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Abstract.   Although evidence accrues in biology, anthropology and experimental 5

economics that homo sapiens is a cooperative species, the reigning assumption in 6

economic theory is that individuals optimize in an autarkic manner (as in Nash and 7

Walrasian equilibrium).  I here postulate a cooperative kind of optimizing behavior, 8

called Kantian.  It is shown that in simple economic models, when there are negative 9

externalities (such as congestion effects from use of a commonly owned resource) or 10

positive externalities (such as a social ethos reflected in individuals’ preferences), 11

Kantian equilibria dominate Nash-Walras equilibria in terms of efficiency.  While 12

economists schooled in Nash equilibrium may view the Kantian behavior as utopian, 13

there is some – perhaps much -- evidence that it exists.  If cultures evolve through group 14

selection, the hypothesis that Kantian behavior is more prevalent than we may think is 15

supported by the efficiency results here demonstrated. 16
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1. Introduction 26

 Recent work in contemporary social science and evolutionary biology emphasizes 27

that homo sapiens is a cooperative species.  In evolutionary biology, scientists are 28

interested in explaining how cooperation and ‘altruism’ may have developed among 29

humans through natural selection.   In economics, there is now a long series of 30

experiments whose results are often explained by the hypothesis that individuals are to 31

some degree altruistic.  A recent summary of the state-of-the-art in experimental 32

economics, anthropology, and evolutionary biology is provided by Bowles and Gintis 33

(2011).    Rabin (2006) provides a summary of the evidence for altruism from 34

experimental economics.   An anthropological view is provided in Henrich and Henrich 35

(2007).   Alger and Weibull (2012) model the evolution of altruism, and provide a useful 36

bibliography.37

 Altruism may induce behavior that appears to be cooperative, but altruism and 38

cooperation have different motivations.   Altruism, at least when it is intentional in 39

humans, is motivated by a desire to improve the welfare of others, while cooperation may 40

be motivated (only) by the desire to help oneself.  (For example, workers in a firm 41

cooperate, but each may do so because she realizes that cooperative behavior advances 42

her own welfare.)   There is an important line of research, conducted by Ostrom (1990) 43

and her collaborators, arguing that, in many small societies, people figure out how to 44

cooperate to avoid, or solve, the ‘tragedy of the commons.’   That tragedy may be 45

summarized as follows.  Imagine a lake which is owned in common by a group of fishers, 46

who each possess preferences over fish and leisure, and perhaps differential skill (or sizes 47

of boats) in (or for) fishing.  The lake produces fish with decreasing returns with respect 48

to the fishing labor expended upon it.  In the game in which each fisher proposes as her 49

strategy a fishing time, it is well known that the Nash equilibrium is Pareto inefficient: 50

there are congestion externalities, and all would be better off were they able to design a 51

decrease, of a certain kind, in everyone’s fishing.    Ostrom studied many such societies, 52

and maintained that many or most of them learn to regulate ‘fishing,’ without privatizing 53

the ‘lake.’   Somehow, the inefficient Nash equilibrium is avoided.   This example is not 54

one in which fishers care about other fishers (necessarily), but it is one in which 55

cooperation is organized to deal with a negative externality of autarkic behavior.56
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 The ethos that motivates cooperation is called solidarity.   Merriam-Webster’s 57

dictionary defines solidarity as ‘unity (as a group or class) that produces or is based on 58

community of interests or objectives.’   There is no mention of altruism: we do not 59

cooperate because we care about others, but because we recognize we are all in the same 60

boat, and cooperation will advance each individual interest.   Of course, if altruism exists, 61

it may also motivate cooperation, but I wish to emphasize that cooperation does not 62

require altruism. 63

  Ostrom’s observations pertain to small societies.   In large economies, we 64

observe the evolution of the welfare state, supported by considerable degrees of taxation 65

of market earnings.   It is conventionally argued that the successful welfare states had 66

their genesis in solidarity:  they provided insurance which was in everyone’s self-interest.67

It was easier to organize welfare states where citizens were ethnically and linguistically 68

homogeneous, because the ‘unity’ which Merriam-Webster refers to was more evident in 69

this case.   We do not need to invoke altruism among the citizens of Nordic societies to 70

explain the welfare state: in other words, their homogeneity was the source of their 71

recognition of common interests, but it need not have induced altruism to generate the 72

welfare state. 73

    There is, however, also an argument that welfare states expand after wars as a 74

reward to returning soldiers ; see Scheve and Stasavage[2012].   Perhaps altruism 75

develops in a population as a result of their participation in a cooperative venture:  we 76

identify more with others when we succeed in cooperating, and that identification may 77

lead to altruism.  Or we feel soldiers deserve a reward for having fought the war.78

Redistributive taxation appears to be at least to some degree a polity’s reaction to the 79

material deprivation of a section of society, which many view as undeserved, and desire 80

to redress.  To the extent that welfare states provide insurance which it is rational for self-81

interested agents to desire, it is a manifestation of cooperation; to the extent that citizens 82

support the welfare state to redress unjust inequality, it is a manifestation of altruism, or 83

at least of a sense of justice.     Regardless of the motive, as is well-known, redistributive 84

taxation induces, to some degree, allocative inefficiency.  I will argue that this is due in 85

large part to non-cooperative behavior of individual workers when they face the tax 86

regime.  Each worker is computing his optimal labor supply in the Nash fashion: that is, 87
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assuming that all others are holding their labor supplies fixed. 88

 Among economists, there have been a number of strategies to explain behavior 89

that is not easily explained as the Nash equilibrium of the game that agents appear to be 90

playing.   Ostrom explains the avoidance of the tragedy of the commons among ‘fishing 91

communities’ by the imposition of punishment of those who deviate from the cooperative 92

behavior:  in other words, the payoffs of the game are changed so that it becomes a Nash 93

equilibrium for each fisher to cooperate.   This is also the argument that Mancur Olson 94

(1965) employs to explain cooperation:  unions, for example, get workers to cooperate by 95

offering side payments and punishments for those who deviate.   In experimental 96

economics, when individuals often do not play what appears to be the Nash equilibrium 97

of a game ( dictator and ultimatum games, for example) , there are a number of  moves.98

Perhaps individuals are using rules of thumb that are associated with strategies that are 99

equilibria in repeated games, even though the game in the laboratory is not repeated. Or 100

perhaps  players have other-regarding preferences: they are to some degree altruistic.  Or 101

perhaps they have a sense of morality, which can be viewed as a kind of preference – a 102

player feels better when, in the dictator game, she gives something to the opponent.   Or, 103

in the ultimatum game,  the proposer offers a substantial amount to the opponent because 104

she believes the opponent does not have classical preferences – that is,  Opponent will 105

reject an ‘unfair’ offer.  Outcomes are then explained as Nash equilibria of games whose 106

players have non-classical (i.e., non-self-interested) preferences.107

  Here, I introduce another approach.  I propose that we can explain cooperation by 108

observing that players may be optimizing in a non-classical  (that is, non-Nash)  manner.109

This leads to a class of equilibrium concepts that I call Kantian equilibria.   Briefly, with 110

Kantian optimization, agents ask themselves, at a particular set of actions/strategies in a 111

game: If I were to deviate from my stipulated action, and all others were to deviate in like 112

manner from their stipulated actions, would I prefer the consequences of the new action 113

profile?    I denote this kind of thinking Kantian because an individual only deviates in a 114

particular way, at an action profile, if he would prefer the situation in which his action 115

were universalized – that is to say, he’d prefer the action profile where all make the kind 116

of deviation he is contemplating.    Each agent evaluates not the profile that would result 117

if only he deviated, but rather the profile of actions that would result if all deviated in 118
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similar fashion.  Kant’s categorical imperative says: Take those and only those actions 119

that are universalizable, meaning that the world would be better (according to one’s own 120

preferences) were one’s behavior universalized.  It is important that the new action 121

profile be evaluated with one’s own preferences, which need not be altruistic.122

 There is a distinction, then, between the approach of behavioral economics, which 123

has by and large focused on amending preferences from self-interested ones to altruistic 124

or other-regarding ones, or ones in which players possess a sense of justice,  to the 125

approach I describe, which amends optimizing behavior, but does not (necessarily) fiddle 126

with preferences.    Of course, one could be even more revisionist, and amend both127

optimizing behavior and preferences, leading to the four-fold taxonomy of modeling 128

approaches summarized in Table 1. 129

130

Preferences

Optimization Self-interested Other-regarding

Nash classical behavioral economics 

Kantian  this paper, section 3 and 5 this paper, section 6 

131

Table 1.  Taxonomy of possible models 132

133

The purpose of the present inquiry is to study whether the inefficiency of Nash 134

equilibrium can be overcome with Kantian optimization – in both cases of the bottom 135

row of Table 1.   I hope to clarify, in what follows, my claim that varying preferences as 136

a modeling technique differs from the strategy of varying optimizing protocols.   The first 137

strategy alters the column of the matrix in table 1 in which the researcher works, while 138

the second alters the row. 139

 Let me comment further on the distinction between Nash and Kantian behavior.  140

It is noteworthy that economists have devoted very little thought to modeling cooperation.   141

We have a notion of cooperative games, but that theory represents cooperation in an 142

extremely reduced form.    Cooperative behavior is not modeled, but is simply 143

represented by defining values of coalitions.  How do coalitions come to realize these 144

values?  The theory is silent on the matter.   If an imputation is in the core of a 145
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cooperative game, it is, a fortiori, Pareto efficient: typically, one is concerned with 146

whether cooperative games contain non-empty cores, but the behavior which leads to an 147

imputation in the core is typically not studied.    A major exception to this claim is the 148

theorem that non-cooperative, autarkic optimizing behavior, in a perfectly competitive 149

market economy, induces an equilibrium that lies in the core of an associated game.  But 150

this is an exception to my claim, not the rule.   In contrast, the Shapley value of a convex 151

cooperative game is in the core: but I do not think anyone derives the Shapely value as 152

the outcome of optimizing behavior of individuals. 153

 I wish to propose that Kantian optimization can be viewed as a model of 154

cooperation.   As a Kantian optimizer, I hold a norm that says: “If I want to deviate from 155

a contemplated action profile (of my community’s members), then I may do so only if I 156

would have all others deviate ‘in like manner.’”  I have not spelled out what the phrase 157

‘in like manner’ means, as yet – that will comprise the details of this paper.    Contrast 158

this kind of thinking with the autarkic thinking postulated in Nash behavior – I change 159

my action by myself, assuming that others in my community stand pat.160

 In section 2, the economic environment for this inquiry is specified.  Section 3 161

introduces two examples of Kantian optimization and proves that they produce Pareto 162

efficient outcomes – they resolve different kinds of commons’ tragedies that can afflict 163

societies living in these economic environments.  Section 4 takes up two possible 164

objections to the approach, and argues more explicitly that Kantian optimization is not 165

equivalent to altering agents’ preferences.  Section 5 presents a more general theory of 166

Kantian optimization.  Section 6 introduces altruism into agents’ preferences, and studies 167

whether Kantian optimization will continue to produce Pareto efficient outcomes.168

Section 7 contains a brief discussion of the existence of Kantian equilibria, and their 169

dynamics.  Section 8 concludes2.170

                                                
2 I originally proposed a definition of Kantian equilibrium in Roemer (1996), and showed 

its relationship to the ‘proportional solution, ’ of Roemer and Silvestre (1993).  In 

Roemer (2010), I investigated a special case of Kantian equilibrium, that I now call 

multiplicative Kantian equilibrium.   The present paper shows that there are many 

versions of Kantian optimization, and characterizes when they deliver efficient outcomes 
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171

2.   The economic environment 172

 There is a concave, differentiable production function G that produces a single 173

output from a single input, called effort.  Effort is supplied by individuals; it may differ in 174

intensity or efficiency units, but effort,  measured in efficiency units,  can be aggregated 175

across individuals.   We assume, except in section 6, that there are a finite number of 176

individuals, n.   If the sum of individual efforts is ES  then total production is G(ES )  .177

We denote the effort expended by an agent of type   by E  . It is assumed that effort is 178

unbounded above but bounded below by zero.  Let the class of such production functions 179

be denoted G.180

  An individual of type  has preferences represented by a utility function 181

u (x,E)   where x is consumption and E is effort.   A person’s utility depends only her 182

own consumption and effort, until section 6 below.183

 An allocation rule is a mapping X : +
n ×G +

n  .   If the vector of efforts is 184

E = (E1,...,E ,...,En )  then X(E,G)   is the allocation of output to individuals under the 185

rule X .   If we write X = (X1,...,Xn )  as a vector of real-valued functions, then 186

X (E1,...,En ,G)   is the amount of output produced which agent   receives.   Thus, it is 187

identically true that for any non-wasteful allocation rule, X (E1,...,En ,G) G(ES )  . 188

  We will also at times write allocation rules in terms of the shares of output that 189

they induce: that is an allocation rule X induces a vector of shares assigned to individuals, 190

given by X (E,G) = (E,G)G(ES )  .   Of course, 1  .    191

 An economic environment is specified by a profile of utility functions and a 192

production function: e = (u1,...,un ,G)  .   An economy is a pair (e,X)  .    An economy 193
                                                                                                                                            
in the presence of the various kinds of externalities in which Nash equilibrium performs 

poorly.  As well as extending the results of Roemer (2010) in  a number of ways, this 

paper offers a clearer argument about the distinction between preferences and 

optimization protocols. 
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induces a game among the population:  for any vector of efforts, each can compute her 194

utility.   That is, define the payoff functions {V }   by: 195

V (E1,...,En ) = u (X (E,G),E ),  where E = (E1,...,En )  .  (2.1) 196

For example, consider the fishing economy described in section 1.   It is assumed that 197

each fisher keeps his catch.   Thus, statistically speaking, the amount of fish received by 198

fisher  will be proportional to the fraction of total labor, in efficiency units, that he 199

expends.   The allocation rule is given by: 200

,Pr (E1,...,En ) = E
ES  .       (2.2)3201

For obvious reasons, this is called the proportional (Pr) allocation rule.    The game 202

induced by the proportional allocation rule has payoff functions: 203

V (E1,...,En ) = u (E
ES G(E

S ),E )  .      (2.3) 204

The ‘tragedy of the commons’ is the statement that if G is strictly concave, then the Nash 205

equilibria of the game defined by (2.3) are Pareto inefficient: indeed all would be better 206

off by suitable reductions in their effort from the Nash effort allocation. 207

 Another important rule is the equal division allocation rule,  given by: 208

,ED (E1,...,En ) = 1
n

 ,         (2.4) 209

and a third class of rules are the Walrasian allocation rules, given by: 210

,Wa (E1,...,En ,G) = G (E
S )

G(ES )
E + (1

G (ES )ES

G(ES )
) ,       (2.5) 211

in which an agent receives output equal to her effort multiplied by the Walrasian wage 212

plus her share (  ) of profits.    Note that the Walrasian shares do depend upon G,213

unlike the proportional and equal-division shares, and this illustrates why, in general, we 214

allow  to depend upon G as well as the effort vector. 215

 Denote the class of economic environments (u1,...,un ,G)   in which n is finite, 216

G G  , and the u   are concave, differentiable functions, by .  Denote the sub-class 217

of economic environments were G is linear by .    218

                                                
3 For this rule, the shares   do not depend upon G.

 E
0, fin

 L
0, fin
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3.  Kantian equilibrium in non-altruistic economies219

220

 We may formalize the idea of Kantian optimization as follows.  Let {V }   be a 221

set of payoff functions for a game played by types , where the strategy of each player is 222

a non-negative effort E   , and E  is the effort profile of the players.   A multiplicative223

Kantian equilibrium is an effort profile E*   such that nobody would prefer that everybody 224

alter his effort by the same non-negative factor. That is: 225

( )( r 0)(V (E* V (rE* ))   (3.1) 226

227

In Roemer (1996, 2010), this concept was simply called ‘Kantian equilibrium.’  228

 The remarkable feature of multiplicative Kantian equilibrium is that it resolves 229

the tragedy of the commons in the fishers’ economy.  It is proved in the two citations just 230

mentioned that if a strictly positive effort allocation is a multiplicative Kantian 231

equilibrium in the game defined by (2.3), then it is Pareto efficient in the economy 232

e = (u,G) .  This is a stronger statement than saying the allocation is efficient in the game 233

: for in the game, only certain types of allocation are permitted – ones in which fish 234

are distributed in proportion to effort expended.  But the economy defines any allocation 235

as feasible, as long as x = G(ES )  .   So Kantian behavior, if adopted by individuals, 236

resolves the tragedy of the commons.237

    The intuition is that the Kantian counterfactual (that each agent considers only 238

deviations from an effort allocation if all deviate by a common factor) forces each to 239

internalize the externality associated with the congestion effect of his own fishing.    It is 240

not obvious that multiplicative Kantian equilibrium will internalize the externality in 241

exactly the right way – to produce efficiency – but it does.242

 A proportional solution in the fisher economy is defined as an allocation 243

(x,E) = (x1,..., xn ,E1,...,En )   with two properties: 244

 (i)  for all , x = E
ES G(ES )  , and 245

 (ii) (x,E)   is Pareto efficient. 246

{V }
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The proportional solution was introduced in Roemer and Silvestre (1993), although the 247

concept of (multiplicative) Kantian equilibrium came later.  The proportional solutions of 248

the fisher economy are exactly its positive multiplicative Kantian equilibria  (see theorem 249

3 below).  In the small societies which Ostrom has studied, which are (in the formal 250

sense) usually ‘economies of fishers’ where each individual ‘keeps his catch,’ she argues 251

that internal regulation assigns ‘fishing times’ that often engender a Pareto efficient 252

allocation.  If this is so, these allocations are proportional solutions, and therefore (by the 253

theorem just quoted) they are multiplicative Kantian equilibria in the game where 254

participating fishers/hunters/miners propose labor times for accessing a commonly owned 255

resource.    This suggests that small societies discover their multiplicative Kantian 256

equilibria.   Ostrom (1990), however, does not provide any evidence for Kantian thinking 257

among citizens of these societies: as mentioned earlier, she explains these good 258

allocations as Nash equilibria of games with altered payoffs.    Knowing the theory of 259

multiplicative Kantian equilibrium, one is tempted to ask whether a ‘Kantian 260

optimization protocol’ exists in these small societies, which leads to the discovery of the 261

Pareto efficient equilibrium. 262

 I now introduce a second Kantian protocol which leads to a notion of additive263

Kantian equilibrium4. An effort profile E is an additive Kantian equilibrium if and only if 264

no individual would have all individuals add the same amount of effort (positive or 265

negative) to everyone’s present effort.  That is: 266

( )( r infE )(V (E) V (E + r))  , (3.2) 267

where E + r   is the effort profile in which the effort of type  individuals is E + r  .  The 268

lower bound on r is necessary to avoid negative efforts. Additive Kantian equilibrium 269

again postulates that each person ‘internalizes’ the effects of his contemplated change in 270

effort, but now the variation is additive rather than multiplicative. 271

 In the sequel, I will denote these two kinds of Kantian behavior as  and . 272

 We have: 273

274

                                                
4 This variation of Kantian equilibrium was proposed to me by J. Silvestre in 2004. 

K K +
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Theorem 1 Any strictly positive  equilibrium with respect to the proportional 275

allocation rule is Pareto efficient on the domain  .   Any strictly positive  276

equilibrium with respect to the equal-division allocation rule is Pareto efficient on the 277

domain . 278

Proof:279

1.  Let E = (E1,...,En )   be a strictly positive  equilibrium w.r.t. the proportional allocation 280

rule Pr  .   The first-order condition stating this fact is: 281

( )
d

dr r=1

u (
rE

rES G(rE
S ),rE ) = 0,   (3.3) 282

which means: 283

( )(u1
E

ES G (E
S )ES + u2E ) = 0  . (3.4) 284

Since E > 0  , divide through (3.4) by E , giving: 285

( )(
u2
u1

= G (ES ))  . (3.5) 286

Eqn. (3.5) states that the marginal rate of substitution between income and effort is, for 287

every agent, equal to the marginal rate of transformation, which is exactly the condition 288

for Pareto efficiency at an interior solution.  This proves the first claim. 289

2.  For the second claim, let E be a  equilibrium w.r.t. the equal-division allocation 290

rule  for any economy in  .  Then: 291

( )(
d

dr r=0

u(
G(ES + nr)

n
,E + r) = 0)  , (3.6) 292

which expands to: 293
( )(u1 G (ES )+ u2 = 0)  . (3.7) 294

(Strict positivity of E is here used so that the range of r includes a small neighborhood of 295

zero.)   Clearly (3.7) implies (3.5), and again the allocation is Pareto efficient. 296

 Examine the proof of the first part of this proposition, and compare the reasoning 297

that agents who are Kantian employ to Nash reasoning.  When a fisher contemplates 298

increasing his effort on the lake by 10%, she asks herself, “How would I like it if 299

everyone increased his effort by 10%?”  She is thereby forced to internalize the 300

externality that her increased labor would impose on others, when G is strictly concave.301

K ×

 E
0, fin K +

 E
0, fin

K +

ED
 E

0, fin
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 A similar story applies to the additive Kantian equilibrium with respect to the 302

equal-division rule.   The Nash equilibrium of the game induced by the equal division 303

rule is Pareto inefficient, as long as G is strictly concave – but in this case, agents apply 304

too little effort at the Nash allocation.  But with the K +  optimization protocol, agents 305

internalize the effect of their working too little.   The equal-division allocation rule is 306

often said to apply to hunting economies:  unlike fishers, when tribes hunted for big game, 307

it was common to divide the catch equally among all.   Hunting economies, using the 308

equal-division rule, will be plagued by the inefficiency of individuals shirking  (taking a 309

nap behind a bush while others carry on), but their problem can be resolved if all use the 310

additive Kantian protocol.    Some of the early Israeli kibbutzim used the equal division 311

rule:  regardless of efforts expended, the product was divided equally among households312

(or perhaps in proportion to family size).   An additive Kantian optimization protocol 313

would therefore have generated Pareto efficient allocations. 314

 Theorem 1 states that each method of Kantian optimization (multiplicative or 315

additive) engenders Pareto efficient results in the games induced by particular allocation 316

rules (proportional, equal division).   Although generally Kantian optimization forces 317

agents to internalize externalities associated with strictly concave production functions in 318

these economic environments, the optimization protocols do not completely resolve the 319

inefficiencies associated with these externalities except when the allocation rule is the 320

right one.321

 We emphasize that, in Kantian optimization, agents evaluate deviations from their 322

own viewpoints, as in Nash optimization.   They do not put themselves in the shoes of 323

others, as they do in Rawls’s original position, or in Harsanyi’s (1977) thought 324

experiment in which agents employ empathy.   In this sense, Kantian behavior requires 325

less of a displacement from self than ‘veil-of-ignorance’ thought experiments require.326

Agents require no empathy to conduct Kantian optimization: what changes from Nash 327

behavior is the supposition about the counterfactual.328

 It remains to ask, when we discover an example of a society that appears to 329

implement one of these allocation rules in a Pareto efficient manner, whether Kantian 330

thinking among its members plays a role in maintaining its stability.  This is an empirical 331
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question.   Just as a Nash equilibrium is self-enforcing, so a Kantian allocation will be 332

self-enforcing if the players in the game employ Kantian optimization.333

 We close this section with another example of how Kantian optimization can 334

overcome inefficiencies – this time, with respect to income taxation.  Suppose G is linear: 335

G(x) = ax  , some a > 0  .   Suppose each worker is paid his marginal product per unit 336

effort (which is a).   The affine tax rule for tax rate t is given by the allocation: 337

X (E1,...,En ) = (1 t)aE + ta E
S

n
 .      (3.8) 338

We know that the Nash equilibrium in the game induced by this allocation rule is Pareto 339

inefficient for any t > 0  : this is the familiar deadweight loss of taxation.   But we have: 340

341

Theorem 2 On the domain of economies , the strictly positive K + equilibria with 342

respect to the affine tax rules are Pareto efficient, for any t [0,1]  . 343

Proof:344

The vector of efforts E comprises a strictly positive K +  in such an economy exactly 345

when:346

( )(
d

dr r=0

u ((1 t)a(E + r)+ t a(E
S + nr)
n

,E + r) = 0)    ,       (3.9) 347

which expands to: 348

u1 (1 t + t)a + u2 = 0  , 349

which says that 
u2
u1

= a  , the condition for Pareto efficiency.350

 What is the intuition?  In Nash equilibrium, when the agent chooses his effort 351

supply, he assumes there is negligible impact on the lumpsum demogrant he will receive 352

from the tax.   But if an agent uses the additive optimization protocol, he only reduces his 353

effort by a quantum if he would prefer that all others reduce their effort by the same 354

quantum.  The effect on the demogrant will then be significant.  Thus, the additive 355

optimization protocol makes the agent internalize the externality of his choice of labor 356

supply – in this case, the positive externality that taxes are distributed to all in a lumpsum 357

fashion.  The fact that the internalization is exactly right, in the sense of inducing Pareto 358

 L
0, fin
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efficiency, is not a priori obvious.    And the theorem does not hold if G is strictly 359

concave.360

361

4.   Two possible objections 362

 Readers may find the conceptualization of Kantian optimization to be too 363

complex.    Would it not be more faithful to Kant to say that a Kantian expends that effort 364

level that he would like all others to expend as well?   Why introduce the complexity that 365

Kantian optimization means ‘at an effort allocation, each believes that it he can deviate in 366

a particular way, only if he would prefer all others deviate in similar fashion?’   The 367

answer is this:   the simpler version is equivalent to the more complex version exactly 368

when all agents are identical (have the same preferences).  The more complex version is, 369

I maintain, the proper generalization of the simpler version when agents are 370

heterogeneous.371

  Brekke, Kverndokk and Nyborg (2003) , for example, present a model of moral 372

motivation, in which all agents are identical. They write, “ To find the morally ideal 373

effort ei
*  ,  the individual asks herself, ‘ Which action would maximize social welfare, 374

given that everyone acted like me?’ ” 375

 We have the following easy proposition, in our economic environment. 376

377

Proposition 1. Let X be any anonymous allocation rule5. Suppose all utility functions 378

are identical.   Then: 379

A.  If each chooses the effort level that she would most like all others to choose as well, 380

then the allocation is Pareto efficient. 381

B.  The effort level that all (universally) choose in part A is both a K +   and a K ×382

equilibrium of the game with identical players.383

384

385

                                                
5 An anonymous allocation rule is one such that, if the effort levels are permuted, then the 
output assignments are likewise permuted.
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Proof of A.  If X is any anonymous rule, then it immediately follows that , for any effort 386

level,  and any i, Xi (E,E,...,E) = G(nE)
n

 .   In part A, each agent i,  solves the problem: 387

max
E
u(
G(nE)

n
,E)  ; 388

the first-order necessary condition for an interior solution is389

u1G (E)+ u2 = 0  ,   (4.1) 390

where the derivatives of u are evaluated at (
G(nE)

n
,E)  .  Thus, the solution is indeed 391

Pareto efficient.   Denote the solution of this problem by E*  .392

Proof of Part B 393

394

 To check that the vector (E*,E*,...,E*)   is a multiplicative Kantian equilibrium, 395

we examine the definition: 396

d

dr r=1

u(
G(nrE*)

n
,rE*) = u1 G (E

*)E* + u2 E* = 0  ,     (4.2) 397

where the second equality follows from (4.1).   Hence, (E*,E*,...,E*)  is a K ×398

equilibrium.399

 The proof that (E*,E*,...,E*)  is a K +   equilibrium is equally straight-forward.400

 The proposition proves that Kantian equilibrium in the way it is defined in the 401

present article, is a generalization of the ‘simpler’ version of Kantian equilibrium 402

proposed by Brekke et al (2003) .   Unfortunately, the simpler version does not work 403

when agents are heterogeneous – that is, the simpler kind of Kantian equilibrium is 404

generally not Pareto efficient with heterogeneous agents.  This is unsurprising.   What is 405

perhaps surprising is that the relatively natural change – from thinking about expending 406

identical efforts to making similar deviations at a vector of efforts --  is sufficient to 407

generate socially desirable outcomes (in the sense of Pareto efficiency), at least in the 408

cases discussed in section 36.409

                                                
6 Ostrom and Gardner (1993) argue that commons’ problems are more easily solved 
when the individuals involved are ‘symmetric’ (i.e., identical).   But they also argue that, 
even heterogeneous agents, can solve commons’ problems.   When the individuals have 
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 The second objection that some have raised is against the distinction I have drawn 410

in section 1 between optimization protocols and preferences.    They ask, ‘Cannot the 411

Kantian protocol  be shown really to be a kind of preference, and Kantian equilibria 412

transform into Nash equilibria of the game with  these new preferences?’   I now argue 413

that this is not, in general, so.414

 The most general kind of preferences would be defined over the entire allocation, 415

(x1,..., xn ,E1,E2,...,En )   where (xi ,Ei )   is the effort-consumption vector of agent i.   The 416

question can then be posed as follows:417

418

Given an arbitrary economic environment (u,G,n)  of the kind 419

defined in section 2,  are there preferences, represented by utility 420

functions vi : +
2n , where the argument of vi   is an             421

allocation (x1,..., xn ,E1,E2,...,En ) , such that, for any allocation       422

rule X,  the Kantian equilibria of the game induced by X on (u,G)423

are the Nash equilibria of game induced by X on (v,G)  ?424

425

The next proposition shows that this may be partially accomplished in a very special case, 426

that of quasi-linear utility functions ui  .427

428

Proposition 2. Let (u,G,n) be an economic environment where for all i,429

ui (x,E) = x hi (E)  . Define vi (x1,..., xn ,E1,...,En ) = xi hi (Ei ) .   Let X be any 430

allocation rule such that the K ×   equilibria of the economy (u,G,n,X)  are Pareto 431

efficient.   Then these K ×  equilibrium allocations are Nash equilibria of the game 432

induced by {{vi},X}  , where the strategies of the agents are their efforts.433

434

Proof:435

                                                                                                                                            
identical preferences, the simpler Kantian protocol of Brekke et al (2003) leads to 
efficiency, and that is an easier one to learn than Kantian optimization protocols needed 
for groups of heterogeneous individuals. 
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1.   The game induced by {{vi},X}  in the economy has payoff functions V   defined by 436

V (E1,...,En ) = v (X1(E),...,Xn (E),E1,...,En ) = X j (E) h (E ) = G(ES ) h (E )  (4.3) 437

where E = (E1,...,En )  .  Hence the first-order conditions defining Nash equilibrium are: 438

( ) 0 = d

dE
V (E1,...,En ) = G (ES ) (h ) (ES )       .     (4.4) 439

But (4.4) says that (E1,....,En )  is the vector of effort levels uniquely associated with all 440

Pareto efficient allocations of the economy.    Thus, the (strictly positive) Nash equilibria 441

of this game comprise exactly the Pareto efficient allocations of the economy (u,G,n)  . 442

2.   Since, by hypothesis, the K ×  equilibria of (u,G,n)  are Pareto efficient, it follows that 443

they are Nash equilibria of the game {{vi},X} .444

445

  Proposition 2 remains true if we substitute 'K + '  for 'K × '  .   However, it is not 446

true that the Nash equilibria of the game {{vi},X}  contain the Kantian equilibria of the 447

game induced by (u,G,n,X)  if the latter equilibria are not Pareto efficient .   For example, 448

let X be the equal-division allocation rule, X (E) = G(E
S )

n
 .   Then, even with quasi-449

linear preferences, the K ×   equilibria are not efficient, for the condition defining K ×450

equilibrium is: 451

452

( ) 0 = d

dr r=1

(
G(rES )

n
h (rE )) = G (E

S )

n
ES E (h ) (E )

G (ES )
ES

nE
= (h ) (E )

       (4.5) 453

which does not define a Pareto efficient allocation except in the singular case that all the 454

effort levels are identical.     However, the game {{vi},X}  remains exactly the same for 455

any allocation rule X,  since X G  , and so in this case the K ×  equilibria of the 456

game (u,G,n)   are not Nash equilibria of the game {{vi},X} .457

 Even in the case that Proposition 2 examines,  we can ask: Is it more reasonable to 458

believe that communities, with quasi-linear preferences, which achieve Pareto efficient 459
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outcomes, are using the utility functions v  in which they do not care at all about their 460

own consumption, but only community consumption, than to believe they are optimizing 461

self-interested utility functions u  , but with the Kantian optimization protocol? 462

 I have not proved that the question posed prior to the statement of Proposition 2 463

cannot be answered affirmatively, but I conjecture it cannot be – even for the simple case 464

of economic environments with quasi-linear preferences, let alone other preferences. 465

Hence, I believe that the Kantian optimization protocol cannot be viewed as equivalent to 466

Nash equilibria with agents’ having exotic preferences. 467

468

5.  Other varieties of Kantian equilibrium 469

470

 We can define a general ‘Kantian variation’ which includes as special cases 471

additive and multiplicative Kantian equilibrium.  We say a function : +
2

+
2   is a 472

Kantian variation if : 473

   , 474

and if,  for any  , the function   maps onto the non-negative real line. 475

Denote by  the effort profile  defined by  E = (E ,r)  . 476

Then an effort profile  is a Kantian equilibrium of the game {V }   if and only 477

if:478

 . (5.1)  479

If we let , this definition reduces to multiplicative Kantian equilibrium; if we 480

let , it reduces to additive Kantian equilibrium.   481

 Let  be any Kantian variation that is concave in r, and let the payoff 482

functions generated by some allocation rule, ,  be concave.   Then a positive effort 483

schedule E is a Kantian equilibrium if and only if: 484

 . (5.2)   485

x (x,1) = x

x 0 (x, )

[E( ),r]  E

E( )

( )(V ( [E( ),r]) is maximized at r = 1)

(x,r) = rx

(x,r) = x + r 1

(x,r)

{V }

d
dr r=1

V ( [E( ),r]) = 0
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Eqn. (5.2) follows immediately from definition (5.1), since  is a concave 486

function of r, and hence its maximum, if it is interior, is achieved where its derivative 487

with respect to r is zero.    Note that both the additive and multiplicative Kantian 488

variations are concave (indeed, linear) functions of r.489

490

 The next theorem states that there is a unidimensional continuum of allocation 491

rules, with the proportional and equal-division rules as its two extreme points, each of 492

which can be efficiently implemented on  using a particular Kantian variation.  493

Define the allocation rules: 494

( + )( = 1,...,n)(X (E1,...,En ) = E +
ES + n

)   (5.3) 495

and the Kantian variations: 496

 . (5.4) 497

Note that for , X    is the proportional rule and  is the multiplicative Kantian 498

variation, and as  , X approaches the equal-division rule and  approaches the 499

additive Kantian variation (this last fact is perhaps not quite obvious).  Thus we identify 500

X   as the additive Kantian allocation rule.    We will call a Kantian equilibrium 501

associated with the variation ,  a K    equilibrium.502

 First,  fix  and an effort vector  E +
n  .   Define  .   Now consider 503

the set of vectors in +
n   of the form  where x varies over 504

the real numbers, but restricted to an interval that keeps the defined vectors non-negative.505

This is a ray in +
n  which I denote by M j (E)  .     We have: 506

507

Lemma Fix a vector E ++
n and a non-negative number .   Then the ray M j (E)508

does not depend on j.509

Proof:510

V ( [E( ),r])

 E
0, fin

(x,r) = rx + (r 1) , 0

= 0

ri
j = Ei +

E j +

( (x,r1
j ), (x,r2

j ),..., (x,rn
j ))
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Let be an arbitrary vector in M j (E) .  We wish to 511

show that, for any k j, M k (E) .   This is accomplished if we can produce a 512

number  such that .   Check that 513

 
x̂ = Ek +

E j +
x + Ek E j

E j +
 works.514

 As a consequence of the lemma, we may drop the superscript ‘j’ and refer to the 515

ray just defined as M (E)   . 516

517
Theorem 37 For :518

A. If E is a strictly positive  equilibrium w.r.t. the allocation rule  at any economy 519

in , then the induced allocation is Pareto efficient.520

B. X0 is the only allocation rule for which the  equilibrium is Pareto efficient on the 521

domain .522

C. For any > 0 ,  the only allocation rules that are efficiently implementable on   523

are of the form X
j (E1,...,En ,G) = X j (E1,...,En )+ k j (E1,...,En )    where k

j : +
n

+524

are any functions satisfying: 525

526

 (i)  527

 (ii) ( j,E)(X j (E)+ k j (E) 0)    and528

 (iii) ( j,E)(k j  is constant on the ray M (E)) . That is, on M (E)529

   ,  530

  where . 531

                                                
7  Theorem 3 of Roemer (2010) stated something similar to part B of the present theorem, 
but the proof offered there is incorrect.   Consider the present theorem to constitute a 
corrigendum.

v = ( (x,r1
j ), (x,r2

j ),..., (x,rn
j ))

x̂ v = ( ( x̂,r1
k ),..., ( x̂,rn

k ))

0

K

 E
0, fin

K ×

 G
0, fin

 G
0, fin

k j (E) 0
j

k j (E + ) 0

E + = (E1 + ,..., En + )
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D. For any  [0, ]  , and532

 
( E ++

n )( j = 1,...,n)( X j(E) = (E)X
0

j(E)+ (1 (E))X j (E)),533

where
 

(E) = ES

ES + n
 . 534

Proof: See appendix.535

 The theorem states first that for all , the pair (X , )   is an efficient Kantian 536

pair: i.e., that the allocation rule X   is efficiently implementable in K   equilibrium on 537

the  domain .   Part C states that the only other allocation rules that are  538

implementable are ones which add numbers to the X   rule that are constant on certain539

rays in +
n  .   Part B states that in the unique case when = 0  , these constants must be 540

zero.    Part D states that the allocation rules X   are ‘convex combinations’ of the 541

proportional rule X
0
 and the equal-division rule X  .   The quotes in this sentence are 542

meant to alert the reader to the fact that the weights in the convex combination depend on 543

the equilibrium effort vector, but not on the component j.544

 Unfortunately, part C makes theorem 1 difficult to state.  One may ask, is it 545

necessary?   That is, do there in fact exist allocation rules satisfying conditions 546

C(i) C(iii)   of the theorem where the functions  are not identically zero?   The 547

following example shows that there are. 548

549

Example 4. 550

 We consider  equilibrium (i.e., ) where .  In this case  551

    , 552

that is, the equal-division allocation rule.    Now consider: 553

554

0

 E
0, fin K

k j

K + = n = 2

j (E1, E2 ) = 1

2
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       .  (5.5) 555

The  rule satisfies conditions  C(i) C(iii) .556

557

Example 5     We now provide an example of a similar kind for any .  Let .  558

Fix E.  The ray M (E)  has a smallest element: it is a vector with at least one component 559

equal to zero.  (This vector is dominated, component-wise, by all other vectors in the 560

ray.)   Denote this vector by M (E)min , and the sum of its components by M S (E)min    .561

Define the allocation rules: 562

 

1(E) =

1 (E)
G(M S (E)min )

2G(ES )
,  if E1 E2

1 (E)+
G(M S (E)min )

2G(ES )
,  if E1 < E2

2 (E) = 1 1(E)

.563

Since M S (E)min < ES , we have .   Moreover the function G(M S (E)min )   is564

constant on the ray M (E) .    Hence the allocation rule satisfies conditions C(i) C(iii)565

of the theorem. 566

 From the history-of-thought vantage point, the case  is the classical socialist 567

economy: that is, it is an economy where output is distributed in proportion to labor 568

expended and efficiently so.   The rule X   is the classical ‘communist’569

economy: output is distributed ‘according to need’ (here, needs are identical across 570

persons), and efficiently so.   Indeed, the allocation rules X   associated with  571

are  convex combinations of these two classical rules, in the sense that part D states.   The 572

fact that the allocation rules that can be efficiently implemented with various kinds of 573

Kantian optimization define a unidimensional continuum between these two classical 574

 

1(E) =

1

2
+ G(E1 E2 )

2G(E1 + E2 )
,  if E1 E2

1

2

G(E1 E2 )

2G(E1 + E2 )
,  if E1 < E2

2(E) = 1 1(E)

 

> 0 n = 2

 
i (E) [0,1]

= 0

(0, )
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concepts of cooperative society provides further support for viewing the Kantian 575

optimization protocols as models of cooperative behavior. 576

 I conjecture that there are no other allocation rules, than the ones described in 577

theorem 3, which can be efficiently implemented with respect to any Kantian variation on 578

the domain .   579

 As we have noted, history displays examples of both the proportional and equal-580

division allocation rules.   The former have been discussed in relation to Ostrom’s work 581

on fisher economies.  And anthropologists conjecture that many hunting societies 582

employed the equal-division rule.  (Whether they found Pareto efficient equal-division 583

allocations is another matter.)    Although Theorem 3 suggests that we look for societies 584

that implemented some of the other allocation rules in the  continuum,  the Kantian 585

variations involved for may be too arcane for human societies, lacking the 586

simplicity of the additive and multiplicative rules.587

   588

 There is an analogous, but negative,  result to Theorem 3 for Nash equilibrium: 589

Theorem 4590

A.  There is no allocation rule that is efficiently implementable in Nash equilibrium on 591

the domain .    592

B. On continuum economies, Walrasian rules (with no taxation) are efficiently Nash 593

implementable8.594

Proof: Appendix.595

596

 The reason that the Walrasian allocation rules, as defined in the previous footnote, 597

is not efficiently implementable in Nash equilibrium on finite economies is that an 598

individual’s Nash optimization behavior at the Walrasian allocation rule must take 599

account of her effect on  and on her share of profits as she deviates her effort.  600

That is, in finite economies, Nash-optimizers are not price takers.    It is essentially only 601

in the continuum economy that the agent rationally ignores such effects, and hence, Nash 602

behavior induces efficiency.603

                                                
8 Walrasian allocation rules are defined in equation (2.5). 

 E
0, fin

{0, }

 E
0, fin

G (ES )



23

 To conclude this section, I provide a geometric interpretation of the various 604

Kantian equilibria defined in Theorem 3.   Let n = 2.    In Figure 1, the allocation under 605

consideration is (Ê1, Ê2 )  .  Under the multiplicative Kantian protocol, both agents 606

consider whether they would prefer an allocation on the ray labeled K ×  .  Under the 607

additive Kantian protocol, they both consider whether they would prefer an allocation on 608

the 450   ray through (Ê1, Ê2 ) .   Any of the Kantian variations listed in Theorem 3 will 609

generate a common ray – a typical one is the dashed ray labeled K  --  which passes 610

through (Ê1, Ê2 ) and lies between the K +  and K ×   rays.  On the other hand, under the 611

Nash protocol , agent 1 asks whether he would prefer an effort vector on the dashed line 612

N1  , and agent 2 asks whether she would prefer an effort vector on the dashed line N 2  .613

Thus, the key distinction is that in Kantian reasoning, agents ask whether they would 614

prefer an alternative in a common set of counterfactual effort vectors, whereas in Nash 615

reasoning, agents consider different sets of counterfactuals.   I am proposing that the 616

consideration by each player of a social deviation to a common set is the mathematical 617

characterization of cooperative behavior.618

   [Place figure 1 about here] 619

620

6.  Economies with a social ethos (other-regarding preferences) 621

 It is appropriate to begin this section with a thought of the political philosopher, 622

G.A. Cohen (2009), who offers a definition of ‘socialism’ as a society in which earnings 623

of individuals at first accord with a conception of equality of opportunity that has 624

developed in the last thirty years in political philosophy (see Rawls (1971), Dworkin 625

(1981), Arneson (1989), and Cohen(1989)), but in which inequality in those earnings is 626

then reduced because of the necessity to maintain ‘community,’ an ethos in which 627

‘…people care about, and where necessary, care for one another, and, too, care 628

that they care about one another.’   Community, Cohen argues, may induce a society to 629

reduce material inequalities (for example, through taxation) that would otherwise be 630

acceptable according to ‘socialist’ equality of opportunity.   But, Cohen writes: 631

…the principal problem that faces the socialist ideal is that we do 632
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not know how to design the machinery that would make it run. Our problem is not, 633
primarily, human selfishness, but our lack of a suitable organizational technology: 634
our problem is a problem of design. It may be an insoluble design problem, and it 635
is a design problem that is undoubtedly exacerbated by our selfish propensities, 636
but a design problem, so I think, is what we’ve got. (Cohen [2009, p.57]) 637

638
 An economist reading these words thinks of the first theorem of welfare 639

economics.   A Walrasian equilibrium is Pareto efficient in an economy with complete 640

markets, private goods, and the absence of externalities.  But under Cohen’s 641

communitarian ethos, people care about the welfare of others – which induces massive 642

consumption externalities – and so the competitive equilibrium will not, in general, be 643

efficient.  What economic mechanism can deliver efficiency under these conditions9,10?644

 We proceed, now, to study Kantian equilibrium where agents have  all-645

encompassing utility functions consisting of a person utility function, of the kind we have 646

been working with thus far, plus a social welfare function, which responds positively to 647

the utility of other agents in the society.    Such economies are synonymously referred to 648

as ones with a social ethos, or with other-regarding preferences.649

 In this section, it is simplifying to work with continuum economies.  Thus, we 650

now assume that the set of agent types  is the non-negative real line, and types are 651

distributed according to a probability measure F on +  .   An allocation is now a pair of 652

functions (x( ),E( ))  , which is feasible when: 653

                                                
9 In war-time Britain, many spoke of ‘doing their bit’ for the war effort – voluntary 
additional sacrifice for the sake of the common good. But, if I want to contribute to the 
common struggle, how much extra should I do? The price mechanism does not
coordinate ‘doing their bit’ well. 
10 A recent contribution which is relevant to this inquiry is that of  Dufwenberg, Heidhues, 

Kirchsteiger, Riedel, and Sobel (2010), which studies the veracity of the first and second 

welfare theorems in the presence of other-regarding preferences -- what I here call social 

ethos.   From the viewpoint of the evolution of economic thought, it is significant that 

their article is the result of combining three independent papers by subsets of the five 

authors: in other words, the problem of addressing seriously the efficiency consequences 

of the existence of other-regarding preferences is certainly in the air at present. 
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x( )dF( ) G(E),  where E E( )dF( ).              (6.1) 654

   The form of the all-encompassing utility function is: 655

U (x( ), E( )) = u (x( ), E( ))+ (u (x( ), E( ))
0

) p dF( )
1/ p

.     (6.2) 656

Thus, it is assumed that an agent’s (all-encompassing) utility function is a sum of a 657

personal utility function, depending on his own consumption and effort, and a social-658

welfare function of the CES type, where p is any number < p 1  .  The non-negative 659

constant   measures the degree of social ethos.   For some results, we allow  to vary 660

with the type  (thus,  ).   We denote the economic environment now as .  661

The case = 0  reduces to the economy with self-regarding preferences, and the case 662

=  is one in which every type is fully altruistic, caring only about social welfare. 663

 The choice to model other-regarding preferences as represented by the addition of 664

a social-welfare function to a personal utility function is classical.   There are various 665

other ways in which one might model ‘social ethos,’ some motivated by the literature in 666

experimental economics.   More generally, instead of thinking of all-encompassing 667

preferences as embodying an altruistic element, we might think of them as embodying a 668

sense of justice.  In this case, an individual would not necessarily be concerned with the 669

welfarist formulation of a social welfare function as in (6.2), but rather with some theory 670

of just distribution that might be non-welfarist.   The extensive literature in non-welfarist 671

theories of justice could be brought to bear  (see Roemer (1998),  Fleurbaey (2008)).672

673

A. Efficiency results 674

 We begin by characterizing interior Pareto efficient allocations in continuum 675

economies where individuals have all-encompassing utility functions as in (6.2). At an 676

allocation , we write , and for the two partial 677

derivatives of u, .678

679

Theorem 5 A strictly positive allocation is Pareto efficient in the economic environment 680

 if and only if: 681

(u,G, F , )

(x*( ), E*( )) u (x*( ), E*( )) u[*, ]

uj (x*( ), E*( )) uj[*, ]

(u,G, F , )
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  (a) , and682

683

  (b) , 684

where .685

Proof: Appendix. 686

 I offer some remarks about and corollaries to theorem 5. 687

688

1.  Note the separate roles played by the conditions (a) and (b) of theorem 5.  Condition 689

(a) assures allocative efficiency in the economy with  -- it says that for all types, 690

MRS = MRT.   Condition (b) is entirely responsible for the efficiency requirement 691

induced by social ethos.  Note that the function G does not appear in (b).692

  Indeed, it is obvious that any allocation which is Pareto efficient in the -693

economy (for any ) must be efficient in the economy with .  For suppose not.  694

Then the allocation in question is Pareto-dominated by some allocation in the 0-economy.695

But immediately, that allocation must dominate the original one in the -economy, as it 696

causes the social-welfare function to increase (as well as the private part u of all-697

encompassing utility).  It is therefore not surprising that the characterization of theorem 5 698

says that ‘the allocation is efficient in the 0-economy (part (a)) and satisfies a condition 699

which becomes increasingly restrictive as  becomes larger (part (b)).’700

701

2.  Define  as the set of interior Pareto efficient allocations for the -economy.  It 702

follows from condition (b) of theorem 3 that the Pareto sets are nested, that is: 703

  . 704

Hence, denoting the fully altruistic economy by , we have: 705

  . 706

 will generally be a unique allocation – the allocation that maximizes social 707

welfare.708

709

u2[*, ]

u1[*, ]
= G (E)

1

u1[*, ]

(Q*)(1 p)/ p u[*, ]p 1 u1[*, ] 1 dF( )

1+ (Q*)(1 p)/ p u[*, ]p 1 dF( )

Q* u[*, ]p dF( )

= 0

= 0

PE( )

> PE( ) PE( )

=

PE( ) = 0 PE( )

PE( )
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3.  Let ; then condition (b) of theorem 3 reduces to: 710

  .       (6.3) 711

We have: 712

713

Corollary 1 An interior allocation is efficient in the fully altruistic economy (i.e., 714

maximizes social welfare)  if and only if:715

  (a) ,716

and   (c)  for some . 717

Proof:718

 We need only show that (6.3) implies (c). (The converse is obviously true.)   719

Denote . Then (6.3) can be written: 720

 . (6.4) 721

722

Suppose there is a set of types of positive measure for which the inequality in (6.4) is 723

slack.  Then integrating (6.4) gives us: 724

       ,  725

which says , a contradiction.  Therefore (6.4) holds with equality for almost all ,726

and the corollary follows. 727

728

4.  Consider the quasi-linear economy in which: 729

   .         (6.5) 730

 Then .  Now corollary 1 implies that in the quasi-linear economy, the only Pareto 731

efficient interior allocation as  is the equal-utility allocation for which condition732

(a) holds.733

u
1
[*, ] 1

u
1
[*, ] 1 dF( )

u[*, ]p 1

u[*, ]p 1 dF( )

u2[*, ]

u1[*, ]
= G (E)

> 0, u1[*, ]= u[*, ]1 p

=
u1[*, ] 1 dF( )

u[*, ]p 1 dF( )

u1[*, ] 1 u[*, ]p 1

u1[*, ] 1 dF( ) > u[*, ]p 1 dF( )

>

u (x, E) = x E2

u
1

1
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  Let us compute this allocation in the quasi – linear economy  in which production 734

is linear: .   Then these conditions reduce to: 735

  (i)   , and 736

  (ii)  , and 737

  (iii)  . 738

It is not hard to show that (i), (ii), and (iii) characterize the equal utility allocation: 739

  , where  740

5. Consider the preferences when .  In this case, the altruistic part of U is 741

exp logu[*, ]dF( ) , and .  Therefore condition (b) of theorem 5 becomes 742

simpler:743

.744

 Denote the set of K   equilibria for the economy (u,G,F, )   by K ( )  .  We 745

next prove: 746

747

Theorem 6.  For all 0 and 0  , K ( ) = K (0)  . 748

Proof: Appendix. 749

 Theorem 6 says that the Kantian equilibria for an economy with positive social 750

ethos are identical to the Kantian equilibrium for the associated economy with purely 751

self- regarding preferences. Indeed, the theorem is more general than stated: different 752

agents can have different values of the altruistic parameter . Theorem 6 is two-edged: 753

on the positive side, it tells us that the Kantian equilibria that we have already discovered 754

in economies with self-interested preferences remain Kantian equilibria in the related 755

economies with a social ethos, but on the other hand, it says that Kantian optimization is 756

not sensitive to social ethos as such, and hence cannot explicitly repair the inefficiencies 757

G(x) = x

2E( )
= 1

k = x( )
E( )2

x( )dF( ) = E( )dF( )

E( ) =
2

, x( ) =
+

4
= dF( ).

p = 0

Q*
= 1

( )
u[*, ]

u1[*, ]

u1
1[*, ]dF( )

1+ u 1[*, ]dF( )
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which may come into being because of the consumption externalities concomitant with 758

other-regarding preferences. 759

 We do, however, have one instrument -- namely, -- which may help achieve 760

Pareto efficient allocations when .   Indeed, consider the family of quasi-linear 761

economies, where, for some fixed  762

 . (6.6) 763

For these economies we can always choose a value  so that the  equilibrium w.r.t. 764

the allocation rule X   is efficient for economies with any value of  : that is to say, the765

(K ,X )  allocation maximizes social welfare (and so is in ). 766

Theorem 7 Let , some .  Let G be any concave production 767

function. Define by the equation   where . Then768

for this economy : 769

(a) An allocation is PE(0) iff .   770

(b) Define .   The  allocation w.r.t. the allocation rule X    is in 771

.772

(c) As from below, the maximum value of  for which the (K ,X )   allocation 773

is in  approaches infinity. 774

Proof: Appendix. 775

 The reader is entitled to ask: What happens for ?   The answer is that, in 776

the (K ,X )  allocation, some utilities become negative, so social welfare for the CES 777

family of functions is undefined, and so all-encompassing utility U is undefined. 778

779

B. Taxation in private-ownership economies 780

 The  equilibria for the allocation rules X   are not implementable with 781

markets in any obvious way.   This is most easily seen by noting that the proportional rule 782

> 0

>1:

u (x, E) = x E

K

PE( )

u (x, E) = x E >1

E E = G (E)1/( 1) 1/( 1) dF( )

E( ) = 1/( 1)G (E)1/( 1)

( ) = G(E)

G (E)
E K

PE( )

( )

PE( )

> ( )

K
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is not so implementable.    According the second theorem of welfare economics, there is 783

some division of shares in the firm which operates the technology G which would 784

implement these rules in Walrasian equilibrium in continuum economies, but to compute 785

those shares, one would have to know the preferences of the agents.    The advantage of 786

the Kantian approach is that the Kantian allocations are decentralizable in the sense that 787

agents need only know the production function G , average effort , and their own 788

preferences,  to compute the deviation they would like (everybody) to make. 789

 Nevertheless, one would like Kantian optimization to be useful in market 790

economies as well.   For the linear economies, we have a hopeful result – namely, 791

Theorem 2.   Before stating it, let us define the allocation rules associated with linear 792

taxation.  Define the affine tax allocation rule X[t ]   for linear economies with production 793

function  by: 794

X[t ](E
1,...,En ) = (1 t)aE + t aE

S

n
 .    (6.7) 795

Theorem 8 796

A. For any , the equilibria for the linear tax rule X[t ]   is Pareto efficient on797

.798

B. The only allocation rules which are efficiently implementable in  on  are of 799

the form X (E1,...,En ) = X[t ](E
1,...,En )+ k (E1,...,En ) for some  where: 800

  (i) for all E +
n k (E) = 0  , 801

  (ii) for all (j,E) X (E) 0  , and 802

  (iii) for all  , for all E +
n , k (E) E = 0   . 803

804

Proof: Part A is simply Theorem 2; part B is proved in the appendix. 805

 By virtue of Part A of the above theorem, and Theorem 6, in a society with other-806

regarding preferences and linear production, citizens could choose a high tax rate to 807

redistribute income substantially, without sacrificing allocative efficiency, thereby 808

addressing the positive externality due to their concern for others.   Part B of the theorem 809

is analogous to part C of Theorem 3.810

E

G(x) = ax

t [0,1] K +

 L
0, fin

K +
 L

0, fin

t [0,1]
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  As in Theorem 3, one is entitled to ask whether there are examples of allocation 811

rules where the functions  are not identically zero.   There are, as the next example 812

shows.813

814

Example 5.815

 Let n = 2, and consider the allocation rule: 816

 ,            (6.8) 817

for .  It is easy to verify that these rules satisfy conditions B(i)-(iii) of Theorem 8, 818

and these rules are clearly not linear tax rules.819

 We are not interested in linear economies as such, because they are so special.  820

Theorem 8 is presented because it motivates us to ask how linear taxation performs in 821

concave economies with a continuum of agents.  Let us postulate that a linear-taxation 822

allocation rule is applied to a person’s income, which is equal to his effort times the 823

Walrasian wage plus an equal-per-capita share of the firm’s profits.  One may compute 824

that the effort allocation  is a  equilibrium for the t-linear tax rule only if: 825

( )     ,        (6.9) 826

and so the marginal rate of substitution of type  is: 827

  .             (6.10) 828

What is noteworthy is that the wedge between the MRS and the MRT, which is 829

,  goes to zero as  approaches one.   This must be the case, since 830

the allocation at  is the equal-division allocation, which we know is in PE(0)   on 831

convex economies.832

 Compare (6.10) with Nash-Walras equilibrium in the same private-ownership 833

economy with taxation, which is given by: 834

k j

1(E) =
(1 t) E1

ES + t
2
+ t2(E1 E2 )

2ES , if E1 E2

(1 t) E1

ES + t
2

t2(E2 E1)

2ES ,  if E1 E2

2(E) = 1 1(E)

t (0,1)

E( ) K +

u1 (1 t)(E( ) E)G (E)+G (E)( ) + u2 = 0

u2

u1

= G (E)+ (1 t)(E( ) E)G (E)

(1 t)(E( ) E)G (E) t

t = 1
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  .        (6.11) 835

Here, the wedge between the MRS and the MRT is  which becomes equal to the 836

whole MRT as t goes to one.   If there is positive social ethos, citizens might well wish to 837

redistribute market incomes via taxation.  Under Nash optimization, it becomes 838

increasingly costly to do so (as taxes increase), while with  optimization, equation 839

(6.10) suggests it becomes decreasingly costly to do so, in terms of deadweight loss. 840

841

7.  Existence and dynamics 842

 The existence of proportional solutions, which are the  equilibria of convex 843

economies (u,G,n)   was proved in Roemer and Silvestre (1993).   Here, we provide 844

conditions under which K   equilibria exist, with respect to the allocation rules described 845

in Theorem 3. 846

847

Theorem 9.   . Let (u,G,n) be a finite economy where the component functions of u are 848

strictly concave. 849

A. If for all ,  , 
2u

x E
0 then a strictly positive  equilibrium w.r.t. the equal-850

division allocation rule X   exists . 851

B. Let .   If for all , u  is quasi-linear, then a strictly positive K   equilibrium 852

w.r.t. the allocation rule X   exists. 853

Proof: Appendix. 854

 The premises of this theorem can surely be weakened11.855

 We turn briefly to dynamics.  There will not be robust dynamics for Kantian 856

equilibrium, as there are not for Nash equilibrium.   There is, however, a simple dynamic 857

mechanism that will, in well-behaved cases, converge to a Kantian equilibrium from any 858

initial effort vector.   The mechanism is based on the mapping  defined in the proof of 859

Theorem 9.   Informally, the dynamics are as follows.  Beginning at an arbitrary vector of 860

                                                
11 As with Nash equilibria, there is no guarantee that Kantian equilibria are unique. 

u2

u1

= (1 t)G (E)

tG (E)

K +

K ×

K +

0 <
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effort levels, each agent adds to his own effort the amount r that he would like all agents861

to add to their efforts.   This produces a new effort vector, and the process is then iterated.862

This is the Kantian analog of iterating the best-response function to arrive at a Nash 863

equilibrium.864

 We illustrate it here for the case of a profile of quasi-linear utility functions and 865

the equal-division allocation rule.  Thus,  let  , for , where 866

 is a strictly convex function.  For any vector E0 ++
n , define r j (E0 )    as the unique 867

solution of: 868

 arg . (7.1) 869

Define  .  The mapping maps +
n

+
n   and is870

analogous to the best-reply correspondence in Nash equilibrium.   A fixed point of  is a 871

 equilibrium for the equal-division allocation rule, since at a fixed point , 872

 for all j.  Since the example is special, the next result is proved only for the 873

case n = 2, although it is true for finite n.  The next proposition shows that if we iterate 874

the mapping  indefinitely from any initial starting vector  it converges to (the 875

unique)  equilibrium for the equal-division allocation rule. 876

877

Theorem 10 For n = 2, there exists a unique fixed point of the mapping , which is a 878

 equilibrium for the equal-division allocation rule with quasi-linear preferences.  The 879

dynamic process defined by iterating the application of  from any initial effort vector 880

converges to the  equilibrium.881

Proof: Appendix.882

883

 The point Theorem 10 makes is that Kantian equilibrium is like Nash equilibrium 884

in that we can define a ‘best-reply’ function, which in well-behaved cases will converge, 885

if iterated to the Kantian (or Nash) equilibrium. 886

887

8. Discussion 888

u j (x, y) = x c j ( y) j = 1,...,n

c j

max
r

G(E0 + nr)

n
c j (E0

j + r)

j (E0 ) = E0
j + r j (E0 ) = ( 1,..., n )

K + E*

r j (E*) = 0

E0

K +

K +

K +
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 My analysis has been positive rather than normative.   I have argued that if agents 889

optimize in the Kantian way, then certain allocation rules will produce Pareto efficient 890

allocations, while Nash optimization will not.  While the analysis is positive,  Kantian 891

optimization,  if people follow it, is motivated by a moral attitude or social norm:  each 892

must think that he should take an action if and only if he would advocate that all others 893

take a similar action.   Optimization protocols differ from preferences: thus, optimizing 894

according to the Kantian protocol implies nothing about whether one’s preferences are 895

other-regarding or self-interested – rather, it has to do with cooperation.  You and I may 896

cooperate, to our mutual benefit, whether or not we care about each other.    Is it plausible 897

to think that there are (or could be) societies where individuals do (or would) optimize in 898

the Kantian manner?899

 Certainly parents try to teach Kantian behavior to their children, at least in some 900

contexts.   “Don’t throw that candy wrapper on the ground: How would you feel if 901

everyone did so?”   The golden rule  (“Do unto others as you would have them do unto 902

you” ) is a special case of Kantian ethics.   (And wishful thinking  [“if I do X, then all 903

those who are similarly situated to me will do X”], although a predictive claim, rather 904

than an ethical one, will also induce Kantian equilibrium – if all think that way.)   This 905

may explain why people vote in large elections, and make charitable contributions.    So 906

there is some reason to believe that Kantian equilibria are accessible to human societies. 907

 Consider the relationship between the theoretical concept of Nash equilibrium and 908

the empirical evidence that agents play the Nash equilibrium in certain social situations 909

that can be modeled as games.   We do not claim that agents are consciously computing 910

the Nash equilibrium of the game: rather, we believe there is some process by which 911

players discover the Nash equilibrium, and once it is discovered, it is stable, given 912

autarkic reasoning.    We now know there are many experimental situations in which 913

players in a game do not play (what we think is) the Nash equilibrium.  Conventionally, 914

this ‘deviant’ behavior has been rationalized by proposing that players have different 915

payoff functions from the ones that the experimenter is trying to induce in them, or that 916

they are adopting behavior that is Nash in repeated games generated by iterating the one-917

shot game under consideration.    Another possibility, however, is that players in these 918

games are playing some kind of Kantian equilibrium.   In Roemer (2010), I showed that if, 919
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in the prisoners’ dilemma game, agents play mixed strategies on the two pure strategies 920

of {Cooperate, Defect}, then all multiplicative Kantian equilibria entail both players’ 921

cooperating with probability at least one-half   (i.e., no matter how great is the payoff to 922

defecting).   It can also be shown that, in a stochastic dictator game, where the dictator is 923

chosen randomly at stage 1 and allocates the pie between herself and the other player in 924

stage 2,  the unique  equilibrium is that each player gives one-half the pie to the other 925

player,  if he is chosen.926

 The non-experimental (i.e., real-world) counterpart, as I have said in the 927

introduction, may be the games that the societies that Elinor Ostrom has studied are 928

playing.   If these games can be modeled as ‘fisher’ economies, with common ownership 929

of a resource whose use displays congestion externalities, and if, as Ostrom contends, 930

these societies figure out how to engender efficient allocations of labor applied to the 931

common resource, then they are discovering the multiplicative Kantian equilibrium of the 932

game.  Perhaps Kantian reasoning helps to maintain the equilibrium: optimizing behavior 933

may be cooperative and not autarkic. Ostrom explains the maintenance of the efficient 934

labor allocation by invoking the community’s use of sanctions and punishments, but that 935

may not be the entire story: it may be that many fishers are thinking in the Kantian 936

manner, and that punishments and monitoring are needed only to control a minority who 937

are Nash optimizers.   I am proposing that an ethic may have evolved, in these societies, 938

in which the fisher says to himself,  “I would like to increase my fishing time by 5% a 939

week, but I have a right to do so only if all others could similarly increase their fishing 940

times, and that I would not like. ”   Armed only with the theory of Nash equilibrium, one 941

naturally thinks that these Pareto efficient solutions to the tragedy of the commons 942

require punishments to keep everyone in line.943

 As I noted earlier, Kantian ethics, and therefore the behavior they induce, require 944

less selflessness than another kind of ethic: putting oneself in the shoes of others.945

Consider charity.   “I should give to the unfortunate, because I could have been that 946

unfortunate soul – indeed, there but for the grace of God go I. ”  The Kantian ethic says, 947

in contrast:  “I will give to the unfortunate an amount which I would like all others who 948

are similarly situated to me to give.”  Assuming that there is a social ethos (that is, ) 949

K ×

> 0
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this kind of reasoning may induce substantial charity – or, in the political case, fiscal 950

redistribution.   Cooperation is the active behavior rather than empathy. 951

     To the extent that human societies have prospered by exploiting the ability of 952

individuals of members of our species to cooperate with each other, it is perhaps likely 953

that Kantian reasoning is a cultural adaptation, selected by evolution ( the classic 954

reference is Boyd and Richerson [1985]).  Because we have shown that Kantian behavior 955

can resolve, in many cases, the inefficiency of autarkic behavior, cultures which discover 956

it, and attempt to induce that behavior in their members, will thrive relative to others.957

Group selection may produce Kantian optimization as a meme.   Imagine, for example, a 958

time when there were many societies of fishers.  Suppose that in a small number of these 959

societies, a clever priest or shaman proposed that fishers optimize using the multiplicative 960

Kantian protocol.   These societies, given the proportional allocation rule, will achieve 961

Pareto efficient allocations.  If utility measures fitness, these societies will prosper while 962

those using the Nash protocol will not.  The meme of Kantian optimization could 963

spread12.964

 One can rightfully ask whether it is utopian to suppose that the allocation rules 965

studied here can be used in large economies13.   Even if the allocation rules of Theorem 3 966

are not employed, one may ask what happens if agents in a private-ownership economy 967

with markets optimize by choosing their effort supplies in the Kantian manner.  I have 968

done some simulations of the affine-tax allocation rules where the market allocation is 969

Walrasian, and the production function is strictly concave14.    We do not get full Pareto 970

                                                
12 For some preliminary evolutionary analysis of Kantian behavior, see Curry and 
Roemer (2012). 
13 An interesting recent example is the behavior of the small island nation of Mauritius 
with regard to global warming, which will affect it severely, through rising sea levels.
Mauritius has undertaken serious steps to reduce its carbon footprint, although this will 
have negligible effect on its own situation (namely, the sea level).   It is behaving as a 
Kantian optimizer, taking the action it would like all other nations to take.  Kantian 
optimization, in this case, is an attempt to set a moral example.  See the Maurice Ile 
Durable website (http://www.gov.mu/portal/sites/mid/index.html). We can think of many 
other examples where individuals have attempted to induce cooperative behavior in 
others by their moral example. 
14 Available from the author. 
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efficiency, but the results are better when agents optimize in the additive Kantian way 971

than when they are Nash optimizers.972

 One of the motivations I gave for studying Kantian optimization was to resolve 973

the inefficiencies in economies with a social ethos, due to the consumption externalities 974

that they entail.   One might think that, if a society is altruistic in the sense of possessing 975

a social ethos, then it is more likely that its members would behave in a cooperative 976

fashion.    The behavior upon which I have focused in this article is optimizing behavior.977

I have not argued, however, that there is a link between a community’s possessing a 978

social ethos and its members’ learning and employing Kantian optimization, although I 979

suspect that there is.   I leave the reader with this question.980

981
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1053

“Appendix: proofs of theorems”1054
   1055

Proof of Theorem 3. 1056

The proof of part A simply mimics the proof of Theorem 1.  We prove part B. 1057

1.  Consider the Kantian variation (x,r) = rx + (r 1) , and any allocation rule 1058

{ j , j = 1,...,n}, defined for a finite economy with n agents.  The condition that must hold 1059

for a rule  to be efficiently implemented on  E  in K  equilibrium is the FOC: 1060
1061

( j)
j (E) (E + )G(ES )+ j (E)G (ES )(ES + n )

E j +
= G (ES ) , (A.1) 1062

1063
which is the statement that that at a K  equilibrium E = (E1,..., En ) , the marginal rate of 1064

substitution between effort and income for each agent is equal to the marginal rate of 1065

transformation.  Recall that ES E j , j  is the gradient of the function j  with 1066
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respect to its n arguments, E +  is the vector whose jth component is E j + , and 1067

j (E) (E + )  is the scalar product of two n vectors.  (A.1) can be written as: 1068
1069

( j (E)
(E + )

E j +
)

G(ES )

G (ES )
+ j (E)

(ES + n )

E j +
= 1.  (A.2) 1070

2.  We now argue that (A.2) must hold as a set of partial differential equations on  ++
n .1071

For let  E ++
n  be any vector.  Fix a production function G.  We can always construct n1072

utility functions whose marginal rates of substitution at the points ( j (E)G(ES ), E j )  are 1073

exactly given by the value of the left-hand side of equation (A.1).   For the economy thus 1074

defined, E is indeed a K  equilibrium.   This demonstrates the claim. 1075

3.  Continue to fix a vector E ++
n .  Define ri

j =
Ei +
E j +

 for i = 1,...,n  and notice that 1076

(E j ,ri
j ) = Ei .  Consider the ray gotten by varying x, defined in the text:1077

M (E) = ( (x,r1
j ), (x,r2

j ),..., (x,rn
j )) .  Note that when x = E j ,  this picks out the 1078

vector E.   We will reduce the system (A.2) of PDEs to ordinary differential equations on 1079

M (E) .1080

1081

Define j (x) = j ( (x,r1
j ),..., (x,rn

j )) .    Note that : 1082

( j ) (x) = j ( (x,r j )) r j  (A.3) 1083

where (x,r)  is the generic vector in the ray, and r j = (r1
j ,...,rn

j ) .1084

Define j (x) = G( (x,ri
j ))  and note that: 1085

( j ) (x) = G ( (x,ri
j )) ri

j . (A.4) 1086

It follows that we may write (A.2) restricted to the ray M (E)  as: 1087

( j ) (x)r S , j
j (x)

( j ) (x)
+ j (x)r S , j = 1, (A.5) 1088
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where r S , j ri
j

i
.1089

4.   (A.5) is a first-order ODE.    A particular solution is given by the constant function: 1090

j (x) = 1

r S , j , (A.6) 1091

and the general solution to its homogeneous variant is: 1092

ˆ j (x) =
k j ( M (E))

j (x)
, (A.7) 1093

where k j  a constant that depends on  the ray M (E) .  Therefore the general solution of 1094

(A.5) is1095

j (x) = 1

r S , j +
k j ( M (E))

j (x)
.        (A.8) 1096

Now, evaluating this equation at x = E j  gives:1097

j (E j ) = j (E) = 1

r S , j +
k j ( M (E))

G(ES )
= E j +

(Ei + )
+

k j ( M (E))

G(ES )
. (A.9) 1098

Since the n shares in (A.8) sum to one, (A.8) tells us that we must have k j ( M (E))
j

= 0 .1099

5.  Finally,  we verify that the allocation rules defined in (A.9) satisfy the PDEs (A.2). If 1100

k j (M (E)) = 0   for all j, then j (E) = 1

rS, j
 , and it is proved in part A that this rule 1101

satisfies  (A.2).   So we assume that k j (M (E)) 0  for some j.  To prove (A.2) holds,1102

we must show that : 1103

k j (E)

G(ES )

(E + )

E j +
)

G(ES )

G (ES )
+ k j (E)

G(ES )

(ES + n )

E j +
= 0.       (A2a)1104

Recalling that by definition k j (E) (E + ) = 0 , because k j (E)  is constant on M (E) ,1105

(A2a) is checked by computation. 1106

6.  To prove part B, return to equation (A.8) which holds on the ray M (E) .   For = 01107

(i.e., K ×  equilibrium), the ray M0(E) ={(r1
j x,...,rn

jx) | x 0}.  Hence, as x approaches 1108

zero j (x)  approaches zero.  If, for some j, k j ( M0(E)) 0 , then for sufficiently small x,1109

j (x)  would violate the constraint that it lie in [0,1] .  Hence, for the case when = 01110
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(and only for that case) we may conclude that the constants k j  are identically zero, and 1111

the claim of part B follows.1112

7.  Part D is immediately verified by simple algebra.1113

1114

Proof of Theorem 4: 1115

1.  An interior allocation E is Nash implementable on the class of finite convex 1116

economies for the allocation rule  if and only if 1117

j u1
j (

j (E)

E j

G(ES )+ j (E)G (ES ))+ u2
j = 0  (A.10) 1118

Therefore  is efficiently implementable iff:  1119

j 1= j (E)+ G(ES )

G (ES )

j (E)

E j

. (A.11) 1120

2.  Indeed, (A.11) must hold for the entire positive orthant ++
n , for given any positive 1121

vector E,  we can construct n concave utility functions such that (A.10) holds at E.1122
1123

3.  For fixed E, define j (x) = j (E1, E2 ,..., E j 1,x, E j+1,..., En )  and 1124
j (x) = G(x + ES E j ) .  Then (A.11) gives us the differential equation: 1125

1126

1= j (x)+
j (x)

( j ) (x)
( j ) (x) , (A.12) 1127

which must hold on ++ .1128

4.  But (A.12) implies that1129

( j ) (x)

1 j (x)
= ( j ) (x)

j (x)
 (A.13) 1130

which implies that j (x)(1 j (x)) = k j  and therefore j (x) = 1
k j (E j )

j (x)
 where 1131

the constant k j  may depend on the ray (E1,.., E j 1,x, E j+1,.., En )  on which j  is defined. 1132
.1133
5.  In turn, this last equation says that on the ray (E1,..., E j 1,x, E j+1,..., En )  we have: 1134

j (E1,..., E j 1,x, E j+1,..., En )G(x + ES E j ) = G(x + ES E j ) k j (E j ) , (A.14) 1135

which says that ‘every agent receives his entire marginal product’ on this space.  To be 1136

precise:1137
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1138

( x, y > 0)

( j (E1,..., E j 1,x, E j+1,..., En )G(x + ES E j )
j (E1,..., E j 1, y, E j+1,..., En )G( y + ES E j ) =

G(x + ES E j ) G( y + ES E j ))

1139

1140

           (A.15) 1141

Now let y = 0 and x = E j  and let z j =
j (E1,..., E j 1,0, E j+1,..., En )G(ES E j ) .    Then 1142

(A.15) says that: 1143

( j)( j (E)G(ES ) z j = G(ES ) G(ES E j )) . (A.16) 1144

6.  Adding up the equations in (A.16) over j, and using the fact that z j 0 , we have: 1145

G(ES ) nG(ES ) G(ES E j )  (A.17) 1146

or:1147

G(ES )
1

n 1
G(ES E j ) . (A.18) 1148

1149

7.  Now note that 
1

n 1
(ES E j ) = ES .   Therefore (A.18) can be written: 1150

G(
1

n 1
(ES E j ))

1

n 1
G(ES E j ) , (A.19) 1151

which is impossible for any strictly concave G.   This proves part A of the theorem. 1152

8.  The proof of part B is well-known: for part B just says that Nash behavior, taking 1153

prices as given, at the Walrasian allocation rule, induces Pareto efficiency. 1154

1155
1156
1157

Proof of Theorem 5: 1158

Consider the program: 1159
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max
K ,h(),q()

u (x*( )+ h( ), E*( )+ q( )
D

)dF( )+ F(D)K

subject to

u (x*( )+ h( ), E*( )+ q( ))+ K u (x*( ), E*( ))+ K *

x*( )+ h( ) 0

E*( )+ q( ) 0

K u (x*( )+ h( ), E*( )+ q( )) p dF( )( )1/ p

G( (E*( )+ q( ))dF( )) (x*( )+ h( ))dF( )

1160

1161

where D  is any set of types of positive measure.  Suppose the solution to this program is 1162

 . (K* is the value of the social-welfare function – given in the K1163

constraint in the program -- when h = q = 0 .) Then (x*( ), E*( ))  is a Pareto efficient1164

allocation.  Since we are studying strictly positive allocations, the second and third sets of 1165

constraints at the proposed optimal solution will be slack. 1166

 We will show that conditions (a) and (b) of the proposition characterize the * 1167

allocations for which this statement is true.  Let  be any feasible triple in the 1168

above program, for a fixed positive allocation (x*, E*) .  Let .   Then define 1169

the Lagrange function: 1170

1171

( ) = u (x*( )+ h( ), E*( )+ q( )
D

)dF( )+ F(D)(K * + K )+

G( (E*( )+ q(t))dF( ) (x*( )+ h( ))dF( )( ) + u (x*( )+ h( ), E*( )+ q( )) p dF( )
1/ p

K * + K )( ) + B( )(u(x*( )+ h( ), E*( )+ q( ), )+ K u(x*( ), E*( ), ))dF( ).

1172

1173

1174

Suppose there is non-negative function B( )  and non-negative numbers  for which 1175

the function  is maximized at zero.   Note  is the value of the objective of the 1176

above program, when  and , and  equals the value of the 1177

objective at  plus some non-negative terms.  The claim will then follow.   Since 1178

h* 0, q* 0, K = K *

(h,q, K )

K = K K *

( , )

(0)

h* 0 q* K = K * (1)

(h,q, K )
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 is a concave function, it suffices to produce an allocation (x*, E*)  for which non-1179

negative  exist such that . 1180

 Compute the derivative of  at zero: 1181

1182

(0) = u1[*, ]h( )+ u2[*, ]q( )dF( )( )
D

+ F(D) K +

G ( E*( )dF( )) q( )dF( ) h( )dF( )( ) +

p
(Q*)(1 p)/ p p u[*, ]p 1 u1[*, ]h( )+ u2[*, ]q( )( )dF( )

K + B( ) u1[*, ]h( )+ u2[*, ]q( )+ K( )dF( ).

1183

1184

We now gather together the coefficients of K ,h,  and q in the above expression 1185

and set them equal to zero: 1186

1187

Coefficient of K : F(D)+ B( )dF( ) = 0   (A.9) 1188

Coefficient of h( ) : u1[*, ]1D + (Q*)(1 p)/ p u[*, ]p 1u1[*, ]+ B( )u1[*, ]= 0 ,   (A.10) 1189

Coefficient of q( ) : u2[*, ]1D + G (E)+ (Q*)(1 p)/ p u[*, ]p 1u2[*, ]+ B( )u2[*, ] = 0 , (A.11)1190

where  and E = E*( )dF( ) .1191

 By setting all these coefficients equal to zero, and solving for the Lagrange 1192

multipliers, we will discover the characterization of the allocation .  Note that, 1193

at an interior Pareto efficient solution, we must have: 1194

u2[*, ]

u1[*, ]
= G (E) ,1195

for this is the statement that the marginal rate of substitution for each type between labor 1196

and output is equal to the marginal rate of transformation between labor and output.1197

Therefore write: 1198

u1[*, ]+ u2[*, ]= u1[*, ] 1+
u2[*, ]

u1[*, ]
= u1[*, ] 1 G (E)( ) .  (A.12) 1199

(B, , ) (0) = 0

1D ( ) =
1,  if D
0,  if D

(x*(), E*())
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Now add together the equations for the coefficients of q( ) and h( ) , divide this new 1200

equation by 1 G (E) , use equation (A.12), and the result is exactly the equation (A.11). 1201

Therefore, eqn. (A.12) has enabled us to eliminate equation (A.11): if we can produce 1202

non-negative values (B( ), , )  satisfying (A.9) and (A.10), we are done. 1203

 Solve eqn. (A.10) for B( ) :1204

B( ) =
u1[*, ]1D u1[*, ] (Q*)(1 p)/ p u[*, ]p 1

u1[*, ]
 .    (A.13) 1205

From eqn. (A.9), we have = F(D)+ B( )dF( ) , and substituting the expression 1206

for B( )  into this equation, we integrate and solve for :1207

=
u1[*, ] 1 dF( )

1+ (Q*)(1 p)/ p u[*, ]p 1 dF( )
   (A.14). 1208

1209

Eqn. (A.13) says that B( )  is non-negative if and only if1210

u1[*, ](1D + (Q*)(1 p)/ p u[*, ]p 1)  ;                (A.15) 1211

substituting the expression for  from (A.14) into (A.15) yields an inequality in  which, 1212

by rearranging terms, can be written as: 1213

1 u1[*, ]
(Q*)(1 p)/ p u[*, ]p 1 u1[*, ] 1 dF( )

1+ (Q*)(1 p)/ p u[*, ][ 1 dF( )
u1[*, ] .        (A.16) 1214

In sum, we can find non-negative Lagrange multipliers iff we can produce a non-negative 1215

number  such that (A.16) is true for all .  This can be done iff: 1216

1

u1[*, ]

(Q*)(1 p)/ p u[*, ]p 1 u1[*, ] 1 dF( )

1+ (Q*)(1 p)/ p u[*, ]p 1 dF( )
,1217

proving the theorem.1218

1219

Proof of Theorem 6. 1220

 We prove the generalization of the theorem stated in the text.  We prove the result 1221

for K ×  equilibrium for simplicity’s sake, although the proof for K  equilibrium is the 1222

same.  Also for simplicity’s sake, we use the social-welfare function of (1.1). 1223
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1.   For the allocation rule , an allocation E is a K ×  equilibrium iff: 1224

d
dr

|r=1 u ( (rE)G(rE),rE( ))+ exp log(u ( (rE)G(rE),rE( ))dF( )( ) = 0 , (A.17) 1225

where we assume that the altruism parameters { } are non-negative.  Expand this 1226

derivative, writing it as:  1227

( ) D (E)+ exp log(u ( (E)G(E), E( ))dF( )
D (E)

u
dF( ) = 0,   (A.18) 1228

where D (E) = d
dr r=1

u ( (rE)G(rE),rE( )) .1229

2.  Now (A.18) says that : 1230
( )(D (E) = k)1231

where k is a constant (independent of ).   Therefore we can substitute k  for D (E)1232

on the r.h.s. of eqn. (A.18), and re-write that equation as: 1233

k km = 0 ,      (A. 19) 1234

where m is a positive constant.   If = 0 ,  we have from  (A.18) that D (E) = 0 . If 1235

0 ,   it follows from (A.19)   that k = 0 .   But this means that for all , D (E) = 0 ,1236

which is exactly the condition that E is a Kantian equilibrium for the economy with 1237

= 0 .1238

1239

Proof of Theorem 7: 1240

1241

1.  The effort allocation in part (a) maximizes the surplus, which is the condition for 1242

efficiency in the quasi-linear economy with = 0 .1243

2. Integrating the expression for E( ) , we have that the equation E = G (E)1/( 1)  , 1244

characterizing E .1245

3.  To prove claim (b), we show that the ( ) -Kantian1246

 equilibrium produces equal utilities across . From Remark 4 stated after Theorem 3, 1247

this suffices to show that the allocation will be in PE( ) .    We have: 1248
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u[ , ]=
1/( 1)G (E)1/( 1) +

G (E)1/( 1) +
G(E)

/( 1)G (E) /( 1)

=

1/( 1) G (E)1/( 1)G(E)

G (E)1/( 1) +
G (E) /( 1)

+ k
 (A.17) 1249

1250

where k is a constant independent of .   Calculation shows that the value of  that 1251

causes the coefficient of 1/( 1)  in (A.17) to vanish is ( )  as defined in claim (b).  It is 1252

easy to observe that ( ) > 0  by the concavity of G, and because >1.  This proves 1253

claim (b). 1254

4.  Claim (c) follows from analyzing the condition (b) of theorem 5, which for quasi-1255

linear economies is: 1256

( ) 1+ u[*, ] 1 dF( ) u[*, ] 1 ,1257

1258

 as  approaches ( )  from below. 1259

1260

Proof of Theorem 8: 1261

1.   A simple calculation shows that if E  is a K +  equilibrium for an economy with a 1262

linear production function G(x) = ax  w.r.t. any linear tax allocation rule [t ] , for t [0,1],1263

then the  allocation is 0-Pareto efficient.1264

2.  Now let E  be a K +  equilibrium w.r.t. any allocation rule  on (u,G, F ,0)  which is 1265

Pareto efficient on that economy. E is a K +  equilibrium means: 1266

u1
j ( j (E) 1)aES + j (E)an( ) + u2

j = 0 ,1267

and so Pareto efficiency means that: 1268

( j (E) 1)aES + j (E)an( ) = a ,1269

or:1270

( j (E) 1)ES + n j (E) = 1.     (A.18) 1271
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As has been argued in previous proofs,  (A.18) must hold as a system of partial 1272

differential equations on  ++
n .1273

3. Define ri
j = Ei E j .  Define j (x) = j (x + r1

j ,...,x + rn
j ) .  Note that 1274

( j ) (E j ) = ( j (E) 1) .  Hence, on the ray M (E) ={(x + r1
j ,...,x + rn

j )} , we may write 1275

the differential equation (A.18) as: 1276

( j ) (x)(nx + r j ,S )+ n j (x) = 1,   (A.19) 1277

where r j ,S = ri
j

i
.   Since the linear tax rules satisfy (A.18) by step 1, it follows that a 1278

particular solution of (A.19) is j (x) = (1 t) x
nx + r j ,S + t

n
, for any t [0,1] .   The 1279

general solution to the homogeneous variant of (A.19) is j (x) = k j

nx + r j ,S ,  where k j  is 1280

a constant that may depend upon the ray M (E) .   Therefore the general solution to 1281

(A.19) is: 1282

j (x) = (1 t) x
nx + r j ,S + t

n
+ k j

nx + r j ,S ,1283

where t may be chosen freely, and k j  is as described.  Translating back, this means that 1284

j (E) = [t ]
j (E)+ k j (E)

ES1285

where we must have: 1286

 (i) for all E, k j (E) = 01287

 (ii) j (E) [0,1]1288

 (iii) for all j and E, k j (E) 1 = 0 .1289

Statements (i) and (ii) are obvious requirements, while statement (iii) says that the 1290

functions k j  are constant on the ray M (E) .1291

1292

Proof of Theorem 9: 1293

Part A 1294

1.  Define the functions: 1295
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r j (K , y) = max
r

u j (
G(K + y + nr)

n
, y + r)  for (K , y) +

2 .1296

These are single-valued functions, by strict concavity of u.1297

1298

The first-order condition defining rj  is: 1299

u1
j ( )G (K + y + nr)+ u2

j ( ) = 0 .1300

1301

2.  Using the implicit function theorem, compute that the derivatives of r j  w.r.t. its 1302

arguments are : 1303

dr
dK

=
u1

jG + u11
j G 2 + u12

j G
n(u1

jG + u11
j (G )2 + 2G u12

j + u22
j )

< 0
.

1304

1305

The denominator of this fraction is negative by concavity of u and G, the the numerator is 1306

negative since u12
j 0 , and hence 

dr
dK

< 0 .    And: 1307

dr
dy

=
u22

j + (G )2u11
j + (n+1)u12

j + u1
jG

n(u22
j + (G )2u11

j + 2G u12
j + u1

jG )
< 0 .1308

Likewise,
dr
dy

< 0 .1309

3. Define y j  by r j (0, y j ) = 0 .   If all agents other than j are putting in zero effort, then y j1310

is the amount of effort for j at which he would not like to increase all efforts by any 1311

number.  Now define K j = y j

i j
.   Next define z j  by r j (K j , z j ) = 0 . z j  is the 1312

amount of effort for j such that, if all other agents i are expending yi and he is expending 1313

z j ,  he would not like to add or subtract any amount from all efforts. 1314

4.   We argue that z j < y j  for all j.   Just note that r j (K j , z j ) = 0 = r j (0, y j ) .   Since 1315

K j > 0 , it follows that z j < y j , because the r j are decreasing functions. 1316

5.  Hence we may define the non-degenerate rectangle ={E ++
n | z E y}.1317

6.   By applying the definition of r j (K , y) , note that we have the identity: 1318
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r j (K + (n 1)b,a + b) = r j (K ,a) b .1319

7.  We now define a function : +
n

+
n :1320

(E1,..., En ) = (E1 + r1( Ê 1, E1),..., En + r n( Ê n , En ))1321

where Ê j Ei

i j
.  is like the best-reply correspondence in Nash equilibrium. 1322

 is single-valued and continuous, by the Berge maximum theorem.1323

   We next show that ( ) .   Let E = (E1,..., En ) .   We must show: 1324

( j)(z j E j + r j ( Ê j , E j ) y j .   (A.20) 1325

By step 6,   we have1326

r j ( Ê j , E j ) ( y j E j ) = r j ( Ê j + (n 1)( y j E j ), y j ) 0 ,1327

where the inequality follows because r j  is decreasing and r j (0, y j ) = 0  and 1328

Ê j + (n 1)( y j E j ) 0 .   This proves the second inequality in (A. 20).  1329

 Again by step 6, we have: 1330

r j ( Ê j , E j ) (z j E j ) = r j ( Ê j + (n 1)(z j E j ),z j ) 01331

where the inequality follows because r j  is decreasing and Ê j + (n 1)(z j E j ) K j1332

(note that (n 1)(z j E j ) 0 ).   This proves the first inequality in (A.20). 1333

8.  Hence, the function satisfies all the premises of Brouwer’s Fixed Point Theorem, 1334

and hence possesses a fixed point. But a fixed point of  is a vector E such that for all j,1335

r j ( Ê j , E j ) = 0 , which is precisely a K +  equilibrium.  (Note that the rectangle is in the 1336

strictly positive orthant, which implies that the equilibrium is strictly positive.) 1337

 Part B 1338

9.  The proof proceeds in the same fashion as above, except we now define the functions: 1339

r j (K , y) = argmax
r

u j (
ry + (r 1)+

r(K + y)+ n (r 1)+ n
G(r(K + y)+ n(r 1) ,ry + (r 1)) .1340

Recall that y will be evaluated at E j  and K at Ê j  for a vector E.1341

The first-order condition defining the functions r j  is: 1342

u1
j G + u2

j = 0 ,1343
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where u is evaluated at the point (
y +

K + y + n
G(r(K + y)+ (r 1)n ),ry + (r 1) ) .  We 1344

compute, using the implicit function theorem, that: 1345

dr j

dK
=

(G u11
j + u12

j )
y +

K + y + n
G r j G

K + y + n
+ r jG u1

j

( y + )(G 2u11
j + 2G u12

j + u22
j )+ u1

jG (K + y + n )
.1346

The denominator is negative by the concavity of u and G.   Quasi-linearity implies that 1347

G u11
j + u12

j = 0  and so the numerator is negative if r j > 0 .   But note that we must have 1348

ry + (r 1) 0 , since efforts cannot be negative, and so r is restricted to the interval 1349

with lower bound r
y +

> 0 , and so r j > 0 .     Hence
dr j

dK
< 0 .1350

 Compute that:  1351

dr j

dy
=

u11
j r jG 2 ( y + )

K + y + n
+G G (K + (n 1) )

(K + y + n )2
+ u12

j r jG K + 2y + (n+1)
K + y + n

+ K + y + (n 1)

(K + y + n )2
+ r ju22

j

( y + )(G 2u11
j + 2G u12

j + u22
j + u1 G (K + y + n )

1352

1353

The denominator is negative by concavity, and the numerator is negative since u12
j = 0 ,1354

and so 
dr j

dy
< 0 .1355

10.  Hence the functions r j  are decreasing, and the proof proceeds as before, from steps 1356

3 through 8.1357

1358

Proof of Theorem 10: 1359

The proof proceeds by showing that the mapping  is a contraction mapping.  It uses the 1360

following well-known mathematical result: 1361

Lemma Let be a norm on  
n and let  

A be the associated sup norm on mappings1362

A : n n , defined by
 

A = sup
x =1

A(x) . Let J ( A) be the Jacobian matrix of A. If1363

 
J ( A) <1, then A is a contraction mapping.1364
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 If we can show that  is a contraction mapping, then it possesses a unique fixed 1365

point, and the dynamic process induced by iterating the application of  from any initial 1366

effort vector will converge to the fixed point. 1367

1.  For n = 2 , the Jacobian of the map  is 
1+ r1

1 r2
1

r1
2 1+ r2

2
, where 1368

ri
j (E1, E2 ) = r j

Ei (E1, E2 ) , assuming that these derivatives exist.  Thus, the lemma 1369

requires that we show the norm of this matrix is less than unity.   We take  to be the 1370

Euclidean norm on  
2 .   We must show that: 1371

E = 1
1+ r1

1(E) r2
1(E)

r1
2(E) 1+ r2

2(E)

E1

E2
<1.   (A.21) 1372

2.  Assuming differentiability of c j , the function r j (E)  is defined by the following first-1373

order condition: 1374

G (ES + 2r j (E)) = (c j ) (E j + r j (E)) ,      (A.22) 1375

which has a unique solution under standard assumptions.  By the implicit function 1376

theorem, the derivatives of r j ( )  are given by: 1377

1378

G ( y j )(1+ 2ri
j (E)) = (c j ) (x j )( i

j + ri
j (E)) ,1379

where y j = G(ES + nr j (E)), x j = E j + r j (E)  and i
j =

1,  if i = j
0,  if i j

; or 1380

ri
j (E) = i

j (c j ) (x j ) G ( y j )

2G ( y j ) (c j ) (x j )
.    (A.23) 1381

3.   It follows from step 1 that the Jacobian of  is given by: 1382

G ( y1)

2G ( y1) (c1) (x1)

G ( y1)

2G ( y1) (c1) (x1)

G ( y2 )

2G ( y2 ) (c2 ) (x2 )

G ( y2 )

2G ( y2 ) (c2 ) (x2 )

1383
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and so, from step 1, we need only show that: 1384

(Q1(E1 E2 ))2 + (Q2(E1 E2 ))2 <1   (A. 24) 1385

where (E1, E2 ) = 1 and Q j = G ( y j )

2G ( y j ) (c j ) (x j )
.     Note that Q j < 1

2
.  Therefore 1386

(A.24) reduces to showing that 
1

2
(1 E1E2 ) <1, which is obviously true, proving the 1387

proposition.1388

1389

1390

   1391

1392

1393
1394

1395


