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Abstract

We propose a theory of collusive groups in the context of �nite non-cooperative games. We
consider a simple setting in which players are exogenously partitioned into groups within which
players are symmetric. Given the play of the other groups there may be several symmetric equilibria
for a particular group. We develop the idea that if a group can collude they should agree to choose
the equilibrium most favorable for its members. We show that this requirement on within-group
equilibria leads to non-existence and that this problem disappears when the beliefs of groups tremble
in what can be seen as an Harsanyi puri�cation scheme. In the limit this leads us to the notion of
collusion constrained equilibrium.

We then explore the potential role of leaders as a concrete way in which groups coordinate their
activity. As leaders are assumed to have the same preferences as their followers they naturally
prefer the best within-group equilibria. To force them to respect incentive compatibility we use a
game in which leaders instructions are evaluated ex post. We then establish equivalence between
equilibria of the collusive group game and the non-cooperative game of leadership.
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1. Introduction

We propose a theory of collusive groups in the context of �nite non-cooperative games. We

�rst consider a simple setting in which players are exogenously partitioned into groups within

which players are symmetric. Given the play of the other groups there may be several symmetric

equilibria for a particular group. We develop the idea that if group can collude they will agree

to choose the equilibrium most favorable for its members. This leads to an existence problem,

which we illustrate in Section 2. We restore existence by allowing groups to engage in what we

call shadow mixing, which involves groups mixing over actions they are not necessarily indi�erent

between. The idea is that if a best within-group equilibrium vanishes as a the behavior of other

groups crosses a threshold then the group cannot be assumed to be able to play that equilibrium

with certainty in the limit threshold is reached. Shadow mixing ensures existence of what we

call collusion constrained equilibrium. We show that if groups always choose the best equilibrium

but their beliefs are randomly perturbed the resulting equilibria always exist, and that collusion

constrained correctly contain the limits of such equilibria.

We then consider an alternative model of a strictly non-cooperative meta-game played between

group leaders and evaluators. We establish equivalence between equilibria of the collusive group

game and the leadership game. We also show how the analysis can be extended to allow for

asymmetric strategies as well as heterogeneous groups. We are currently working on extending our

model to allow for endogenous coalition formation.

The branch of the cooperative game theory literature that is most closely connected to the

ideas we propose to develop here is the literature that uses non-cooperative methods to analyze

cooperative games and in particular the endogenous formation of coalitions. One example is Ray

and Vohra [13] who introduce a game in which players bargain over the formation of coalitions by

making proposals to coalitions and accepting or rejecting those proposals within coalitions. This

literature generally describes the game by means of a characteristic function and involves proposals

and bargaining. Although our model of endogenous group formation also involves an element of

bidding, we work in a framework of implicit or explicit coordination among group members in a

non-cooperative game. This is similar in spirit to Bernheim, Peleg and Whinston [2]'s variation

on strong Nash equilibrium, that they call coalition-proof Nash equilibrium, although the details

of our model are rather di�erent.

There is a long literature on collusion in mechanism design, and our model builds on those ideas.

With a few exceptions the general idea is that within a mechanism a particular group - the bidders

in an auction, the supervisor and agent in the Principal/Supervisor/Agent model, for example -

must not wish to recontract in an incentive compatible way. In the case of the hierarchical models,

the Principal/Agent/Supervisor model of collusion originates with Tirole [15] and the more general

literature on hierarchical models is discussed in his survey Tirole [16]. For a recent contribution

and an indication of the current state of the literature, see Celik [4]. In the auction literature, we

have the papers of McAfee and McMillan [10] and Caillaud and Jéhiel [3] among many others.

The theory has been pursued for other types of mechanisms, as in La�ont and Martimort [9]. In
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most of this work there is only one group recontracting, so the issue of a �game� among the groups

does not arise. Our setting involves multiple groups on an equal footing. The closest model we

know of is that of Che and Kim [5] in the auction setting - they allow multiple groups they refer

to as cartels to recontract in an incentive compatible way among themselves. However, it does not

appear that strictly speaking these cartels play a game.

Two other literatures are relevant as well. In applied work - for example by economic historians

- the issue of how groups behave is usually dodged by examining a game in which an entire group is

treated as a single individual. This is the case in the current literature on the role of taxation by the

monarchy in bringing about more democratic institutions. Ho�man and Rosenthal [8] explicitly

assume that the monarch and the elite act as single agents, and this assumption seems to be

accepted by later writers such as Dincecco, Federico and Vindigni [6]. As the literature on collusion

in mechanism design makes clear, by treating a group as an individual we ignore the fact that the

group itself is subject to incentive constraints. Individuals wish other individuals to act in the

group interest, but may not wish to do so themselves. That issue has been discussed as well in

the literature on collective action (for example Olson [12]), but that literature has not provided a

general framework for analysis, proposing instead particular solutions such as tying arrangements

or other commitments to overcome incentive constraints.

2. A Motivating Example

The simplest - and as indicated in the introduction a widely used - theory of collusion is one in

which players are exogenously divided into groups subject to incentive constraints. If - given the

play of other groups - there is more than one in-group equilibrium then a group should be able to

agree or coordinate on their �most desired� equilibrium.

Example 1. We start with an example with three players. The �rst two players form a collusive
group and the third acts independently. The simple theory is that given the play of player 3,
players 1 and 2 should agree on the incentive compatible pair of (mixed) actions that give them the
most utility. However, in the following game there is no equilibrium that satis�es this prescription.
Speci�cally, each player chooses one of two actions, C or D and the payo�s can be written in bi-
matrix form. If player 3 plays C the payo� matrix for the actions of players 1 and 2 is a symmetric
Prisoner's Dilemma game in which player 3 prefers that 1 and 2 cooperate (C)

C D
C 6, 6, 5 0, 8, 5
D 8, 0, 5 2, 2, 0

If player 3 plays D the payo� matrix for the actions of players 1 and 2 is a symmetric coordination
game in which player 3 prefers that 1 and 2 defect (D)

C D
C 6, 6, 0 4, 4, 0
D 4, 4, 0 5, 5, 5

Let αi denote the probability with which player i plays C. We examine the set of equilibria for
players 1 and 2 given the strategy α3 of player 3. If α3 > 1/2 then D is strictly dominant for both
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player 1 and 2 so there is a unique in-group equilibrium in which they play D,D. If α3 = 1/2 then
there are two equilibria, both symmetric, one at C,C and one at D,D. If α3 < 1/2 then there are
three equilibria, all symmetric, one at C,C, one at D,D and a strictly mixed equilibrium in which
α1 = α2 = (1/3)(1 + α3)/(1− α3).4

How should the group of player 1 and player 2 collude given the play of player 3? If α3 > 1/2
they have no choice: there is only one in-group equilibrium at D,D. For α3 ≤ 1/2 they each get
6 at the C,C equilibrium, no more than 5 at the D,D equilibrium, and strictly less than 6 at the
strictly mixed equilibrium. So if α3 ≤ 1/2 they should choose C,C. Notice that in this example
there is no ambiguity about the preferences of the group: they unanimously agree in each case as
to which is the best equilibrium.

We may summarize the play of the group by a kind of �group best response�. If α3 > 1/2 then
the group plays D,D while if α3 ≤ 1/2 the group plays C,C. What is the best response of player 3
to the play of the group? When the group plays D,D player 3 should play D and so α3 = 0 and in
particular is not larger than 1/2; when the group plays C,C player 3 should play C and so α3 = 1
and in particular is not less than or equal to 1/2. In other words, there is no equilibrium of the
game in which the group of player 1 and player 2 chooses the best in-group equilibrium given the
play of player 3.

In this example, the non-existence of an equilibrium in which player 1 and player 2 collude

is driven by the discontinuity in the group best response: a small change in the probability of

α3 leads to an abrupt change in the behavior of the group. The key idea of this paper is that

this discontinuity is an artifact of the model and does not make sense from an economic point of

view. In particular, it does not make much sense that as α3 is increased slightly above .5 the C,C

equilibrium for the group abruptly vanishes. To understand our proposed alternative let us step

back for a moment to consider mixed strategy equilibria in ordinary �nite games. There also the

best response changes abruptly as beliefs pass through the critical point of indi�erence, albeit with

the key di�erence that at the critical point randomization is allowed. But the abrupt change in

the best response function still does not make sense from an economic point of view. A standard

perspective on this is that of Harsanyi [7] puri�cation, or more concretely the limit of McKelvey

and Palfrey [11]'s Quantal Response Equilibria. Here the underlying model is perturbed in such a

way that as indi�erence is approached players begin to randomize and the probability with which

each action is taken is a smooth function of beliefs. In the limit as the perturbation becomes small,

like the Cheshire cat, only the randomization remains. Similarly, in the context of group behavior,

it makes sense that as the beliefs of a group change the probability with which they play di�erent

equilibria varies continuously. Consider for example α3 = 0.499 versus α3 = 0.501. In a practical

setting where nobody actually knows α3 does it make sense to assert that in the former case player

1 and 2 with probability 1 agree that α3 ≤ 0.5 and in the latter case that α3 > 0.5. We think it

4Here is the computation of the mixtures from the condition that player 1 must be indi�erent between C and D:
6α2 + (1− α2)4(1− α3) = α2(8α3 + 4(1− α3)) + (1− α2)(2α3 + 5(1− α3))(
6− 4(1− α3)

)
α2 + 4(1− α3) =

(
8α3 + 4(1− α3)− 2α3 − 5(1− α3)

)
α2 + (2α3 + 5(1− α3))(

6− 4(1− α3)
)
α2 + 4− 4α3 = α2(6α3 − (1− α3)) + 5− 3α3(

6− 3(1− α3)− 6α3
)
α2 = 1 + α3(

3− 3α3
)
α2 = 1 + α3

3



makes more sense that they might agree that α3 ≤ 0.5 with 90% probability and mistakenly agree

that α3 > 0.5 with 10% probability in the �rst case and conversely in the second case. Consequently

when α3 = 0.499 there would never-the-less be a 10% chance that the group would choose to play

D,D not realizing that C,C is incentive compatible, while when α3 = 0.501 there would be a 10%

chance that they would choose to play C,C incorrectly thinking that it is incentive compatible. We

will develop below a formal model in which groups have beliefs that are a random function of the

true play of the other groups and are only approximately correct. For the moment we expect, as in

Harsanyi [7], that in that limit only the randomization will remain. Our �rst step is to introduce

a model that captures the grin of the Cheshire cat - we will simply assume that randomization

is possible at the critical point. In the example we assert that when α3 = 0.5 and the incentive

constraint exactly binds, the equilibrium �assigns� a probability to C,C being the equilibrium that

is chosen by the group.5 That is, when the incentive constraint holds exactly we do not assume

that the group can choose their most preferred equilibrium, but instead we assume that there is an

endogenously determined probability that they will be able to choose that equilibrium.

Remark. Discontinuity and non-existence is not an artifact of restricting attention to Nash equi-
librium. The same issue arises if we assume that players 1 and 2 can use correlated strategies.
When the game is a PD, that is, α3 > 1/2 then strict dominance implies that the unique Nash
equilibrium is also the unique correlated equilibrium. When α3 ≤ 1/2 the Nash equilibrium at C,C
Pareto dominates every other correlated strategy, hence remains the unique best choice for players
1 and 2. When α3 ≤ 1/2 the correlated equilibrium set is indeed larger than the Nash equilibrium
set (containing at the very least the public randomizations over the Nash equilibria), but these
correlated equilibria are all inferior for players 1 and 2 to C,C so will never be chosen.

While it is true that the correlated equilibrium correspondence is better behaved than the
Nash equilibrium correspondence - it is convex valued and upper-hemi-continuous - this example
shows that the selection from that correspondence that chooses the best equilibrium for the group
is never-the-less badly behaved - it is discontinuous. It is well known from the earliest work on
competitive equilibrium Arrow and Debreu [1] that for the best choice from a constraint set to
be well-behaved the constraint set needs to be lower-hemi-continuous and neither the Nash nor
correlated equilibrium correspondence satis�es that property.

3. The Exogenous Group Model

We now introduce our model of exogenously speci�ed homogeneous groups in which the groups

pursue their own interest subject to incentive compatibility constraints.

There are players i = 1, 2, . . . I and groups k = 1,2, . . .K. The actions available to a player

depend entirely on which group he is in; actions available for members of group k are Ak, assumed

to be a �nite set. We assume that there is a �xed assignment of players to groups k(i). Notice

that each individual is assigned to exactly one group and that the assignment is exogenous. All

players within a group are symmetric - that is the groups are homogeneous - so the relevant utility

of player i is uk(i)(ai, a−i) and is invariant with respect to within group permutations of the labels

5This arbitrary assignment is similar to Simon and Zame [14] endogenous choice of sharing rules.
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of other players within their respective groups. If we let Ak denote the mixed actions for a member

of group k, pro�les of play chosen from this set represent the universe in which in-group equilibria

reside.6 As should be clear from the example, we will need to consider randomizations over in-

group equilibria: each group is assumed to possess a private randomizing device observed only by

members of that group that can be used to coordinate group play.

BecauseAk is in�nite, randomization over this set by the group leads to technical and conceptual

complications that we prefer to avoid, so we will restrict the set of possible choices for the group.

Speci�cally, we �x a �nite subset AkR ⊆ Ak containing all pure strategies, and consider only in-

group equilibria for group k in which all players choose the same action ak ∈ AkR. For example,

with Ak = {H,T} the actions in AkR can be of the form: choose H, choose T , or randomize 50-50

between H and T . In other words, the model is consistent with individual randomization provided

that individuals are limited to a �nite grid of probabilities. Since in-group mixed equilibria may not

be present in AkR we will allow the group to choose in-group ε-equilibria in which small violations

of the incentive constraints are allowed.

Given the symmetry restriction we can simplify notation and write uk(ai, ak, α−k) for the ex-

pected utility of player i in group k(i) = k when ai is his choice, the other group members play

the common group action ak ∈ AkR, and the other groups κ 6= k assigns probability ακ(aκ) to all

members of the group playing aκ ∈ AκR.
Further, since only deviations from the common strategy matter, for player i in group k(i) = k

we need not allow ai to take values in all of AkR - it is su�cient to consider ai ∈ Ak ∪ {ak0} where
ak0 means: �play the common mixed action ak ∈ AkR�. That is, it is enough to consider deviations

by player i to pure strategies Ak, letting uk(ak0, a
k, α−k) = uk(ak, ak, α−k) to be the utility when

no deviation has taken place. Not only does this potentially greatly reduce the set of ai that need

be considered, but extends in a straightforward way when we come to consider correlated group

strategies below. Notice that this formulation incorporates the use of randomizing devices that

are private to the group: member i knows the result of the own group randomization ak(i) when

choosing ai, but does not know results of the randomization by other groups.

Groups are assumed to be collusive - but they may collude only to choose plans that respect

individual incentive constraints. The key reason that we start by considering homogeneous groups

is that since group members are ex ante identical there is an �obvious� group objective, which is

to assume that all members are treated equally and that the objective of the group is to maximize

the common utility that they receive when all are treated equally. 7

As indicated we allow a small amount of slack in the individual incentive constraints. Speci�-

cally, we introduce strictly positive numbers vk > 0 measuring in utility units the violation of incen-

6We will discuss also the possibility that this universe might encompass correlated strategies for the group but for
expositional reason we defer that discussion.

7Incidentally: it may be that the group does best when rather than playing individual mixed strategies they agree
on a common correlated strategy. This can be dealt with in a straightforward manner by allowing the group to use
correlated strategies, but we defer discussion of this issue for the moment.
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tive constraints that are allowed. For a mixed pro�le α−k by other groups and an action ak by group

k we may de�ne the gain function Gk(ak, α−k) = maxai∈Ak∪{ak0}
[uk(ai, ak, α−k) − uk(ak, ak, α−k)]

as the degree to which the incentive constraint is violated at ak (the smaller the gain the more

stable the action). When the gain is strictly less than vk then ak must be chosen by the group if it

is to the bene�t of the group to do so. When the gain is greater than vk then ak the group cannot

choose ak. When the gain is exactly vk then the group may mix with any probability onto ak. This

is the same Cheshire grin logic as in the example, except that in the example we took vk = 0.

De�ne Uk(α−k) = max{ak|Gk(ak,α−k)<vk} u
k(ak, ak, α−k) to be the most utility attainable against

α−k when the incentive constraints are violated by strictly less than vk (it is equal to −∞ if the con-

straint set is empty). Then we take the �nite setBk(α−k) = {ak|Gk(ak, α−k) ≤ vk, uk(ak, ak, α−k) ≥
Uk(α−k)} to represent actions that are feasible for the group given α−k. We refer to this as the

shadow response set. They are actions which violate the incentive constraints by strictly less than vk

and yield Uk(α−k), the most possible among such actions, plus those actions with Gk(ak, α−k) = vk

that yield at least Uk(α−k) - but possibly more. Observe that not all actions in Bk(α−k) need be

indi�erent, but that on the other hand all incentive compatible actions outside of Bk(α−k) are

strictly worse for the group than any of those inside Bk(α−k).

De�nition 1. A collusion constrained equilibrium is an αk for each group that places weight only
on Bk(α−k).

De�ne B
k
(α−k) = argmax{ak|Gk(ak,α−k)≤vk} u

k(ak, ak, α−k) ⊆ Bk(α−k) to be the set of actions

that maximize utility subject to the incentive constraints. Again, the key to collusion constrained

equilibrium is that we allow a positive probability of actions in Bk(α−k) not merely in B
k
(α−k). If

in a collusion constrained equilibrium αk places positive weight on Bk(α−k)\Bk
(α−k) we say that

group k engages in shadow mixing, meaning that it is putting positive probability on alternatives it

is not indi�erent to. This may occur when best alternatives are not strictly incentive compatible,

hence - this is our rationale for this equilibrium - they are not available to play with certainty

within the group. This is to be contrasted with putting weight on B
k
(α−k) which are mixtures in

the normal sense of indi�erence. Our example above shows that shadow mixing may be necessary

in equilibrium.

Example 2. To illustrate the de�nition we apply it to the game of Example 1. If player 3 plays
C with probability α3 and the group plays D,D a player in the group who deviates to C gets
α3(−2)+(1−α3)(−1) so this deviation is never pro�table, D,D being strictly incentive compatible.
If the group plays C,C the player who deviated to D gets α3 · 2+ (1−α3) · (−2) = 2(2α3− 1): the
best in-group equilibrium is thus incentive compatible for 2(2α3 − 1) ≤ v1, at equality incentive
compatibility is just satis�ed and the equilibrium vanishes for larger values. So the condition for
shadow mixing between C,C and D,D is 2α3 − 1 = v1/2 or α3 = (1 + (v1/2))/2. Formally, for
this value of α3 the shadow response set B1(α3) = {C,D} for D is the only, hence best, action
satisfying incentive compatibility strictly. For player 3 to be indi�erent between C and D, letting
p the probability with which the group plays C,C we get the condition 5p = 5(1 − p) so p = 1/2.
So equilibrium is that the group mixes 50-50 between C,C and D,D and player 3 plays C with
probability α3 = (1 + v1/2)/2. As v1 → 0 this converges to 1/2.
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The assumption that vk > 0 plays a dual role in the model. First as indicated, we need to allow

positive vk if we wish to insure that in-group mixed equilibria are not excluded.8 However, vk > 0

plays a second role: it enables us to properly allow mixing only at �critical� points where small

changes in beliefs lead to a discontinuous change in behavior.

Example 3. Group 1 has three actions H,M,L while group 2 has two actions H,L. For player i
in group k(i) = 2 payo�s are u2(ai, a2, a1) = 0, so group 2 has no active role and we concentrate
on group 1. For player i in group k(i) = 1 payo�s u1(ai, a1, a2) are in the following matrix:

ai = H, a2 = H,L ai =M,a2 = H,L ai = L, a2 = H ai = L, a2 = L

a1 = H 2 2 3 1

a1 =M 1 0 1 1

a1 = L 1 1 1 1

Action M is never part of an equilibrium: whatever the other group are doing, if the other
members of your group play M you want to deviate. On the other hand no one ever wants to
deviate from L - but incentive constraints are satis�ed with exact equality there. Behavior against
H is richer: you may want to deviate if the other group are playing H with high enough probability
(to visualize as in the �rst example: if they work hard they cannot watch you). Speci�cally,
equilibria are computed to be as follows. Let α2 be the probability with which members of group
2 play H, and observe �rst that any α2 is an equilibrium for group 2.

If α2 ≤ 1/2 there are two equilibria for group 1: H and L; if α2 > 1/2 the only equilibrium
is L. In all equilibria the incentive constraints are exactly satis�ed (when α2 ≤ 1/2 and group 1
action is H action M gives you the same utility as H; this is the role of M in the example).

So given the mixing rule we have speci�ed above, with v1 = 0 the collusion constrained equilibria
consist of α2 ≤ 1/2 and any vector α1 = (a, 0, b), and α2 > 1/2 together with α1 = (0, 0, 1). The
group cannot guarantee that it will collude on the preferred action H.

With v1 > 0 observe that 2+v1 = (1/2+v1/2) ·3+(1/2−v1/2) ·1 so that members of group 1
are indi�erent between the payo� 2+ v1 they get from agreeing with the group at H and deviating
to L against group 2 playing α2 = 1/2 + v1/2.9 Hence the collusion constrained equilibria consist
of: (1) α2 < 1/2 + v1/2 and α1 = (1, 0, 0), where H is strictly incentive compatible and best
group alternative; (2) α2 = 1/2 + v1/2 and any vector (a, 0, b), where the only strictly incentive
compatible action is L hence B1(α2) = {H,L}; and (3) α2 > 1/2+ v1/2, α1 = (0, 0, 1). As we see,
for α2 slightly larger than 1/2 incentive constraints are violated but the violation is small enough to
make collusion on H viable. Using v1 > 0 captures the di�erence between α2 < 1/2 and the critical
economy where a small change in α2 makes H no longer viable. In a sense it captures the fact that
indi�erence for α2 < 1/2 is not fundamental - it occurs just because there is an action M to which
individuals are indi�erent - but small perturbations in α2 leave that indi�erence unchanged. Put
di�erently, if we think that the inability of the group to coordinate perfectly is due to the fact that
a small randomization in beliefs about the other group may cause indi�erence to be violated, then
the �razor edge� equilibria for α2 < 1/2 are not vulnerable while the critical economy at 1/2+v1/2
is and this is correctly picked up when we make v1 strictly positive.

8The importance of this issue is underscored by the possibility of a unique in-group equilibrium, which is mixed.
9We are abusing terminology a bit: they do not �get 2 + v1�, but as long as the left member is larger than the

right one the gain to deviating to L is less than v1.
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Incentive Compatible Games

There are two kinds of mixing: the group can mix between di�erent actions chosen by the group

using the group randomization device, but also individuals can mix. As we noted above individual

mixing is included in the �nite set AkR, so the group mixes over a �nite rather than continuous

set. From an economic and empirical point of view dealing with approximate equilibria within

the group does not pose a problem - in the �eld, laboratory or computationally we cannot expect

individuals to achieve more than an approximate equilibrium.

If AkR contains a relatively �ne grid of mixtures there will be an ε-Nash equilibrium with

a small value of ε. As long as vk is strictly bigger than ε the group can �nd an action that

is guaranteed to satisfy the incentive constraints to the required degree. Speci�cally, de�ne gk =

maxα−k minak∈AkR Gk(ak, α−k) so that regardless of the behavior of the other groups there is always

a gk approximate equilibrium within the group.

De�nition 2. A game is incentive compatible if vk > gk for all k.

Hereafter we will restrict attention to incentive compatible games: roughly this means that we

chose a ��ne enough� grid for each group.

4. Analysis of the Model

Having de�ned collusion constrained equilibrium we now want to show that they exist and make

sense. In this section we consider how collusion constrained equilibria arise as the limits of fully

collusive equilibria with random group beliefs and analyze more closely the role of shadow mixing.

In the next section we will consider a concrete non-cooperative game involving representative or

virtual players from each group and show that it gives rise exactly to collusion constrained equilibria.

4.1. The Existence of Collusion Constrained Equilibria

In this subsection we show that the basic problem of non-existence that arises when group try

to choose actions in B(α−k) is resolved by collusion constrained equilibrium by establishing a basic

existence result.

Theorem 1. An incentive compatible game has a collusion constrained equilibrium.

This result follows from the basic properties of the shadow response set

Lemma 1. (i) In an incentive compatible game B
k
(α−k) is non-empty for all α−k; (ii) every α−k

has an open neighborhood A such that α̃−k ∈ A implies that Bk(α̃−k) ⊆ Bk(α−k).

Proof. Assertion (i) is obvious from the de�nition. (ii) If not there must be a sequence α−kn → α−k

and points akn ∈ B(α−kn ), akn /∈ B(α−k). Since AkR is a �nite set, we may assume that we have
chosen a subsequence along which akn = ak is constant. Since Gk is continuous in α−kn any aj

such that Gk(aj , α−k) < vk satis�es Gk(aj , α−kn ) < vk for n large enough, so since AkR is �nite
all those which satisfy the constraint strictly in the limit do so for n large enough, which implies
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that for such n it is U(α−kn ) ≥ U(α−k). Let ãk ∈ argmax{ak|Gk(ak,α−k)<vk} u
k(ak, ak, α−k). Then

Uk(α−k) = uk(ãk, ãk, α−k) and since ak ∈ B(α−kn ) for all n we then have

uk(ak, ak, α−k) ≥ uk(ãk, ãk, α−k) = Uk(α−k).

By continuity of Gk it is also the case that Gk(ak, α−k) ≤ vk so we obtain ak ∈ B(α−k), a
contradiction.

We can now prove the existence theorem

Proof of Theorem 1. Call C(α−k) the set of distributions over B(α−k). A pro�le α is a collusion
constrained equilibrium if αk ∈ C(α−k) for all k, that is if α ∈ C(α) ≡ ×kC(α−k), in other words if
α is a �xed point of the correspondence α� C(α). Since the game is incentive compatible C(α−k)
is non empty for any α−k. Further, by construction, it is a convex valued correspondence. As
a result, the correspondence C(α) is non empty and convex valued. By Lemma 1 we know that
that B(α−k) is upper hemicontinuous. In turn this implies that both C(α−k) and C(α) are upper
hemicontinuous. Hence the �xed point sought for exists by the Kakutani �xed point theorem.

4.2. Random Beliefs

In this section we show that collusion constrained equilibria are limit points of standard equi-

libria when beliefs of each group about behavior of the other groups are random and randomness

tends to vanish. We start by describing a random belief model. The idea is that given the true play

α−k of the other groups, there is a common belief α̃−k by group k that is a random function of that

true play. Notice that these random beliefs are shared by the entire group - we could also consider

individual belief perturbations, but it is the common component that is of interest to us, because

it is this that coordinates group play. Conceptually if we think that a group colludes through some

sort of discussions that give rise to common knowledge - looking each other in the eye, a handshake

or whatever - then it makes sense that during these discussions a consensus emerges not just on

what action to take, but underlying that choice, a consensus on what the other groups are thought

to be doing. We must emphasize: our model is a model of the consequences of groups successfully

colluding - we do not attempt to model the underlying processes of communication, negotiation

and consensus that leads to their successful collusion.

De�nition 3. An ε-random group belief model is a density function fk(α̃−k|α−k) that is continuous
as a function of α̃−k, α−k and satis�es

´
|α̃−k−α−k|≤ε f

k
ε (α̃

−k|α−k)dα̃−k ≥ 1− ε.

It is important to know that there are ε-random belief models for every positive value of ε. An

obvious idea is to take a smooth family of probability distributions with mean equal to the truth

and small variance. A good candidate for a smooth family is the Dirichlet since we can easily control

the precision by increasing the "number of observations." However using an unbiased probability

distribution will not work - it is ill-behaved on the boundary: if we try to keep the mean equal to

the truth, then as we approach the boundary the variance has to go to zero, and on the boundary

there will be a spike. A simple alternative is to bias the mean slightly towards a �xed strictly

positive probability vector alpha with a small weight on that vector, and then let that weight go

to zero as we take the overall variance to zero. The next example shows that this works.
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Example 4. LetM−k be the number of actions in A−k and set h(ε) = (ε/2)2M−k/(M−k−(ε/2)2).
Fix a strictly positive probability vector over A−k denoted by β−k and call the ε-Dirichlet belief
model the Dirichlet distribution with parameters

1

h(ε)

[
(1− ε

2
√
2
)α−k(a−k) +

ε

2
√
2
β−k(a−k)

]
Theorem 2. The ε-Dirichlet belief model is an ε-random belief model.

Proof. Since the parameters are away from the boundary by at least ε/2 this has the requisite
continuity property. It has mean α−k = (1− ε

2
√
2
)α−k+ ε

2
√
2
β−k. Set α̂−k = (1− ε

2
√
2
)α̃−k+ ε

2
√
2
β−k.

Since the covariances of the Dirichlet are negative, E|α̂−k − α−k|2 is bounded by the sum of the
variances and we may apply Chebyshev's inequality to �nd

Pr[|α̂−k − α−k| > ε/2] ≤ E|α̃−k − β−k|2/(ε/2)2 ≤M−kh(ε)/[ε(M−k + h(ε))] ≤ ε/2.

Observe that |α̂−k − α−k| = (1 − ε
2
√
2
)|α̃−k − β−k| ≥ |α̃−k − β−k| − ε

2 . Hence Pr(|α̃−k − β−k| >
ε) ≤ ε/2 ≤ ε which shows that this is indeed an ε-random belief model.

Fix some probability distribution F k(α−k) over B
k
(α−k) measurable as a function of α−k.

De�ne Rk(ak|α−k) =
´
F k(α̃−k)[ak]fk(α̃−k|α−k)dα̃−k. Notice that for given beliefs α̃k we are

assuming that the group colludes on a response in B
k
(α̃−k) which are the best choices for the

group that weakly satisfy the incentive constraints, and not on points in Bk(α̃−k)\Bk
(α̃−k) as

would be permitted by shadow mixing. We de�ne an ε-random belief equilibrium as an αε such

that αkε = Rk(α−kε ). The key result is

Theorem 3. Fix a family of ε-random group belief models, an F k(α−k) and an incentive compatible

game. Then for all ε > 0 there exist ε-random belief equilibria. Further, if αε are ε-random group

equilibria and limε→0 αε = α then α is a collusion constrained equilibrium.

Proof. By the Lebesgue dominated convergence Theorem Rk is continuous, so we may apply the
Brouwer �xed point to get existence of ε-random group equilibria. Now consider a sequence of ε-
random group equilibria with limε→0 αε = α. By Lemma 1 we know that for su�ciently small
ε, |α−kε − α−k| ≤ ε implies Bk(α−kε ) ⊆ Bk(α−k). Hence for such αkε and ε it must be that
αkε (B

k(α−k)) = 1 with αk(Bk(α−k)) = 1 at the limit - which is the condition for a collusion
constrained equilibrium.

We should emphasize that this result is not an equivalence result: random belief equilibria

converge as ε → 0 to collusion constrained equilibria. However, there is no assertion that all

collusion constrained equilibria arise this way. This is similar to the result for Harsanyi [7] where

convergence of random utility equilibria to Nash equilibria is assured, but only under additional

conditions do we know that Nash equilibria arise as limits of random utility equilibria. In cases

such as quantal response indeed, limits of quantal response equilibria are a re�nement of Nash

equilibrium.

4.3. When Does Shadow Mixing Matter?

For applications it is useful to know when groups do not engage in shadow mixing. There are

two important cases where groups will engage only in ordinary mixing.
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1. The action that maximizes group utility without constraint is always an in-group equilibrium.

Since the action is an equilibrium, it strictly satis�es the relaxed constraint with vk > 0. Since

it maximizes group utility without any constraint, it certainly maximizes group utility with the

constraint, so B
k
(α−k) = Bk(αk). Notice that in case the group has a single player, or more

generally the game is a game of common interest so that group members always get the same

payo�s as each other regardless of the actions chosen this assumption is satis�ed.10

2. Separable games in which u(ai, ak, a−k) = w(a−k)−c(ai, ak) so that the incentive constraints
do not depend on what the other groups do. Here G(ak, α−k) = maxai∈Ak c(ak, ak) − c(ai, ak)

independent of α−k. Hence for generic vk there will be no ak for which G(ak, α−k) = vk. These

models can be important for applications because they can be thought of as approximation in

political economy games such as voting or lobbying games where the group size is large so individuals

perceive that their own action has no impact on the common public good w - for example, the

outcome of a vote.

4.4. What Di�erence Do Collusion Constraints Make?

We return to example 1 to illustrate how accounting for incentive and collusion constraints may

impact on the strategic analysis of a game.

First, the only Nash equilibrium of the game consists of all players to play D. To see this

observe that as shown in Footnote 4 players 1 and 2 can mix only if α3 ≤ 1/2 and then α1 = α2

are increasing in α3; so the smallest value of α1 occurs when α3 = 0 and it is α1 = 1/3. But for

α1 = α2 ≥ 1/3 player 3's best response is to play C for sure; hence there is no equilibrium in which

player 1 and 2 mix. The two of them playing C,C is not an equilibrium because 3's best response

to it is C for sure, but in that case they will play D,D. Pro�le D,D,D on the other hand is Nash.

In this equilibrium payo�s are (5, 5, 5).

On the other hand, ignoring individual incentive constraints, that is assuming that the group

will collude on best group action, leads to predict that players 1 and 2 will play C,C in which case

3 also chooses C. Predicted payo�s would be (6, 6, 5).

Consider now collusion constrained equilibrium. We have seen in Example 2 that in this equi-

librium the group mixes 50-50 between C,C and D,D and player 3 plays C with probability

α3 = (1+ε/2)/2. In equilibrium player 3 gets 2.5. Players 1 and 2 get 4(12+
ε
4)+

11
2 (

1
2−

ε
4) = 43

4−
3
8ε.

As ε→ 0 the limit payo� vector is a much lower(4.75, 4.75, 2.5).

As can be expected, ignoring individual constraints lead to an unrealistically optimistic con-

clusion. But the remarkable point is that in the example the same is true for Nash equilibrium:

ignoring collusion constraints also leads to predicting higher utilities for the players. Incidentally,

this is why we call our equilibrium collusion constrained : in general collusion makes the group of

the whole worse o�.

10In these games an action pro�le maximizing the utility of some group member does the same for each group
member and must therefore be an in-group equilibrium too.
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Notice that a benevolent mechanism designer who could choose between having players play

the game and a safe alternative that gave payo�s of (4.9, 4.9, 4.9) who either analyzed the game

ignoring collusion or who analyzed the game assuming that players could collude would choose the

game over the safe alternative, while a designer who recognized that collusion is subject to incentive

constraints would reach the opposite conclusion.

5. Leadership Equilibrium

To give a concrete way in which collusion constrained equilibria can arise, we give a non-

cooperative model of leadership which gives rise to collusion constrained equilibria. Leaders lead

their group to act when several groups interact - they tell their followers things such as �let's go on

strike� or �let's vote against that law.� The idea is that group leaders serve as explicit coordinating

devices for groups - and we will model them in a way that gives rise exactly to collusion constrained

equilibrium. Each group will have a leader who tells group members what to do, and since he is to

serve as an e�ective coordination device for group members these instructions cannot be optional

for group members. However, we do not want leaders to issue instructions that members would not

wish to follow - that is, that are not incentive compatible. Hence we give them incentives to issue

instructions that are incentive compatible by allowing group members to �punish� their leader. As

in the previous section incentive compatibility will mean that constraints can be violated by no

more than vk, and here this value has a concrete interpretation as the leader's �valence�: the higher

vk the more members are ready to give up to follow the leader. While this is intended as an abstract

model of how groups can reach decisions, we observe that in fact it is often the case that groups

follow orders given by a leader but engage in ex post evaluation of the leader's performance.

Speci�cally, we will consider the following non-cooperative game. Each group is represented by

two virtual players: a leader and an evaluator, each of whom has the same underlying preferences

as the group members. Each leader has a punishment utility uk < minaj ,ak,a−k uk(aj , ak, a−k). The

game goes as follows:

Stage 1: Each leader privately chooses an action plan ak ∈ AkR : conceptually these are orders

given to the members who must obey the orders.

Stage 2: In each group, the evaluator observes the action plan of the leader and chooses a

response ai 11

Payo�s: The evaluator receives utility uk(ai, ak, a−k) + vk · I(ai = ak) where I is the indicator

function, that is he gets the vk bonus only if he chooses ak. As to the leader, if the evaluator

chooses ak he gets uk(ak, ak, a−k), otherwise heis deposed and gets uk. Note that the leader and

evaluator do not learn what the other groups did until the game is over.

Theorem 4. In an incentive compatible game α are sequential equilibrium choices by the leaders

if and only if αk(ak) > 0 implies ak ∈ Bk(α−k).

11The evaluation need not be done by a single evaluator, but by consensus or some other aggregation method by
all or a subset of group members. It makes no di�erence to the results.
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Proof. The key implication of sequentiality is that the beliefs of the evaluator about the mixtures
of other leaders must be independent of the signal received from his own leader - since his leader
has no information about the signals of the other leaders. Suppose �rst that α is sequential. Then
the beliefs the evaluator for group k about other groups is α−k independent of the signal that they
receive from his own leader - so in e�ect from the perspective of the evaluator this is treated as a
constant.

Because the game is incentive compatible, the leader can insure himself a utility of Uk(α−k) by
choosing the best ak that strictly satis�es the incentive constraints since he will not be deposed in
that case. If he makes an announcement that violates the incentive constraints he is deposed with
probability one and gets uk < Uk(α−k), so it must be that any announcement with αk(ak) > 0 has
ak ∈ Bk(α−k).

Suppose conversely that any announcement with αk(ak) > 0 has ak ∈ Bk(α−k). There are two
kinds of ak ∈ Bk(α−k): those for which the incentive constraints hold exactly and those for which
they hold strictly. If they hold strictly, then the benevolent leader gets Uk(α−k) by the de�nition
of Uk. If they hold weakly, then the evaluator is indi�erent between choosing ak and keeping the
leader and picking an alternate best response and deposing him. Hence the probability that the
leader is deposed pk(ak, α−k) may be any number between zero and one, and in particular may be
chosen so that (1 − pk(ak, α−k))uk(ak, ak, α−k) + pk(ak, α−k)uk = Uk(α−k) since by de�nition of
Bk we have uk(ak, ak, α−k) ≥ Uk(α−k). This means the leader is indi�erent between all actions
in Bk(α−k) and in particular it is optimal for him to choose αk since that places weight only on
Bk(α−k).

6. Correlation and Symmetry

We have so far supposed that the groups are homogeneous and that they choose only symmetric

mixed strategies. We now wish to relax both of those assumptions. We �rst continue to assume that

the group is homogeneous but allow a broader set of strategies. Then we show how the resulting

model can be extended to heterogeneous groups in a way that is consistent with the homogeneous

group model.

We have assumed that the strategies available to group k are a �nite subset AkR of symmetric

mixed strategies, while the deviations available to individual members are the pure strategies Ak

or the special strategy ak0 meaning play the group mixed strategy ak. Notice, however, that the

assumption of symmetric mixed strategies is limiting. For example, if a group of two members is

playing a hunter-gatherer game in which members choose between hunter and gatherer, and get 0

for agreeing, and the hunter gets 2 and the gatherer gets 1 if they specialize, the unique symmetric

mixed equilibrium gives an expected utility to each member of 2/3 while a public randomization

over the two asymmetric pure Nash equilibria gives an expected utility to each member of 3/2. In

the game of chicken, for another example, there is a correlated equilibrium that gives both players

more than any public randomization over Nash equilibria. It seems plausible that groups would

choose to use correlating devices to achieve these superior results. This leads us to extend the

model to include correlated strategies by each group.

In Section 3 we took the space of deviations to be Ak ∪{ak0}. By rede�ning AkR and, the space

of deviations we can extend the model to incorporate correlated strategies in a straightforward way.

First we take AkR to be an arbitrary �nite subset of symmetric correlated strategies for the group:

13



that is, a probability distribution over pro�les of individual actions. Then we de�ne the space of

deviations Dk to be maps di : Ak → Ak from pure actions to pure actions with the interpretation

that di(ak) is the action chosen by member i when he is told to play ak. Here the identity map

plays exactly the role that ak0 played in the original model. With this change all the existing results

and de�nitions remain unchanged.

Extending the model to correlated strategies also enables us to incorporate asymmetries in a

straightforward way. First, take AkR to be an arbitrary �nite subset of the correlated equilibria -

not necessarily symmetric. We assume utility has the form ui(ai, ak(i), a−k(i)) where di ∈ Dk(i)and

ak(i) ∈ Ak(i)R, a−k(i) ∈ A−k(i)R are no longer required to be symmetric, and individuals may no

longer be homogeneous. The group is now assumed to have an exogenously speci�ed objective of

weighted sum of individual utility: Uk(ak, a−k) =
∑

i|k(i)=k ωiu
i(ak0, a

k, a−k), and if we wish we

may index the valences vi > 0 by individual rather than by group. From a mathematical point of

view, the only change needed to the existing model is that in the leadership version the evaluator

must choose a vector of deviations ai|k(i)=k and should equally weight the utility of each member of

the group12, while the leader should be punished if the evaluator chooses any deviation other than

ai0 on behalf of any group member. We refer to this notion as asymmetric collusion constrained

equilibrium. Notice, however, that there is no longer a compelling commonality of interest to explain

why group members should obey orders from a leader who does not share their own preferences.

Indeed this raises the issue that there might be competition within the group over who should be

leader - this is the topic of the second half of the paper.

Given the asymmetric model, suppose the game is in fact symmetric - we would like to know that

the new notion of equilibrium is consistent with the old notion. Suppose that the weights ωi = 1

and that the valences vi = vk(i). Suppose also that for every correlated strategy ak ∈ AkR the set

AkR also includes the uniform public randomization over all correlated strategies which permute

the identities of the group members in ak. In this case we say that AkR contains a symmetric

model. Then we can show that the new notion of asymmetric collusion constrained equilibrium

is consistent with the old notion of symmetric collusion constrained equilibrium in the following

sense:

Theorem 5. Suppose that AkRcontains a symmetric model. Then there exists an asymmetric

collusion constrained equilibrium α̃ that is symmetric and is a collusion constrained equilibrium

with respect to the subset of AkR that is symmetric. Conversely if α̃ is a collusion constrained

equilibrium with respect to the subsets of AkR that are symmetric then it is an asymmetric collusion

constrained equilibrium.

Proof. To show asymmetry implies symmetry, we construct the symmetric equilibrium from an
arbitrary asymmetric equilibrium. Given a collusion constrained (or leadership) equilibrium - not
necessarily symmetric - for each positive probability realization of the group public randomization
device (or equivalently recommendation of the leader) we may replace the recommended pro�le ak

with the uniform public randomization over all permutations of the names of the group members,

12Any strictly positive vector of weights is �ne: we specify equal weights for de�niteness. The point is that for the
evaluator the optimal choice of each di is independent of the other choices.
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ãk. By assumption no other group cares about this, and since the incentive constraints are violated
by no more than vk at ak for any group member k(i) = k the same remains true for ãk. Moreover,
Uk(ãk, α−k) = Uk(ak, α−k) since each permutation of group member utilities yields exactly the
same value. Hence ãk is also an asymmetric collusion constrained equilibrium. Moreover, if ãk gave
less utility than some symmetric âk that violates the incentive constraints by strictly less than vk

then so would ak. Hence it is a symmetric collusion constrained equilibrium.
Now suppose that α̃ is a collusion constrained equilibrium with respect to the subsets of AkR that

are symmetric and let ãk be a positive probability realization of the group public randomization
device. We have to show that there is no âk ∈ AkR that violates the incentive constraints by
strictly less than vk and has Uk(âk, α̃−k) > Uk(ãk, α̃−k). Suppose instead that there is such a
âk ∈ AkR. Consider the uniform randomization over permutations of group members of âk and
denote it by ak. Then this also violates the incentive constraints by strictly less than vk and has
Uk(ak, α̃−k) = Uk(âk, α̃−k) > Uk(ãk, α̃−k). But by construction ak is symmetric and this then
contradicts the fact that ãk had positive probability in equilibrium.

References

[1] Arrow, K. J. and G. Debreu (1954): �Existence of an equilibrium for a competitive economy,�

Econometrica.

[2] Bernheim, B.Douglas, Bezalel Peleg, Michael DWhinston (1987): �Coalition-Proof Nash Equi-

libria I. Concepts,� Journal of Economic Theory 42: 1-12.

[3] Caillaud, Bernard and Philippe Jéhiel (1998): �Collusion in Auctions with Externalities,�

RAND Journal of Economics 29: 680-702.

[4] Celik, G. (2009): �Mechanism design with collusive supervision,� Journal of Economic Theory.

[5] Che, Yeon-Koo and Jinwoo Kim (2009): �Optimal Collusion-Proof Auctions,� Journal of

Economic Theory.

[6] Dincecco, Mark, Giovanni Federico and Andrea Vindigni (2011): �Warfare, Taxation, and

Political Change: Evidence from the Italian Risorgimento�, The Journal of Economic History 71:

887-914

[7] Harsanyi, J. C. (1973): �Games with Randomly Disturbed Payo�s: A New Rationale for

Mixed-strategy Equilibrium Points,� International Journal of Game Theory 2: 1-23.

[8] Ho�man, Philip T. and Jean-Laurent Rosenthal (2000): �Divided We Fall: The Political

Economy of Warfare and Taxation�, Mimeo, California Institute of Technology

[9] La�ont, Jean-Jacques and David Martimort (1997): �Collusion Under Asymmetric Informa-

tion,� Econometrica 65: 875-911.

[10] McAfee, R. Preston and John McMillan (1992): �Bidding Rings,� American Economic Review

82: 579-599.

[11] McKelvey, R. D. and T. R.Palfrey (1995): �Quantal Response Equilibria for Normal Form

Games,� Games and Economic Behavior 10: 6-38.

[12] Olson, Mancur (1965): The Logic of Collective Action: Public Goods and the Theory of

Groups.

[13] Ray, Debraj and Rajiv Vohra (1999): �A Theory of Endogenous Coalition Structures,� Games

and Economic Behavior 26: 286-336.

15



[14] Simon, L.K. and W.R. Zame (1990): �Discontinuous Games and Endogenous Sharing Rules,�

Econometrica 58: 861-872.

[15] Tirole, J. (1986): �Hierarchies and breaucracies: on the role of collusion in organizations�

Journal of Law, Economics and Organization 2: 181-214.

[16] Tirole, J. (1992): �Collusion and the theory of organizations,� in J. J. La�ont, ed., Advances

in Economic Theory: Sixth World Congress, Vol. II, Cambridge University Press, Cambridge.

16


