of g over f and that of h over k. L’Hardion and Placido [12]

find that the more common reversal is the one discussed in the discussion above. Baillon, L’Haridon,
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fdv = v(s2, s3, s4) + v(s2),

∫ Cav
gdv = v(s2, s3, s4) + v(s3) and

∫ Cav
fdv >∫ Cav

gdv. On the other hand, if in addition v(s1, s2, s3) − v(s2, s3) > v(s1, s2) − v(s2)

and v(s1, s2, s3) < v(s1, s3) + v(s2, s3) then
∫ Cav

hdv = v(s1, s2, s3) + v(s2),
∫ Cav

kdv =

v(s1, s3) + v(s2, s3) and
∫ Cav

kdv >
∫ Cav

hdv.
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Appendix: Proofs

Proof of Theorem 1. preferences and continuity imply that � admits a (continuous)

representation V : RS
+ → R. That is, for every f, g ∈ F , f � g if and only if

V (f) ≥ V (g).

Now, pick a non-bet act f ∈ F . Subjective codecomposable independence implies that

there exist an event E1 ⊆ S and an f1 such that f = δbE1 +(1−δ)f1, V is affine on the

interval spanned by bE1 and f1, and in particular V (f) = δV (bE1) + (1− δ)V (f1). Let

δ∗1 and b∗1 such that their product is maximized across all pairs of δ and b that satisfy

the latter equalities. Such a maximum exists due to continuity. Let f ∗1 be the act in

the decomposition of f corresponding to such δ∗1 and b∗1. If f ∗1 is not a bet, the process

above can be repeated and f ∗1 can be represented as well by f ∗1 = δ∗2b
∗2
E2

+ (1 − δ∗2)f ∗2 ,

where V is affine on the interval spanned by b∗2E2
and f ∗2 , and in particular V (f ∗1 ) =

δ∗2V (b∗2E2
) + (1 − δ∗2)V (f ∗2 ). This process can be repeated and in the nth step, if f ∗n−1

is not a bet, we get that there exist an En, δ
∗
n, f

∗
n such that f ∗n−1 = δ∗nb

∗n
En

+ (1− δ∗n)f ∗n

where V is affine over the interval spanned by b∗nEn
and f ∗n. Now, due to maximality of

the δ∗j b
∗j’s and the fact that V is affine along the path of decompositions, it cannot be

the case that there are k 6= j such that Ek = Ej. Hence, since the state space is finite,

the procedure above must be of finite m iterations.

We obtained that f = δ∗1b
∗1
E1

+ (1− δ∗1)δ∗E2
b∗2E2

+ · · ·+ (1− δ∗1) · · · (1− δ∗m−1)δ∗mb∗mEm
+

(1 − δ∗1) · · · (1 − δ∗m)b∗m+ 1Em+1 and V (f) = δ∗1V (b∗1E1
) + (1 − δ∗1)δ∗E2

V (b∗2E2
) + · · · +

(1− δ∗1) · · · (1− δ∗m−1)δ∗mV (b∗mEm
) + (1− δ∗1) · · · (1− δ∗m)V (b∗m+1

Em+1
) = δ∗1b

∗1V (1lE1) + (1−
δ∗1)δ∗E2

b∗2V (1lE2)+· · ·+(1−δ∗1) · · · (1−δ∗m−1)δ∗mb∗mV (1lEm)+(1−δ∗1) · · · (1−δ∗m)b∗m+1V (1lEm+1),

where the last equality is due to homogeneity of V which is a result of worst-outcome

independence. Defining a set function v : 2S → [0, 1] by v(E) = V (1lE), we have that

V (f) =
∑
aEv(E) for some

∑
aE1lE = f . Now, v is a capacity. Indeed, due to ho-

mogeneity of V we have that v(∅) = 0, v(S) can be normalized to 1 without loss of

generality, and v is monotonic since V is monotone.
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Proof of Proposition 3. It is clear that the axioms are satisfied by the CEU prefer-

ences. As for the other implication, all that is needed to show is that given cumulative

codecomposable independence the decomposition of any act obtained in the proof of

Theorem 1 is the Choquet one.

To see that pick an act f ∈ F and, let a1 = max{f(s) : s ∈ S} and E1 = {s ∈
S : f(s) = a1}. Also denote a2 = max{f(s) : s ∈ Ec

1}. Let f ′ be the act defined

by f ′(s) = f(s) whenever s ∈ Ec
1 and a2 otherwise (that is, f ′ coincides with f

over the complement of E1, and over E1 it is defined as the second highest value

f attains). Now, f = f ′ + (a1 − a2)1lE1 = a2
a1

(a1
a2
f ′) + a1−a2

a1
(a1E1). Note that E1

is cumulative to f , hence by cumulative codecomposable independence we have that

V (f) = a2
a1
V
(
a1
a2
f ′
)

+ a1−a2
a1

V (a1E1) = V (f ′)+(a1−a2)V (1lE1) = V (f ′)+(a1−a2)v(E1).

Repeating the same procedure to f ′ we get that the desired result.

Proof of Proposition 2. It is clear that the axioms are satisfied by the EU preferences.

As for the other implication, all that is needed to show is that given codecomposable

independence the capacity obtained in the proof of Theorem 1 is additive, hence a

probability.

Pick any event E ⊂ S and state s ∈ S \ E and consider an act of the form f =

21l{s} + 1lE. On one hand, from the proof of Proposition 3 we know that V (f) =

v(E∪{s})+v({s}). On the other hand, we can write f = 1
2
(41l{s})+ 1

2
(21lE) and due to

codecomposable independence we have that V (f) = 1
2
(41l{s})+ 1

2
(21lE) = 2v({s})+v(E).

Thus, v({s}+v(E∪{s}) = 2v({s})+v(E), implying that v({s})+v(E) = v(E∪{s}).
Since E is an arbitrary event, we get that v(F ) =

∑
s∈F v(s) for any event F ⊂ S,

implying that v is a probability over S.

Proof of Theorem 2. The concave integral satisfies subjective codecomposable indepen-

dence due to Proposition 5 in Even and Lehrer [5] (and it is immediate that the rest

of the axioms are implied by integral).

Following Proposition 1, worst-outcome independence and continuity we have that

� is represented by a homogeneous and continuous V such that V (1lE) ≥ v(E). Am-

biguity aversion implies that V is a concave functional. By Lemma 1 in Lehrer [9]

we have that V (·) ≥
∫ Cav

(·)dv. However, for every f ∈ F concavity of V implies
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that V (u(f)) ≤
∑
αEV (1lE) for all decompositions of f , implying that V (u(f)) ≤∫ Cav

u(f)dv. Therefore V (·) =
∫ Cav

(·)dv.

Proof of Proposition 1. Due to Lemma 1 in Lehrer and Teper [11], without loss of

generality we can assume that v is totally balanced. Now, let ṽ be a different totally

balanced capacity and assume that ṽ represents �. Since v and ṽ are different there

exist E ⊆ S such that without loss of generality v(E) < ṽ(E). Let b ∈ R+ such

that v(E) < b < v′(E). Then we have that
∫ Cav

1lEdv <
∫ Cav

bdv and
∫ Cav

1lEdṽ >∫ Cav
bdṽ, which contradicts the assumption that ṽ represents �. Thus, 1 is proven. 2

is due to 1 and Theorem 1 in Kalai and Zemel [8].


