
Collusion Constrained EquilibriumI

Rohan Dutta1, David K. Levine2, Salvatore Modica3

Abstract

We study collusion within groups in non-cooperative games. The primitives are the
preferences of the players, their assignment to non-overlapping groups and the goals of the
groups. Our notion of collusion is that a group coordinates the play of its members among
di�erent incentive compatible plans to best achieve its goals. Unfortunately, equilibria that
meet this requirement need not exist. We instead introduce the weaker notion of collusion
constrained equilibrium. This allows groups to put positive probability on suboptimal al-
ternatives in certain razor's edge cases where the set of incentive compatible plans changes
discontinuously. These collusion constrained equilibria exist and are a subset of the corre-
lated equilibria of the underlying game. We examine four perturbations of the underlying
game. In each case we show that equilibria in which groups choose the best alternative exist
and that limits of these equilibria lead to collusion constrained equilibria. We also show
that for a su�ciently broad class of perturbations every collusion constrained equilibrium
arises as such a limit. We give an application to a voter participation game showing how
collusion constraints may be socially costly.
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1. Introduction

As the literature on collective action (for example Olson (1965)) has emphasized, groups

often behave collusively while the preferences of individual group members limit the possible

collusive arrangements that a group can enter into. Neither individual rationality - ignoring

collusion - nor group rationality - ignoring individual incentives - provides a satisfactory

theory of interaction between groups. We study what happens when collusive groups face

internal incentive constraints. Our starting point is that of a standard �nite simultaneous

move non-cooperative game. We suppose that players are exogenously partitioned into

groups and that these groups have well-de�ned objectives. Given the play of the other

groups there may be several Nash equilibria within a particular group. We model collusion

within that group by supposing that the group will agree to choose the equilibrium that

best satis�es its objectives.

The idea of choosing a best outcome for a group subject to incentive constraints has not

received a great deal of theoretical attention but is important in applications. It has been

used in the study of trading economics, for example, by Hu, Kennan and Wallace (2009). In

industrial organization Fershtman and Judd (1986) study a duopoly where owners employ

managers. Kopel and Lo�er (2012) use similar setting to explore asymmetries. Bala-

subramanian and Bhardwaj (2004) study a duopoly where manufacturing and marketing

managers bargain with each other. In other settings the group could be a group of bidders

in an auction as in McAfee and McMillan (1992) and Caillaud and Jéhiel (1998), or it

might consist of a supervisor and agent in the Principal/Supervisor/Agent model of Tirole

(1986).4 In political economy Levine and Modica (2016)'s model of peer pressure and its

application to the role of political parties in elections by Levine and Mattozzi (2016) use the

same notion of collusion. In mechanism design a related idea is that within a mechanism a

particular group must not wish to recontract in an incentive compatible way. A theoretical

study along these lines is Myerson (1982).5

The key problem that we address is that strict collusion constrained equilibria in which

groups simultaneously try to satisfy their goals subject to incentive constraints do not

4See also the more general literature on hierarchical models discussed in Tirole (1992) or Celik (2009).
For other types of mechanisms see La�ont and Martimort (1997) and Martimort and Moreira (2010). Most
of these papers study a single collusive group. One exception is Che and Kim (2009) who allow multiple
groups they refer to as cartels. In the theory of clubs, such as Cole and Prescott (1997) and Ellickson et al
(2001), implicitly collusion takes place within (many) clubs - but the clubs interact in a market rather than
a game environment.

5Myerson also observes that there is an existence problem and introduces the notion of quasi-equilibrium
to which our collusion constrained equilibrium is closely connected. This link is explored in greater detail
below. We should emphasize that while our notion of equilibrium and existence result are similar to Myer-
son's, unlike Myerson, our primary focus is on examining what is captured by the notion of equilibrium and
consequently on whether it makes sense.
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generally exist. For this reason applied theorists have generally either avoided imposing

individual incentive constraints on group actions or else invented ad hoc solutions to the

existence problem.6 We show that the existence problem is due to the discontinuity of the

equilibrium correspondence and show how it can be overcome by allowing, under certain

razor's edge conditions, randomizations by groups between alternatives to which they are

not indi�erent. This leads to what we call collusion constrained equilibrium. These are a

special type of correlated equilibrium of the underlying non-cooperative game.

Our key goal is to motivate our de�nition of collusion constrained equilibrium. We argue

that it is useful because it correctly captures several di�erent types of small in�uences that

might not be convenient to model explicitly. Speci�cally we consider three perturbations of

the underlying model. We �rst consider models in which there is slight randomness in group

beliefs. This provides a formal version of the informal arguments we use to motivate the

de�nition. We then consider models in which groups may overcome incentive constraints

at a substantial enforcement cost - the ability to overcome incentive constraints through

enforcement is likely to be important in practice. For both of these perturbations strict

collusion constrained equilibria exist7 - in particular randomization occurs only when there

is indi�erence - and as the perturbation vanishes the equilibria of the perturbed games

converge to collusion constrained equilibria of the underlying game. Finally, we explore the

Nash program of motivating a cooperative concept as a limit of non-cooperative games.

Speci�cally, we consider a model in which there is a non-cooperative meta-game played

between �leaders� and �evaluators� of groups and in which leaders have a slight valence.8

If we call the leaders �principals� this formulation is the closest to the models used in

mechanism design. In the leader/evaluator game perfect Bayesian equilibria exist and as

the valence approaches zero once again the equilibrium play path converges to a collusion

constrained equilibria of the underlying game.

These upper hemicontinuity results with respect to the three perturbations show that

6For example. in the collusion in auction literature as stated in Harrington (2008), it is assumed that
non-colluding �rms will act the same in an industry with a cartel as they would without a cartel.

7There is a certain irony here: using enforcement to overcome incentive constraints is quite natural in
a principal-agent setting. This result shows that even if enforcement is quite costly the existence problem
noted by Myerson (1982) in the principal-agent setting goes away. On the other hand if enforcement is
quite costly it is natural to work with the limiting case where enforcement is not possible and our results
show that collusion constrained - or quasi - equilibrium correctly capture what happens in that case.

8A related class of models, for example Hermalin (1998), Dewan and Myatt (2008) and Bolton, Brunner-
meier and Veldkamp (2013), examine leadership in which a group bene�ts from its members coordinating
their actions in the presence of imperfect information about the environment. In this literature, however,
there is no game between groups - the problem is how to exploit the information being acquired by leader
and group members in the group interest. For example, Bolton, Brunnermeier and Veldkamp (2013) �nd
that the leader should not put too much weight on the information coming from followers (what they call
�resoluteness� of the leader).
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the set of collusion constrained equilibria is �big enough� in the sense of containing the limits

of equilibria of several interesting perturbed models. The second key question we address is

whether the set of collusion constrained equilibria is �too big� in the sense that perhaps not

all collusion constrained equilibria arise as such limits - indeed, we could capture all relevant

limits trivially by de�ning everything to be an equilibrium. Could there be a stronger notion

of equilibrium that still captures the relevant limits? For any particular perturbation the

answer is yes: we show in a simple example that limits from perturbed games lead to

strict re�nements - that is, subsets - of collusion constrained equilibria - albeit di�erent

re�nements depending on which perturbation we consider. Is it also the case that the set

of collusion constrained equilibria is too big because some collusion constrained equilibria

do not arise as any limit from interesting perturbed games? In our �nal theoretical result

we show that this is not the case. We consider a combination of two perturbations: a belief

and and enforcement cost perturbation, and to eliminate non-generic preferences allow

also a perturbation to the group objective. Once again in these perturbed games strict

collusion constrained equilibria exist and converge to collusion constrained equilibria of the

underlying game. However, for this broader class of perturbations we have the converse as

well: all collusion constrained equilibria of the underlying game arise as such limits. Hence

our key conclusion: the set of collusion constrained equilibria is �exactly the right size,�

being characterized as the set of limit points of strict collusion constrained equilibria for

this broad yet relevant class of perturbations.

In our theory incentive constraints play a key role. In applied work the presence of

incentive constraints within groups has often been ignored. For example political economists

and economic historians often treat competing groups as single individuals: it is as if the

group has an unaccountable leader who makes binding decisions for the group. In Acemoglu

and Robinson (2000)'s theory of the extension of the franchise there are two groups, the elites

and the masses, who act without incentive constraints. Similarly in the current literature

on the role of taxation by the monarchy leading to more democratic institutions the game

typically involves a monarch and a group (the elite).9 In our leader/evaluator perturbation

we also assume that the group decision is made by a single leader, but we add to the game

evaluators who punish the leader for violating incentive constraints. We focus on strategic

interaction between groups and a central element of our model is accountability, in that a

leader whose recommendations are not endorsed by the group will be punished.

We should emphasize that there is an important territory between ignoring incentive

constraints entirely and requiring as we do that they always be satis�ed. An important ex-

9Ho�man and Rosenthal (2000) explicitly assume that the monarch and the elite act as single agents,
and this assumption seems to be accepted by later writers such as Dincecco, Federico and Vindigni (2011).
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ample that we study explicitly is the possibility that incentive constraints can be overcome

- for example through an enforcement mechanism - albeit at some cost. Here we can view

�no incentive constraints� as �no cost of enforcement� on the one extreme and �incentive

constraints must always be satis�ed� as �very high cost of enforcement� on the other. One

result that we establish is to give conditions on costly enforcement such that strict collu-

sion constrained equilibria do exist. More broadly our contribution is oriented towards of

applications where incentive constraints cannot easily be overcome.

One branch of the game theory literature that is closely connected to the ideas we

develop here is the literature that uses non-cooperative methods to analyze cooperative

games. There, however, the emphasis has been on the endogenous formation of coalitions -

generally in the absence of incentive constraints. The Ray and Vohra (1997) model of coali-

tion formation contains in it a theory of how exogenously given groups play a game among

themselves. With exogenous groups an equilibrium in their model requires groups to play

strategy pro�les that given the behavior of the other groups cannot be Pareto improved.

Notice that there are no incentive constraints, making the scope of their study entirely

distinct from ours.10 There is also an extensive literature that describes the game by means

of a characteristic function and involves proposals and bargaining. We work in a frame-

work of implicit or explicit coordination among group members in a non-cooperative game

among groups. This is similar in spirit to Bernheim, Peleg and Whinston (1987)'s variation

on strong Nash equilibrium, that they call coalition-proof Nash equilibrium, although the

details of our model are rather di�erent.

To make the theory more concrete we study an example based on the voter participation

model of Palfrey and Rosenthal (1985) and Levine and Mattozzi (2016). We consider two

parties voting over a transfer payment and we depart slightly from the standard model by

assuming that ties are costly. In this setting we �nd all the Nash equilibria, all the collusion

constrained equilibria, and all the equilibria in which the groups have a costless enforcement

technology. We study how the equilibria compare as the stakes are increased. The main

�ndings for this game are the following. For small stakes nobody votes. For larger stakes

in Nash equilibrium it is always possible for the small party to win. If the stakes are large

enough in collusion constrained and costless enforcement equilibrium the large party pre-

empts the small and wins the election. For intermediate stakes strict collusion constrained

equilibria do not exist, but collusion constrained equilibria do. For most parameter con-

�gurations the collusion constrained equilibria are more favorable for the large party than

10Haeringer (2004) points out that the assumption of quasi concave utility is insu�cient in guaranteeing
equilibrium existence in the Ray and Vohra (1997) setup with exogenous groups, unless the groups can play
within-group correlated strategies. The non-existence problem in our setup is of an entirely di�erent nature
and, in particular, is independent of whether or not groups can play correlated strategies.

4



Nash equilibrium, less favorable than costless enforcement equilibrium, and less e�cient

than either.

2. A Motivating Example

The simplest - and as indicated in the introduction a widely used - theory of collusion

is one in which players are exogenously divided into groups subject to incentive constraints.

The basic idea we explore in this paper is that if, given the play of other groups, there

is more than one in-group equilibrium, then a collusive group should be able to agree or

coordinate on their �most desired� equilibrium.

Example 1. We start with an example with three players. The �rst two players form
a collusive group while the third acts independently. The obvious condition to impose in
this setting is that given the play of player 3, players 1 and 2 should agree on the incentive
compatible (mixed) action pro�le that gives them the most utility. However, in the following
game there is no equilibrium that satis�es this prescription.

Each player chooses one of two actions, C or D and the payo�s can be written in bi-
matrix form. If player 3 plays C the payo� matrix for the actions of players 1 and 2 is a
symmetric Prisoner's Dilemma game in which player 3 prefers that 1 and 2 both cooperate
(play C)

C D
C 6, 6, 5 0, 8, 0
D 8, 0, 0 2, 2, 0

If player 3 plays D the resulting payo�s are as follows, where notice that players 1 and 2
are then in a coordination game:

C D
C 10, 10, 0 0, 8, 5
D 8, 0, 5 2, 2, 5

Let αi denote the probability with which player i plays C. We examine the set of
equilibria for players 1 and 2 given the strategy α3 of player 3. The payo� matrix for those
two players is

C D
C 6 + 4(1− α3), 6 + 4(1− α3) 0, 8
D 8, 0 2, 2

so that as α3 starts at 1 the two players face a prisoner's dilemma game with a unique
Nash equilibrium at D,D, and as α3 decreases the payo� to cooperation is increasing until
at α3 = 1/2 the game becomes a coordination game and the set of equilibria changes
discontinuously with a second pure strategy equilibrium at C,C; for α3 < 1/2 there is an
additional symmetric strictly mixed equilibrium in which α1 = α2 = 1/2(1− α3).

How should the group of player 1 and player 2 collude given the play of player 3? Let
us suppose that the group objective satis�es the Pareto criterion. If α3 > 1/2 they have
no choice: there is only one in-group equilibrium at D,D. For α3 ≤ 1/2 they each get
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6 + 4(1 − α3) at the C,C equilibrium, 2 at the D,D equilibrium, and strictly less than
6 + 4(1 − α3) at the strictly mixed equilibrium. So if α3 ≤ 1/2 they should choose C,C.
Notice that in this example there is no ambiguity about the preferences of the group: they
unanimously agree which is the best equilibrium. We may summarize the play of the group
by the �group best response.� If α3 > 1/2 then the group plays D,D while if α3 ≤ 1/2 the
group plays C,C.

What is the best response of player 3 to the play of the group? When the group plays
D,D player 3 should play D and so α3 = 0 which is not larger than 1/2; when the group
plays C,C player 3 should play C and so α3 = 1 which is not less than or equal to 1/2.
Hence there is no equilibrium of the game in which the group of player 1 and player 2
chooses the best in-group equilibrium given the play of player 3.

In this example, the non-existence of an equilibrium in which player 1 and player 2

collude is driven by the discontinuity in the group best response: a small change in the

probability of α3 leads to an abrupt change in the behavior of the group, for as α3 is increased

slightly above .5 the C,C equilibrium for the group abruptly vanishes. The key idea of this

paper is that this discontinuity is a shortcoming of the model rather than an intrinsic feature

of the underlying group behavior. To motivate our proposed alternative let us step back

for a moment to consider mixed strategy equilibria in ordinary �nite games. There also

the best response changes abruptly as beliefs pass through the critical point of indi�erence,

albeit with the key di�erence that at the critical point randomization is allowed. But the

abrupt change in the best response function still does not make sense from an economic

point of view. A standard perspective on this is that of Harsanyi (1973) puri�cation, or

more concretely the limit of McKelvey and Palfrey (1995)'s Quantal Response Equilibria:

the underlying model is perturbed in such a way that as indi�erence is approached players

begin to randomize and the probability with which each action is taken is a smooth function

of beliefs; in the limit as the perturbation becomes small, like the Cheshire cat, only the

randomization remains. Similarly, in the context of group behavior, it makes sense that as

the beliefs of a group change the probability with which they play di�erent equilibria varies

continuously. Consider, for example, α3 = 0.499 versus α3 = 0.501. In a practical setting

where nobody actually knows α3 does it make sense to assert that in the former case player

1 and 2 with probability 1 agree that α3 ≤ 0.5 and in the latter case that α3 > 0.5? We

think it makes more sense that they might in the �rst case agree that α3 ≤ 0.5 with 90%

probability and mistakenly agree that α3 > 0.5 with 10% probability and conversely in the

second case. Consequently when α3 = 0.499 there would never-the-less be a 10% chance

that the group would choose to play D,D not realizing that C,C is incentive compatible,

while when α3 = 0.501 there would be a 10% chance that they would choose to play C,C

incorrectly thinking that it is incentive compatible.

We will develop below a formal model in which groups have beliefs that are a random

function of the true play of the other groups and are only approximately correct. For the
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moment we expect, as in Harsanyi (1973), that in that limit only the randomization will

remain. Our �rst step is to introduce a model that captures the grin of the Cheshire cat:

we will simply assume that randomization is possible at the critical point. In the example

we assert that when α3 = 0.5 and the incentive constraint exactly binds, the equilibrium

�assigns� a probability to C,C being the equilibrium that is played by the group.11 That

is, when the incentive constraint holds exactly we do not assume that the group can choose

their most preferred equilibrium, but instead we assume that there is an endogenously

determined probability that they will choose that equilibrium. In this case optimality for

player 3 requires her to be indi�erent between C and D, so in the �collusion constrained�

equilibrium we propose the group will mix 50-50 between C,C and D,D; player 3 mixes

50-50 between C and D.

The import of collusion constraints can be seen by comparing what happens in this

game without collusion. This game has three Nash equilibria: one at D,D,D, one in which

3 plays D and 1 and 2 mix 50-50 between C and D, and a fully mixed one.12 In the

�rst the group members each gets 2 in the second 5 and in the third 6.25. By contrast

in the unique collusion constrained equilibrium the group members each get 5. Morever

in the completely mixed equilibrium player 3 gets 2.5 exactly as in the unique collusion

constrained equilibrium. Why do not the group members get together and promise player

3 not to collude and instead coordinate on the completely mixed equilibrium? They will be

better o� and player 3 is indi�erent. The problem is that by saying that player 1and 2 form

a group we mean that they cannot credibly commit not to collude. If such an agreement

was reached with player 3 as soon as the meeting was over players 1 and 2 would convene

a second meeting among themselves and agree that rather than mixing they will play C,C.

Anticipating this player 3 would never make the original agreement. It would be convenient

for public policy if lobbying groups - such as bankers and farmers - could credibly commit

not to collude among themselves. Unfortunately this is not the world we live in, hence the

need to consider collusion constraints.

Remark. Discontinuity and non-existence is not an artifact of restricting attention to within
group Nash equilibrium. The same issue arises if we assume that players 1 and 2 can use
correlated strategies. When the game is a prisoner's dilemma, that is, α3 > 1/2 then
strict dominance implies that the unique Nash equilibrium is also the unique correlated
equilibrium. When α3 ≤ 1/2 the correlated equilibrium set is indeed larger than the Nash
equilibrium set (containing at the very least the public randomizations over the Nash equi-
libria), but these correlated equilibria are all inferior for players 1 and 2 to C,C and so will
never be chosen. While it is true that the correlated equilibrium correspondence is better
behaved than the Nash equilibrium correspondence - it is convex valued and upper hemi-

11This is similar to Simon and Zame (1990)'s endogenous choice of sharing rules.
12The game is analyzed in Web Appendix 1.
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continuous - this example shows that the selection from that correspondence that chooses
the best equilibrium for the group is never-the-less badly behaved - it is discontinuous.

The bad behavior of the best-equilibrium correspondence is related to some of the earliest
work on competitive equilibrium. Arrow and Debreu (1954) showed that the best choice
from a constraint set is well-behaved when the constraint set is lower hemicontinuous. If
it is, then the maximum theorem can be applied to show that the argmax is a continuous
correspondence.13 However, neither the Nash nor correlated equilibrium correspondence
used as a constraint set is lower hemicontinuous, and - as we have seen - the best-equilibrium
correspondence can then fail to be continuous.

3. Collusion Constrained Equilibrium

3.1. The Environment

We now introduce our formal model of collusive groups that pursue their own interest

subject to within-group individual incentive constraints. The membership in these groups

is exogenously given and the ability of a group to collude is independent of actions taken by

players outside of the group. We emphasize that we use the word collusion in the limited

meaning that the group can choose an equilibrium to its liking. The goals of the group -

like those of individuals - are exogenously speci�ed: we do not consider the possibility of

con�ict within the group over goals.

Our basic setting is that of a standard normal form game. There are players i =

1, 2, . . . I; player i chooses actions from a �nite set ai ∈ Ai and receives utility ui(ai, a−i).

On top of this standard normal form game we have the structure of groups k = 1,2, . . .K.

There is a �xed assignment of players to groups i 7→ k(i). Notice that each player is assigned

to exactly one group and that the assignment is �xed and exogenous. We use ak ∈ Ak to

denote (pure) pro�les of actions within group k and a to denote the pro�le of actions over all

players. Like individuals, groups have well-de�ned objectives given by a payo� function14

vk(ak, a−k).

We assume that groups can make plans independently from other groups. We take this

to mean that each group k has an independent group randomizing device the realization of

which is known to all group members but not to players who are not group members. One

implication of this is that the play of group k appears from the perspective of other groups

to be a correlated strategy - a probability distribution ρk ∈ Rk over pure action pro�les

13This is the approach used by Myerson (1982) to prove the existence of quasi-equilibrium.
14Notice that we are not restricting the group objective function. Depending on the application,

some group objectives might be more natural than others. For example we might have vk(ak, a−k) =∑
i|k(i)=k β

iui(ak, a−k) for some positive utility weights βi > 0. This implies on the one hand a preference
for Pareto e�cient plans, but also agreement on the welfare weights. In the special case of a group with
just one individual such a group objective function might be especially compelling. On the other hand,
considerations of fairness might cause a group of more than one individual to accept a Pareto inferior plan.
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Ak. In addition to the group randomizing device the individual players in a group can

randomize, so that by using the group randomizing device the group can randomly choose

a pro�le of mixed strategies for group members. We let αk ∈ Ak represent such a pro�le,

albeit we take Ak ⊆ Rk so that rather than regarding αk as a pro�le of mixed strategies

we choose to regard it as the generated distribution over pure strategy pro�les Ak. Hence

if the group mixes over a subset Bk ⊆ Ak using the group randomizing device the result is

in the convex hull of Bk which we write as H(Bk).

Players choose deviations di ∈ Di = Ai ∪ {0} where the deviation di = 0 means �mix

according to the group plan.� Individual utility functions then give rise to a function

U i(di, αk, a−k) =

{ ∑
ak u

i(ai, ak−i, a−k)αk[ak] di = 0∑
ak u

i(di, ak−i, a−k)αk[ak] di 6= 0
.

It is convenient also to have a function that summarizes the degree of incentive incompat-

ibility of a group plan. Noting that the randomizations of groups are independent of one

another, for αk ∈ Ak, ρ−k ∈ R−k we de�ne

Gk(αk, ρ−k) = max
i|k(i)=k,di∈Di

∑
a−k

(
U i(di, αk, a−k)− U i(0, αk, a−k)

)
Πj 6=kρ

j [aj ] ≥ 0

which represents the greatest expected gain to any member of group k from deviating

from the plan αk given the play of the other groups. The condition for group incentive

compatibility is simply Gk(αk, ρ−k) = 0.

The key properties of the model are embodied in Gk(αk, ρ−k) and

vk(αk, ρ−k) =
∑
a

vk(ak, a−k)αk[ak]Πj 6=kρ
j [aj ]

Both functions are continuous in (αk, ρ−k) and it follows from the standard existence the-

orem for Nash equilibrium in �nite games that for every ρ−k there exists an αk such that

Gk(αk, ρ−k) = 0. These properties together with Ak being a closed subset of Rk are the

properties that are used in the remainder of the paper. For example, we could take Ak to

be all correlated strategies by group k if we thought they had access to arbitrary correlating

devices, or we could take Ak to be the mixed strategy of a representative individual in a

homogeneous group if we thought such a group was restricted to anonymous play.15

15It would not be appropriate to assume Ak convex for the following reason. We want public random-
izations over incentive compatible plays. But a distribution over pro�les which is a correlated equilibrium
(hence incentive compatible) with respect to some correlating device is not necessarily generated by public
randomization over incentive compatible pro�les. For example, a group which has no correlating devices
available except public randomization cannot achieve the usual (1/3, 1/3, 1/3) correlated equilibrium in
the game of chicken without violating incentive compatibility, because that distribution is obtainable only
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3.2. Equilibrium

We �rst give a formal de�nition of the widely used notion of strict collusion constrained

equilibrium. As we have already shown that these may not exist, we then go on to consider

collusion constrained equilibrium.

Recall that Gk(αk, ρ−k) measures the greatest gain in utility to any group member of

deviating from the plan αk. The greatest incentive compatible group utility is given by

V k(ρ−k) = max
αk∈Ak|Gk(αk,ρ−k)=0

vk(αk, ρ−k)

For the solutions to the maximization problem we say:

De�nition 1. The group best response set Bk(ρ−k) is the set of plans αk satisfyingGk(αk, ρ−k) =
0 and vk(αk, ρ−k) = V k(ρ−k).

Note that Bk(ρ−k) is closed. We can then de�ne

De�nition 2. ρ ∈ R is a strict collusion constrained equilibrium if ρk ∈ H[Bk(ρ−k)] for all
k.

We now give our de�nition of collusion constrained equilibrium. We adopt the motivation

given in Myerson (1982) for his notion of quasi-equilibrium.16 Recall that in the proposed

collusion constrained equilibrium of our example the 3rd player was randomizing 50-50 and

that as a consequence it was an equilibrium for the group to either both cooperate or both

defect. However cooperation is not a safe option in the sense that a small perturbation

in beliefs can cause it to fail to be incentive compatible. Hence group members might

be concerned that after an agreement is reached some small change in beliefs would lead

members to violate of the agreement. On the other hand defection is safe in the sense that

if such an agreement is reached no small change in beliefs would lead any group member

to wish to violate the agreement. Let us �rst de�ne the ε-worst best utility for group k for

beliefs near ρ−k as

V k
ε (ρ−k) = inf

|σ−k−ρ−k|<ε
V k(σ−k).

Observing that this is non-increasing in ε so we may take the limit and de�ne V k
S (ρ−k) =

limε→0 V
k
ε (ρ−k) as the group safety utility. Our basic premise is that there would be no

reason for the group to choose a plan which gives less group utility than the group safety

through the public randomization that puts weight 1/3 on the three pure strategy pro�les - which are not all
incentive compatible. However a convex Ak containing the pure pro�les would also contain (1/3, 1/3, 1/3).
We must thus dispense with a convexity assumption on Ak to properly account for incentive compatibility
within groups.

16Myerson studies a collection of principals who compete to design mechanisms rather than a game between
groups: conceptually his notion of quasi-equilibrium is the same as that of collusion constrained equilibrium.
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utility. For incentive compatible plans yielding higher utility we are agnostic - perhaps the

group can reach agreement on such plans, perhaps not. This leads us to de�ne:

De�nition 3. The shadow17 response set Bk
S(ρ−k) is the set of plans αk that satisfy

Gk(αk, ρ−k) = 0 and vk(αk, ρ−k) ≥ V k
S (ρ−k).

Like Bk(ρ−k) we have Bk
S(ρ−k) closed. Note that since V k

S (ρ−k) ≤ V k(ρ−k) we have

Bk
S(ρ−k) ⊇ Bk(ρ−k). We know from example 1 that Bk(ρ−k) may fail to be upper hemi-

continuous since a sequence of incentive compatible best plans may converge to a plan that

is not best. We show in the Appendix that by contrast the correspondence Bk
S(ρ−k) must

be upper hemicontinuous. The key intuition is that the group safety level V k
S (ρ−k) can

jump down but not up so that a sequence of safe plans converge to a safe plan. Because

Bk
S(ρ−k) is upper hemicontinuous Bk

S(ρ−k) = Bk(ρ−k) implies that Bk(ρ−k) is also upper

hemicontinuous at ρ−k and we say that ρ−k is a regular point for group k. Otherwise we

say that ρ−k is a critical point for group k.

Our premise is that the group will place weight only on incentive compatible plans which

provide at least the group safety utility, that is, on Bk
S(ρ−k) so we adopt the following

de�nition.

De�nition 4. ρ ∈ R is a collusion constrained equilibrium if ρk ∈ H[Bk
S(ρ−k)] for all k.

The key to collusion constrained equilibrium is that we allow plans in Bk
S(ρ−k) not

merely in Bk(ρ−k). If in a collusion constrained equilibrium ρk /∈ H[Bk(ρ−k)] we say that

group k engages in shadow mixing. This means that the group puts positive probability on

equilibria in Bk
S(ρ−k)\Bk(ρ−k), that are not the best possible.

Our example above shows that shadow mixing may be necessary in equilibrium, as we

spell out next.

Example. [Example 1 revisited ] In the example we take k(1) = k(2) = 1, k(3) = 2. In
this and all subsequent use of this example we take group utility to be de�ned by equal
welfare weights on individual utility functions v1(a1, a2) = u1(a1, a2) + u2(a1, a2) and
v2(a1, a2) = u3(a1, a2).

To apply the de�nition of collusion constrained equilibrium we �rst compute for group
k = 1 the best utility V 1(ρ2) where since there is one player ρ2 may be identi�ed with α3.
For α3 ≤ 1/2 we know that the best equilibrium for group k = 1 is C,C with corresponding
group utility V 1(ρ2) = 12 + 8(1−α3), while for α3 > 1/2 the only equilibrium is D,D with
group utility V 1(ρ2) = 4. For α3 6= 1/2 we have V 1

S (ρ2) = V 1(ρ2), and the shadow response
and best response sets are the same: C,C for α3 < 1/2 and D,D for α3 > 1/2. At α3 = 1/2
the worst best utility for nearby beliefs are those for α3 > 1/2 giving a group utility of 4,
whence the set of incentive compatible plans that give at least this utility are the equilibria

17The set BkS(ρ−k) is a kind of shadow of nearby best equilibria.
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C,C and D,D, that is B1
S(ρ2) = {(C,C), (D,D)}. For the group k = 2 consisting solely of

individual 3 the shadow best response set is just the usual best response set.
Clearly there is no equilibrium with α3 6= 1/2. On the other hand when α3 = 1/2 the

group can shadow-mix 50-50 between C,C and D,D, leaving player 3 indi�erent between
C and D; so this is a collusion constrained equilibrium. We conclude that there is a unique
collusion constrained equilibria with ρ1 a 50-50 mixture over {(C,C), (D,D)} and ρ2 a
50-50 mixture over {C,D}.

As the example shows collusion constrained equilibrium may require that the group

sometimes agree to plans that are �unsafe.� Whether this makes sense is not clear - one of

our main tasks in the remainder of the paper will be to establish whether it does indeed

make sense.

It should be apparent that collusion constrained equilibria use as correlating devices

only the private randomization device available to each player and the group randomiza-

tion device. We refer to correlated equilibria of the underlying game that use only these

randomizing devices as group correlated equilibria.18

Theorem 1. Collusion constrained equilibria exist and are a subset of the group correlated
equilibria of the underlying game.

The theorem is proved in the Appendix.19 It makes clear the sense in which collusion

constrained equilibria are constrained: there are many group correlated equilibria, but the

ones that are interesting from the point of view of collusion are those in which groups are

constrained to play in their shadow response sets.

4. Three Model Perturbations

We now study how collusion constrained equilibrium arises as a limit of equilibria in

perturbed models. The key point is that equilibria in the perturbed models will be strict:

groups make best choices and there is no shadow mixing. There is no issue of the group

sometimes sacri�cing utility for safety and sometimes not. Nor is there an issue of existence:

in each case strict equilibria are shown to exist.

We consider three di�erent types of perturbations. First, based loosely on the earlier

discussions of perturbations of beliefs and safety, we consider the possibility that group

beliefs are random. Second, we consider the possibility that incentive constraints can be

overcome by a costly enforcement technology. Finally, we suppose that group decisions are

18These types of equilibria as well as others where groups have more sophisticated correlating devices for
internal use have been investigated in the context of voting models by Pogorelskiy (2014).

19Despite the close relationship, the existence of CCE does not follow from the existence of quasi-
equilibrium in Myerson (1982) nor can we use his argument since he assumes that principals have �nitely
many choices, while our groups choose from a continuum.
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taken by a leader who has valence in the sense of being able to persuade group members to

do as he wishes, but that if he issues orders that are not followed he is punished. In each

case we take a limit: as beliefs become less random, enforcement becomes more costly, or

valence shrinks; and in each case we show that the limit of equilibria of the perturbed games

are collusion constrained equilibria in the unperturbed game. We emphasize that these are

upper hemicontinuity results that do not show that every collusion constrained equilibrium

arises this way. The issue of lower hemicontinuity is considered subsequently.

4.1. Random Belief Equilibrium

We now show that collusion constrained equilibria are limit points of strict collusion

constrained equilibria when beliefs of each group about behavior of the other groups are

random and the randomness tends to vanish. We start by describing a random belief model.

The idea is that given the true play ρ−k of the other groups, there is a common belief σ−k

by group k that is a random function of that true play. Notice that these random beliefs

are shared by the entire group - we could also consider individual belief perturbations, but

it is the common component that is of interest to us, because it is this that coordinates

group play. Conceptually if we think that a group colludes through some sort of discussions

that gives rise to common knowledge - looking each other in the eye, a handshake and so

forth - then it makes sense that during these discussions a consensus emerges not just on

what action to take, but underlying that choice, a consensus on what the other groups

are thought to be doing. We must emphasize: our model is a model of the consequences

of groups successfully colluding - we do not attempt to model the underlying processes of

communication, negotiation and consensus that leads to their successful collusion.

De�nition 5. A density function fk(σ−k|ρ−k) is called a random group belief model if it is
continuous as a function of (σ−k, ρ−k); for ε > 0 we say that the random group belief model
is only ε-wrong if it satis�es

´
|σ−k−ρ−k|≤ε f

k(σ−k|ρ−k)dσ−k ≥ 1− ε.

In other words if the model is only ε-wrong then it places a low probability on being far

from the truth. In Web Appendix 2 we give for every positive ε an example based on the

Dirichlet distribution of a random group belief model that is only ε-wrong. We also de�ne

De�nition 6. A group decision rule is a function bk(ρ−k) ∈ H[Bk(ρ−k)], measurable as a
function of ρ−k.

Notice that for given beliefs ρ−k we are assuming that the group colludes on a response

in Bk(ρ−k) which is the set of the best choices for the group that satisfy the incentive

constraints, and does not choose points in Bk
S(ρ−k)\Bk(ρ−k) as would be permitted by

shadow mixing.

De�nition 7. For a group decision rule bk and random group belief model fk the group
response function is the distribution F k(ρ−k)[ak] =

´
bk(σ−k)[ak]fk(σ−k|ρ−k)dσ−k. If we
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have rules and belief models for all groups then a ρ ∈ R that satis�es ρk = F k(ρ−k) for all
k is called a random belief equilibrium with respect to bk and fk.

In the Appendix the following is proved:

Theorem 2. If for each k we have group decision rules bk and for each k and n we have
random group belief models indexed by εn > 0 denoted fkεn that are only εn-wrong then there
exist random belief equilibria ρn with respect to bk and fkεn. Moreover if εn → 0 and ρn → ρ
then ρ is a collusion constrained equilibrium.

Example (Random belief equilibrium in example 1). In Web Appendix 1 we analyze the
random belief model corresponding to the Dirichlet belief model de�ned in Web Appendix
2. The �gure below shows what the group response functions look like in our three player
example. The key point is that the random belief equilibrium value of α3 lies below 1/2,
that is, as ε → 0 the collusion constrained equilibrium is approached from the left and
above.

Figure 4.1: Beliefs equilibrium

α3

ρ1CC

1/2

1/2

F 1(α3)[CC]

F 2(ρ1CC)[C]

1

1

4.2. Costly Enforcement Equilibrium

We now assume that each group k has a costly enforcement technology that it can use

to overcome incentive constraints. In particular, we assume that every plan αk is incentive

compatible provided that the group pays a cost C(αk, ρ−k) of carrying out the monitoring

and punishment needed to prevent deviation. Levine and Modica (2016) show how cost of

this type arise from peer discipline systems and Levine and Mattozzi (2016) study these

systems in the context of voting by collusive parties: we give an example below. We assume

Ck(αk, ρ−k) to be non-negative and continuous in αk, ρ−k and adopt the following

De�nition 8. A function Ck(αk, ρ−k) is an enforcement cost if Ck(αk, ρ−k) = 0 whenever
Gk(αk, ρ−k) = 0.

In other words enforcement is costly only if there is a deviation that needs to be deterred

and nearby plans have similar enforcement costs. A particular example of such a cost

function would be Ck(αk, ρ−k) = Gk(αk, ρ−k), that is, the cost of deterring a deviation
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is equal to the biggest bene�t any player receives by deviating. Notice that we allow the

possibility that incentive incompatible plans have zero cost.

With this technology we de�ne

De�nition 9. The enforced group best response set Bk
C(ρ−k) is the set of plans αk such

that vk(αk, ρ−k)− Ck(αk, ρ−k) = maxα̃k∈Ak v
k(α̃k, ρ−k)− Ck(α̃k, ρ−k).

Notice that again there is no shadow mixing here, just a choice of the group's best plan.

Then we have the usual de�nition of equilibrium

De�nition 10. ρ ∈ R is a costly enforcement equilibrium if ρk ∈ H[Bk
C(ρ−k)].

Notice that if the cost of enforcement is zero then the group can achieve the best outcome

ignoring incentive constraints, an assumption, as we indicated in the introduction, often used

by political economists and economic historians. We are interested in the opposite case in

which enforcing non-incentive compatible plans is very costly. We then de�ne

De�nition 11. A sequence Ckn(αk, ρ−k) of cost functions is high cost if there are sequences
γkn → 0 and Γkn →∞ such that Gk(αk, ρ−k) > γkn implies Ckn(αk, ρ−k) ≥ Γkn.

In the Appendix we prove20

Theorem 3. Suppose Ckn(αk, ρ−k) is a high cost sequence. Then for each n a costly en-
forcement equilibrium ρn exists, and if limn→∞ ρn → ρ then ρ is a collusion constrained
equilibrium.

Example 2. We give a simple example of a costly enforcement technology and a high cost
sequence based on Levine and Modica (2016). Speci�cally, we view the choice of αk by
group k as a social norm and assume that the group has a monitoring technology which
generates a noisy signal of whether or not an individual member i complies with the norm.
The signal is zi ∈ {0, 1} where 0 means �good, followed the social norm� and 1 means �bad,
did not follow the social norm.� Suppose further that if member i violates the social norm
by choosing αi 6= αk then the signal is 1 for sure while if he adhered to the social norm so
that αi = αk then the signal is 1 with probability πn. When the bad signal is received the
group member receives a punishment of size P i.21

It is convenient to de�ne the individual version of the gain to deviating

Gi(αk, ρ−k) = max
di∈Di

∑
a−k

(
U i(di, αk, a−k)− U i(0, αk, a−k)

)
Πj 6=kρ

j [aj ] ≥ 0.

For the social norm αk to be incentive compatible we need P i − πnP i ≥ Gi(αk, ρ−k) which
is to say P i ≥ Gi(αk, ρ−k)/(1− πn). If the social norm is adhered to, the social cost of the

20Actually it is not essential that Γkn → ∞, just that it be �big enough� that it would never be worth
paying such a high cost.

21Here the coercion takes the form of punishment - but it could equally well be the withholding of a
reward.
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punishment is πnP
i, and the group will collude to minimize this cost so that it will choose

P i = Gi(αk, ρ−k)/(1− πn). The resulting cost is then (πn/(1− πn))Gi(αk, ρ−k). Hence in
this model Ckn(αk, ρ−k) = (πn/(1− πn))

∑
k(i)=kG

i(αk, ρ−k).

Since Ckn(αk, ρ−k) = 0 if and only if Gk(αk, ρ−k) = maxi|k(i)=kG
i(αk, ρ−k) = 0 it fol-

lows that Ckn(αk, ρ−k) is an enforcement cost. We claim that as πn → 1, that is, as the
signal quality deteriorates, this is in fact a high cost sequence. Certainly Ckn(αk, ρ−k) ≥
(πn/(1− πn))Gk(αk, ρ−k). Choose γkn → 0 such that Γkn ≡ (πn/(1− πn)) γkn → ∞. Then
for Gk(αk, ρ−k) > γkn we have Ckn(αk, ρ−k) ≥ Γkn as required by the de�nition.

Example (Costly enforcement equilibrium in example 1). We use the high cost sequence
just de�ned. In Web Appendix 1 we show that the costly enforcement equilibrium of our
three-player game consists of the group randomizing half half between CC and DD while
player 3 plays α3 = (4−3πn)/2 for all πn > 4/5. This equilibrium converges to the collusion
constrained equilibrium as πn → 1. Notice that the collusion constrained equilibrium value
of α3 = 1/2 is approached from the right while the group randomization in the costly
enforcement equilibrium is constant and equal to the limiting constrained equilibrium value.
This is the opposite of what we have seen in the random belief model where the approach
is from the left and above.

4.3. Leader/Evaluator Equilibrium

In this section we tackle collusion contrained equilibrium from the perspective of the

Nash program: showing how this partially cooperative notion arises from a limit of standard

non-cooperative games. We do so by introducing leaders. Leaders give their followers

instructions - they tell them things such as �let's go on strike� or �let's vote against that

candidate.� The idea is that group leaders serve as explicit coordinating devices for groups.

Each group will have a leader who tells group members what to do, and if he is to serve

as an e�ective coordinating device these instructions cannot be optional. However, we do

not want leaders to issue instructions that members would not wish to follow - that is, that

are not incentive compatible. Hence we give them incentives to issue instructions that are

incentive compatible by allowing group members to �punish� their leader. Indeed, we do

observe in practice that it is often the case that groups follow orders given by a leader but

engage in ex post evaluation of the leader's performance.

The leader/evaluator game is governed by two positive parameters ν, P . The parameter

ν measures the �valence� of a leader: this has a concrete interpretation as the amount of

utility that group members are ready to give up to follow the leader.22 Alternatively, ν

can be thought of as measuring group loyalty. The parameter P represents a punishment

22It is convenient notationally and for the statement of results that all leaders have the same valence;
this also implicitly assumes that followers of a leader are equally willing to sacri�ce. This entails no loss of
generality since as long as the willingness to sacri�ce is positive we can linearly rescale ui to units in which
willingness to sacri�ce is the same.
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that can be levied by a group member against the leader.23 Provided P is large enough, we

will show that when valence tends to zero the limits of perfect Bayesian equilibria of the

leader/evaluator game are collusion constrained equilibria of the original game.

Our non-cooperative game goes as follows:

Stage 1: Each leader chooses a plan αk ∈ Ak that is communicated only to members of

group k: conceptually these are orders given to the members who must obey the orders.

Stage 2: Each player i with k(i) = k serves as an evaluator and observing the plan αk

of the leader selects an element di ∈ Ak ∪ {0}.
Payo�s: Let Qk denote the number of evaluators who chose di 6= 0. The leader receives

vk(αk, α−k)−PQk, that is, for each evaluator who disagrees with his decision he is penalized
by P . The evaluator receives utility U i(di, αk, α−k) if di 6= 0 and U i(0, αk, α−k)+ν if di = 0,

that is, he takes as given the other players in the group have followed orders and gets a

bonus of ν agrees with the leader's decision.

Note that the leader and evaluator do not learn what the other groups did until the

game is over.

De�nition 12. We say that ρ is a perfect Bayesian equilibrium of the leader/evaluator
game if for each leader k there is a mixed plan µk over Ak, and for each evaluator i in each
group k and each plan αk there is a mixed action ηi(αk) over Ak ∪ {0}, measurable as a
function of αk , such that

(i) ρk =
´
σkµk(dσk)

(ii) µk (that is to say ρk) is optimal for the leader given ρ−k and ηi

(iii) for all αk ∈ Ak and evaluators i the measure ηi(αk) is optimal for the evaluator
given αk and ρ−k.

Note that (iii) embodies the idea of �no signaling what you do not know� 24 that beliefs

about the play of leaders of other groups is independent of the plan chosen by the leader

of the own group.25 Note that we have not explicitly de�ned a system of beliefs, since the

�no signaling what you do not know� condition makes the beliefs of evaluators over α−k

constant across all their information sets.

For this game to have an interesting relation to collusion constrained equilibrium, two

things should be true.

• The evaluators must be able to punish the leader enough to prevent him from choosing

23Again this might depend on k but we can rescale νk so that punishment is the same for all leaders.
24It is known for �nite games that this is an implication of sequentiality and Fudenberg and Tirole (1991)

use this condition to de�ne perfect Bayesian equilibrium for a class of games. Since the leader/evaluator
game is not �nite sequentiality is complicated. Hence it seems most straightforward to follow Fudenberg and
Tirole (1991) and de�ne perfect Bayesian directly with the �no signaling what you do not know� condition.

25Since the leader has no way of knowing if other leaders have deviated he should not be able to signal
this through his own choice of action.
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incentive incompatible plans. A su�cient condition is that the punishment is greater

than any possible gain in the game, that is, P > max vk(αk, α−k)−min vk(αk, α−k).

• The leader should be able to avoid punishment by choosing an incentive compatible

plan. However the leader can only guarantee avoiding punishment if the evaluators

strictly prefer not to deviate from his plan. If ν = 0 this is true only for plans that

are strictly incentive compatible and such plans may not exist. Hence the assumption

ν > 0 is crucial: it assures that the leader can always avoid punishment by choosing

an incentive compatible plan.

The following result is proved in the Appendix.

Theorem 4. Suppose νn → 0 and Pn > max vk(αk, α−k)−min vk(αk, α−k). Then for each n
a perfect Bayesian equilibrium ρn of the leader/evaluator game exists, and if limn→∞ ρn = ρ
then ρ is a collusion constrained equilibrium.

Example (Leader/Evaluator equilibrium in example 1). For α3 < 1/2, playing CC is
incentive compatible for the group, the question is how much can they mix out of the
unique bad equilibrium DD when α3 > 1/2 given that they are willing to forgo gains no
larger than ν. Web Appendix 1 shows that the equilibrium is α̂3 = (2+ν)/4 > 1/2 and that
the group shadow mixes between the unique mixture α̂1 = α̂2 that is the smallest solution
of −4(α̂1)2(1− α̂3) + 2α̂1 = ν and CC with probability

0.5− (α̂1)2

1− (α̂1)2

on CC. Note that as ν → 0 we have α̂1 → 0 so that in the limit the group shadow mixes
between CC and DD as expected. Notice also that α3 > 1/2 so that the solution is on �the
same side� of 1/2 as the costly enforcement equilibrium, but the opposite side of the belief
equilibrium. The solution di�ers from both, however, in that the group does not randomize
between CC and DD, but rather between CC and a mixed strategy.

5. Limits of Perturbations

In the perturbations we have considered the result is always that the limit of the per-

turbation is a collusion constrained equilibria. If there are several such equilibria, do the

di�erent limits converge to the same equilibrium? Not always. In this section we present

an example with a continuum of collusion constrained equilibria and in which di�erent

perturbations pick di�erent points out of this set.

The example is a variation of Example 1, where player 3 gets zero for sure if he plays C,

and the good equilibrium in the coordination game for the group which results if player 3

plays D is only weakly incentive compatible. We continue to set v1(a1, a2) = u1(a1, a2) +

u2(a1, a2) and v2(a1, a2) = u3(a1, a2).
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Example 3. The matrix on the left below contains the payo�s if player 3 plays C, the right
one results if she plays D:

C D
C 6, 6, 0 0, 8, 0
D 8, 0, 0 2, 2, 0

C D
C 8, 8, 0 0, 8, 5
D 8, 0, 5 2, 2, 5

In this game clearly player 3 must play D with probability 1: if he plays C with any positive
probability then it is strictly dominant for players 1 and 2 to play D in which case player 3
strictly prefers to playD. When player 3 playsD players 1 and 2 have exactly two equilibria:
CC and DD; and any mixture between them is a collusion constrained equilibrium. To
see this observe that for any belief perturbation around α3 = 0 the worst equilibrium for
the group is always DD so V 1

S (α3 = 0) is the utility the group obtains in that equilibrium.
Thus any mixture between DD and CC satis�es the equilibrium condition, where of course
in all strictly mixed equilibria the group gets utility higher than V 1

S .
Now consider the perturbations. For any random beliefs C has positive probability so the

group must playDD, so the only limit of random belief equilibria isDD. For costly collusion
equilibrium on the other hand the better equilibrium CC for the group has zero cost so that
will be chosen: the unique limit in this case is CC. Finally, for leadership equilibrium since
the compliance bonus ν is positive again CC will be chosen, the unique limit is again CC.
Notice that not only do the di�erent perturbations sometimes pick di�erent points out of
the collusion constrained equilibrium set, but the collusion constrained equilibria involving
strict mixtures do not arise as a limit from any of the perturbed models.

This example is non-generic because it depends heavily on the fact that when player 3

plays a pure strategy D players 1 and 2 are indi�erent to deviating from CC. If we try

to construct an example of this type in the interior then players 1 and 2 must shadow mix

in the correct way to make player 3 indi�erent and this should pin down what the shadow

mixture must be. In the example we get around this by assuming that the pure strategy

for player 3 is a strict best response so that there are a continuum of shadow mixtures by

1 and 2 that are consistent with player 3 playing D.

6. Lower Hemicontinuity

Roughly speaking, when we consider a perturbation such as random belief equilibrium,

leadership equilibrium, or costly enforcement equilibrium we are exhibiting a degree of

agnosticism about the model we have written down. That is we recognize that our model

is an imperfect representation but hopefully reasonable approximation of a more complex

reality and ask whether our equilibrium might be a good description of what happens in that

more complex reality. This is the spirit behind re�nements such as trembling hand perfection

and concepts such as Harsanyi (1973)'s notion of puri�cation of a mixed equilibrium. It is

the question addressed by Fudenberg, Kreps and Levine (1988) who show how re�nements

do not capture the equilibria of all nearby games. We have shown that collusion constrained
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equilibrium does a good job of capturing random beliefs, costly enforcement and leadership

equilibria. We know by example that there may be collusion constrained equilibria that do

not arise as a limit of any of these. We now ask whether for a given collusion constrained

equilibrium there is a story we can tell in the form of a perturbation representing a more

complex reality that justi�es the particular collusion constrained equilibrium.

Each of the perturbations we have considered has embodied a story or justi�cation about

why groups might be playing the way they are playing. We now consider a richer class of

perturbations that combines elements of beliefs with costly enforcement and a perturbation

of the group objective function. Speci�cally, we use the following:

De�nition 13. A perturbation for each group k consists of a continuous belief perturba-
tion r−kk (ρ−k) ∈ R−k, an enforcement cost function function Ck(αk, ρ−k) and a continu-
ous objective function wk(αk, ρ−k). A perturbed equilibrium ρ is de�ned by the condition
ρk ∈ H[arg maxαk w

k(αk, r−kk (ρ−k))− Ck(αk, r−kk (ρ−k))].

The belief perturbation is a simpli�cation of the random belief model which assumed

that beliefs were random but near correct most of the time. Now we are going to assume

that they are deterministic and near correct. As in the random belief model we allow that

beliefs are slightly wrong and do not require that two groups agree about the play of a

third. The model of costly enforcement is exactly the same model we studied earlier. In

addition we are now agnostic about the group objective and allow the possibility that the

model may be slightly wrong in this respect. From a technical point of view it helps get rid

of non-generic examples. As we are only interested in small perturbations we de�ne

De�nition 14. A sequence of perturbations r−kkn , C
k
n, w

k
n is said to converge as n → ∞ if

maxρ−k |r−kkn (ρ−k)−ρ−k| → 0, if Ckn is a high cost sequence, and if maxαk,ρ−k |wkn(αk, ρ−k)−
vk(αk, ρ−k)| → 0. We say that ρ is justi�able if there is a convergent sequence of perturba-
tions together with perturbed equilibria ρn → ρ.

Our main result, proven in the Appendix, is

Theorem 5. A perturbed equilibrium exists for any perturbation, and ρ is justi�able if and
only if it is a collusion constrained equilibrium.

7. A Voting Participation Game

What di�erence do groups make? Collusion constrained equilibria are a subset of the set

of group correlated equilibria, so we should expect that often the equilibria that are rejected

are going to have better e�ciency properties than those that are accepted. However, that

comparison is not so interesting because it is the fact that the group is collusive that

enables it to randomize privately from the other groups - that is, coordinate their play.26

26The random belief model, in particular, only makes sense if the group is colluding, otherwise how can
they agree on their beliefs?

20



A more useful comparison is to ask what happens if the players play as individuals without

correlating devices to coordinate their play, versus what happens if they are in collusive

groups. In addition to static Nash equilibrium a second useful benchmark is to analyze the

case in which there is free (costless) enforcement (FEE)- so that incentive constraints do

not matter.

Our setting for studying the economics of collusion is a voter participation game. We

start with a relatively standard Palfrey and Rosenthal (1985)/Levine and Mattozzi (2016)

framework: there are two parties, the �large� party has two voters, players 1 and 2, the

�small� party has one voter, player 3. Voters always vote for their own party, but is is costly

to vote - a cost we normalize to 1 - and voters may choose whether or not to vote. The

party that wins receives a transfer payment of 2τ > 0 from the losing party: if the large

party wins player 3 loses 2τ which the large party members split; if player 3 wins she gets τ

from each member of the large party. Usually it is assumed that a tie means that each party

has a 50% chance of winning the prize, meaning that the election is a wash and no transfer

payment is made. In case nobody votes we maintain this assumption that the status quo

is unchanged and everyone gets 0. But when voting does take place it is often not the case

in practice that a tie is innocuous - it may result in a deadlocked government or in con�ict

between the parties. So we we assume that a tie where each party casts one vote results in

a deadlock that is - for simplicity - just as bad as a loss.

The payo�s can be written in bi-matrix form. If player 3 does not vote the payo� matrix

for the actions of players 1 and 2 (where 0 represents do not vote and 1 represents vote) is

1 0

1 τ − 1, τ − 1,−2τ τ − 1, τ,−2τ

0 τ, τ − 1,−2τ 0, 0, 0

This is may not be a prisoner's dilemma game between players 1 and 2, but it does have a

unique dominant strategy equilibrium at which neither votes if τ < 1. If player 3 does vote

the payo� matrix for the actions of players 1 and 2 becomes

1 0

1 τ − 1, τ − 1,−2τ − 1 −τ − 1,−τ,−2τ − 1

0 −τ,−τ − 1,−2τ − 1 −τ,−τ, 2τ − 1

If τ > 1/2 this is a coordination game for player 1 and 2 due to the fact that a tie is as

bad as a loss: for a large party member not voting and having a tie results in −τ while

voting and winning results in τ − 1 > −τ . Similarly voting and having a tie is as bad as a

loss and it would be better to not vote and lose, su�ering the same loss but not paying the

cost of voting. The group objective of either party is to maximize the sum of payo�s of its
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members.

The model has elements of both external and internal con�ict. There is con�ict between

the groups as each hopes to get the transfer. There is also con�ict within the large group as

each prefers that the other votes. There are two sources of ine�ciency in the model: total

welfare (the sum of the utilities of the all three players) is reduced if players vote and is

further reduced if there is a tie with one player from each group voting.

The full analysis of the structure of collusion constrained, Nash and free enforcement

equilibria in this model can be found in Web Appendix 3. To appreciate the usefulness of

CCE, focus on the range 3/4 < τ < 1. Here there is a unique Nash equilibrium S in which

only the small group votes and a unique FEE L in which the small group abstains and the

large group wins by casting a single vote. In this range there is also a unique CCE in which

small group mixes on voting and not voting with positive probability and the large group

shadow mixes between staying out with probability 1/2τ and casting two votes. In the CCE

equilibrium the small group does better than at FEE and worse than Nash while the large

group does worse than at FEE and better than Nash. The CCE more accurately captures

the behavior of a collusive group as one that is in-between the Nash prediction of extreme

free riding and the FEE prediction of complete disregard of individual incentives. A more

subtle implication relates to the equilibrium behavior of the small party. Despite consisting

of a single player, the CCE aptly captures how equilibrium behavior depends singi�cantly

on whether the player faces an individual or a group, and if the latter then whether it is

collusive or not.

Varying τ provides a richer but similar picture. First note that among all equilibria

of all types, when they are equilibria S is always best for the small group and L for the

large group. Start with τ < 1/2 in which case nobody votes. As we increase τ Nash always

allows the S although for τ > 1 there are additional equilibria less favorable to the small

player, including L . CCE and FEE both shift gradually in favor of the large group but

CCE changes more slowly than does FEE: for FEE once τ > 3/4 the unique equilibrium is

L while for CCE this is true only for τ > 3/2.

8. Conclusion

We study exogenously speci�ed collusive groups and argue that the �right� notion of

equilibrium is that of collusion constrained equilibrium. We start from the observation that

groups such as political, ethnic, business or religious groups often collude. We adopt the

simple assumption that a group will collude on the within-group equilibrium that best satis-

�es group objectives. We �nd that this seemingly innocuous assumption disrupts existence

of equilibrium in simple games. We show that the existence problem is due to a discontinu-

ity of the equilibrium set, and propose a ��x� which builds on the presumption that a group
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cannot be assumed to be able to play a particular within-group equilibrium with certainty

when at that equilibrium the incentive constraints are satis�ed with equality. This �tremble�

implies that the group may put positive probability on actions which give group members

lower utility but are strictly incentive compatible. We show that the resulting equilibrium

notion has strong robustness properties and indeed is both upper and lower hemicontinuous

with respect to a class of perturbations. This makes collusion constrained equilibrium a

strong foundation for analyzing exogenous groups (including dynamic models where people

�ow between exogenous groups based on economic incentives as in the Acemoglu (2001)

farm lobby model), which in some sense is the case that Olson (1965) had in mind and is

of key importance in much of the political economy literature. This is not to argue that

endogenous group formation is not of interest - but it is important to understand what

happens as a consequence of group formation before building models of group formation

and collusion constrained equilibrium is step in that direction.
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Appendix: Continuity, Limits and Existence

Lemma 1. Suppose we have a sequence of sets Bk
n, correlated pro�les ρ−kn → ρ−k, scalars

V k
n and positive numbers γkn → 0 satisfying for any αkn ∈ Bk

n

1. Gk(αkn, ρ
−k
n ) ≤ γkn

2. vk(αkn, ρ
−k
n ) ≥ V k

n

If Bk is the set of αk ∈ Bk that satis�es
1. Gk(αk, ρ−k) = 0
2. vk(αk, ρ−k) ≥ lim inf V k

n

then for any ρkn ∈ H(Bk
n) with ρkn → ρk it is the case that ρk ∈ H(Bk)
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Proof. Since Gk, vk are continuous the closure of Bk
n satis�es the same inequalities so it

su�ces to prove the result for closed sets Bk
n.

We have ρkn ∈ H(Bk
n) if and only if there exists a probability measure µkn over Bk

n

with ρkn =
´
σµkn(dσ). Since Bk

n is closed Ak\Bk
n is open and we can extend the measure

to all of Ak by taking µkn[Ak\Bk
n] = 0. Since Ak is compact we may extract a weakly

convergent subsequence that converges to µk and without loss of generality may assume
the original sequence has this property. Because µkn → µk it follows from weak convergence
that ρk =

´
σµk(dσ). The result will follow if we can show that µk[Bk] = 1.

Consider the sets Bk
v for which v

k(αk, ρ−k) ≥ lim inf V k
n and Bk

0 for which Gk(αk, ρ−k) =
0. We will show that µk[Bk

v ] = 1 and µk[Bk
0 ] = 1 from which it follows that µk[Bk] =

µk[Bk
v ∩Bk

0 ] = 1.
For Bk

v let ε > 0 and let Dk
vε be the set v

k(αk, ρ−k) < lim inf V k
n − ε. For n su�ciently

large Dk
vε ∩Bk

n = ∅, so µkn[Dk
vε] = 0. However since vk is continuous Dk

vε is an open set and
if µk[Dk

vε] > 0 then for all su�ciently large n we have µkn[Dk
vε] > 0, a contradiction. We

conclude that for all ε > 0 we have µk[Dk
vε] = 0, so indeed µk[Bk

v ] = 1 .
For Bk

0 let ε > 0 and let Dk
0εbe the set G

k(αk, ρ−k) > ε. Because Ak × R−k is compact
Gk(αk, ρ−k) is uniformly continuous so Gk(·, ρ−kn ) converges uniformly to Gk(·, ρ−k). Hence
for n su�ciently large αk ∈ Dk

0ε implies Gk(αk, ρ−kn ) > ε/2 and since γkn → 0 also for
su�ciently large n this implies µkn[Dk

0ε] = 0. However, since Gk is continuous Dk
0ε is an open

set, and if µk[Dk
0ε] > 0 then for all su�ciently large n we have µkn[Dk

0ε] > 0 a contradiction.
We conclude that for all ε > 0 we have µk[Dk

0ε] = 0, so indeed µk[Bk
0 ] = 1 .

Corollary 1. Let the sets Bk
n be satisfy Gk(αkn, ρ

−k
n ) ≤ γkn and vk(αkn, ρ

−k
n ) ≥ V k

εn(ρ−kn ). If
γkn, εn → 0 and ρkn ∈ H(Bk

n)→ ρk for all k then ρ is a collusion constrained equilibrium.

Proof. If εn ≤ ε/2 and |ρ−kn − ρ−k| ≤ ε/2 then |σ−kn − ρ−kn | ≤ εn implies |σ−kn − ρ−k| ≤ ε
whence V k

εn(ρ−kn ) ≥ V k
ε (ρ−k). This gives lim inf V k

εn(ρ−kn ) ≥ V k
S (ρ−k). Therefore taking

V k
n = V k

εn(ρ−kn ), Lemma 1 shows that ρk is contained in the convex hull of a set contained
in Bk

S(ρ−k) for all k, whence the conclusion.

Collusion Constrained Equilibrium

Theorem 6 (Theorem 1 in text). Collusion constrained equilibria exist and are a subset of
the set of group correlated equilibria of the game.

Proof. For any sequence of correlated pro�les ρ−kn → ρ−k, let γkn = 0 and let V k
n = V k

S (ρkn).
Notice that lim inf V k

n ≥ V k
S (ρk). Then by Lemma 1 we know that the convex hull of the

shadow best response set, H(Bk
S(ρ−k)) is UHC. Existence of collusion constrained equilibria

then follows from Kakutani. The fact that collusion constrained equilibria are group cor-
related equilibria follows from the fact that the incentive constraints are satis�ed for each
individual given signals generated by the private and group randomizing devices.

Random Belief Equilibria

Theorem 7 (Theorem 2 in text). If for each k we have group decision rules bk and for
each k and n we have random group belief models fkεn that are only εn-wrong then there
exist random belief equilibria ρn with respect to bk and fkεn. Moreover if εn → 0 and ρn → ρ
then ρ is a collusion constrained equilibrium.
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Proof. Remember that ρkn(ak) = F k(ρ−k)[ak] =
´
bk(σ−k)[ak]fkεn(σ−k|ρ−k)dσ−k where fkεn(σ−k|ρ−k)

is continuous as a function of ρ−k. So ρkn(ak) is a continuous function of ρ−k by the Domi-
nated Convergence Theorem, for every ak . Existence then follows from the Brouwer �xed
point theorem.

Turning to convergence, by de�nition

ρkn =

ˆ
bk(σ−k)fkεn(σ−k|ρ−k)dσ−k

=

ˆ
|σ−k−ρ−k|≤εn

bk(σ−k)fkεn(σ−k|ρ−k)dσ−k +

ˆ
|σ−k−ρ−k|>εn

bk(σ−k)fkεn(σ−k|ρ−k)dσ−k

Let ekn(ρ−k) ≡
´
|σ−k−ρ−k|≤εn f

k
εn(σ−k|ρ−k)dσ−k and

ρkn ≡
ˆ
|σ−k−ρ−k|≤εn

bk(σ−k)
fkεn(σ−k|ρ−k)
ekn(ρ−k)

dσ−k

then we may write

ρkn = ekn(ρ−k)ρkn + (1− ekn(ρ−k))

ˆ
|σ−k−ρ−k|>εn

bk(σ−k)
fkεn(σ−k|ρ−k)
1− ekn(ρ−k)

dσ−k.

Now assume εn → 0. By assumption ekn(ρ−k)→ 1 and ρkn → ρk it follows that ρkn → ρk.
Take then Bk

n ≡ {αk ∈ Bk(σ−k)||σ−k − ρ−kn | ≤ εn}. Clearly ρkn ∈ H(Bk
n). We now show

that the sequence (ρkn, ρ
−k
n ) satis�es the hypotheses of Corollary 1. For any αkn ∈ Bk

n there is
σ−kn with |σ−kn − ρ−kn | ≤ εn such that Gk(αkn, σ

−k
n ) = 0 and vk(αkn, σ

−k
n ) = V k(σ−kn ). Taking

γkn = max
αk∈Ak

max
|σ−k−ρ−k|≤εn

|Gk(αk, σ−k)−Gk(αk, ρ−k)|

we see that Gk(αkn, ρ
−k
n ) ≤ γkn. Since Gk is continuous on a compact set it is uniformly

continuous so γkn → 0. Moreover if αkn ∈ Bk
n then clearly vk(αkn, ρ

−k
n ) ≥ V k

εn(ρ−kn ). The
result now follows from Corollary 1.

Leadership Equilibrium

For ν > 0 de�ne V k
ν (ρ−k) = supαk∈Ak|Gk(αk,ρ−k)<ν v

k(αk, ρ−k) and Bk
ν (ρ−k) to be the

set of plans αk satisfying Gk(αk, ρ−k) ≤ ν and vk(αk, ρ−k) ≥ V k
ν (ρ−k).

De�nition 15. We say that ρ is a strict ν- equilibrium if ρk ∈ H[Bk
ν (ρ−k)] for all k.

Theorem 8. Strict ν- equilibria exist.

Proof. It is su�cient to show that Bk
ν is UHC. By Theorem 17.35 in Aliprantis and Border

(2007) we then know that H[Bk
ν (ρ−k)] is also UHC. Existence of strict ν- equilibrium then

follows by Kakutani's �xed point theorem.
Consider a sequence (αkn, ρ

−k
n ) such that αkn ∈ Bk

ν (ρ−kn ). Suppose that limn→∞ α
k
n = αk

and limn→∞ ρ
−k
n = ρ−k. By continuity, Gk(αkn, ρ

−k
n ) ≤ ν for all n implies that Gk(αk, ρ−k) ≤

ν. Suppose by contradiction, vk(αk, ρ−k) < V k
ν (ρ−k). By the continuity of vk it follows that
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for su�ciently large n we have vk(αkn, ρ
−k
n ) < V k

ν (ρ−k). Since vk(αkn, ρ
−k
n ) ≥ V k

ν (ρ−kn ) this
implies V k

ν (ρ−kn ) < V k
ν (ρ−k). Hence there is some α̂k such that Gk(α̂k, ρ−k) < ν and

V k
ν (ρ−kn ) < vk(α̂k, ρ−k). By continuity of Gk and vk this in turn implies that for su�ciently

large n we have Gk(α̂k, ρ−kn ) < ν and V k
ν (ρ−kn ) < vk(α̂k, ρ−kn ) contradicting the de�nition of

V k
ν (ρ−kn ).

Theorem 9. ρ is a perfect Bayesian equilibrium of the leader evaluator game if and only
if it is a strict ν-equilibrium.

Proof. Suppose ρ is perfect Bayesian. Let µk and ηi be the corresponding leader and
evaluator strategies. It su�ces to show that µk[Bk

ν (ρ−k)] = 1. Denote the equilibrium
utility of leader k by Uk.

Let Dk
ν be the subset of Ak for which Gk(αk, ρ−k) > ν. For αk ∈ Dk

ν there is an i with
k(i) = k for whom it is optimal to choose ηi(αk)[αk] = 0, hence utility for the leader is at
most max vk − P for those choices of αk. Suppose d = µk[Dk

ν ] > 0. Let α̂k ∈ Ak satisfy
Gk(α̂k, ρ−k) = 0 which we know exists. Consider µ̂k that takes the weight from Dk

v and
puts it on α̂k. The utility from µ̂k is at least (1−d)Uk+d(Uk+min vk−max vk+P ) which
is bigger than Uk since P > max vk −min vk. Hence d = 0.

Let D̃k
ν be the subset of Ak for which vk(αk, ρ−k) < V k

ν (ρ−k)− ε. Suppose d̃ = µk[D̃k
ν ] >

0. Let α̃k ∈ Ak satisfy Gk(α̃k, ρ−k) < ν and vk(α̃k, ρ−k) > V k
ν (ρ−k) − ε/2 which we know

exists. By evaluator optimality we have ηi(α̃k)[α̂k] = 1 for all k(i) = k. Consider µ̃k that
takes the weight from D̃k

v and puts it on α̃k. The utility from µ̃k is at least Uk + dε/2 so
d̃ = 0. Since Bk

ν (ρ−k) ⊆ Dk
ν ∪ D̃k

ν we see that that indeed µk[Bk
ν (ρ−k)] = 1.

Now suppose that ρ is a strict ν-equilibrium. Since ρk ∈ H[Bk
ν (ρ−k)] there exist measures

µk with µk[Bk
ν (ρ−k)] = 1 and ρk =

´
σµk(dσ) so it su�ces to �nd ηi that together with µk

form a perfect Bayesian equilibrium. Let ᾱi(αk) ∈ arg maxαi u
i(αi, αk, ρ−k) be measurable.

Observe that it cannot be that Gk(αk, ρ−k) < ν and vk(αk, ρ−k) > V k
ν (ρ−k), so consider

the following evaluator optimal choice of ηi

(i) if Gk(αk, ρ−k) > ν then ηi[ᾱi(αk)] = 1 and note that in this case ᾱi(αk) 6= αi for at
least one i

(ii) if Gk(αk, ρ−k) ≤ ν and vk(αk, ρ−k) ≤ V k
ν (ρ−k) then ηi[αi] = 1

(iii) if Gk(αk, ρ−k) = ν and vk(αk, ρ−k) > V k
ν (ρ−k) some evaluator j is indi�erent

between αj and some ¯̄αj 6= αj (and this evaluator can be chosen in a measurable way).
For i 6= j take ηi[αi] = 1. For j choose ηj [ ¯̄αj ] =

(
vk(αk, ρ−k)− V k

ν (ρ−k)
)
/P and ηj [αj ] =

1− ηj [ ¯̄αj ].
Then if αk ∈ Bk

ν (ρ−k) the leader utility is exactly V k
ν (ρ−k), while if Gk(αk, ρ−k) > ν

then leader utility is at most max vk −P . Hence αk is at least as good as any other choice,
and indi�erent to any other choice in Bk

ν (ρ−k). It follows that µk is optimal for leader k.

Lemma 2. V k
ν (ρ−k) ≥ V k

ε (ρ−k) for any ε > 0.

Proof. From

V k
ν (ρ−k) = sup

αk∈Ak|Gk(αk,ρ−k)<ν
vk(αk, ρ−k)

≥ sup
αk∈Ak|Gk(αk,ρ−k)=0

vk(αk, ρ−k) = V k(ρ−k) ≥ V k
ε (ρ−k)
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the stated inequality follows.

Theorem 10. If ρn is a sequence of strict νn-equilibria, νn → 0 and ρn → ρ then ρ is a
collusion constrained equilibrium.

Proof. Let γn = νn and notice that for any α
k
n ∈ Bk

νn(ρ−kn ) we have vk(αkn, ρ
−k
n ) ≥ V k

νn(ρ−kn ) ≥
V k
εn(ρ−kn ) by Lemma 2 for some sequence εn → 0. Result now follows from Corollary 1.

Perturbed Equilibrium: Existence and Upper HemiContinuity

Theorem 11. A perturbed equilibrium exists for any perturbation.

Proof. Notice that for any perturbation wk(αk, r−kk (ρ−k))−Ck(αk, r−kk (ρ−k)) is continuous

in its arguments. By the Maximum Theorem we then get the correspondence arg maxαk w
k(αk, r−kk (ρ−k))−

Ck(αk, r−kk (ρ−k)) to be UHC. In turn by Theorem 17.35 in Aliprantis and Border (2007),

H[arg maxαk w
k(αk, r−kk (ρ−k))−Ck(αk, r−kk (ρ−k))] is UHC. Existence of perturbed equilib-

ria then follows from the Kakutani �xed point theorem.

Theorem 12. If ρ is justi�able then it is a collusion constrained equilibrium.

Proof. Suppose ρ is justi�able. Then there exists a sequence of perturbations r−kkn , C
k
n, w

k
n

such that maxρ−k |r−kkn (ρ−k)−ρ−k| → 0, Ckn is a high cost sequence, and maxαk,ρ−k |wkn(αk, ρ−k)−
vk(αk, ρ−k)| → 0, each with a perturbed equilibrium ρn that converges to ρ.

Let Bk
wcn = arg maxαk w

k
n(αk, r−kkn (ρ−k)) − Ckn(αk, r−kkn (ρ−k)). Let ṽ = max vk −min vk.

Let δn1 = maxαk,ρ−k |wkn(αk, r−kkn (ρ−k)) − wkn(αk, ρ−k)| and δn2 = maxαk,ρ−k |wkn(αk, ρ−k) −
vk(αk, ρ−k)|. Since Ckn is a high cost sequence, for all large enough n, Gk(αk, ρ−k) > γkn
would imply Ckn(αk, ρ−k) > 2(ṽ + δn1 + δn2) and since maxρ−k |r−kkn (ρ−k) − ρ−k| → 0, also

Ckn(αk, r−kkn (ρ−k)) > ṽ + δn1 + δn2. So for all su�ciently large n, αk ∈ Bk
wcn would mean

Gk(αk, ρ−k) ≤ γkn.
LetW k

n (ρ−k) = maxαk∈Ak|Gk(αk,r−kkn (ρ−k))=0w
k
n(αk, r−kkn (ρ−k)). Suppose αkn ∈ Bk

wcn; then

for large enough n it must be that

wkn(αkn, r
−k
kn (ρ−k)) ≥W k

n (ρ−k) ≥ V k
S (ρ−k)− δn1 − δn2

This in turn means

vk(αkn, ρ
−k) ≥W k

n (ρ−k)− δn1 − δn2 ≥ V k
S (ρ−k)− 2δn1 − 2δn2

Notice that the sets Bk
wcn therefore satisfy the premise of Lemma 1 if we set the scalars

V k
n equal toW k

n (ρ−k)−δn1−δn2. So we know that ρ must be such that for all k, ρk ∈ H(Bk)
where Bk is the set of αk that satis�esGk(αk, ρ−k) = 0 and vk(αk, ρ−k) ≥ lim inf V k

n . Finally
note that

lim inf W k
n (ρ−k)− δn1 − δn2 ≥ lim inf V k

S (ρ−k)− 2δn1 − 2δn2 ⇒ lim inf W k
n (ρ−k) ≥ V k

S (ρ−k).

ρ is therefore a collusion constrained equilibrium.
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Perturbed Equilibrium: Lower HemiContinuity

Theorem 13. If ρ is a collusion constrained equilibrium then it is justi�able.

Proof. We are given a collusion constrained equilibrium ρ and want to �nd a sequence of per-
turbations with perturbed equilibria ρn → ρ. In fact the construction we are going to suggest
will do something stronger, the idea is to construct a series of perturbations with perturbed
equilibria ρ which obviously converges to itself. Recall that ρk ∈ H[Bk

S(ρ−k)]. The idea is
to �nd a perturbed equilibrium so that arg maxαk w

k
n(αk, r−kk (ρ−k)) − Ckn(αk, r−kk (ρ−k)) =

Bk
S(ρ−k); then clearly ρk itself is in H[arg maxαk w

k
n(αk, r−kk (ρ−k))− Ckn(αk, r−kk (ρ−k))].

Step 1: Choose, for each k, a sequence σ−kkn with σ−kkn → ρ−k and V k(σ−kkn )→ V k
S (ρ−k).

We know that we can �nd such a sequence by the de�nition of V k
S (ρ−k): it is the limit of

the worst of the local best, so there must be some sequence of local best that converges to
it.

Constants: De�ne G
k
(σ−k) = maxαk |Gk(αk, σ−k) − Gk(αk, ρ−k)|, G

k
n = G

k
(σ−kkn ), and

similarly V (σ−k) = max{0, V k(σ−k) − V k
S (ρ−k)}, V k

n = V (σ−kkn ) and note that both G
k
n

and V
k
n go to zero as n → ∞. Also let vk(σ−k) = maxαk |vk(αk, σ−k) − vk(αk, ρ−k)|

and vkn = vk(σ−kkn ); observe that vkn → 0. Take λkn = 1/

√
G
k
n which goes to in�nity,

κkn = 3(vkn + V
k
n + λknG

k
n) which goes to zero and γkn = 1/

√
λkn which goes to zero.

The functions wkn(αk, σ−k) and C
k
n(αk, σ−k): De�ne �rstDk

n(αk) = max{0, vk(αk, ρ−k)−
V k
S (ρ−k)}+λknG(αk, ρ−k) and dkn(αk) = min{Dk

n(αk), κkn}. This converges uniformly to zero.

We then take C
k
n(αk, σ−k) = Dk

n(αk) − dkn(αk) and wkn(αk, σ−k) = vk(αk, ρ−k) − dkn(αk).
Observe that

wkn(αk, σ−k)− Ckn(αk, σ−k) =vk(αk, ρ−k)−Dk
n(αk)

=vk(αk, ρ−k)−max{0, vk(αk, ρ−k)− V k
S (ρ−k)} − λknG(αk, ρ−k)

= min{vk(αk, ρ−k), V k
S (ρ−k)} − λknG(αk, ρ−k)

Key fact : arg maxαk w
k
n(αk, σ−k) − Ckn(αk, σ−k) = Bk

S(ρ−k). To see this consider the
maximizers of min{vk(αk, ρ−k), V k

S (ρ−k)} − λknG(αk, ρ−k). For the elements of Bk
S(ρ−k),

that is the αk for which G(αk, ρ−k) = 0 and vk(αk, ρ−k) ≥ V k
S (ρ−k), the expression equals

V k
S (ρ−k). Outside Bk

S(ρ−k), that is for αk such that Gk(αk, ρ−k) > 0 or vk(αk, ρ−k) <
VS(ρ−k), the expression is lower than that value. This proves the assertion.

Properties: There exists εkn > 0 such that |σ−k − σ−kkn | ≤ ε
k
n implies

(i) if Gk(αk, σ−k) > γkn then C
k
n(αk, σ−k) ≥ λknγkn − κkn − 2λknG

k
n →∞

(ii) if Gk(αk, σ−k) = 0 then C
k
n(αk, σ−k) = 0

(iii) |wkn(αk, σ−k)− vk(αk, σ−k)| ≤ 2vkn + κkn → 0
Proof of these:
(i) C

k
n(αk, σ−k) ≥ λknG(αk, ρ−k) − κkn ≥ λknG(αk, σ−k) − κkn − λknG

k
(σ−k), so choose εkn

small enough that G
k
(σ−k) ≤ 2G

k
n.

(ii) Choose εkn > 0 such that for all |σ−k − σ−kkn | < εkn we have maxαk |Gk(αk, σ−k) −
Gk(αk, σ−kkn )| ≤ G

k
n. Note that maxαk |Gk(αk, σ−kkn ) − Gk(αk, ρ−k)| = G

k
n. Hence by the

triangle inequality Gk(αk, σ−k) = 0 implies Gk(αk, ρ−k) ≤ 2G
k
n.
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Since V k
S can not jump up we may choose εkn > 0 such that for all |σ−k − σ−kkn | < εkn we

have V k
S (σ−k) ≤ V k

S (σ−kkn ) + vkn. Note that V k
S (σ−kkn ) ≤ V k

S (ρ−k) + V
k
n. Hence V k

S (σ−k) ≤
V k
S (ρ−k) + vkn + V

k
n. Therefore G

k(αk, σ−k) = 0 implies vk(αk, σ−k) ≤ V k
S (ρ−k) + vkn + V

k
n.

Finally choose εkn > 0 such that for all |σ−k − σ−kkn | < εkn we have maxαk |vk(αk, σ−k)−
vk(αk, σ−kkn )| ≤ vkn. Hence by the triangle inequality maxαk |vk(αk, σ−k)−vk(αk, ρ−k)| ≤ 2vkn.

Putting these inequalities together we see that Gk(αk, σ−k) = 0 implies that Dk
n(αk) =

max{0, vk(αk, ρ−k) − V k
S (ρ−k)} + λknG(αk, ρ−k) ≤ 3vkn + V

k
n + 2λknG

k
n ≤ κkn, which in turn

implies C
k
n(αk, σ−k) = 0.

(iii) Recalling that εkn > 0 is such that for all |σ−k−σ−kkn | < εkn we have maxαk |vk(αk, σ−k)−
vk(αk, σ−kkn )| ≤ vkn, property (iii) follows from

|wkn(αk, σ−k)− vk(αk, σ−k)|
≤ |vk(αk, σ−k)− vk(αk, σ−kkn )|+ |vk(αk, σ−kkn )− vk(αk, ρ−k)|+ dkn(αk) ≤ 2vkn + κkn

Step 2: We now have wkn(αk, σ−k) and C
k
n(αk, σ−k) which are de�ned in a εkn-neighborhood

of σ−kkn and have the right properties there. For |σ−k − ρ−k| < εkn we de�ne r−kkn (σ−k) = σ−kkn
(taking advantage of the fact that these need not be the same for all k). We must now
extend these to functions wkn(αk, σ−k), Ckn(αk, σ−k), r−kkn (σ−k) on all of R−k while preserving

the right properties and the values of wkn(αk, σ−kkn ), C
k
n(αk, σ−kkn ) and r−kkn (ρ−k). We can do

this with a simple pasting. Let βkn(x) be a non-negative continuous real valued function
taking the value of 1 at x = 0 and the value of 0 for x ≥ εkn. Then we de�ne

wkn(αk, σ−k) = βkn(|σ−k − σ−kkn |)w
k
n(αk, σ−k) + (1− βkn(|σ−k − σ−kkn |))v

k(αk, σ−k)

Ckn(αk, σ−k) = βkn(|σ−k − σ−kkn |)C
k
n(αk, σ−k) + (1− βkn(|σ−k − σ−kkn |))λ

k
nG

k(αk, σ−k)

rkn(σ−k) = βkn(|σ−k − σ−kkn |)r
k
n(σ−k) + (1− βkn(|σ−k − σ−kkn |))σ

−k.

It is easy to check that these pasted functions have the correct properties. Note that

requiring wkn(αk, σ−k) and C
k
n(αk, σ−k) to have the right properties in the εkn-neighborhood

of σ−kkn ensures that the above convex combinations inherit those properties.

Web Appendix 1: Analysis of the Leading Example

Recall the payo� matrices if player 3 plays C (left) or D (right)

C D

C 6, 6, 5 0, 8, 0

D 8, 0, 0 2, 2, 0

C D

C 10, 10, 0 0, 8, 5

D 8, 0, 5 2, 2, 5

Given α3 the payo� matrix for players 1, 2 is then
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C D

C 6 + 4(1− α3), 6 + 4(1− α3) 0, 8

D 8, 0 2, 2

so that if α3 < 1/2 they play CC, if α3 > 1/2 they play DD.

Nash Equilibrium

There is no Nash where α3 > 1/2 for if 1 and 2 play DD (as they have to in equilibrium)

player 3 prefers D (α3 = 0 ). Similarly for α3 = 1/2: if 1 and 2 play CC player 3 strictly

prefers C; if they play DD she strictly prefers D.

Examining α3 < 1/2. The CC equilibrium for 1 and 2 cannot be part of equilibrium

because then 3 prefers C (α3 = 1). Hence 1 and 2 must either play DD or mix.

If 1 and 2 play DD then 3's best response is D that is α3 = 0 and therefore DDD is

Nash.

Suppose then 1 and 2 mix. From α1 = α2 = 1/2(1 − α3) we see that α1 = α2 ≥ 1/2.

Player 3 prefers D strictly if α1 = α2 < 1/
√

2, so the only Nash in this range has α1 =

α2 = 1/2, α3 = 0.

For α1 = α2 = 1/
√

2 there is a fully mixed equilibrium with α1 = α2 = 1/
√

2 and α3

given by 1/2(1− α3) = 1/
√

2 that is α3 = 1− 1/
√

2.

There are no equilibria with α1 = α2 > 1/
√

2 because for such values 3 prefers C and

we have seen that this cannot happen in equilibrium.

In conclusion there are three Nash equilibria: DDD, one where 3 plays D and 1 and 2

mix 50-50 between C and D, and a fully mixed one α1 = α2 = 1/
√

2 ≈ 0.7, α3 = 1−1/
√

2 ≈
0.3.

The payo�s to the Nash equilibrium: in DDD payo�s are 2, 2, 5. In the partially mixed

payo�s are 5, 5, 5.. In the fully mixed payo�s are ς, ς, 2.5 where ς = 8/
√

2 + 2(1− 1/
√

2) ≈
6.24.

Perturbations

We ease notation a bit. Group 2 is just player 3 who has to choose between C and D;

we let α3 = ρ2[C] = ρ−1[C]. We will drop the superscript from ρ1 = ρ−2 so this is going to

be ρ, with ρCC , ρDD the probabilities that group 1 plays CC or DD. For individual play

we will also use αi for the probability that i = 1, 2 plays C.

Player 3 payo� from C is 5ρCC , fromD it is 5(1−ρCC) so indi�erence imposes ρCC = 1/2:

if ρCC > 1/2 he plays C, if ρCC < 1/2 he plays D.
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Belief Equilibrium

Assume Dirichlet belief model (de�ned inWeb Appendix 2). What do the group response

functions look like? Recall that σ indicates the beliefs variable. For group 1 they play only

CC and DD, and the probability F 1(α3)[CC] of playing CC is the probability that the

belief σ−1[C] < 1/2; this is strictly between 0 and 1, symmetric around α3 = 1/2 where it

is equal to 1/2 and strictly decreasing in α3.

For player 3 the probability F 2(ρ)[C] of playing C is the probability that the belief

σ−2[CC] > 1/2; this is strictly between 0 and 1 and strictly increasing in ρCC .

Consider what happens at ρCC = ρDD = 1/2 and write f21/2(σ
−2) for the density of 2's

beliefs. Then by symmetry

f21/2(σ
−2[CC] = s|σ−2[CC]+σ−2[DD] = S) = f21/2(σ

−2[DD] = s|σ−2[CC]+σ−2[DD] = S)

so that

f21/2(σ
−2[CC] = s|σ−2[CC]+σ−2[DD] = S) = f21/2(σ

−2[CC] = S−s|σ−2[CC]+σ−2[DD] = S)

In other words given σ−2[CC] + σ−2[DD] = S then σ−2[CC] is symmetric around S/2,

hence σ−2[CC] > 1/2 occurs less than 1/2 the time so F 2(ρCC)[C] < 1/2. Hence the

intersection of F 1, F 2 occurs for α3 < 1/2 and and ρCC > 1/2, with ρCD = ρDC = 0, as

illustrated in the picture below:

α3

ρ1CC

1/2

1/2

F 1(α3)[CC]

F 2(ρ1CC)[C]

1

1

As beliefs converge to true values the F 2 function shifts to the right and the intersection

occurs at (1/2, 1/2).

Player 3 in Leadership and Costly Collusion Equilibrium

Player 3's incentive constraint is the same as his objective function: he has the standard

best response function, if ρ1CC > 1/2 he plays C, if ρ1CC < 1/2 he plays D and if ρ1CC = 1/2

he is indi�erent. Because player 3 is the only one in his group he faces no incentive constraint

and hence ν does not matter.
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Costly Collusion Equilibrium

We use the high cost sequence de�ned in example 2 which is

Ckn(αk, ρ−k) =
πn

1− πn

∑
k(i)=k

Gi(αk, ρ−k)

with πn → 1. To pin down the group's best response correspondence note that for α3 ≤
1/2, it is simply CC. If the group chooses CC, the objective function takes a value of

2[6 + 4(1 − α3)] − 2 πn
1−πn [2 − 4(1 − α3)]. This turns out to be higher than the value of 4

achieved by playing DD if and only if α3 < 4−3πn
2 . It turns out that no other mixed strategy

pro�le is ever an element of the best response set. Consider any mixed strategy pro�le for

the group. The group payo� would then be

α1α22[6 + 4(1− α3)] + [α1(1− α2) + α2(1− α1)]8

+ (1− α1)(1− α2)4− πn
1− πn

[2α1α2[2− 4(1− α3)] + [α1(1− α2) + α2(1− α1)]2]

which can be rewritten as

(α1α2)

{
2[6 + 4(1− α3)]− πn

1− πn
2[2− 4(1− α3)]

}
+
[
α1(1− α2) + α2(1− α1)

]{
8− 2

πn
1− πn

}
+
[
(1− α1)(1− α2)

]
4

For πn > 4/5 the term 8 − 2 πn
1−πnmust be negative. So the value to the group from

such a mixed strategy pro�le is the convex combination of the group's value from playing

CC, the negative quantity 8− 2 πn
1−πn and 4. When α3 > 4−3πn

2 then the group's value from

playing CC is strictly less than 4. Consequently every mixed strategy pro�le other than

DD must give a value strictly less than 4. Hence the unique group best reply is DD. When

α3 < 4−3πn
2 then the group's value from playing CC is strictly greater than 4. So every

mixed strategy pro�le other than CC must have a value strictly less than that from playing

CC. The unique group best reply is therefore CC. Similarly when α3 = 4−3πn
2 CC and DD

are the only elements of the group best reply correspondence.

It follows immediately that the costly collusion equilibrium consists of the group ran-

domizing half half between CC and DD while player 3 plays α3 = 4−3πn
2 , for all πn > 4/5.

It is easy to see how this equilibrium converges to the CCE as πn → 1.

Leadership Equilibrium

For α3 < 1/2 playing CC is incentive compatible for the group, the question is how

much can they mix out of the unique bad equilibrium DD when α3 > 1/2 given that they

are willing to forgo gains not larger than ν.
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From the payo� matrix of group 1 we see that utility for player 1 is given by u1(α1, α2, α3) =

4α1α2(1−α3)−2α1+6α2+2. The group utility (with weights β1 = β2 = 1) is v1(α1, α2, α3) =

u1 + u2 = 8α1α2(1− α3) + 4α1 + 4α2 + 4; notice that it is increasing in α1 and α2 for any

α3.

Consider the utility gained by player 1 upon deviating from (α1, α2, α3) to (0, α2, α3),

namely 2α1[1− 2α2(1− α3)]. This is strictly positive when α3 > 1/2 for any positive value

of α1 and so the optimal deviation from such pro�les is precisely to play D with utility

6α2 + 2 and utility gain 2α1[1 − 2α2(1 − α3)]. Group 1 must play ν-incentive compatible

pro�les, that is pro�les with gain not larger than ν.

When α3 > 1/2 increasing α2 reduces the utility gain from player 1's optimal deviation

and hence relaxes the incentive constraint for any ν. So in a strict ν-equilibrium we should

choose α1 = α2 and either the constraint binds in that 2α1[1 − 2α1(1 − α3)] = ν or α1 =

α2 = 1 since group utility is increasing in both α1 and α2 for any α3.

Notice that the utility gain G(α1) = −4(α1)2(1 − α3) + 2α1 is quadratic concave with

G(0) = 0, G′ = 2[1− 4α1(1− α3)] so that G′(0) > 0 and G′(1) = 2[1− 4(1− α3)] meaning

G′(1) < 0 for α3 < 3/4.

Since group utility increases in α1 and α2, if the utility gain at α1 = α2 = 1 that is

G(1) = 2[1 − 2(1 − α̂3)] turns out to be less than ν group 1 plays CC and player 3 plays

C - not an equilibrium. If this is greater than ν then regardless of the sign of G′(1), G(α1)

reaches ν while increasing, and group 1 plays α̂1 = α̂2 such that G(α̂1) = ν - that is, both

players mix a little just until the incentive constraint is satis�ed with equality. For small

enough ν the solution to G(α̂1) = ν must be an α̂1 so small that ρ1CC < 1/2. This in turn

would make player 3 play D - again not an equilibrium.

Finally consider the case of G(1) = ν so that group 1 shadow mixes between CC and

the smaller solution of −4(α̂1)2(1 − α̂3) + 2α̂1 = ν. For this to be an equilibrium, since

player 3 is mixing, player 1 must mix so that ρ1CC = 1/2. Letting p be the probability of

shadow mixing on CC we may compute p+ (1− p)(α̂1)2 = ρ1CC = 0.5 from which we get

p =
0.5− (α̂1)2

(1− (α̂1)2)
.

So in this equilibrium player 3 has a greater than 50% chance of playing C and the

group has a less than 50% chance of playing DD, a 50% chance of playing CC and some

small chance of playing CD,DC. Here the solution for player 3 is on the opposite side of

1/2 from the belief equilibrium case.

Thus equilibrium hasG(1) = G(α̂1) = ν that is 2α̂1[1−2α̂1(1−α̂3)] = 2[1−2(1−α̂3)] = ν.

As ν → 0 we get α̂3 → 1/2 and the smaller solution α̂1 → 0 so that in the limit the group

shadow mixes half half between CC and DD.
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Web Appendix 2: A Dirichlet Based Family of Random Belief Models

We show here that there are ε-random belief models for every positive value of ε. An

obvious idea is to take a smooth family of probability distributions with mean equal to the

truth and small variance. A good candidate for a smooth family is the Dirichlet since we

can easily control the precision by increasing the "number of observations." However using

an unbiased probability distribution will not work - it is ill-behaved on the boundary: if we

try to keep the mean equal to the truth, then as we approach the boundary the variance

has to go to zero, and on the boundary there will be a spike. A simple alternative is to

bias the mean slightly towards a �xed strictly positive probability vector alpha with a small

weight on that vector, and then let that weight go to zero as we take the overall variance

to zero.Set h(ε) = (ε/2)3. Fix a strictly positive probability vector over A−k denoted by

β−k and call the ε-Dirichlet belief model the Dirichlet distribution with parameter vector

(dimension cardinality of A−k)

1

h(ε)

[
(1− ε

2
√

2
)α−k(a−k) +

ε

2
√

2
β−k(a−k)

]
Theorem 14. The ε-Dirichlet belief model is an ε-random belief model.

Proof. Since the parameters are away from the boundary by at least ε/2 this has the requisite
continuity property. The random variable α̃ has mean α−k = (1− ε

2
√
2
)α−k+ ε

2
√
2
β−k. Since

the covariances of the Dirichlet are negative, E|α̃−k − α−k|2 is bounded by the sum of the
variances and we may apply Chebyshev's inequality to �nd

Pr[|α̃−k − α−k| > ε/2] ≤ E|α̃−k − ᾱ−k|2/(ε/2)2

To evaluate the last expression let δε(a
−k) ≡ 1

h(ε)

[
(1 − ε

2
√
2
)α−k(a−k) + ε

2
√
2
β−k(a−k)

]
and observe that

∑
a−k δε(a

−k) = 1/h(ε). Then by the standard Dirichlet variance formula
we have

E|α̃−k − ᾱ−k|2

(ε/2)2
=

1

(ε/2)2

(∑
a−k δε(a

−k)
)2 −∑a−k

(
δε(a

−k)
)2

(
∑

a−k δε(a
−k))

2
(
∑

a−k δε(a
−k) + 1)

≤ 1

(ε/2)2
(1/h(ε))2

(1/h(ε))2 (1/h(ε) + 1)
≤ h(ε)

(ε/2)2
=
ε

2

We also have |ᾱ−k−α−k| = ε
2
√
2
|α−k−β−k| ≤ ε

2 ; then |α̃
−k−α−k| > ε implies |α̃−k−α−k| >

ε/2; hence Pr(|α̃−k − α−k| > ε) ≤ Pr[|α̃−k − α−k| > ε/2] ≤ ε/2 ≤ ε, which shows that this
is indeed an ε-random belief model.
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Web Appendix 3: Analysis of the Voting Game in Section 7

We �rst summarize the structure of collusion constrained, Nash and free enforcement

equilibria in this model. There are a number of equilibria of di�erent kinds in the various

ranges of τ : (i) an equilibrium N where nobody votes (only for τ < 1/2); (ii) an equilibrium

L in which player 3 does not vote and the large group wins by casting a single vote. In the

case of Nash there is also (iii) an equilibrium S in which only player 3 votes (and wins); (iv)

equilibria L2, L3 where player 3 plays a pure strategy and the group members randomize

with positive probability on both voting and not voting; (v) a fully mixed equilibrium M in

which the large group members randomize as in the previous case; (v) two asymmetric mixed

equilibria A in which only one of the group members votes with positive probability. In

the case of collusion constrained equilibrium (CCE) and free enforcement equilibria (FEE)

there are two types of equilibria with player 3 mixing, which in the CCE case involve shadow

mixing: (vi) m1 and M1 in which the large group either stays out or casts a single vote;

and (vii) m2 and M2 in which the large group either stays out or casts two votes. In all the

equilibria where player 3 mixes the probability that neither group member votes is always

ρ1[0, 0] = 1/2τ .

We de�ne τ̃ ≡ 1/(3 −
√

5) ≈ 1.31. The entire set of equilibria is then given by the

following table calculated in Web Appendix 3.

lower τ upper τ CCE Nash FEE

0 1/2 N N N

1/2 3/4 m2 S L,M1,M2

3/4 1 m2 S L

1 τ̃ m2,m1, L S, L,A L

τ̃ 3/2 m2,m1, L S, L,M,A,L3 L

3/2 2 L S,L, L3 L

2 ∞ L S,L, L2, L3 L

There are several basic points. If τ < 1/2 then it is strictly dominant for player 3 not to

vote: if the group casts no votes not voting gives 0 rather than τ − 1, and if the group does

cast votes then voting has no e�ect or results in an undesirable tie. Given that player 3 is

not voting and τ < 1/2 it is optimal both for player 1 and player 2 individually not to vote

and for the group as a whole for neither of them to vote - there is no con�ict here between

individual incentives and group goals. Hence - in all types of equilibrium, CCE, Nash and

FEE - when τ < 1/2 the unique equilibrium involves no voting and this is e�cient.

The interesting case is what happens when the stakes increase to τ > 1/2. Here it

cannot be an equilibrium for nobody to vote because in this case player 3 would prefer to

vote. Of particular interest are the S and L equilibria: these are always the best for the
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small and large group respectively. To see this, observe that the best that can happen if

nobody in a group votes is to get 0. On the other hand the best thing that can happen if

a group casts at least one vote is that it casts only one vote and it wins, in which case the

group gets 2τ −1. When τ > 1/2 this is better than not voting. In the equilibrium S and L

in which exactly one player votes total welfare is always −1 re�ecting the cost of the single

vote that is cast.

Additional observations from Web Appendix 3 are the following. There are a few pa-

rameter ranges where there are equilibria giving higher welfare than the S,L value of −1:

for FEE the M1 when it exists gives higher welfare; for CCE m1 gives higher welfare in the

range 1 ≤ τ ≤ 9/8. All remaining equilibria give welfare less than −1. In the Nash case S

is always an equilibrium and indeed for τ < 1 this is the only equilibrium. By contrast in

CCE and FEE the small player always gets a negative utility. Moreover in both cases when

the stakes τ are high enough the only equilibrium is L - although this occurs for a smaller

value of τ for FEE than CCE.

In the range 1/2 < τ < 3/2 shadow mixing is a possibility for CCE and for 1/2 < τ < 1

there is a unique CCE with shadow mixing m2. In the shadow mixing equilibria the small

group does better than at L while the large group does worse than L.

It is interesting to compare m2 and M2 in the range 1/2 < τ < 3/4, the former for

CCE and the latter for FEE. In both equilibria the group mixes the same way, but the

third player must vote more frequently in CCE than in FEE. The reason is that if the third

player votes too infrequently then the incentive constraint fails when both members of the

group vote.

Another observation of interest is that there are CCE and FEE that give the large group

more utility but a lower probability of winning. Speci�cally in 1/2 < τ < 3/4 for FEE we

have that M1 is better for the large group than M2 but gives them a smaller probability

of winning, and the same is true for CCE in the range 1 < τ < τ̃ for the shadow mixing

equilibria m1and m2.

In the range 3/4 < τ < 1 equilibrium of all types are unique, which allows for sharp

equilibrium comparison. The Nash equilibrium is S, and the FEE is L. The CCE is less

e�cient than either, but the large group does better than S and does worse than L. In this

range as the stakes τ increase the probability of both members of the large group voting, the

probability of everyone voting and the probability of the large group winning all increase,

while total welfare decreases.

In a rough sense Nash is best for the small group, FEE is best for the large group and

CCE is in between. This rough �in between� picture also emerges in the sense that CCE

changes more gradually in favor of the large group as τ increases than does FEE.

Remark. With respect to welfare of the large group we have computed it in the obvious
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way as expected utility. For shadow mixing whether or not this is correct depends on
the underlying model - with random beliefs it is correct. However in costly enforcement
equilibrium shadow mixing appears as actual mixing, meaning that the group must be
indi�erent between the alternatives. In m1 and m2 staying out is strictly worse than casting
either one or two votes. Hence in the costly enforcement equilibrium the cost of overcoming
the incentive constraints to allow the casting of votes must exactly equal the di�erence in
utility between casting the votes and staying out: that is to say, all the gain from vote
casting must be dissipated in enforcement cost. Hence, in the limit, we should evaluate the
utility of the group as the least utility of pro�les over which shadow mixing occurs - that
is to say, the utility from staying out. From Web Appendix 3 we know that the expected
utility to the large group in m1,m2 is 3− 2τ − 1

2τ and −3 + 2τ + 1
2τ respectively while the

probability of player 3 not voting is 1
τ and 1 − 1

τ respectively. Hence the utility of staying
out is 2(1 − τ) and −2 respectively and this is the appropriate utility for the large group.
In particular in the range 1 ≤ τ ≤ 9/8 it is no longer true that m1 does better from an
overall welfare perspective than L and S.

In the leadership case the utility assigned to a group when shadow mixing is ambiguous.
From the perspective of the followers the correct calculation is expected utility. From the
perspective of the leader the correct calculation is the least utility of pro�les over which
shadow mixing occurs - from the leader's point of view the punishment needed to make him
indi�erent dissipates the bene�t of the better pro�les. One may wonder why anyone would
agree to be leader given that they get less utility than the followers. Although a discussion
of who leaders are and why they are leaders is beyond the scope of this paper it is natural
to imagine they get some additional compensation from the group for agreeing to be leader.
In this case the follower utility seems the most relevant.

We provide a more detailed summary of the di�erent types of equilibria and payo�s. The

�rst table summarizes the di�erent types of equilibria using the notation of the text. The

�rst column is the designation of the equilibrium. The second column gives the equilibrium

strategies. The �nal three columns give the total payo� of the group, player 3 and the sum

of all the payo�s respectively. The probability of voting in the group's mixed strategy is

denoted by p.

Next we give the ranges of τ for which these equilibria exist, where as above τ̃ ≈ 1.31.

The next table contains payo�s comparisons: we compare payo�s from the point of view

of the whole set of players, represented by the total payo�, and from the point of view of the

large group. We use �W and �1 to denote respectively welfare and large group preference.

We neglect M,L2 and L3 (notice that A is a special case of m1). Then we have:

The last table contains information about the electoral outcome. We let H = ρ11(1−α3)

denote the probability of all voting (High turnout); D = (1−α3)(1−ρ00−ρ11) the probability
of deadlock; and Λ = α3(1 − ρ00) + (1 − α3)ρ11 the probability that large group wins. In
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Table 1: Equilibrium Table

Equilibrium Strategies Group Payoff Pl . 3 Payoff Total Payoff (W )
N α3 = ρ00 = 1 0 0 0
L α3 = 1, ρ10 + ρ01 = 1 2τ − 1 −2τ −1
S α3 = 0, ρ00 = 1 −2τ 2τ − 1 −1
m1 α3 = 1

τ , ρ00 = 1
2τ , ρ10 + ρ01 = 1− 1

2τ 3− 2τ − 1
2τ 1− 2τ 4− 4τ − 1

2τ
M1 α3 = 1

2τ , ρ00 = 1
2τ , ρ10 + ρ01 = 1− 1

2τ 1− 2τ 1− 2τ 2− 4τ
m2 α3 = 1− 1

2τ , ρ00 = 1
2τ , ρ11 = 1− 1

2τ −3 + 2τ + 1
2τ 1− 2τ −2 + 1

2τ
M2 α3 = 2(1− 1

2τ ), ρ00 = 1
2τ , ρ11 = 1− 1

2τ 2τ − 2 1− 2τ −1
L2 α3 = 1, p = 1− 1

τ 2τ − 2 −2τ + 2
τ −2 + 2

τ
L3 α3 = 0, p = 1

2τ −2τ 2τ − 5 + 1
τ −5 + 1

τ

M α3 = 1
τ
2pτ−1
3p−1 , p = 1− 1√

2τ
2
√
2τ−τ

√
2τ−1+3τ

3−2
√
2τ

1− 2τ 1− 2τ + 2
√
2τ−
√
2τ

3
2−1+3τ

3−2
√
2τ

A α3 = 1
τ , pi = 1− 1

2τ , pj = 0, i 6= j = 1, 2 3− 2τ − 1
2τ 1− 2τ 4− 4τ − 1

2τ

Table 2: Existence Table

lower τ upper τ CCE Nash FEE
0 1/2 N N N

1/2 3/4 m2 S L,M1,M2

3/4 1 m2 S L
1 τ̃ m2,m1, L S, L,A L
τ̃ 3/2 m2,m1, L S, L,M,A,L3 L

3/2 2 L S,L, L3 L
2 ∞ L S,L, L2, L3 L

the table the rows denote di�erent types of equilibria and the columns provide the relevant

values of H,D,Λ.

In the following: we �rst relate the tables to the assertions made in the text. Analysis

of collusion constrained, Nash and free enforcement equilibria in the game follows. Then

we provide payo� comparisons, and lastly electoral outcome probabilities. Throughout this

appendix we write ρab for ρ
1[a, b].

Assertions in the Discussion

From Tables 1 and 2 the total payo�W is negative except for the non-voting equilibrium

N .

From Table 3 M1 gives welfare greater than −1 and m1 gives welfare greater than −1

in the range 1 ≤ τ ≤ 9/8.

From Tables 1 and 2 all equilibria other than M1,m1 and N give welfare no more than

−1.

From Tables 1 and 2 in CCE and FEE the small player always gets a negative utility.
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Table 3: Payo�s comparisons

τ CCE Nash FEE �W �1

1/2 < τ < 3/4 m2 S L,M1,M2 M1 �W L ∼W S ∼W M2 �W m2 L �1 M1 �1 M2 �1 m2 �1 S
3/4 < τ < 1 m2 S L L ∼W S �W m2 L �1 m2 �1 S
1 < τ ≤ 9/8 m1,m2, L S, L L m1 �W L ∼W S L �1 m1 �1 m2 �1 S
9/8 ≤ τ < τ̃ m1,m2, L S, L L L ∼W S �W m1 �W m2 L �1 m1 �1 m2 �1 S
τ̃ < τ < 3/2 m1,m2, L S, L L L ∼W S �W m2 �W m1 L �1 m2 �1 m1 �1 S
3/2 < τ < 2 L S,L L S ∼W L L �1 S

τ > 2 L S,L L S ∼W L L �1 S

Table 4: Electoral outcome probabilities

ρ11 H D Λ
S 0 0 0 0
L 0 0 0 1
m1 0 0 (1− 1

2τ )(1− 1
τ ) 1

τ (1− 1
2τ )

m2 1− 1
2τ (1− 1

2τ ) 1
2τ 0 1− 1

2τ
M1 0 0 (1− 1

2τ )2 1
2τ (1− 1

2τ )
M2 1− 1

2τ (1− 1
2τ )( 1τ − 1) 0 1− 1

2τ

In the range 3/4 < τ < 1 from Table 3 m2 is less e�cient than S or L but the large

group does better than S and does worse than L.

In the range 3/4 < τ < 1 from Table 4 as the stakes τ increase at m2 the probability

of both members of the large group voting, the probability of everyone voting and the

probability of the large group winning all increase, while from Table 1 total welfare decreases.

In the range 1/2 < τ < 3/2 in m1 and m2 from Table 1 the small group does better

than at L with utility of 1− 2τ versus −2τ while from Table 3 the large group does worse

than L.

In the range 1/2 < τ < 3/4 from Table 1 in m2 and M2 the group mixes the same way,

but the third player must vote more frequently in m2 and M2 .

In the range 1/2 < τ < 3/4 for FEE we have from Table 3 that M1 �1 M2 but from

Table 4 gives them a smaller probability of winning Λ.

In the range 1 < τ < τ̃ for CCE we have from Table 3 that m1 �1 m2 but from Table

4 gives them a smaller probability of winning Λ.

Equilibria

It is convenient in the analysis of equilibria to create a single group 1 payo� matrix as

a function of α3 by averaging together the two matrices corresponding to 3 not voting and

voting.
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1 0

1 τ − 1, τ − 1 (2α3 − 1)τ − 1, (2α3 − 1)τ

0 (2α3 − 1)τ, (2α3 − 1)τ − 1 (α3 − 1)τ, (α3 − 1)τ

To the matrix above we add the constant 1 + τ(1 − 2α3) since this is independent of

group 1 play; this gives the following payo� matrix for group 1:

1 0

1 2τ(1− α3), 2τ(1− α3) 0, 1

0 1, 0 1− α3τ, 1− α3τ

We also make the observation that optimality of the small group (player 3) depends only

on ρ00 and that if ρ00 < 1/(2τ) ≡ Υ then α3 = 1, if ρ00 > Υ then α3 = 0 and if ρ00 = Υ

then player 3 is indi�erent. Notice also that Υ ≤ 1 if and only if τ ≥ 1/2. Hence if τ < 1/2

then α3 = 1 in any equilibrium.

Collusion Constrained Equilibria

Case 1: τ < 1/2. Nobody votes, equilibrium N . It is easy to check that this is the only

group correlated equilibrium.

Case 2: 1/2 < τ < 1. There is a unique CCE where α3 = 1−Υ , ρ00 = 1/(2τ) = Υ and

ρ11 = 1 − Υ. This is m2. This CCE has shadow mixing. The remaining group correlated

equilibria are: ρ00 = Υ, ρ11 = 1− ρ00 and 0 < α3 < 1− 1/(2τ); and α3 = 0, ρ00 ≥ Υ, ρ11 =

1− ρ00.

Proof. If 2τ(1− α3) < 1 that is α3 > 1− 1/2τ the only equilibrium for 1 is 00 and then 3
would prefer to vote whence α3 = 0. It must then be 2τ(1− α3) ≥ 1 that is α3 ≤ 1− 1/2τ
in any group correlated equilibrium. In this case the group faces a coordination game with
three Nash equilibria: both vote, neither votes and the symmetric mixed equilibrium.

Let p be the probability of voting in the symmetric mixed equilibrium. The indi�erence
is 2τ(1 − α3)p = p + (1 − p)(1 − α3τ) whence p = (1 − α3τ)/[τ(2 − 3α3)]. This increases
in α3 from p(0) = 1/2τ > 1/2 to p(1 − 1/2τ) = 1. Since α3 < 1 for this to be part of an
equilibrium 3 should weakly prefer voting (otherwise α3 = 1) and this means −[1 − (1 −
p)2] + (4τ − 1)(1− p)2 ≥ 2τ(1− p)2 which is equivalent to p ≤ 1− 1/

√
2τ < 1− 1/2τ < 1/2;

this is not in the range of equilibrium p's for group 1. Hence 1 playing their mixed Nash in
any group correlated equilibrium is ruled out.

Next: in any group correlated equilibrium the probability that 1 plays (0, 0) must be
positive, otherwise 3 prefers not voting (α3 = 1) and 1 would play (0, 0) for sure. And also
the probability that 1 plays (1, 1) must be positive, otherwise when 1 is told to vote he
knows 2 is not voting and would deviate. So ρ00, ρ11 > 0. For the possible values of ρ10 and
ρ01 we are left to consider there are the two cases where correlated equilibrium probability
is concentrated on (1, 1), (1, 0), (0, 0) or on (1, 1), (0, 1), (0, 0). They are essentially the same,
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we consider the �rst. Player 1 indi�erence gives ρ11 · 2τ(1−α3) = ρ11 +ρ10(1−α3τ) that is
ρ11[2τ(1−α3)−1] = ρ10(1−α3τ) and analogously from player 2 we get ρ10[2τ(1−α3)−1] =
ρ00(1 − α3τ); from ρ11 + ρ10 + ρ00 = 1, letting A = [2τ(1 − α3) − 1]/(1 − α3τ) we get in
particular ρ00 = A2/(1+A+A2). Again player 3 should weakly prefer voting, which in this
case gives −(ρ11+ρ10)+(4τ−1)ρ00 ≥ 2τρ00 that is ρ00 ≥ 1/2τ . Thus for 1's CE to be part of
an equilibrium it must be 2τ ≥ (1+A+A2)/A2. Now the RHS decreases in A and A reaches
its maximum for α3 = 0 where its value is A0 = 2τ−1. So (1+A+A2)/A2 ≥ 1+2τ/(2τ−1)2.
But since 0 < 2τ−1 < 1 we have (2τ−1)3 < 2τ which is equivalent to 2τ < 1+2τ/(2τ−1)2,
whence 2τ ≥ (1 + A + A2)/A2 is false for all admissible values of A. This shows that
ρ01 = ρ10 = 0 in any group correlated equilibrium.

Summing up, group correlated equilibria have α3 ≤ 1 − 1/2τ and ρ00 + ρ11 = 1 with
ρ00, ρ11 > 0. That player 3 should weakly prefer voting gives ρ00 ≥ Υ, with equality if
α3 > 0. This yields the equilibrium set in the statement.

For CCE: The threshold between dominant strategy and coordination game occurs when
given that one party member votes the other is indi�erent to voting: the condition is
2τ(1−α3) = 1 so that α3 = 1− 1/(2τ). This is strictly positive, so ρ00 = Υ. The equilibria
with smaller α3 are not CCE because collusion would lead the group to play the voting
equilibrium for sure.

Case 3: 1 < τ < 3/2. There are three sets of CCEs: (a) a continuum of CCEs where

player 3 does not vote and the group mixes with any probability over (1, 0) and (0, 1), which

is L; (b) a CCE where α3 = 1− 1/2τ and the group plays (1, 1) with probability 1− 1/2τ

and (0, 0) with probability 1/2τ , which is m2 and (c) a CCE with α3 = 1/τ where with

probability 1− 1/2τ the group mixes over (1, 0) and (0, 1) while with probability 1/2τ they

play (0, 0), which is m1.

Proof. For α3 ≤ 1− 1/2τ , (1, 1) and (0, 0) are Nash equilibria along with a mixed strategy
equilibrium. The highest payo� for the group comes from (1, 1). For 1− 1/2τ < α3 < 1/τ
the game becomes dominance solvable with the unique equilibrium (0, 0). For all higher
values of α3, the Nash equilibria are (1, 0) and (0, 1) along with the mixed equilibrium.
The highest payo� for the group in this case turns out to be any of the group correlated
equilibria with mixing over (1, 0) and (0, 1). For these higher values of α3 where 1/τ < α3

and 1 < τ < 3/2 the expected payo� to each player from the mixed Nash is always strictly
less than that from the group correlated equilibrium average payo�. Indeed, the inequality
is 2pτ(1− α3) < 1/2, which since α3 > 1/τ > 2/3 reads 4(α3τ − 1)(1− α3) < 3α3 − 2 that
is 4α3τ(1− α3) < 2− α3; the left member is decreasing in α3, and using this and τ < 3/2
we get 4α3τ(1− α3) < 4

3 < 2− α3, last inequality from α3 > 2/3.
Thus in this case the group best response correspondence is as follows:

(1, 1) if α3 ≤ 1− 1/2τ

(0, 0) if 1− 1/2τ ≤ α3 ≤ 1/τ

correlated if 1/τ ≤ α3
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So for any 1 < τ < 3/2, we get three sets of CCEs. (a) α3 = 1 and the group mixes
over (1, 0) and (0, 1), (b) α3 = 1−1/2τ and the group plays (1, 1) with probability 1−1/2τ
and (0, 0) with probability 1/2τ and (c) α3 = 1/τ and with probability 1− 1/2τ the group
mixes over (1, 0) and (0, 1) while with probability 1/2τ they play (0, 0), as asserted.

Case 4: τ > 3/2. There is a continuum of CCEs, where player 3 does not vote and the

group mixes with any probability over (1, 0) and (0, 1).

Proof. It is seen from group 1 payo� matrix that for α3τ ≤ 1, (1, 1) and (0, 0) are Nash
equilibria along with a mixed strategy symmetric equilibrium where the probability say p
that a player votes is given by

p =
1− α3τ

τ(2− 3α3)

The highest payo� for the group comes from (1, 1). For 1/τ < α3 < 1 − 1/2τ the game
becomes dominance solvable with the unique equilibrium (1, 1). For α3 = 1 − 1/2τ there
are three equilibria: (1, 1), (1, 0) and (0, 1) and again the best equilibrium for the group is
(1, 1).

For α3 > 1 − 1/2τ the equilibria are (1, 0) and (0, 1) and the mixed equilibrium as
above. Turning to the group payo�, the two pure NE give the same payo� hence so does
any mixture of the two; the alternative to consider is the mixed equilibrium. In the latter
the expected payo� to each player (say when player 1 plays 1) is 2pτ(1−α3); in the former
per-player payo� is 1/2. Recalling that in the range under consideration α3τ > 1, the
condition for the mixed to be better than the correlated mixtures becomes

2− α3

4α3(1− α3)
≤ τ

In the relevant range - τ > 3/2 and α3 > 1 − 1/2τ imply α3 > 2/3 - the left hand side is
increasing, so letting α̂3(τ) solve the above with equality we get that: the mixed Nash is
better for α3 ≤ α̂3(τ), while the mixture over the two pure Nash is better for α3 > α̂3(τ).
So the group best response correspondence is as follows:

(1, 1) if α3 ≤ 1− 1/2τ

mixed if 1− 1/2τ < α3 ≤ α̂3(τ)

correlated if α3 > α̂3(τ)

Now we can search for collusion constrained equilibria. Player 3's best response to the
group playing (1, 1) is to set α3 = 1. So there cannot be a CCE with α3 ≤ 1− 1/2τ . Since
Player 3's best response to the group mixing over (1, 0) and (0, 1) is to again play α3 = 1, we
must also rule out CCE where α̂3(τ) < α3 < 1. The group mixing over (1, 0) and (0, 1) with
some probability and player 3 choosing α3 = 1, is indeed a CCE. Consider the possibility
of a CCE that involves the group playing the mixed Nash equilibrium and player 3 mixing
too. For Player 3 to be indi�erent (in order to mix) it must be that p = 1 − 1/

√
2τ . Now

the equilibrium p in the mixed Nash is decreasing in α3 over the relevant region: it takes
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values from 1 when α3 = 1− 1/2τ to (τ − 1)/τ when α3 = 1. Since (τ − 1)/τ > 1− 1/
√

2τ
for τ > 2, for such values of τ we cannot have such a CCE. For 3/2 < τ ≤ 2 there does
exist an α3 that solves

1− α3τ

τ(2− 3α3)
= 1− 1√

2τ

but the solution has α3 > α̂3(τ) whence there is no CCE in the range 1−1/2τ < α3 ≤ α̂3(τ)
either.27

Nash

Recall that τ̃ ≡ 1/(3 −
√

5) ≈ 1.31. Reiterating the payo� matrix for the group for

visibility:

1 0

1 2τ(1− α3), 2τ(1− α3) 0, 1

0 1, 0 1− α3τ, 1− α3τ

Case 1: ρ00 < Υ and α3 = 1. The payo� matrix for the group is

1 0

1 0, 0 0, 1

0 1, 0 1− τ, 1− τ

If τ < 1 then it is dominant to play 0 and this is not an equilibrium. If τ > 1 then there

are two pure equilibria where one voter in the group votes and these imply ρ00 < Υ so this

corresponds to the equilibrium L. The other equilibrium is symmetric and mixed, continuing

to use p for the probability of voting, the indi�erence condition is p+ (1− p)(1− τ) = 0 or

p =
τ − 1

τ
= 1− 2Υ.

Here p > 0 requires Υ ≤ 1/2. The probability that neither player votes is 4Υ2 which

must satisfy 4Υ2 < Υ or Υ < 1/4. Hence we have an equilibrium of this type (it is L2) if

1/(2τ) < 1/4 or τ > 2. Notice that in this equilibrium the probability that the group wins

1− 4Υ2 is larger than 3/4.

27Proof of this: the displayed equality can be re-written as 3
√

τ
2
(α3− 2

3
) = 1−2τ(1−α3), while α3 ≤ α̂3(τ)

reads α3[1 + 4τ(1 − α3)] ≥ 2. Since τ > 3/2 we have 3
√

τ
2
(α3 − 2

3
) > 3

2

√
3(α3 − 2

3
) =
√

3( 3
2
α3 − 1) so the

equality implies 1− 2τ(1− α3) >
√

3( 3
2
α3 − 1) that is 2τ(1− α3) < 1−

√
3( 3

2
α3 − 1), whence

α3[1 + 4τ(1 − α3)] < α3[3 − 2
√

3(
3

2
α3 − 1)] = α3

√
3[
√

3 − (3α3 − 2)] <
2

3

√
3[
√

3 − (3
2

3
− 2)] = 2

where the last inequality follows from the fact that in the relevant range α3 ≥ 2/3 the function α3
√

3[
√

3−
(3α3 − 2)] is decreasing.
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Case 2: ρ00 > Υ and α3 = 0. Recall that this requires τ ≥ 1/2 (otherwise α3 = 1). The

payo� matrix for the group is

1 0

1 2τ, 2τ 0, 1

0 1, 0 1, 1

This coordination game has one pure strategy equilibrium where both vote, which con-

tradicts ρ00 > Υ and one where neither vote, corresponding to the equilibrium S which

therefore exists for all values of τ ≥ 1/2. It also has a unique symmetric mixed equilibrium

where the indi�erence condition is p2τ = 1 or p = Υ. The probability that neither vote is

then (1−Υ)2 and the condition is (1−Υ)2 > Υ. This is 1− 3Υ + Υ2 > 0 which has roots

at (3 ±
√

5)/2 and is positive only for Υ smaller than the lesser root (3 −
√

5)/2 ≈ 0.38.

That is to say, we have an equilibrium of this type when τ > 1/(3−
√

5) = τ̃ . This is L3

Case 3: ρ00 = Υ. Indi�erences give the same values of p and α3 as in the case of

1/2 < τ < 1 that is

p = 1− 1/
√

2τ = 1−
√

Υ α3 =
1

τ

2pτ − 1

3p− 1

This equilibrium - labeled M - exists for

τ̃ < τ < 3/2

In addition, for 1 < τ < 3
2 there is an asymmetric partially mixed equilibrium where one

of the players in the group does not vote and the other votes with probability 1−Υ while

α3 = 2Υ. This is equilibrium A. Notice that this is a special case of m1.

Proof. If both group members mix we must have symmetry and this gives (1− p)2 = Υ, or
p = 1 −

√
Υ > 0 . From the group payo� matrix we see that if τ < 1/2 then 0 is strictly

dominant, so this is impossible. Assume τ > 1/2. For τ > 1/2 the indi�erence condition
of player 1 between voting and not when 2 votes with probability p gives p2τ(1 − α3) =
p+ (1− p)(1− α3τ) which yields

α3 =
1

τ

2pτ − 1

3p− 1

We then plug p = 1 −
√

Υ and look at the sign of numerator and denominator of this
expression. The numerator is 2τ(1−1/

√
2τ)−1 = 2τ−

√
2τ−1. This is positive if and only

if 2τ−1 >
√

2τ , which since τ > 1/2 is equivalent to (2τ−1)2 > 2τ that is 4τ2−6τ+1 > 0.
This has roots (3 ±

√
5)/4 and is negative in between. Note that the lesser root is < 1/2.

The denominator is positive for 3(1 − 1/
√

2τ) − 1 > 0 that is for τ > 9/8. Note that
(3 +
√

5)/4 = 1/(3−
√

5) > 9/8 hence for τ > 1/2 the numerator and denominator have the
same sign if and only if 1/2 < τ < 9/8 (both negative) or τ > 1/(3−

√
5) (both positive).

In the latter case α3 < 1 requires 2pτ −1 < 3p−1 which is to say 2τ < 3 or τ < 3/2, and in
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this range this equilibrium exists. In the former case α3 ≤ 1 would require 2pτ − 1 ≥ 3p− 1
which is true only for τ ≥ 2 so this range is ruled out.

Now consider the possibility of only one group member mixing. Say player 1 mixes
while player 2 plays 0 with certainty. It must be that 1 − p1 = ρ00 = Υ. For player 1
to be so indi�erent we need α3 = 2Υ. For player 2 to prefer not voting to voting, we
need (1 − 1

2τ )(3 − 2τ) ≥ 0. Satisfying this inequality along with α3 ≤ 1, gives the range
1 < τ < 3

2 . So for each 1 < τ < 3
2 , we get two more mixed equilibria, in each of which one

group member plays 0 for sure while the other does so with probability Υ and α3 = 2Υ.

Free Enforcement Equilibrium

Assuming uniform weights in the group utility, group 1 payo�s are 1 − α3τ if neither

votes, 1/2 if one votes and 2τ(1−α3) if both vote. Recalling that if ρ00 < 1/(2τ) ≡ Υ then

α3 = 1, if ρ00 > Υ then α3 = 0 and if ρ00 = Υ then player 3 is indi�erent, equilibrium

analysis goes as follows.

Case 1: ρ00 < Υ and α3 = 1. Group payo�s are 1 − τ, 1/2, 0. If 1 − τ > 1/2 that is

τ < 1/2 the optimum is not to vote and this is an equilibrium, since Υ > 1 for τ < 1/2. If

τ > 1/2 the optimum is for exactly one to vote leading to the equilibrium L - hence this is

the equilibrium for τ > 1/2.

Case 2: ρ00 > Υ and α3 = 0. Group payo�s are 1, 1/2, 2τ . If τ > 1/2 optimum is vote,

not an equilibrium given ρ00 > 0. For τ < 1/2 notice that α3 = 0 cannot be optimal. So,

no equilibrium corresponds to this case.

Case 3: ρ00 = Υ, this requires that 1−α3τ ≥ 1/2, 2τ(1−α3) with at least one equality.

Case 3a: 1 − α3τ = 1/2, 1/2 ≥ 2τ(1 − α3). The �rst solves as α3 = Υ which we know

requires τ ≥ 1/2. The inequality becomes 1/2 ≥ 2τ(2τ − 1)/(2τ) = 2τ − 1 that is τ ≤ 3/4.

Hence for 1/2 < τ < 3/4 there is an equilibrium with ρ11 = 0 and α3 = Υ. This is M1.

Case 3b: 2τ(1−α3) = 1−α3τ , 1−α3τ ≥ 1/2. The �rst one gives α3 = 2−1/τ = 2(1−Υ).

For Υ we need as usual τ ≥ 1/2. We also need 2− 1/τ ≤ 1 or 1 ≤ 1/τ or τ ≤ 1. Plugging

into the inequality we get 1−(2− 1/τ) τ ≥ 1/2 which gives τ ≤ 3/4. Hence if 1/2 < τ < 3/4

there is another equilibrium with ρ11 = 1−Υ and α3 = 2(1−Υ). This is M2.

Payo� comparisons

For the welfare of all three players combined we have

L, S �W m2 ⇐⇒ τ > 1/2, L, S �W m1 ⇐⇒ τ v 1.14

m1 �W m2 ⇐⇒ τ < τ̃ , M1 �W L, S ⇐⇒ τ < 3/4
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For the large group the inequalities are as follows:

L �1 S ⇐⇒ τ > 1/4, L �1 m1 ⇐= τ > 1, m1 �1 m2 ⇐⇒ 0.2 < τ < τ̃

M1 �1 M2 ⇐⇒ τ < 3/4, L �1 M1 ⇐⇒ τ > 1/2, M1 �1 m2 =⇒ τ w 0.85

M2 �1 m2 ⇐⇒ τ > 1/2, m2 �1 S ⇐= τ > 1/2, m1 �1 S ⇐⇒ τ > 1/6

Going in the order of the last display, for the three players we have:

L, S �W m2 ⇐⇒ −1 > −2 + 1
2τ ⇐⇒

1
2τ < 1 ⇐⇒ τ > 1/2

L, S �W m1 ⇐⇒ −1 > 4− 4τ − 1
2τ ⇐⇒ 8τ2 − 10τ + 1 > 0 ⇐⇒ .11 w τ w 1.14

m1 �W m2 ⇐⇒ 4 − 4τ − 1
2τ > −2 + 1

2τ ⇐⇒ 6 − 4τ − 1
τ > 0 ⇐⇒ 4τ2 − 6τ + 1 >

0 ⇐⇒ .19 w τ ≤ τ̃
M1 �W L, S ⇐⇒ 2− 4τ > −1 ⇐⇒ 3 > 4τ ⇐⇒ τ < 3/4

For the large group:

L �1 S ⇐⇒ 2τ − 1 > −2τ ⇐⇒ 4τ > 1 ⇐⇒ τ > 1/4

L �1 m1 ⇐⇒ 2τ − 1 > 3− 2τ − 1
2τ ⇐⇒ 4τ − 4 + 1

2τ > 0 ⇐⇒ 8τ2 − 8τ + 1 > 0⇐=

τ > 0.85

m1 �1 m2 ⇐⇒ 3− 2τ − 1
2τ > −3 + 2τ + 1

2τ ⇐⇒ 6− 4τ − 1
τ > 0 ⇐⇒ 4τ2 − 6τ + 1 <

0 ⇐⇒ 0.2 < τ < τ̃

M1 �1 M2 ⇐⇒ 1− 2τ > 2τ − 2 ⇐⇒ 3 > 4τ

L �1 M1 ⇐⇒ 2τ − 1 > 1− 2τ ⇐⇒ 4τ > 2

M1 �1 m2 ⇐⇒ 1− 2τ > −3 + 2τ + 1
2τ ⇐⇒ 8τ2 − 8τ + 1 < 0 ⇐⇒ 0.15 w τ w 0.85

M2 �1 m2 ⇐⇒ 2τ − 2 > −3 + 2τ + 1
2τ ⇐⇒ 1 > 1

2τ ⇐⇒ τ > 1/2

m2 �1 S ⇐⇒ −3 + 2τ + 1
2τ > −2τ ⇐⇒ 8τ2 − 6τ + 1 > 0⇐= τ > 1/2

m1 �1 S ⇐⇒ 3− 2τ − 1
2τ > −2τ ⇐⇒ 3 > 1

2τ ⇐⇒ τ > 1/6

We check that it is always the case that M ≺W S,L. Indeed this is equivalent to

1− 2τ + 2
√
2τ−
√
2τ

3
2−1+3τ

3−2
√
2τ

< −1 that is 2− 2τ + 2
√
2τ−
√
2τ

3
2−1+3τ

3−2
√
2τ

< 0. In the relevant range

the denominator in the fraction is always negative so after multiplying we get (2− 2τ)(3−
2
√

2τ) + 2(
√

2τ − τ
√

2τ − 1 + 3τ) > 0 which simpli�es to 2
√

2[
√

2−
√
τ + τ

√
τ ] > 0 which

is true for every τ > 0.

Electoral outcome probabilities

Electoral outcome probabilities are also elementarily obtained. Recall that H = ρ11(1−
α3), D = (1− α3)(1− ρ00 − ρ11) and Λ = α3(1− ρ00) + (1− α3)ρ11; we just have to apply

these formulas.

We follow the order of the table. In S we have H = D = Λ = 0. In L the only di�erence

is Λ = 1.

In m1 we have α
3 = 1

τ , ρ00 = 1
2τ , ρ10 + ρ01 = 1− 1

2τ . So H = 0, D = (1− 1
τ )(1− 1

2τ ) and

Λ = 1
τ (1− 1

2τ ).
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In m2 it is α3 = 1 − 1
2τ , ρ00 = 1

2τ , ρ11 = 1 − 1
2τ so H = (1 − 1

2τ ) 1
2τ , D = 0 and

Λ = (1− 1
2τ )2 + (1− 1

2τ ) 1
2τ = 1− 1

2τ

In M1 we have α3 = 1
2τ , ρ00 = 1

2τ , ρ10 + ρ01 = 1 − 1
2τ so H = 0, D = (1 − 1

2τ )2 and

Λ = 1
2τ (1− 1

2τ ).

Finally, in M2 we have α
3 = 2(1− 1

2τ ), ρ00 = 1
2τ , ρ11 = 1− 1

2τ so H = (1− 1
2τ )[1− 2(1−

1
2τ )] = (1− 1

2τ )( 1τ − 1), D = 0, and Λ = 2(1− 1
2τ )(1− 1

2τ ) + [1− 2(1− 1
2τ )](1− 1

2τ ) = 1− 1
2τ .

For the ranges of H in m2 and M2 and of D in m1 and M1 we have:

H in m2: up from 0 for τ = 1/2 to 2/9 for τ = 3/4, still up to 1/4 for τ = 1 then down

to 2/9 again for τ = 3/2.

H in M2: up from 0 for τ = 1/2 to 1/8 for τ = 2/3, then down to 1/9 for τ = 3/4

D in m1: up from 0 for τ = 1 to 2/9 for τ = 3/2

D in M1: up from 0 for τ = 1/2 to 1/9 for τ = 3/4
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