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Abstract

Consider a group of individuals with unobservable perspectives (subjective prior beliefs) about a

sequence of states. In each period, each individual receives private information about the current

state and forms an opinion (a posterior belief). He also chooses a target individual whose opinion

is then observed. This choice involves a fundamental trade-off between well-informed targets,

whose signals are precise, and well-understood targets, whose perspectives are well known by

the observer. Observing an opinion provides information not just about the current state, but

also about the target’s perspective; hence observed individuals become better-understood over

time. This leads to path dependence and the possibly that some individuals never observe

certain others in the long run. We identify a simple condition under which long-run behavior is

efficient and history-independent. When this condition fails, with positive probability, a single

individual emerges as an opinion leader in the long-run. Moreover, the extent to which an

individual learns about a target’s perspective depends on how well-informed both agents are in

the period of observation. This gives rise to symmetry breaking, and can result in observational

networks involving information segregation, or static graphs with rich and complex structures.
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Princeton for hospitality and support.
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1 Introduction

The solicitation and interpretation of opinions plays a central role in information gathering. In

academic professions, for instance, reviews and recommendation letters are important inputs in

graduate admissions, junior hiring, publications in scientific journals, and internal promotions.

However, opinions convey not just objective information but also subjective judgements that are not

necessarily shared or even fully known by an observer. For example, a reviewer’s recommendation

might depend on her subjective views and the reference group she has in mind, and the most crucial

assessments are often conveyed using ambiguous terms such as excellent or interesting. Hence, as

informative signals, opinions are contaminated with two distinct sources of noise, one stemming

from the imprecision of opinion holder’s information, and the other from the observer’s uncertainty

about the subjective perspective of the opinion holder.

In choosing which opinions to observe, one then faces a fundamental trade-off between well-

informed sources—with more precise information—and well-understood sources—with better known

perspectives. Here, a person is well-understood by another if the opinion of the former reveals her

information to the latter with a high degree of precision. The better one knows a source’s perspec-

tive, the easier it becomes to extract the source’s information from her opinion. One may therefore

be able to extract more information from the opinion of a less-informed source if this source is suf-

ficiently well-understood. For example, in choosing reviewers for a promotion case, one may prefer

a senior generalist with a long track record of reviews to a young specialist with deep expertise

in the specific area but with possibly strong subjective judgments that are unknown to observers.

Similarly, in graduate admissions, one may rely on recommenders with long track records whose

opinions have become easier to interpret over time. And in forecasting elections, one might learn

more from pollsters whose methodological biases or house effects are well known than from those

with larger samples but unknown biases.1 Sophisticated poll aggregators not only adjust for house

effects, they also put more weight on polls when these effects are more confidently known.

This trade-off between being well-informed and being well-understood has some interesting

dynamic implications, since the observation of an opinion not only provides a signal about the

information that gave rise to it, but also reveals something about the observed individual’s per-

spective. In other words, the process of being observed makes one better understood. This can give

rise to unusual and interesting patterns of linkages over time, even of all individuals are identical

to begin with. It is these effects with which the present paper is concerned, with particular focus

on long-run efficiency (or lack thereof), opinion leadership, and information segregation.

1Since response rates for opinion polls are extremely low, pollsters weight their data based on the demographic

characteristics of respondents, in order to match the sample space with the voting population expected to turn out

on election day. These expectations are based in part on subjective judgements, which introduces systematic biases

in favor of one party or another. For the 2012 presidential elections, Pew Research was found after the fact to have

had a 3.2% Democratic bias while Gallup had a 2.5% Republican bias.
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Our approach to social communication may be contrasted with the literature descended from

DeGroot (1974), which deals with the spread of a given amount of information across an exogneously

fixed network, and focuses on the possibility of double counting and related inference problems.2 We

believe that in many applications information is relatively short-lived, while the manner in which

it is subjectively processed by individuals is enduring. By observing a given person’s opinion,

one learns about both the short-lived information and the more enduring subjective perspective

through which it is filtered. This makes one more inclined to observe the opinions of the person on

other issues. This is the environment we explore here, with particular attention to the endogenous

formation of social communication networks.

Specifically, we model a finite set of individuals facing a sequence of periods. Corresponding

to each period is an unobserved state. Individuals all believe that the states are independently

and identically distributed, but differ with respect to their prior beliefs about the distribution from

which these states are drawn. These beliefs, which we call perspectives, are themselves unobserv-

able, although each individual holds beliefs about the perspectives of others. In each period, each

individual receives a signal that is informative about the current state; the precision of this signal

is the individual’s expertise in that period. Levels of expertise are independently and identically

distributed across individuals and periods, and their realized values are public information. Indi-

viduals update their beliefs on the basis of their signals, resulting in posterior beliefs that we call

opinions. Each individual then chooses a target whose opinion is to be observed. This choice is

made by selecting the target whose opinion reveals the most precise information about the current

state.

The observation of an opinion has two effects. First, it affects the observer’s belief about

the current period state and allows her to take a better informed action. Second, the observer’s

belief about the target’s perspective itself becomes more precise. Hence there will be a tendency

to link to previously observed targets even when they are not the best-informed in the current

period. But, importantly, the level of attachment to a previously observed target depends on the

expertise realizations of both observer and observed in the period in which the observation occurred.

Specifically, better informed observers learn more about the perspectives of their targets since they

have more precise beliefs about the signal that the target is likely to have received. But holding

constant one’s own expertise, one learns more about the perspective of a poorly informed target,

since the opinion of such a target will be heavily weighted to their prior rather than their signal.

This effect implies symmetry breaking over time: two observers who select the same target initially

will develop different levels of attachment to that target. Hence they might make different choices

in subsequent periods, despite the fact that all expertise realizations are public information and

a given individual’s expertise is common to all observers. Several interesting linkage patterns can

arise over time as a result.

Our main results concern these patterns of long run linkages. We begin by deriving the long-

2See DeMarzo, Vayanos, and Zweibel (2003) for a state-of-the-art model in this tradition.
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run frequency of networks on any given history h. Let Jh (i) be the set of individuals to whom an

individual i links infinitely often on h. In the long run, each player i links to the most informed

individual in Jh (i), yielding an independently and identically distributed process of networks. Along

a given history, some observational links may break. That is, for any given individual i, there may

be some set of other individuals who are observed only a finite number of times, while the remainder

are observed infinitely often. The observer i learns the perspectives of those in the latter group

to an arbitrarily high level of precision, and eventually chooses among them on the basis of their

expertise levels. Since all choices are made simultaneously, this places sharp restrictions on the

linkage patterns that can emerge in the long run.

Our subsequent results identify conditions on the key parameters of the model—the degree

of initial uncertainty about the perspectives of others, and the distribution from which expertise

is drawn—under which some interesting linkage patterns can arise with positive probability. An

important case occurs when none of the links break, so that Jh (i) includes all other individuals.

In this case, everyone links to the most informed individual in the population, yielding a uniform

distribution on all star-shaped networks in the long run. This corresponds to long-run efficiency.3

We show that when the initial uncertainty about the perspectives is below a certain threshold, long

run efficiency arises with probability one. That is, all effects of path-dependence disappear in the

long run.

When history independence fails to hold, a particular form of path-dependence emerges with

positive probability. An individual j∗1 emerges as the opinion leader so that everybody links to j∗1
while j∗1 links to some j∗2—regardless of the expertise levels. The resulting star-shaped network is

static, in that it arises at all dates in the long run. This is the least efficient long run outcome, as

individuals do not differentiate at all on the basis of expertise. Interestingly, such extreme long-run

inefficiency is inevitable when the initial uncertainty about perspectives is sufficiently high, because

everyone attaches to the first individual observed, leading to opinion leadership with probability

one.

Both long-run efficiency and opinion leadership involve only star-shaped networks, but several

other patterns of linkages can also arise. For intermediate levels of initial uncertainty about perspec-

tives, we show that any given network g emerges as the limiting network with positive probability

(i.e., Jh (i) = {g (i)} for every individual i on a set of histories h with positive probability). In this

case the long run outcome is a static network, with each individual observing the same target in

each period, regardless of expertise realizations. Since such networks are identified with minimal

long-run efficiency, this shows that all possible forms of extreme long-run inefficiency emerge with

positive probability.

Another interesting linkage pattern is information segregation: the population is partitioned

into subgroups, and individuals observe only those within their own subgroup. For intermediate

3The behavior in our model is always ex-ante efficient.
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levels of initial uncertainty and for any given partition of individuals to groups with at least two

members, we show that information segregation according to the given partition emerges in the

long run with positive probability. In fact, our result concerning the arbitrariness of static limiting

networks immediately implies the possibility of information segregation, but such segregation can

arise even in the absence of convergence to a static network.

The remainder of the paper is structured as follows. In Section 2 we specify the information

structure, including the distributions from which signals and priors are drawn. Section 3 examines

the evolution of beliefs and networks as individuals make observational choices. The set of networks

that can arise in the long run are characterized in Section 4, and the conditions for long run history

independence are stated in Section 5. Some special structures that arise when history independence

fails are described in Section 6, including opinion leadership, segregation, and static networks.

Section 7 identifies a sufficient condition for hysteresis. Section 8 presents the extension of our

results to the case in which the states are observed with a possible delay. Section 9 discusses the

connection between our work and other theoretical research on heterogeneous priors, observational

learning, and network formation. It also discusses evidence for the stable variability in individual

perspectives that motivates our analysis. Section 10 concludes.

2 The Model

Consider a population N = {1, . . . , n}, and a sequence of periods, t = 1, 2, . . .. In each period t,

there is an unobservable state θt ∈ R. All individuals agree that the sequence of states θ1, θ2, . . . are

independently and identically distributed, but they disagree about the distribution from which they

are drawn. According to the prior belief of each individual i, the states are normally distributed

with mean µi and variance 1:

θt ∼i N(µi, 1).

We shall refer to prior mean µi as the perspective of individual i. An individual’s perspective is

not directly observable by any other individual, but it is commonly known that the perspectives

µ1, ..., µn are independently and identically distributed according to

µi ∼ N(µi, 1/v0)

for some real numbers µ1, ..., µn and v0 > 0. This describes the beliefs held by individuals about

each others’ perspectives prior to the receipt of any information. Note that the precision in beliefs

about perspectives is symmetric in the initial period, since v0 is common to all. This symmetry is

broken as individuals learn about perspectives over time, and the revision of these beliefs plays a

key role in the analysis to follow.

In each period t, each individual i privately observes an informative signal

xit = θt + εit,
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where εit ∼ N(0, 1/πit). The signal precisions πit capture the degree to which any given individual i

is well-informed about the state in period t. We shall refer to πit as the expertise level of individual

i regarding the period t state, and assume that these expertise levels are public information. Levels

of expertise πit are independently and identically distributed across individuals and periods, in

accordance with an absolutely continuous distribution function F having support [a, b], where

0 < a < b <∞. That is, no individual is ever perfectly informed of the state, but all signals carry

at least some information.4

Remark 1. Since priors are heterogenous, each individual has his own subjective beliefs. We use

the subscript i to denote the individual whose belief is being considered. For example, we write

θt ∼i N (µi, 1) to indicate that θt is normally distributed with mean µi according to i. When all

individuals share a belief, we drop the subscript. For example, εit ∼ N (0, 1/πit) means that all

individuals agree that the noise in xit is normally distributed with mean 0 and variance 1/πit.

While an individual j does not infer anything about θt from the value µi, j does update her belief

about θt upon receiving information about xit. For a more extensive discussion of belief revision

with incomplete information and unobservable, heterogenous priors, see Sethi and Yildiz (2012),

where we study repeated communication about a single state among a group of individuals with equal

levels of expertise.

Having observed the signal xit in period t, individual i updates her belief about the state in

conformity with Bayes’ rule.5 This results in the following posterior belief for i:

θt ∼i N
(
yit,

1

1 + πit

)
, (1)

where yit is the expected value of θt according to i and 1+πit is the precision of the posterior belief.

We refer to yit as individual i’s opinion at time t. The opinion is computed as

yit =
1

1 + πit
µi +

πit
1 + πit

xit. (2)

A key concern in this paper is the process by which individuals choose targets whose opinions

are then observed. We model this choice as follows. In each period t, each individual i chooses one

other individual, denoted jit ∈ N , and observes her opinion yjitt about the current state θt. This

information is useful because i then chooses an action θ̂it ∈ R in order to minimize

E[(θ̂it − θt)2]. (3)

4Since πit is observable, myopic individuals need not consider the distribution from which πit is drawn. Neverthe-

less, this distribution affects the pattern of linkages that emerges in the long run.
5Specifically, given a prior θ ∼ N(µ, 1/v) and signal s = θ + ε with ε ∼ N(0, 1/r), the posterior is θ ∼ N(y, 1/w)

where

y = E[θ|s] =
v

v + r
µ+

r

v + r
s

and w = v + r.
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This implies that individuals always prefer to observe a more informative signal to a less informative

one. We specify the actions and the payoffs only for the sake of concreteness; our analysis is valid

so long as this desire to seek out the most informative signal is assumed. (In many applications

this desire may be present even if no action is to be taken.) The timeline of events at each period

t is as follows:

1. The levels of expertise (π1t, . . . , πnt) are realized and publicly observed.

2. Each i observes his own noisy signal xit and forms his opinion yit.

3. Each i chooses a target jit ∈ N\ {i}.

4. Each i observes the opinion yjitt of his target.

5. Each i takes an action θ̂it.

It is convenient to introduce the variable ltij which takes the value 1 if jit = j and zero otherwise.

That is, ltij indicates whether or not i observes j in period t, and the n×n matrix Lt := [ltij ] defines a

directed graph or network that describes who listens to whom. Consistent with this interpretation,

we shall say that i links to j in period t if j is the target selected by i in this period. Note that

information flows in the reverse direction of the graph. We are interested in the properties of the

sequence of networks generated by this process of link formation.

We assume that individuals are myopic, do not observe the actions of others, and do not observe

the realization of the state (observability of the past targets of others will turn out to be irrelevant).

These are clearly restrictive assumptions, and our results extend to the case in which the states are

observed with some delay (see Section 8).6

Remark 2. Even though the states, signals and expertise levels are all distributed independently

across individuals and time, the inference problems at any two dates t and t′ are related. This is

because each individual’s ex-ante expectation of θt and θt′ are the same; this expectation is what we

call the individual’s perspective. As we show below, any information about the perspective µj of an

individual j is useful in interpreting j’s opinion yjt, and this opinion in turn is informative about

j’s perspective. Consequently the choice of target at date t affects the choice of the target at any

later date t′. In particular, the initial symmetry is broken after individuals choose their first target,

potentially leading to highly asymmetric outcomes.

6Note that the desire to make good decisions even when the state realization is unobserved is quite common. For

instance, one might wish to vote for the least corrupt political candidate, or donate to the charity with the greatest

social impact, or support legislation regarding climate change that results in the greatest benefits per unit cost. We

actively seek information in order to meet these goals, and act upon our expectations, but never know for certain

whether our beliefs were accurate ex-post.
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3 Evolution of Beliefs and Networks

We now describe the criterion on the basis of which a given individual i selects a target j whose

opinion yjt is to be observed, and what i learns about the state θt and j’s perspective µj as a result

of this observation. This determines the process for the evolution of beliefs and the network of

information flows.

Given the hypothesis that the perspectives are independently drawn from a normal distribution,

posterior beliefs held by one individual about the perspectives of any another will continue to be

normally distributed throughout the process of belief revision. Write vtij for the precision of the

distribution of µj according to i at beginning of t. Initially, these precisions are identical: for all

i 6= j,

v1ij = v0. (4)

The precisions vtij in subsequent periods depend on the history of realized expertise (π1, . . . , πt−1)

and information networks (L1, . . . , Lt−1). These precisions vtij of beliefs about the perspectives of

others are central to our analyses; the expected value of an individual’s perspective is irrelevant

as far as the target choice decision is concerned. What matters is how well a potential target is

understood, not how far their perspective deviates from that of the observer.

3.1 Interpretation of Opinions and Selection of targets

Suppose that an individual i has chosen to observe the opinion yjt of individual j, where

yjt =
1

1 + πjt
µj +

πjt
1 + πjt

xjt

by (2). Since xjt = θt + εjt, this observation provides the following noisy signal regarding θt:

1 + πjt
πjt

yjt = θt + εjt +
1

πjt
µj .

The signal is noisy in two respects. First, the information xjt of j is itself noisy, with signal

variance εjt. Furthermore, since the opinion yjt depends on j’s unobservable perspective µj , the

signal observed by i has an additional source of noise, reflected in the term µj/πjt.

Taken together, the variance of the signal observed by i is

γ(πjt, v
t
ij) ≡

1

πjt
+

1

π2jt

1

vtij
. (5)

Here, the first component 1/πjt comes directly from the noise in the information of j, and is simply

the variance of εjt. It decreases as j becomes better informed. The second component, 1/(π2jtv
t
ij),

comes from the uncertainty i faces regarding the perspective µj of j, and corresponds to the variance

of µj/πjt (where πjt is public information and hence has zero variance). This component decreases
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as i becomes better acquainted with the perspective µj , that is, as j becomes better understood

by i.

The variance γ reveals that in choosing an target j, an individual i has to trade-off the noise

1/πjt in the information of j against the noise 1/(π2jtv
t
ij) in i’s understanding of j’s perspective,

normalized by the level of j’s expertise. The trade-off is between targets who are well-informed

and those who are well-understood.

Since i seeks to observe the most informative opinion, she chooses to observe an individual for

whom the variance γ is lowest. Ties arise with zero probability but for completeness we assume

that they are broken in favor of the individual with the smallest label. That is,

jit = min

{
arg min
j 6=i

γ(πjt, v
t
ij)

}
. (6)

Note that jit and hence Lt have two determinants: the current expertise levels πjt and the precision

vtij of individuals’ beliefs regarding the perspectives of others. The first determinant πjt is exoge-

nously given and stochastically independent across individuals and times. In contrast, the second

component vtij is endogenous and depends on the sequence of prior target choices (L1, . . . , Lt−1),

which in turn depends on previously realizes levels of expertise.

3.2 Evolution of Beliefs

We now describe the manner in which the beliefs vtij are revised over time. In particular we show

that the belief of an observer about the perspective of her target becomes more precise once the

opinion of the latter has been observed, and that the strength of this effect depends systematically

on the realized expertise levels of both observer and observed.

Suppose that jit = j, so i observes yjt. Recall that j has previously observed xjt and updated

her belief about the period t state in accordance with (1-2). Hence observation of yjt by i provides

the following signal about µj :

(1 + πjt)yjt = µj + πjtθt + πjtεjt.

Observe that the signal contains an additive noise πjtθt + πjtεjt. The variance of the noise is

π2jt

(
1

1 + πit
+

1

πjt

)
.

Accordingly, the precision of the signal is δ(πit, πjt), defined as

δ(πit, πjt) =
1 + πit

πjt(1 + πit + πjt)
. (7)

Hence, using the formula in Footnote 5, we obtain

vt+1
ij =

{
vtij + δ(πit, πjt) if jit = j

vtij if jit 6= j,
(8)
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where we are using the fact that if jit 6= j, then i receives no signal of j’s perspective, and so her

belief about µj remains unchanged. This leads to the following closed-form solution:

vt+1
ij = v0 +

t∑
s=1

δ(πis, πjs)l
s
ij . (9)

Remark 3. This derivation assumes that individuals do not learn from the target choices of others,

as described in Lt. If fact, under our assumptions, there is no additional information contained

in these choices because i can compute Lt using publicly available data even before Lt has been

observed.7 This simplifies the analysis dramatically, and is due to the linear formula in Footnote

5 for normal variables. In a more general model, i may be able to obtain useful information by

observing L. For example, without linearity, vt+1
kj −v

t
kj could depend on yjt for some k with jkt = j.

Since yjt provides information about µj, and vt+1
kj affects jkt′ for t′ ≥ t + 1, one could then infer

useful information about µj from jkt′ for such t′. The formula (8) would not be true for t′ in that

case, possibly allowing for other forms of inference at later dates.

Remark 4. By the argument in the previous remark, assumptions about the observability of the

information network L are irrelevant for our analysis. However, assumptions about the observability

of the state θt and the actions θ̂kt of others (including the actions of one’s target, which incorporate

information from her own target) are clearly relevant.

Each time i observes j, her beliefs about j’s perspective become more precise. But, by (7), the

increase δ (πit, πjt) in precision depends on the specific realizations of πit and πjt in the period of

observation, in accordance with the following.

Observation 1. δ (πit, πjt) is strictly increasing πit and strictly decreasing πjt. Hence,

δ ≤ δ(πit, πjt) ≤ δ

where δ ≡ δ(a, b) > 0 and δ ≡ δ(b, a)

In particular, if i happens to observe j during a period in which j is very precisely informed

about the state, then i learns very little about j’s perspective. This is because j’s opinion largely

reflects the signal and is therefore relatively uninformative about j’s prior. If i is very well informed

when observing j, the opposite effect arises and i learns a great deal about j’s perspective. Having

good information about the state also means that i has good information about j’s signal, and

is therefore better able to infer j’s perspective based on the observed opinion. Finally, there is

7One can prove this inductively as follows. At t = 1, i can compute Lt from (6) using (π1t, . . . .πnt) and v0

without observing Lt. Suppose now that this is indeed the case for all t′ < t for some t, i.e., Lt′ does not provide any

additional information about µj . Then all beliefs about perspectives are given by (8) up to date t. One can see from

this formula that each vtkl is a known function of past expertise levels (π1t′ , . . . , πnt′)t′<t, all of which are publicly

observable. That is, i knows vtkj for all distinct k, j ∈ N . Using (π1t, . . . .πnt) and these values, she can then compute

jkt from (6) without observing Lt.
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a positive lower bound δ on the amount of increase in precision, making beliefs about observed

individuals more and more precise as time passes.

Given the precisions vtij at the start of period t, and the realizations of the levels of expertise

πit, the links chosen by each individual in period t are given by (6). This then determines the

precisions vt+1
ij at the start of the subsequent period in accordance with (8), with initial precisions

given by (4). For completeness, we set vtii = 0 for all individuals i and all periods t. This defines a

Markov process, where the sample space is the set of nonnegative n× n matrices and the period t

realization is V t := [vtij ].

For any period t, let ht := {v1ij , ..., vtij} denote the history of beliefs (regarding perspectives) up

to the start of period t. Any such history induces a probability distribution over networks, with

the period t network being determined by the realized values of πit. It also induces a distribution

over the next period beliefs vt+1
ij . It is the long run properties of this sequence of networks and

beliefs that we wish to characterize.

3.3 Network Dynamics

Recall from (6) that at any given date t, each individual i chooses a target jit with the goal of

minimizing the perceived variance γ(πjt, v
t
ij). At the start of this process, since the precisions v1ij

are all equal, the expertise levels πjt are the only determinants of this choice. Hence the criterion

(6) reduces to

ji1 = min

{
arg max

j 6=i
πj1

}
.

That is, the best informed individual in the initial period is linked to by all others, and herself links

to the second-best informed.

This pattern of information flows need not hold in subsequent periods. By Observation 1,

individual beliefs about the perspectives of their past targets become strictly more precise over

time. Since γ is strictly decreasing in such precision, an individual may continue to observe a past

target even if the latter is no longer the best informed. And since better informed individuals learn

more about the perspectives of their targets, they may stick to past targets with greater likelihood

than poorly informed individuals, adding another layer of asymmetry.

This trade-off between being well informed and being well understood can prevent the forma-

tion of networks in which all individuals link to the best informed, and can give rise to history

dependence. One of the key questions of interest in this paper is whether this is a temporary effect,

or whether it can arise even in the long run.

In order to explore this question, we introduce some notation. We say that the link ij is active

in period t if ltij = 1. Given any history ht, we say that the link ij is broken in period t if, conditional

on this history, the probability of the link being active in period t is zero. That is, the link ij is
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broken in period t conditional on history ht if

Pr(ltij = 1 |ht) = 0.

If a link is broken in period t we write btij = 1. It is easily verified that if a link is broken in period

t then it is broken in all subsequent periods.8 Finally, we say that a link ij is free in period t

conditional on history ht if the probability that it will be broken in this or any subsequent period

is zero. That is, link ij is free in period t if

Pr(bt+sij = 1 |ht) = 0

for all non-negative integers s. If a link is free at time t, there is a positive probability that it will

be active in the current period as well as in each subsequent period.

We next identify conditions under which a link breaks or becomes free. Define a threshold

v =
a

b(b− a)
,

for the precision vij of an individual’s belief about another individual’s perspective. Note that v

satisfies the indifference condition

γ (a,∞) = γ (b, v)

between a minimally informed individual whose perspective is known and a maximally informed

individual whose perspective is uncertain with precision v. Define also the function β : (0, v)→ R+,

by setting

β (v) =
b2

a2

(
1

v
− 1

v

)−1
.

This function satisfies the indifference condition

γ (a, β (v)) = γ (b, v)

between a maximally informed individual whose perspective is uncertain with precision v and a

minimally informed individual whose perspective is uncertain with precision β (v).

In our analysis, we shall ignore histories that result in ties and arise with zero probability.

Accordingly, define

V =
{

(vij)i∈N,j∈N\{i} | vij 6= β (vik) and vij 6= v for all distinct i, j, k ∈ N
}

and

H =
{
ht | vt (ht) ∈ V

}
.

We shall consider only histories ht ∈ H.

Our first result characterizes histories after which a link is broken.
8This follows from the fact that the process {vtij} is non-decreasing, and vij increases in period t if and only if

lij = 1.
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Lemma 1. For any history ht ∈ H, a link ij is broken at ht if and only if vtik(ht) > β(vtij(ht)) for

some k ∈ N\{i, j}.

When vtik > β(vtij), individual i never links to j because the cost γ(πkt, v
t
ik) of linking to k is

always lower than the cost γ(πjt, v
t
ij) of linking to j. Since vtij remains constant and vtik cannot

decrease, i never links to j thereafter, i.e., the link ij is broken. Conversely, if the inequality

is reversed, i links to j when j is sufficiently well-informed and all others are sufficiently poorly

informed.

The next result characterizes histories after which a link becomes free.

Lemma 2. A link ij is free after history ht ∈ H if and only if

vtij (ht) > min

{
v, max
k∈N\{i,j}

β
(
vtik (ht)

)}
.

When vtij(ht) > β(vtik(ht)) for all k ∈ N\ {i, j}, all links ik are broken by Lemma 1, and hence

i links to j in all subsequent periods, and ij is therefore free. Moreover, when vij > v, i links

to j with positive probability in each period, and each such link causes vij to increase further.

Hence the probability that i links to j remains positive perpetually, so ij is free. Conversely, in

all remaining cases, there is a positive probability that i will link to some other node k repeatedly

until vik exceeds β(vtij(ht)), resulting in the link ij being broken. (By Observation 1, this happens

when i links to k at least (β(vtij(ht))− vtik(ht))/δ times.) Note that the above lemmas imply that

along every infinite history, every link eventually either breaks or becomes free.

To illustrate these ideas, consider a simple example with N = {1, 2, 3}. Figure 1 plots regions

of the state space in which the links 31 and 32 are broken or free, for various values of v31 and

v32 (the precisions of individual 3’s beliefs about the perspectives of 1 and 2 respectively). It is

assumed that a = 1 and b = 2 so v = 0.5. In the orthant above (v, v) links to both nodes are free by

Lemma 2. Individual 3 links to each of these nodes with positive probability thereafter, eventually

becoming arbitrarily close to learning both their perspectives. Hence, in the long run, she links

with likelihood approaching 1 to whichever individual is better informed in any given period. This

limiting behavior is therefore independent of past realizations, and illustrates our characterization

of history independence.

When v32 > β(v31), the region above the steeper curve in the figure, the link 31 breaks. Indi-

vidual 3 links only to 2 thereafter, learning her perspective and therefore fully incorporating her

information in the long run. But this comes at the expense of failing to link to individual 1 even

when the latter is better informed. Along similar lines, in the region below flatter curve, 3 links

only to to 1 in the long run.

Now consider the region between the two curves but outside the orthant with vertex at (v, v).

Here one or both of the two links remains to be resolved. If v < v32 < β(v31), then although the

13
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Figure 1: Regions of State Space with Broken and Free Links

link 32 is free, the link 31 has not been resolved. Depending on subsequent expertise realizations,

either both links will become free or 31 will break. Symmetrically, when v < v31 < β(v32), the link

31 is free while the other link will either break or become free in some future period.

Finally, in the region between the two curves but below the point (v, v), individual 3 may attach

to either one of the two nodes or enter the orthant in which both links are free. Note that the

probability of reaching the orthant in which both links are free is zero for sufficiently small values

of (v31, v32). For example, when β(v0) − v0 < δ, regardless of the initial expertise levels, 3 will

attach to the very first individual to whom she links. The critical value of v0 in this example is

approximately 0.07, and the relevant region is shown at the bottom left of the figure.

Since the initial precisions of beliefs about perspectives lie on the 45 degree line by assumption,

the size of this common precision v0 determines whether history independence is ensured, is possible

but not ensured, or is not possible.9 In the first of these cases, individuals almost always link to the

best informed person in the long run, and the history of realizations eventually ceases to matter.

9It is tempting to conclude that in the three person case, these three regimes correspond to the three segments of

the diagonal in Figure 1. But this is not correct, since the condition β(v0)− v0 < δ is sufficient but not necessary for

at least on link to break. Specifically, there are values of v0 outside the region on the bottom left of the figure such

that both links can become free in the long run for any one observer, but not for all three. A fuller characterization

is provided below.
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In the second case, this outcome is possible but not guaranteed: there is a positive probability that

some links will be broken. And in the third case, history matters perpetually and initial realizations

have permanent effects.

The fact that every link either breaks or becomes free along any infinite history allows us to

place sharp restrictions on the long run frequency of networks, which we turn to next.

4 Long-run Frequency of Networks

In this section, we characterize the long-run frequency of each communication network that can

emerge in our model. This allows us to provide a simple expression for long-run payoffs and long-run

efficiency.

Let G denote the set of functions g : N → N that satisfy g(i) 6= i for each i ∈ N . Each element

of G thus corresponds to a directed graph in which each node is linked to one target. This is the

set of all feasible networks that can arise. Our main goal in this section is to find the frequency

with which each g ∈ G is realized in the long run. To this end, for each infinite history h, each t,

and each g, define

φt (g |h) =
# {s ≤ t | jis (h) = g (i) ∀i ∈ N}

t

as the empirical frequency of the graph g up to date t at history h. When φt has a limit, this is

denoted

φ∞ (g |h) ≡ lim
t→∞

φt (g |h) .

We call this the long-run frequency of graph g at history h.

The long-run frequencies are determined by the free links. Towards establishing this, for any

mapping J : N → 2N with i 6∈ J (i) and J(i) nonempty for each i, define

pJ(g) = Pr

(
g(i) = arg max

j∈J(i)
πj ∀i ∈ N

)
(10)

at each g ∈ G. Note that pJ(g) = 0 if g(i) /∈ J(i) for some i. If each individual i were restricted

to choose the most informed individual in J(i) as the target, each graph g would be realized with

probability pJ(g).

Finally, for each infinite history h, define the mapping Jh : N → 2N as

Jh (i) = {j | jit (h) = j infinitely often} (∀i ∈ N) . (11)

Here Jh (i) is the (nonempty) set of individuals to whom i links to infinitely many times along the

history h. On this path, eventually, the links ij with j ∈ Jh (i) become free, and all other links

break. The following result states that, in the long run, each individual i links to the most informed

target in Jh (i).
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Proposition 1. Almost surely, the long-run frequency φ∞ (·|h) exists, and

φ∞ (·|h) = pJh .

Proposition 1 provides a sharp, testable prediction regarding the joint distribution of behavior.

For each individual, consider the set Jh (i) of targets that each individual i links to with positive

long-run frequency. Then, the frequency in which a graph g is realized is the probability that g (i)

is the most informed individual in Jh (i) for each i simultaneously. This simultaneity requirement

sharply restricts the set of possible graphs. For example, if two individuals i and i′ each links to

both j and j′ with positive frequency, then, in the long run, i cannot link to j while i′ links to j′.

As a special case, consider histories along which each individual links to each other individual

infinitely often, i.e., Jh (i) = N\ {i} for every i. Then Proposition 1 implies that the set of networks

with positive long-run frequency consists of the graphs gi1,i2 in which i1 links to i2 (i.e., gi1,i2 (i1) =

i2) and all other individuals link to i1 (i.e., gi1,i2 (i) = i1 for all i 6= i1). By symmetry, it further

predicts that each such graph occurs with equal frequency, yielding a uniform distribution on the

set of such graphs.10

More generally, Proposition 1 implies that each individual i eventually uses each of his long-run

targets Jh(i) with equal frequency. Let

φt,i (j |h) =
# {s ≤ t | jis (h) = j}

t

denote the frequency with which i links to j over the first t periods of history h. Then we have

Corollary 1. For each j ∈ Jh(i), φt,i (j |h)→ 1/ |Jh (i)| almost surely.

In the long run, each individual i observes the most informed member of Jh (i) in any given

period. Using this fact, one can show that his expected payoff at the start of of each period t

converges to

u∞,i,h = −E
[

1

1 + πi + maxj∈Jh(i) πj

]
≡ u (#Jh (i)) .

We call u∞,i,h the long-run payoff of i at history h. Note that the long run payoff is simply a

function of the number of active links, and it is increasing in that number. In particular, the

highest long-run payoff is obtained when Jh (i) = N\ {i}, yielding u (n− 1). Long-run efficiency

is obtained when all links are free and each individual’s payoff is u (n− 1). In this case long-run

behavior is history independent, in that each individual observes the most informed individual at

each date, yielding an approximately i.i.d. sequence of star shaped graphs gi1i2 . At the other

10Note that Proposition 1 does not require that the expertise realizations π1, ..., πn be independently and identically

distributed. Even with asymmetric distributions of expertise, one can obtain sharp predictions regarding the long

run network structure. For instance, along histories where all individuals link to all others infinitely often, a graph

g has positive long-run frequency if and only if g = gi1i2 for some distinct i1, i2 ∈ N , although all such graphs need

not arise with equal frequency.
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extreme, the lowest long-run payoff is obtained when the individual ends up with just a single

target (i.e. #Jh (i) = 1), obtaining u (1). Accordingly, the least efficient long-run behavior arises

when a single graph g repeats itself forever in the long run; we call such a network g static.

We next provide a simple necessary and sufficient condition under which long-run efficiency

obtains at all histories. We then show that, when the condition fails, many interesting commu-

nication structures such as information segregation and opinion leadership emerge with positive

probability in the long run. In particular, the least efficient long run-behavior also arises with

positive probability, and any arbitrary g ∈ G can emerge as a limiting static network.

5 History Independence

In this section, we characterize the conditions under which the long-run behavior is necessarily

efficient and (equivalently) history independent. Long-run efficiency is characterized by Jh (i) =

N\ {i} for every i with probability 1. A more direct definition is as follows. When the process of

network formation is history independent in the long run, each individual will eventually observe the

best informed individual with high probability. Specifically, this probability can be made arbitrarily

close to 1 if a sufficiently large number of realizations is considered:

Definition 1. For any given history ht, the process {V t}∞t=1 is said to be history independent at

ht if, for all ε > 0, there exists t∗ > t such that

Pr

(
jit′ ∈ arg max

j 6=i
πjt′ |ht

)
> 1− ε

for all t′ > t∗ and i ∈ N . The process {V t}∞t=1 is said to be history independent if it is history

independent at the initial history h1.

This definition is equivalent to the above characterization. Clearly the process cannot be history

independent in this sense if there is a positive probability that one or more links will be broken at

any point in time. Moreover, history independence is obtained whenever all links become free and

have uniform positive bound on probability of occurrence throughout. Building on this fact and

Lemma 2, the next result provides a simple characterization for history independence.

Proposition 2. For any ht ∈ H, the process {V t}∞t=1 is history independent at ht if and only if

vtij(ht) > v for all distinct i, j ∈ N . In particular, the process {V t}∞t=1 is history independent if and

only if v0 > v.

The condition for history independence may be interpreted as follows. For any given value of

the support [a, b] from which levels of expertise are drawn, history independence arises if beliefs

about the perspectives of others are sufficiently precise. That is, if each individual is sufficiently
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well-understood by others even before any opinions have been observed. Conversely, when there is

substantial initial uncertainty about the individuals’ perspectives, the long-run behavior is history

dependent with positive probability.

Depending on the extreme values a and b of possible expertise levels, the threshold v can take

any value. When expertise is highly variable in absolute or relative terms (i.e. b − a or b/a are

large), v is small, leading to history independence for a broad range of v0 values. Conversely, when

expertise is not sufficiently variable in the same sense, the threshold v becomes large, and history

independence is more likely to fail. This makes intuitive sense, since it matters less to whom one

links under these conditions, and hysteresis is therefore less costly in informational terms.

The logic of the argument is as follows. When v0ij = v0 > v, there is a positive lower bound on

the probability that a i links to j at the outset, regardless of her beliefs about others. Since vtij
is nondecreasing in t, this lower bound is valid at all dates and histories, so i links to j infinitely

often with probability 1. But every time i links to j, vtij increases by at least δ. Hence, after a

finite number of periods, i knows the perspective of j with arbitrarily high precision. This of course

applies to all other individuals, so i comes to know all perspectives very well, and chooses targets

largely on the basis of their expertise level. Conversely, when v0ij = v0 < v, it is possible that i

ends up linking to another individual j′ sufficiently many times, learning his perspective with such

high precision that the link ij breaks. After this point, i no longer observes j no matter how well

informed the latter may be.

Proposition 2 identifies a necessary and sufficient condition for history independence at the

initial history. If this condition fails to hold, then the process {V t}∞t=1 exhibits hysteresis: there

exists a date t by which at least one link is broken with positive probability. History independence

(at the initial history) and hysteresis are complements because in our model any link either becomes

free or breaks along every path, and history independence is equivalent to all links becoming

eventually free with probability 1. Proposition 2 therefore can be restated as follows: {V t}∞t=1

exhibits hysteresis if and only if v0 < v.

When history independence fails, a number of interesting network structures can arise. We shall

consider three of these: opinion leadership, informational segregation, and static communication

networks.

6 Network Structures

Before describing some of the long run communication structures that can arise, we develop a simple

example to illustrate the phenomenon of symmetry breaking. This plays a key role in allowing for

complex structures such as information segregation to arise.
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Figure 2: Agents 3 and 4 choose different targets when variances lie in the shaded region

6.1 Symmetry Breaking

Consider the simple case of n = 4, and suppose (without loss of generality) that π1t > π2t >

π4t > π3t at t = 1. Then individual 1 links to 2 (i.e. j1t = 2) and all the others link to 1 (i.e.

j2t = j3t = j4t = 1). Individuals 2, 3, and 4 all learn something about the perspective of individual

1. The precisions v2i1 of their beliefs about µ1 at the start of the next period are all at least

v0 + δ, while the precisions of their beliefs about the perspectives of other individuals remain at v0.

Moreover, they update their beliefs to different degrees, with those who are better informed about

the state ending up with more precise beliefs about 1’s perspective: v221 > v241 > v231 ≥ v0 + δ.

Now consider the second period, and suppose that this time π2t > π1t > π4t > π3t. There

is clearly no change in the links chosen by individuals 1 and 2, who remain the two who are best

informed. On the other hand, there is an open set of expertise realizations for which 3 and 4 remain

linked to 1 despite the fact that 2 is now better informed. In Figure 2, this event (j32 = j42 = 1)

occurs for expertise realizations between the shaded region and the 45-degree line.11 In this region,

while 2 is better informed than 1 (π2t > π1t), the difference between their expertise levels is not

11The figure has variances of ε1 and ε2 on the horizontal and vertical axes respectively, and is based on the

specification v0 = 1, v31 = 2, and v41 = 4. Since 2 is assumed to be better informed than 1 in period 2, all expertise

realizations must lie below the 45-degree line.
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large enough to overcome the stronger attachment of individuals 3 and 4 to their common past

target (v2i1 > v2i2 for i ∈ {3, 4}). Below the shaded region, the difference in expertise levels between

1 and 2 is large enough to induce both individuals 3 and 4 to switch to the best informed target in

the second period (j32 = j42 = 2).

Within the shaded region, however, symmetry is broken and individuals 3 and 4 choose different

targets: 3 switches to the best informed individual (j3t = 2) while 4 remains linked to her previous

target (j4t = 1). In this region, the difference between the expertise levels of 1 and 2 is large

enough to overcome the preference of 3 towards 1, but not large enough to overcome the stronger

preference of individual 4, who was more precisely informed of the state in the initial period, and

hence learned more about the perspective of her target.

A particular set of realizations that generates this effect is shown in Figure 3, where a solid line

indicates that links are formed in both directions and a dashed line indicates a single link in one

direction. Nodes (corresponding to individuals) are numbered in increasing order anti-clockwise,

starting from the top. Nodes 1 and 2 link to each other in both periods. Nodes 3 and 4 link to

node 1 (the best informed) in the first period. In the second period node 3 switches to node 2, who

is now the best informed, but node 4 continues to observe node 1. This is because the perspective

of 1 is better known to 4 than to 3, since 4 was better informed than 3 about the state in the initial

period.

This example illustrates how two individuals with a common observational history can start to

make different choices at some period of time, even though expertise levels are public information

in all periods. We now explore some of the long run implications of this.
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6.2 Opinion Leadership

One network structure that can arise is opinion leadership, with some subset of individuals being

observed with high frequency even when their levels of expertise are known to be low, while oth-

ers are never observed regardless of their levels of expertise. This can happen because repeated

observation of a leader allows her perspective to become well understood by others, and hence her

opinion can be more easily interpreted even when her information is poor.

We say that a sample path exhibits opinion leadership if there is some period t and some

nonempty subset S ⊂ N such that bij = 1 for all (i, j) ∈ N × S. That is, opinion leadership exists

if some individuals are never observed (regardless of expertise realizations) after time t along the

sample path in question.

A special case of opinion leadership arises when n links are free while the rest are all broken.

In this case, all individuals are locked into a particular target, regardless of expertise realizations.

In an extreme case, there may be a single leader to whom all others link, and a second individual

to whom the leader alone links in all periods. We refer to this property of sample paths as extreme

opinion leadership.

Define the cutoff ṽ ∈ (0, v) as the unique solution to the equation

β (ṽ)− ṽ = δ. (12)

The following result establishes that unless we have history independence (in which case hystere-

sis is impossible) there is a positive probability of extreme opinion leadership, and such extreme

leadership is inevitable when v0 is sufficiently small:

Proposition 3. For h1 ∈ H, {V t}∞t=1 exhibits extreme opinion leadership (i) with positive proba-

bility if and only if v0 < v, and (ii) with probability 1 if and only if v0 < ṽ.

The intuition for this result is straightforward: any network that is realized in period t has a

positive probability of being realized again in period t+ 1 because the only links that can possibly

break at t are those that are inactive in this period. Hence there is a positive probability that the

network that forms initially will also be formed in each of the first s periods for any finite s. For

large enough s all links must eventually break except those that are active in all periods, resulting

in extreme opinion leadership. Moreover, when v0 < ṽ, we have v0 + δ > β (v0) and, by Lemma

1, each individual adheres to their very first target regardless of subsequent expertise levels. The

most informed individual in the first period emerges as the unique information leader and herself

links perpetually to the individual who was initially the second best informed.

More generally, two or more information leaders may emerge, who might themselves have dif-

ferent sets of targets. An example is shown in Figure 4, where nodes 1 and 4 emerge as leaders,

and themselves link to 5 and 3 respectively. By the sixth period all links that target a member of
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Figure 4: Emergence of Opinion Leadership

the set {2, 6} are broken, and these two individuals are never subsequently observed. Furthermore,

the two information leaders are each locked in to a single target, while the remaining individuals

observe both information leaders with positive probability in all periods.

6.3 Information Segregation

Despite the ex ante symmetry of the model, it is possible for clusters to emerge in which individuals

within a cluster link only to others within the same cluster in the long run. In this case there may

even be a limited form of history independence within clusters, so that individuals tend to link to

the best informed in their own group, but avoid linkages that cross group boundaries.

We say that a sample path exhibits segregation over a partition {S1, S2, . . . , Sm} of N if there is

a period t such that btij = 1 for all (i, j) ∈ Sk × Sl with k 6= l. That is, segregation over a partition

{S1, S2, . . . , Sm} is said to arise if no link involving elements of different clusters can form after

some period is reached, and members of each cluster Sk communicate only with fellow members of

their own cluster. We say that a sample path exhibits segregation if it exhibits segregation over

some partition with at least two disjoint clusters.

The first few periods of a sample path that exhibits segregation is illustrated in Figure 5. In

this case the disjoint clusters {1, 2, 3} and {4, 5, 6} emerge with positive probability. Although this
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Figure 5: Emergence of Segregated Clusters

network is not resolved by the end of the last period depicted, it is easily seen that there as a

positive probability of segregation after this history since no link that connects individuals in two

different clusters is free.

In order for a segregation to arise over a partition {S1, S2, . . . , Sm}, each Sk must have at

least two elements. Excluding the trivial partition {N}, write P for the set of all partitions

{S1, S2, . . . , Sm} with m ≥ 2 and |Sk| ≥ 2 for all k. This is the set of all partitions over which

segregation could conceivably arise.

Segregation can arise only if initial precision level v0 are small enough to rule out history

independence. Furthermore, if v0 > v − δ, all links to the best informed individual in the first

period become free. This is because all such links are active in the first period, and the precision

of all beliefs about this particular target’s perspective rise above v0 + δ > v. These links are then

free by Proposition 2, which clearly rules out segregation. So v0 cannot be too large if segregation

is to arise. And it cannot be too small either, otherwise individuals get locked into common early

targets. For example, extreme opinion leadership, in which a single information leader is observed

repeatedly by all others, is inconsistent with segregation and arises with certainty when v0 < ṽ

(Proposition 3). The following result establishes that in all the other cases, segregation arises with

positive probability over any partition in P:

Proposition 4. Suppose n ≥ 4. For any h1 ∈ H and any partition {S1, S2, . . . , Sm} ∈ P, the

process {V t}∞t=1 exhibits segregation over {S1, S2, . . . , Sm} with positive probability if and only if
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v0 ∈ (ṽ, v − δ).

The forces that give rise to segregation can be understood by reconsidering the example depicted

in Figure 5, where two segregated clusters of equal size emerge in a population of size 6. Nodes 1,

2 and 3 are the best informed, respectively, in the first three periods. After period 4, all links from

this cluster to the nodes 4–6 are broken. Following this nodes 4–6 are best informed and link to

each other, but receive no incoming links. Although the network is not yet resolved by the ends of

the sixth period, it is clear that segregation can arise with positive probability because any finite

repetition of the period 6 network has positive probability, and all links across the two clusters

must break after a finite number of such repetitions. Hence a very particular pattern of expertise

realizations is required to generate segregation, but any partition of the population into segregated

clusters can arise with positive probability.

6.4 Static Networks

When v0 > v, all links are free to begin with. At the other extreme, when v0 < ṽ, the long

run outcome is necessarily extreme opinion leadership, resulting in the lowest possible level of

information aggregation. For intermediate values of v0, while extreme opinion leadership remains

possible, other structures can also arise. As shown above, individuals can be partitioned into any

arbitrary set of clusters of at least two individuals, with no cross-cluster communication at all.

This indeterminacy of network structures extends further. We shown next that each individual

may be locked into a single, arbitrarily given target in the long run. This implies that every worst

case scenario (with respect to information aggregation) can arise with positive probability.

Let G denote the set of functions g : N → N that satisfy g(i) 6= i. Each element of G thus

corresponds to a directed graph in which each node is linked to one (not necessarily unique) target.

We say that a sample path converges to g ∈ G if there exists a period t∗ such that, for all i ∈ N and

all t > t∗, jit = g(i). The process {V t}∞t=1 converges to g with positive probability if the probability

that a sample path will converge to g is positive. In this case there is a positive probability that

each individual eventually links only to the target prescribed for her by g.

In order to identify the range of parameter values for which any given network g ∈ G can emerge

with positive probability as an outcome of the process, we make the following assumption.

Assumption 1. There exists π ∈ (a, b) such that γ (π, v0) < γ (a, v0 + δ (π, b)) and γ (b, v0) <

γ (π, v0 + δ (π, b)).

Note that this assumption is satisfied whenever v0 > v∗ where v∗ is defined by

β (v∗)− v∗ = 2δ (b, b) .
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In addition to Assumption 1, convergence to an arbitrary network g ∈ G requires that v0 be

sufficiently small:

Proposition 5. Assume that v0 < v − δ (b, b) and satisfies Assumption 1. Then, for any graph

g ∈ G, the process {V t}∞t=1 converges to g with positive probability.

A sufficient condition for such convergence to occur is v0 ∈ (v∗, v − δ(b, b)), and it is easily

verified that this set is nonempty. For instance if (a, b) = (1, 2), then (v∗, v− δ(b, b)) = (0.13, 0.20).

While the emergence of opinion leadership is intuitive, the possibility of convergence to an

arbitrary graph is much less so. Since all observers face the same distribution of expertise in the

population, and almost all link to the same target in the initial period, the possibility that they may

all choose different targets in the long run is counter-intuitive. Nevertheless, there exist sequences

of expertise realizations that result in such strong asymmetries.

7 Strong Hysteresis

The three classes of networks discussed in the previous section are not by any means exhaustive,

and a variety of other outcomes are possible when the condition for history independence does not

hold at the initial history. Recall that the process {V t}∞t=1 exhibits hysteresis if there exists a date

t by which at least one link is broken with positive probability. Note that this is consistent with

the possibility that all links become free with positive probability. Hysteresis rules out history

independence at the initial history, but allows for history independence to arise after some histories

with positive probability.

We now introduce a stronger notion of hysteresis, which rules out the possibility that all links

will eventually be free. For any given history ht, the process {V t}∞t=1 is said to exhibit strong

hysteresis at ht if the probability that no links will break in period t+1 is zero. It is said to exhibit

strong hysteresis if it exhibits strong hysteresis at the initial history h0.

An immediate implication of Proposition 3 is that the process exhibits strong hysteresis if

v0 < ṽ, since this is sufficient for opinion leadership to arise with probability 1. In this case each

individual links perpetually to the first person they observe. However, v0 < ṽ is not necessary for

strong hysteresis. To see why, consider the three agent example described in Section 3.3. Here

v0 < ṽ corresponds to the segment of the 45 degree line in the bottom left section of Figure 1. If

v0 lies within this range, one of the two links originating at 3 will break after the fist observation

is made. If v0 lies outside this range, then there is a positive probability that both links 31 and 32

will eventually be free. But this does not mean that there is a positive probability that all links in

the network will be free: sample paths that result in both 31 and 32 being free might require that

some other link be broken. This is in fact the case.
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To identify a necessary and sufficient condition for strong hysteresis, define v̂ as the unique

solution to

β (v̂)− v̂ = δ (b, b) . (13)

We then have:

Proposition 6. For any h1 ∈ H, the process {V t}∞t=1 exhibits strong hysteresis if and only if

v0 < v̂.

It is easily verified that v̂ > ṽ, as expected. The condition v0 < ṽ is necessary and sufficient

for all links to break in the initial period except for the ones that are active, resulting in opinion

leadership. The weaker condition v0 < v̂ is necessary and sufficient for at least one link to break.

This rules out history independence at any future period, but allows for a broad range of network

structures to emerge in the long run, including segregation and static networks.

8 Observable States

For simplicity, our main model assumes that θt is not observable. In this section, we extend our

results to the case in which states are publicly observable with some delay.

Assumption 2. For all t, θt becomes publicly observable at the end of period t+ τ where τ ≥ 0 is

a constant (independent of t).

Note that τ = 0 corresponds to observability of θt at the end of period t itself, as would be the

case if one’s own payoffs were immediately known. At the other extreme is the case where the state

is never observed (as in our main model), which corresponds to the limit τ =∞.

Under Assumption 2, given any history at the beginning of date t, the precision of the belief of

an individual i about the perspective of individual j is

vtijτ = v0ij +
∑

{t′<t−τ :jit′=j}

1/πjt′ +
∑

{t−τ≤t′<t:jit′=j}

δ
(
πit′ , πjt′

)
. (14)

For t′ < t − τ , individual i retrospectively updates his belief about the perspective of his target j

at t′ by using the true value of θt′ instead of his private signal xit′ . This adds to the precision of

his belief 1/πjt′ , instead of δ(πit′ , πjt′), increasing the precision of his belief. Note that knowledge

of the state does not imply knowledge of a target’s perspective, since the target’s signal remains

unobserved.

This is the main effect of observability of past states: it retroactively improves the precision

of beliefs about the perspectives of those targets who have been observed at earlier dates, with-

out affecting the precision of beliefs about other individuals, along a given history. Indeed, the
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improvement in precision due to observability of past states is

vtijτ − vtij =
∑

{t′<t−τ :jit′=j}

1/
(
1 + πit′ + πjt′

)
.

Such an improvement only enhances the attachment to previously observed individuals. This

makes opinion leadership more likely to arise, but it does not affect our results about the long-run

frequency of networks or long-run efficiency.

Proposition 7. Under Assumption 2, for v0 6∈ {ṽ, v} and for any τ ≥ 0, the following are true.

1. Almost surely, the long-run frequency φ∞ (·|h) exists, and φ∞ (·|h) = pJh (cf. Proposition 1).

2. The process {V t}∞t=1 is history independent if and only if v0 > v (cf. Proposition 2).

3. The process {V t}∞t=1 exhibits extreme opinion leadership (i) with positive probability if v0 < v,

and (ii) with probability 1 if v0 < ṽ (cf. Proposition 3).

Part 1 states that the long-run behavior along a given history does not depend on the observ-

ability of states: each individual’s beliefs about the targets that have been observed infinitely often

are arbitrarily precise, and hence he observes the most informed one among them. (Since the path

is given, observability simply improves this already high precision.) Part 2 states that we necessar-

ily have long-run efficiency (or history independence) whenever v0 > v. In principle, observability

of past states could make long-run efficiency more difficult to attain since it increases the level of

attachment to past targets. Nevertheless, the proof of Proposition 2 uses the worst-case scenario

in which beliefs about past targets are infinitely precise. Improved precision due to observability

does not make any difference in this case. In the alternative case of v0 < v, opinion leadership

emerges with positive probability, as stated in Part 3. Since our proof of Proposition 3 is based on

repeated observation of an early leader, observability of states only helps, as it can only increase the

attachment to that leader. The same applies for the necessity of opinion leadership when v0 < ṽ.

On the other hand, with observable states, the probability of opinion leadership may be 1 even

when v0 > ṽ. Indeed, when τ = 0, opinion leadership emerges with probability 1 whenever v0 < ṽ′,

where ṽ′ > ṽ is defined by β (ṽ′)− ṽ′ = 1/b. Our proofs of the original results also extend to these

extensions mutatis mutandis (by replacing vtij with vtijτ ), and we will not repeat them.

Observability of states has a second effect, which relates to the asymmetry of observers. For t′ <

t−τ , since an individual i already observes the true state θt′ , his signal xit′ does not affect his beliefs

at any fixed history, as seen in (14). Consequently, two individuals with identical observational

histories have identical beliefs about the perspectives of all targets observed before t−τ . This makes

asymmetric linkage patterns, such as non-star-shaped static networks and information segregation,

less likely to emerge. Nevertheless, when τ > 0, individuals do use their private information in

selecting targets until the state is observed. Therefore, under delayed observability, individuals’

private signals do impact their target choices, leading them to possibly different paths of observed
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targets. Indeed, our results about information segregation and static networks extends to the case

of delayed observability for a sufficiently long delay τ .

Proposition 8. Assume that v0 < v − 1/b and satisfies Assumptions 1 and 2. Then, there exists

τ such that the following are true for all τ ≥ τ .

1. For any graph g ∈ G, the process {V t}∞t=1 converges to g with positive probability (cf. Propo-

sition 5).

2. In particular, for any partition {S1, S2, . . . , Sm} ∈ P, the process {V t}∞t=1 exhibits segregation

over {S1, S2, . . . , Sm} with positive probability (cf. Proposition 4).

For sufficiently large delay τ , the first part of this result extends Proposition 5, concluding

that every network emerges as the static network with positive probability. Moreover, for any

{S1, S2, . . . , Sm} ∈ P, there exists g ∈ G that maps each player i to a member in his own group

(i.e. g (i) ∈ Sk ⇐⇒ i ∈ Sk). Under such a static network g, we have information segregation

with the given partition. The second part states this, extending Proposition 4.12 The idea of

the proof is rather simple. Without observability, on a history under which g emerges as a static

network, individuals become attached to their respective targets under g arbitrarily strongly over

time. Hence, even if individuals start observing past states and learn more about other targets, the

new information will not be sufficient to mend those broken links once enough time has elapsed.

Although asymmetric linkage patterns are more difficult under observability of states, similar

results still hold even under immediate observability of states. This is because the players’ level

of attachment still depends on the expertise levels of their targets, and the most-informed player

observes a different individual than others at the beginning. (Clearly, unlike our main results, such

results rely heavily on our modeling assumptions.)

Proposition 9. Assume that v0 < v − 1/b and there exists π ∈ (a, b) such that γ (π, v0) <

γ (a, v0 + 1/b) and γ (b, v0) < γ (π, v0 + 1/b). Assume also that θt becomes publicly observable at

the end of each period t. Then, for any g ∈ G, the process {V t}∞t=1 converges to g with positive

probability.

To summarize, allowing for the observability of states with some delay does not alter the main

message of this paper, and in some cases gives it greater force. The trade-off between being well-

informed and being well-understood has interesting dynamic implications because those whom we

observe become better understood by us over time. This effect is strengthened when a state is

subsequently observed, since an even sharper signal of a target’s perspective is obtained.

12The assumptions in our extension differ from those of Proposition 5 only by requiring that v0 < v − 1/b instead

of requiring v0 < v − δ (b, b). While Proposition 4 identifies a broader range of v0 as the domain of information

segregation, we present information segregation as a special case of a static network here for simplicity.

28



9 Related Literature

A key idea underlying our work is that there is some aspect of cognition that is variable across

individuals and stable over time, and that affects the manner in which information pertaining to

a broad range of issues is filtered. Differences in political ideology, cultural orientation and even

personality attributes can give rise to such stable variability in the manner in which information is

interpreted. This is a feature of the cultural theory of perception (Douglas and Wildavsky, 1982)

and the related notion of identity-protective cognition (Kahan et al., 2007).

Evidence on persistent and public belief differences that cannot realistically be attributed to

informational differences is plentiful. For instance, political ideology correlates quite strongly with

beliefs about the religion and birthplace of Barack Obama, the accuracy of election polling data,

the reliability of official unemployment statistics, and even perceived changes in local temperatures

(Thrush 2009, Pew Research Center 2008, Plambeck 2012, Voorhees 2012, Goebbert et al., 2012).

Since much of the hard evidence pertaining to these issues is in the public domain, it is unlikely that

such stark belief differences arise from informational differences alone. In some cases observable

characteristics of individuals (such as racial markers) can be used to infer biases, but this is less

easily done with biases arising from different personality types or worldviews.

Our analysis is connected to several stands of literature on observational learning, network

formation, and heterogeneous priors.13 Two especially relevant contributions from the perspective

of our work are by Galeotti and Goyal (2010) and Acemoglu et al. (2011a). Galeotti and Goyal

(2010) develop a model to account for the law of the few, which refers to the empirical finding

that the population share of individuals who invest in the direct acquisition of information is small

relative to the share of those who acquire it indirectly via observation of others, despite minor

differences in attributes across the two groups. All individuals are ex-ante identical in their model

and can choose to acquire information directly, or can choose to form costly links in order to obtain

information that others have paid to acquire. All strict Nash equilibria in their baseline model have

a core-periphery structure, with all individuals observing those in the core and none linking to those

in the periphery. Hence all equilibria are characterized by opinion leadership: those in the core

acquire information directly and this is then accessed by all others in the population. Since there

are no problems with the interpretation of opinions in their framework, and hence no variation in

the extent to which different individuals are well-understood, information segregation cannot arise.

13For a survey of the observational learning literature, see Goyal (2010). Early and influential contributions include

Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sorensen (2000) in the context of sequential choice. For

learning in networks see Bala and Goyal (1998), Gale and Kariv (2003), DeMarzo et al. (2003), Golub and Jackson

(2010), Acemoglu et al. (2011b), Chatterjee and Xu (2004), and Jadbabaie et al. (2012). For surveys of the network

formation literature see Bloch and Dutta (2010) and Jackson (2010). Key early contributions include Jackson and

Wolinsky (1996) and Bala and Goyal (2000); see also Watts (2001), Bramoulle and Kranton (2007), Bloch et al. (2008)

and Calvó-Armengol et al. (2011). We follow Bala and Goyal in focusing on the noncooperative formation of directed

links.
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Acemoglu et al. (2011a) also consider communication in an endogenous network. Individuals

can observe the information of anyone to whom they are linked either directly or indirectly via

a path, but observing more distant individuals requires waiting longer before an action is taken.

Holding constant the network, the key trade-off in their model is between reduced delay and a

more informed decision. They show that dispersed information is most effectively aggregated if the

network has a hub and spoke structure with some individuals gathering information from numerous

others and transmitting it either directly or via neighbors to large groups. This structure is then

shown to emerge endogenously when costly links are chosen prior to communication, provided that

certain conditions are satisfied. One of these conditions is that friendship cliques, defined as sets

of individuals who can observe each other at zero cost, not be too large. Members of large cliques

are well-informed, have a low marginal value of information, and will not form costly links to

those outside the clique. Hence both opinion leadership and information segregation are possible

equilibrium outcomes in their model, though the mechanisms giving rise to these are clearly distinct

from those explored here.

Finally, strategic communication with observable heterogeneous priors has previously been con-

sidered by Banerjee and Somanathan (2001), Che and Kartik (2009), and Van den Steen (2010)

amongst others. Dixit and Weibull (2007) have shown that the beliefs of individuals with hetero-

geneous priors can diverge further upon observation of a public signal, and Acemoglu et al. (2009)

that they can fail to converge even after an infinite sequence of signals. In our own previous work,

we have considered truthful communication with unobservable priors, but with a single state and

public belief announcements (Sethi and Yildiz, 2012). Communication across an endogenous net-

work with unobserved heterogeneity in prior beliefs and a sequence of states has not previously

been explored as far as we are aware, and this constitutes our main contribution to the literature.

10 Conclusions

Interpreting the opinions of others is challenging because such opinions are based in part on private

information and in part on prior beliefs that are not directly observable. Individuals seeking

informative opinions may therefore choose to observe those whose priors are well-understood, even if

their private information is noisy. This problem is compounded by the fact that observing opinions

is informative not only about private signals but also about prior perspectives, so preferential

attachment to particular persons can develop endogenously over time. And since the extent of such

attachment depends on the degree to which the observer is well-informed, there is a natural process

of symmetry breaking. This allows for a broad range of networks to emerge over time, including

opinion leadership and informations segregation.

Our analysis has been based on a number of simplifying assumptions. We have assumed that

just one target can be observed in each period rather than several, and this could be relaxed by

allowing for costs of observation that increase with the number of targets selected. Observation of
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the actions of others, and observation of the state itself could also be informative and affect beliefs

about perspectives. It would also be worth relaxing the assumption of myopic choice, which would

allow for some experimentation. We suspect that perfectly patient players will choose targets in a

manner that implies history independence, but that our qualitative results will survive as long as

players are sufficiently impatient. But these and other extensions are left for future research.

31



Appendix

Evolution of Beliefs and Information Networks

Proof of Lemma 1. To prove sufficiency, take vtik (ht) > β
(
vtij (ht)

)
. By definition of β,

γ
(
a, vtik (ht)

)
< γ

(
a, β

(
vtij (ht)

))
= γ

(
b, vtij (ht)

)
where the inequality is by monotonicity of γ and the equality is by definition of β. Hence,

Pr
(
ltij = 1|ht

)
= 0. Moreover, by (9), at any ht+1 that follows ht, v

t+1
ij (ht+1) = vtij (ht) and

vt+1
ik (ht+1) ≥ vtik (ht), and hence the previous argument yields Pr

(
lt+1
ij = 1|ht

)
= 0. Inductive

application of the same argument shows that Pr
(
lsij = 1|ht

)
= 0 for every s ≥ 0, showing that the

link ij is broken at ht. Conversely, suppose that vtik (ht) < β
(
vtij (ht)

)
for every k ∈ N\ {i, j}.

Then, by definition of β, for all k /∈ {i, j},

γ
(
b, vtij (ht)

)
= γ

(
a, β

(
vtij (ht)

))
< γ

(
a, vtik (ht)

)
,

where the inequality is by γ being decreasing in v. Hence, by continuity of γ, there exists η > 0

such that for all k /∈ {i, j},

γ
(
b− η, vtij (ht)

)
< γ

(
a+ η, vtik (ht)

)
.

Consider the event πjt ∈ [b − η, b] and πkt ∈ [a, a + η] for all k 6= j. This has positive probability,

and on this event ltij = 1, showing that link ij is not broken at ht.

Proof of Lemma 2. To prove sufficiency, first take any i, j with vtij (ht) > v. Then, by definition of

v, for any k /∈ {i, j},
γ
(
b, vtij (ht)

)
< γ (b, v) ≤ γ

(
a, vtik (ht)

)
,

where the first inequality is because γ is decreasing in v and the second inequality is by definition

of v. Hence, by continuity of γ, there exists η > 0 such that for all k /∈ {i, j},

γ
(
b− η, vtij (ht)

)
< γ

(
a+ η, vtik (ht)

)
.

Consider the event πjt ∈ [b−η, b] and πkt ∈ [a, a+η] for all k 6= j. This has positive probability, and

on this event ltij = 1. Hence Pr(btij = 1) = 0. For any s ≥ t, since vsij ≥ vtij ≥ v, we have Pr(lsij =

1) > 0, showing that the link ij is free. On the other hand, if vtij (ht) ≥ maxk∈N\{i,j} β
(
vtik (ht)

)
,

then, by Lemma 1, all the links ik with k ∈ N\ {i, j} are broken at ht, and hence i links to j with

probability one thereafter. Therefore, the link ij is free. This proves sufficiency.

For the converse, take vtij (ht) < min
{
v,maxk∈N\{i,j} β

(
vtik (ht)

)}
. We will show that the link

ij will break with positive probability by some t∗ > t. Since vtij (ht) < v, β
(
vtij (ht)

)
is finite.

Moreover, since vtij (ht) < maxk∈N\{i,j} β
(
vtik (ht)

)
, there exists k 6= j such that γ

(
b, vtik (ht)

)
>
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γ
(
a, vtik′ (ht)

)
for every k′. If vtik (ht) > β

(
vtij (ht)

)
, by Lemma 1, the link ij is broken at ht,

as desired. Assume that vtik (ht) < β
(
vtij (ht)

)
. By continuity of γ, there exists η > 0 such

that γ
(
πkt, v

t
ik (ht)

)
> γ

(
πk′t, v

t
ik′ (ht)

)
on the positive probability event that πkt ∈ [b − η, b] and

πk′t ∈ [a, a+ η] for all k′ 6= k. In that case, i links to k, increasing vtik and keeping vtik′ as is. Hence,

i keeps linking to k on the positive probability event that πks ∈ [b − η, b] and πk′s ∈ [a, a + η] for

all k′ 6= k and s ∈ {t, t+ 1, . . . , t∗} where t∗ = t +
⌈(
β
(
vtij (ht)

)
− vtik (ht)

)
/δ
⌉
.14 Then, on that

event, by (9),

vt
∗
ik = vtik (ht) +

t∗∑
s=t

δ (πis, πks) ≥ vtik (ht) +
⌈(
β
(
vtij (ht)

)
− vtik (ht)

)
/δ
⌉
δ > β

(
vtij (ht)

)
,

where the inequality is by Observation 1. Therefore, the link ij breaks by t∗ on this event.

Long-Run Frequency of Networks

In this subsection, we prove Proposition 1. The following definitions and notation will be useful.

Let

Dλ = {(π1, . . . , πn) | |πi − πj | ≤ λ}

denote the set of expertise realizations such that each pair of expertise levels are within λ of each

other. For any given J , let

pJ,λ(g) = Pr
(
pJ (g) | π 6∈ Dλ

)
denote the conditional probability distribution on g obtained by restricting expertise realizations

to lie outside the set Dλ, and pJ is as defined in (10). Finally, for any probability distribution

distribution p on G, let

Bε(p) = {q | |q (g)− p (g)| < ε ∀g ∈ G}

denote the set of probability distributions q on G such that q(g) and p(g) are within ε of each other

for all g ∈ G.

We say that φt (· |h) ∈ Bε (p) eventually if there exists t such that φt (· |h) ∈ Bε (p) for all t > t.

The following basic observations will also be useful in our proof.

Observation 2. The following are true.

1. For every ε > 0, there exists λ > 0 such that Pr
(
Dλ
)
< ε.

2. For every λ > 0, there exists vλ <∞ such that if vtij > vλ and πjt > πj′t + λ, then jit 6= j′.

The first of these observations follows from the fact that Pr(Dλ) is continuous and approaches

0 as λ → 0, and the second can be readily deduced using (5). The following lemma is the main

step in our proof.

14Here, dxe denotes the smallest integer larger than x.
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Lemma 3. Let λ ∈ (0, 1), t0, J , and ht0 be such that

vt0ij (ht0) > vλ and bij′ (ht0) = 1
(
∀i ∈ N, ∀j ∈ J (i) , ∀j′ 6∈ J (i)

)
,

where vλ is as in Observation 2. Then, for any ε > Pr
(
Dλ
)
,

Pr (φt (· | ·) ∈ Bε (pJ,λ) eventually |ht0) = 1.

Proof. For each g ∈ G and each continuation history h of ht0 , φt (g |h) can be decomposed as

φt (g |h) = φt0 (g |ht0)
t0
t

+ φt,1 (g |h) + φt,2 (g |h)

where

φt,1 (g |h) =
#
{
t0 < s ≤ t | jis (h) = g (i)∀i ∈ N and πs ∈ Dλ

}
t

and

φt,2 (g |h) =
#
{
t0 < s ≤ t | jis (h) = g (i) ∀i ∈ N and πs 6∈ Dλ

}
t

=
#
{
t0 < s ≤ t | g (i) = arg maxj∈J(i) πjs ∀i ∈ N and πs 6∈ Dλ

}
t

.

Here, the last equality is by the hypothesis in the lemma and by the definition of vλ in Observation

2. Hence, by the strong law of large numbers, as t→∞,

φt,2 (g |h)→ Pr

(
g (i) = arg max

j∈J(i)
πjs ∀i ∈ N and πs 6∈ Dλ

)
= pJ,λ (g) (1− Pr(Dλ)).

Thus, almost surely,

lim sup
t
φt (g |h) = lim sup

t
φt,1 (g |h) + pJ,λ (g) (1− Pr(Dλ))

≤ pJ,λ (g) + Pr(Dλ),

where the inequality follows from the fact that lim supt φt,1 (g |h) ≤ Pr(Dλ), which in turn follows

from the strong law of large numbers and the definition of φt,1. Likewise, almost surely,

lim inf
t
φt (g |h) = lim inf

t
φt,1 (g |h) + pJ,λ (g) (1− Pr(Dλ))

≥ pJ,λ (g)− Pr(Dλ),

where the inequality follows from lim inft φt,1 (g |h) ≥ 0 and pJ,λ (g) ≤ 1. Hence for any ε > Pr(Dλ),

for almost all continuations h of ht0 , there exists t such that φt (g |h) ∈ (pJ,λ (g)− ε, pJ,λ (g) + ε)

for all g. That is, φt (·|h) ∈ Bε (pJ,λ) eventually, almost surely.
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Proof of Proposition 1. For every h ∈ H and ε > 0, there exist λ > 0 and ht0 such that Pr(Dλ) < ε,

|pJ,λ (g)− pJh (g)| < ε for all g ∈ G, and the hypothesis of Lemma 3 holds for J = Jh. Hence,

writing

Hε = {h ∈ H |φt (· |h) ∈ B2ε (pJ) eventually} ,

we conclude from Lemma 3 via the law of iterated expectations that

Pr (Hε) = 1.

Clearly, Hε is decreasing in ε, and as ε→ 0,

Hε → H0 = {h ∈ H |φt (· |h)→ pJh} .

Therefore,

Pr
(
H0
)

= lim
ε→0

Pr (Hε) = 1.

History Independence

Proof of Proposition 2. First take vtij (ht) < v for some distinct i, j ∈ N . If

vtij (ht) ≥ max
k∈N\{i,j}

β
(
vtik (ht)

)
,

then all the links ik with k 6= j are broken at ht. Otherwise, as shown in the proof of Lemma 2, the

link ij is broken with positive probability by some t∗ > t. In either case, Pr (jis ∈ arg maxk πks|ht)
is bounded away from 1, showing that

{
V t
}∞
t=1

is not history independent at ht.

Assume now vtij (ht) > v for all distinct i, j ∈ N . Of course, vsij (hs) ≥ vtij (ht) > v for all distinct

i, j ∈ N and for every history after ht. Now, since γ (π, v) is continuous in π and 1/v and F is

continuous over [a, b], for every ε > 0, there exists ṽ <∞ such that Pr
(
jis ∈ arg maxj 6=i πjs

)
> 1−ε

whenever vsij > ṽ for all distinct i and j. Hence, it suffices to show that, conditional on ht, v
s
ij →∞

as s→∞ for all distinct i and j almost surely. To this end, observe that

γ
(
b, vtij (ht)

)
< γ (b, v) ≤ γ (a, v) (∀v, i, j) ,

where the first equality is because γ is decreasing in vtij and the second inequality is by definition

of v. Hence, by continuity of γ, there exists η > 0 such that

γ
(
b− η, vtij (ht)

)
< γ (a+ η, v) (∀v, i, j) .

Since vsij (hs) ≥ vtij (ht) > v, this further implies that

γ
(
b− η, vsij

)
< γ (a+ η, vsik)
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for every history that follows ht, for every distinct i, j, k, and for every s. Consequently, ls+1
ij = 1

whenever πjs > b− η and πks ≤ a+ η for all other k. Thus,

Pr(ls+1
ij = 1) ≥ λ

after any history that follows ht and any date s ≥ t where

λ = F (a+ η)n−2 (1− F (b− η)) > 0.

Therefore, ls+1
ij = 1 occurs infinitely often for all distinct i, j ∈ N almost surely conditional on ht.

But whenever ls+1
ij = 1, vs+1

ij ≥ vsij+δ, where δ= δ (a, b) > 0, showing that vsij → ∞ as s → ∞ for

all distinct i, j ∈ N almost surely conditional on ht. This completes the proof.

Network Structures

Proof of Proposition 3. Clearly, when v0 > v, the long-run outcome is history independent by

Proposition 2, and hence opinion leadership is not possible. Accordingly, suppose that v0 < v.

Consider the positive probability event A that for every t ≤ t∗, π1t > π2t > maxk>2 πkt for some

t∗ > (β (v0)− v0) /δ. Clearly, on event A, for any t ≤ t∗ and k > 1, jkt = 1 and j1t = 2, as

the targets are best informed and best known individuals among others. Then, on event A, for

ij ∈ S ≡ {12, 21, 31, . . . , n1},

vt
∗+1
ij = v0 +

t∗∑
t=1

δ(πis, πjs) ≥ v0 + t∗δ > β (v0)

while vt
∗+1
ik = v0 for any ik 6∈ S.( Here, the equalities are by (9); the weak inequality is by

Observation 1, and the strict inequality is by definition of t∗.) Therefore, by Lemma 1, all the links

ik 6∈ S are broken by t∗, resulting in the extreme opinion leadership as desired.

To prove the second part, note that for any v0 ≤ ṽ and i ∈ N ,

v2iji1 = v0 + δ (πi1, πij1) ≥ v0 + δ ≥ β (v0)

while v2ik = v0 for all k 6= ji1, showing by Lemma 1 that all such links ik are broken after the

first period. Since ji1 = min arg maxi πi1 for every i 6= min arg maxi πi1, this shows that extreme

leadership emerges at the end of first period with probability 1. The claim that extreme opinion

leadership arises with probability less than 1 if v0 > ṽ follows from Proposition 4, which is proved

below.

Proof of Proposition 4. Take any v0 ∈ (ṽ, v−δ) and any partition {S1, . . . , Sm} where each cluster

Sk has at least two elements ik and jk. We will now construct a positive probability event on which

the process exhibits segregation over partition {S1, . . . , Sm}. Since v0 ∈ (ṽ, v − δ), there exists a

small ε > 0 such that

v0 + δ (a+ ε, b− ε) < min {β (v0) , v} (15)
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and

δ (b− ε, b) > δ (a+ ε, b− ε) . (16)

By (16) and by continuity and monotonicity properties of γ, there also exist π∗ ∈ (a, b) and ε′ > 0

such that

γ
(
π∗ − ε′, v0 + δ (b− ε, b)

)
< γ (b, v0) (17)

γ
(
π∗ + ε′, v0 + δ (a+ ε, b− ε)

)
> γ (b− ε, v0) .

For every t ∈ {2, . . . ,m}, the realized expertise levels are as follows:

πitt > πjtt > πit > b− ε (∀i ∈ St)
π∗ + ε′ > πikt > πjkt > πit > π∗ − ε′ (∀i ∈ Sk, k < t)

πit < a+ ε (∀i ∈ Sk, k > t) .

Fixing

t∗ > (β (v0 + δ (a+ ε, b− ε))− v0) /δ,

the realized expertise levels for t ∈ {m+ 1, . . . ,m+ t∗} are as follows:

π∗ + ε′ > πikt > πjkt > πit > π∗ − ε′ (∀i ∈ Sk,∀k)

The above event has clearly positive probability. We will next show that the links ij from distinct

clusters are all broken by m+ t∗ + 1.

Note that at t = 1, ji11 = j1 and ji1 = i1 for all i 6= i1. Hence,

v2ii1 ≥ v0 + δ (b− ε, b) > v0 + δ (a+ ε, b− ε) ≥ v2ji1 (∀i ∈ S1, ∀j 6∈ S1) ,

where the strict inequality is by (16).Therefore, by (17), at t = 2, each i ∈ S1 sticks to his previous

link

ji11 = j1 and ji1 = i1 ∀i ∈ S1\ {i1} ,

while each i 6∈ S1 switches to a new link

ji22 = j2 and ji2 = i2 ∀i ∈ N\ (S1 ∪ {i2}) .

Using the same argument inductively, observe that for any t ∈ {2, . . . ,m}, for any i ∈ Sk and

i′ ∈ Sl with k < t ≤ l, and for any s < t,

vtiji(t−1)
≥ v0 + δ (b− ε, b) > v0 + δ (a+ ε, b− ε) ≥ v2i′ji′s .

Hence, by (17),

jit =


ji(t−1) if i ∈ Sk for some k < t

jt if i = it

it otherwise.
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In particular, at t = m, for any i ∈ Sk, jim = ik if i 6= ik and jikm = jk. Once again,

vtijim ≥ v0 + δ (b− ε, b) .

Moreover, i could have observed any other j at most once, when πit < a∗ + ε and πjt > b − ε,
yielding

vtij ≤ v0 + δ (a+ ε, b− ε) .

Hence, by (17), i sticks to jim by date m+ t∗, yielding

vm+t∗+1
ijim

≥ v0 + δ (b− ε, b) + t∗δ > β (v0 + δ (a+ ε, b− ε)) ≥ β
(
vm+t∗+1
ij

)
for each j 6= jim. By Lemma 1, this shows that the link ij is broken. Since jim ∈ Sk, this proves

the result.

Proof of Proposition 5. Take v0 as in the hypothesis, and take any g : N → N . We will construct

some t∗ and a positive probability event on which

jit = g (i) ∀i ∈ N, t > n+ t∗.

Now, let π be as in Assumption 1. By continuity of δ and γ, there exists a small but positive ε

such that

γ (π, v0) < γ (a, v0 + δ (b− ε, π + ε)) (18)

γ (b− ε, v0) < γ (π + ε, v0 + δ (π + ε, b− ε)) (19)

δ (b− ε, π + ε) > δ (π + ε, b− ε) . (20)

Fix some

t∗ > (β (v0 + δ (π + ε, b− ε))− v0) /δ,

and consider the following positive probability event:

πtt ≥ b− ε > π + ε ≥ πg(t)t ≥ π > a+ ε ≥ πjt (∀j ∈ N\ {t, g (t)} ,∀t ∈ N) ,

(π1t, . . . .πnt) ∈ A (∀t ∈ {n+ 1, . . . , n+ t∗})

where

A ≡ {(π1, . . . , πn) |γ (πi, v0 + δ (π + ε, b− ε)) > γ (πj , v0 + δ (b− ε, π + ε))∀i, j ∈ N} .

Note that A is open and non-empty (as it contains the diagonal set). Note that at every date

t ∈ N , the individual t becomes an ultimate expert (with precision nearly b), and his target g (t) is

the second best expert.

We will next show that the links ij with j 6= g (i) are all broken by n + t∗ + 1. Towards this

goal, we will first make the following observation:
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At every date t ∈ N , t observes g (t); every i < t observes either t or g (i), and every

i > t observes t.

At t = 1, the above observation is clearly true: 1 observes g (1), while everybody else observes

1. Suppose that the above observation is true up to t − 1 for some t. Then, by date t, for any

i ≥ t, i has observed each j ∈ {1, . . . , t− 1} once, when his own precision was in [a, π + ε] and

the precision of j was in [b− b, b]. Hence, by Observation 1, vtij ≤ v0 + δ (π + ε, b− ε). He has

not observed any other individual, and hence vtij = v0 for all j ≥ t. Thus, by (19), for any i > t,

γ
(
πtt, v

t
it

)
< γ

(
πjt, v

t
ij

)
for every j ∈ N\ {i, t}, showing that i observes t, i.e., jit = t. Likewise,

by (18), for i = t, γ
(
πg(t)t, v

t
tg(t)

)
< γ

(
πjt, v

t
tj

)
for every j ∈ N\ {t, g (t)}, showing that t observes

g (t), i.e., jtt = g (t). Finally, for any i < t, by the inductive hypothesis, i has observed any j 6= g (i)

at most once, yielding vtij ≤ v0 + δ (π + ε, b− ε). Hence, as above, for any j ∈ N\ {i, t, g (i)},
γ
(
πtt, v

t
it

)
< γ

(
πjt, v

t
ij

)
, showing that i does not observe j, i.e., jit ∈ {g (i) , t}.

By the above observations, after the first n period, each i has observed any other j 6= g (i) at

most once, so that

vn+1
ij ≤ v0 + δ (π + ε, b− ε) (∀j 6= g (i)) . (21)

He has observed g (i) at least once, and in one of these occasions (i.e. at date i), his own precision

was in [b− ε, b] and the precision of g (i) was in [π, π + ε], yielding

vn+1
ig(i) ≥ v0 + δ (b− ε, π + ε) . (22)

By definition of A, inequalities (21) and (22) imply that each i observes g (i) at n+1. Consequently,

the inequalities (21) and (22) also hold at date n+ 2, leading each i again to observe g (i) at n+ 2,

and so on. Hence, at dates t ∈ {n+ 1, . . . , t∗ + n}, each i observes g (i), yielding

vn+t
∗+1

ig(i) ≥ vn+1
ig(i) + t∗δ > v0 + δ (b− ε, π + ε) + β (v0 + δ (π + ε, b− ε))− v0

> β (v0 + δ (π + ε, b− ε)) .

For any j 6= g (i) , since vn+t
∗+1

ij = vn+1
ij , together with (21), this implies that

vn+t
∗+1

ig(i) > β
(
vn+t

∗+1
ij

)
.

Therefore, by Lemma 1, the link ij is broken at date t∗ + n+ 1.

Proof of Proposition 6. Take v0 ≤ v̂, so that v0 + δ (b, b) ≥ β (v0). Write i∗ = arg maxi πi1 and

j∗ = arg maxi 6=i∗ πi1. With probability 1, πi∗1 > πj∗1. Hence,

v2i∗j∗ = v0 + δ (πi∗1, πj∗1) > v0 + δ (πi∗1, πi∗1) ≥ v0 + δ (b, b) ≥ β (v0) ,

showing that the link i∗j∗ is broken by Lemma 1. To see the penultimate equality, note that δ (π, π)

is decreasing in π. Conversely, when v0 > v̂, there exists ε > 0 such that v0 + δ (b, b− ε) < β (v0).

Then, no link is broken in the first period when (π11, . . . , πn1) ∈ [b− ε, b]N .
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Proof of Proposition 8. In the proof of Proposition 5, for sufficiently small ε, take

t∗ > (β (v0 + 1/ (b− ε))− v0) /δ,

and set

τ = t∗ + n.

As shown there, on the open setA, each player i observes g (i) at date i and at all dates {n+ 1, . . . , n+ t∗},
while observing any other player j at most once—at date j when πjj ≥ b − ε. Under delayed ob-

servation, the same behavior emerges at those dates. As in the unobservable case,

vn+t
∗+1

ig(i) ≥ vn+1
ig(i) + t∗δ > β (v0 + 1/ (b− ε)) ,

and for any j 6= g (i),

vn+t
∗+1

ij ≤ v0 + δ (a+ ε, b− ε) < v0 + 1/ (b− ε) .

Therefore, i does not observe j under any realization on dates t ∈ {n+ t∗ + 1, . . . , τ + j}. At the

end of date τ + j, θj becomes observable. If i observed j on date j, he updates his belief about µj ,

and vτ+j+1
ij becomes higher than vn+t

∗+1
ij but we still have

vτ+j+1
ij = v0 + 1/πjj ≤ v0 + 1/ (b− ε) .

Since vτ+j+1
ig(i) ≥ vn+t∗+1

ig(i) > β (v0 + 1/ (b− ε)), the link ij is still broken.

Proof of Proposition 9. In the proof of Proposition 5, simply change each δ (πi, πj) to 1/πj .
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