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Abstract

Few want to do business with a partner who has a bad reputation. Consequently
once a bad reputation is established it can be di�cult to get rid of. This leads on
the one hand to the intuitive idea that a good reputation is easy to lose and hard
to gain. On the other hand it can lead to a strong form of history dependence
in which a single bene�cial or adverse event can cast a shadow over a very long
period of time. It gives rise to a reputational trap where an agent rationally
chooses not to invest in a good reputation because the chances others will �nd
out is too low. Never-the-less the same agent with a good reputation will make
every e�ort to maintain it. Here a simple reputational model is constructed and
the conditions for there to be a unique equilibrium that constitutes a reputation
trap are characterized.
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�Glass, china, and reputation are easily cracked, and never well
mended.�

sometimes attributed to Benjamin Franklin.

1. Introduction

It is conventional to think that a good reputation is easy to lose and hard
to gain. One reason we suspect this might be the case is that if you have a
good reputation people will be eager to do business with you � hence if they
are cheated it will quickly become known. On the other hand if you have a
bad reputation few will do business with you so even if you are honest few will
�nd out. In such a setting it is intuitive that history matters. If an adverse
event causes a loss of reputation the di�culty of restoring it provides little
incentive for honesty, so the bad reputation will deservedly remain so long after
the circumstances that caused it are gone. On the other hand, there are reasons
for honesty besides reputation � if circumstances dictate honesty it will take a
long time before others �nd out, but once they do reputation will be restored �
and even after the circumstances dictating honesty are gone it will be desirable to
continue to be honest to avoid losing reputation. In other words, once reputation
is restored it will also persist. Consequently, two otherwise identical individuals
may �nd themselves with entirely di�erent incentives for honesty because of an
adverse or bene�cial event that happened in the distant past.

This paper examines that intuition in an entry game between a long-run
and short-run player prototypical of those used in the reputational literature.
It follows in the tradition of the gang-of-four, Kreps and Wilson [1982] and
Milgrom and Roberts [1982], who studied good equilibria in which the long-
run player is always honest and showed that with behavioral types if the long-
run player is su�ciently patient not only does such an equilibrium exist but it
is necessary, that is, a good equilibrium is the only equilibrium. This paper
studies trap equilibrium of the type described in the �rst paragraph in which a
long-run player with a good reputation is honest and retains a good reputation
while a long-run player with a bad reputation is dishonest and retains a bad
reputation. As we indicate in our subsequent literature review it is known that
without behavioral types such an equilibrium can exist if the long-run payer is
su�ciently patient. This paper moves beyond that by using behavioral types to
characterize which particular equilibrium we should expect to see. In line with
the existing literature we show that for su�cient patience there can be no trap.
The crucial new �nding is that for an intermediate range of patience not only
does does a trap exist but it is necessary, that is, a trap equilibrium is the only
equilibrium.

In the entry game we study the short-run player prefers to enter if the long-
run player provides costly e�ort and not otherwise, and the long-run player
prefers e�ort and entry to the short-run player staying out. As indicated the
model is driven by behavioral types: we have both good types corresponding
to bene�cial events as in the gang-of-four and bad types corresponding to ad-
verse events as in Mailath and Samuelson [2001]. These types are persistent but
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not completely so as in Mailath and Samuelson [2001] and Horner [2002].3 Fi-
nally, we insist that the information generated about long-run player behavior is
greater if the short-run player chooses to enter than if not.4 This observational
asymmetry leads to an important change from the Mailath and Samuelson [2001]
model where good and bad events are symmetric and reputation is equally easily
lost or restored.

This model leads to a unique trap if we add an additional assumption con-
cerning the short-run player. If short-run players stay out and no information
is generated it eventually becomes likely that the long-run player has migrated
back to a �normal� type. It is now possible for the short-run players and long-
run player to coordinate. On a particular date it is common knowledge that
if the long-run player is normal honest behavior will take place and that the
short-run player will enter. This is then a self-ful�lling prophecy.5 It is not,
however, a very compelling one: it requires that both players agree about the
exact timing of events in the long-distant past and that they agree that �today
is the day.� To rule this out we assume that agents know only about events that
took place during their lifetime and that short-run player strategies and beliefs
are independent of calendar time.

2. The Model

A dynamic game is played between overlapping generations of �nitely lived
players. There are two player roles: player 1 is a long-run player who lives
many periods and player 2 represents a mass of short-run players who live a
single period. Each period t = 1, 2, . . . a stage game is played. In the stage
game long-run player must �rst choose whether or not to provide e�ort. Let
a1 ∈ {0, 1} denote the decision of the long-run player with 1 meaning to provide
e�ort and the cost being ca1 where 0 < c < 1. The short-run player moves
second and without observing the e�ort choice of the long-run player6 decides
whether to enter a2 = 1 or stay out a2 = 0. The short-run player receives
utility 0 for staying out, utility −1 for entering when no e�ort has been made
and utility V > 0 for entering when e�ort is provided. There are three privately
known types τ ∈ {b, n, g} of long-run player where g means �good� (a bene�cial
event), b means �bad� (an adverse event), and n means �normal.� Player type is
�xed during the lifetime of the player. The good and bad types are behavioral
types: the good type always provides e�ort and the bad type never does. The
stage game payo� of the normal type is given by a2 − ca1. Players care only
about expected average utility during their lifetime.

The life of a long-run player is stochastic: with probability δ the player
continues for another period, and with probability 1 − δ is replaced. This re-

3As Cripps, Mailath and Samuelson [2004] show this is essential if we are to have reputations
restored as well as decline.

4Fudenberg and Levine [1989] show how this limits the possibilities for reputation building.
5In Acemoglu and Wolitzky [2012] this induces a cycle.
6Meaning the game is simultaneous move.
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placement is not observed by the short-run player. When a long-run player is
replaced the type may change. The probability type τ is replaced by a type
σ 6= τ is Qτσε/(1 − δ) where Qτσ > 0. Note that the scaling by 1 − δ implies
that 1/ε is a measure of the number of long-run player lifetimes before a type
transition. We are interested in the case in which types are persistent - that is,
in which ε is small.

At the beginning of each period a public signal z of what occurred in the
previous period is observed and takes on one of three values: 1, 0, N . If entry
took place last period the signal is equal to last-period long-run player e�ort
decision. If the short-run player stayed out last period then with probability
1 ≥ π > 0 the signal is equal to last period long-run player e�ort decision and
with probability 1 − π the signal is N . Here we are to think of �1� as a good
signal (e�ort was observed), �0� as a bad signal (it was observed that there was
no e�ort) and �N� as no signal.

There are two features of this information technology. First, even when
the short-run player stays out some information is generated. Second, when
the short-run players enter information is perfect. Subsequently we will model
more closely investment and information and demonstrate the robustness of our
results when information upon entry is less than perfect.

The game begins with an initial draw of the public signal z(1) and private
type τ(1) from the common knowledge distribution µzτ (1).

Players are only aware of events that occur during their lifetime. The long-
run player also knows their own generation T .7 Let h denote a �nite history for
a long-run player. A strategy for the normal type of long-run player is a choice
of e�ort probability α1(h, t, T ) as a function of privately known history, calendar
time, and generation T . A strategy for the short-run player is a probability of
entering α2(z, t) as a function of the beginning of period signal and calendar
time.

We study Nash equilibria of this game.
Throughout the paper we will assume generic cost in the sense that

c /∈
{
δ,

δ

2− π
,

δπ

1− δ + δπ
,

δπ(π − δπ)

(1− δπ)(1− δ)) + δπ(π − δπ)

}
.

Short-run Player Beliefs and Time Invariant Equilibrium

If players know calendar time, as indicated in the introduction, they can
use this information to coordinate their play in an implausible way. Hence we
wish to assume that short-run player strategies and beliefs are independent of
calendar time.8 Notice that this same assumption is implicit in the de�nition of
a Markov equilibrium, but is weaker since long-run player strategies may depend
on the entire lifetime history of events as well as generation and calendar time.

7That is, how many replacement events have taken place since the beginning of the game.
8See Clark, Fudenberg and Wolitzky [2019] for the consequences of a similar information

restriction in an overlapping generations setting.
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For brevity all references to a decision problem of the long-run player should
be understood to refer to the normal type. A strategy for a short-run player
is a now a time invariant probability of entering α2(z) ∈ [0, 1] as a function of
the beginning of period signal. Given such a strategy the normal type faces a
well-posed Markov decision problem. It depends only on the probability α2 with
which the short-run player enters. Let V (α2) denote the corresponding expected
average value of utility. First period utility is α2 − ca1. With probability δ
the game continues and the probability of the next signal is P (z′|z, a1) where
P (1|z, 1) = P (0|z, 0) = α2(z)+(1−α2(z))π and P (N |z, a1) = (1−α2(z))(1−π).
Hence the Bellman equation is

V (α2) = max
a1

(1− δ) [α2 − ca1] + δ
∑
z′

P (z′|z, a1)V (α2(z′)).

As usual, this has a unique solution. The set of best responses, for the normal
type, then, is determined entirely by the current state through α2(z). Hence
at time t with signal zt any best response of the normal type α1(yt, t, Tt) must
lie in this set. Time invariant beliefs of the short-run player about the e�ort
probability of the normal type, which we denote by α1(z), are then a weighted
average of the best responses α1(yt, t, Tt) - and so must also be a best response
and lie in this set.

Prior to observing the signal zt the short-run player at time t has uncondi-
tional beliefs about the joint distribution µzτ (t) from which the signal and type
of the long-run player are drawn. After observing zt short-run player beliefs
about long-run player type are given by the conditional probability µτ |zt(t). This
together with beliefs about the normal type e�ort α1(zt) determines µ1(zt, t)
the overall beliefs about the probability of long-run player e�ort. The short-run
player strategy α2(zt) must then be a best response to those beliefs.

The evolution of µzτ (t) depends upon the initial condition µzτ (1) and the
beliefs of the short-run player about the probabilities with which earlier normal-
type long-run and short-run players chose actions α1(z), α2(z). It does not
depend on the actual choice of those actions or the earlier signals, none of which
are observed. This has two consequences. First, no action or deviation by the
long-run player has any e�ect on the evolution of µzτ (t). Second, the evolution
of µzτ (t) is deterministic as it does not depend on the stochastic realization of
actions, signals or types. The stochastic nature of short-run player beliefs are
due to the single stochastic variable they observe, the signal, that is, µτ |zt(t) is
stochastic because zτ is.

Since µzτ (t) follows a deterministic law of motion if we let −→µ (t) denote
the vector with components µzτ (t) that law is −→µ (t+ 1) = A−→µ (t) where A is a
Markov transition matrix the coe�cients of which are determined by α1(z), α2(z)
and π,Q, ε.9 To have an equilibrium with time invariant beliefs it must be that
−→µ (t + 1) = −→µ (t) and this is true if and only if the initial condition µzτ (1) is

9This is computed in the Appendix.
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a stationary distribution of A. For time invariance we cannot have arbitrary
initial short-run player beliefs µzt(1), but only initial beliefs that are consistent
with the strategies of the players and the passage of time.

We take our object of study, then, to be time invariant equilibrium. This
is a Nash equilibrium in which the initial beliefs of the short-run players are
determined endogenously to be the stationary distribution that arises from the
equilibrium strategies. It is conveniently described as a triple (α1(z), α2(z), µzτ )
where α1(z) and µzτ are time invariant beliefs of the short-run player and α2(z)
is the strategy of the short-run players. The conditions for equilibrium are
that α1(z) is a solution to the Markov decision problem induced by the short-
run player strategy α2(z), that µzτ is a stationary distribution of the Markov
transition matrix A determined by α1(z), α2(z), and Q, ε, and that α2(z) is
a best response to beliefs about long-run player action µ1(z) determined from
α1(z), µzτ .

Let z(y) be the most recently observed signal by the long-run player in the
history y. We may conveniently summarize the discussion:

Theorem 1. If (α1(z), α2(z), µzτ ) is a time invariant equilibrium then the
strategies α1(y, t, T ) = α1(z(y)), α2(z, t) = α2(z) are a Nash equilibrium with
respect to the initial condition µzτ (1) = µzτ . Conversely if α1(y, t, T ), α2(z, t) is
a Nash equilibrium that satis�es the time invariant short-run player condition
that the short-run player equilibrium beliefs α1(z, t) = α1(z), µzτ (t) = µzτ and
equilibrium strategy α2(z, t) = α2(z) then (α1(z), α2(z), µzτ ) is a time invariant
equilibrium.

Hereafter by equilibrium we mean time invariant equilibrium.

3. Characterization of Equilibrium

Our main result characterizes when a trap does and does not occur. It shows
that there is a single pure strategy equilibrium that is one of three types and
give conditions under which that equilibrium is unique. In reading the theorem,
note that 1− δ + δπ is a weighted average of 1 and π so is strictly greater than
π.

Theorem 2. For given V,Q there exists an ε > 0 such that for all ε ∈ (0, επ2(1−
π)) and

i. [bad] If
c > δ

then there is a unique equilibrium, it is strict and in pure strategies, there is
no e�ort by the normal type, and the short-run player enters only on the good
signal.

ii. [trap] If
δ > c > δπ/(1− δ + δπ)

then there is exactly one pure strategy equilibrium, it is strict, the normal type
provides e�ort only on the good signal, and the short-run player enters only on
the good signal. If in addition c > δ/(1+δ(1−π)) this is the unique equilibrium.

5



iii. [good] If
c < δπ/(1− δ + δπ)

then there is exactly one pure strategy equilibrium, the normal type always pro-
vides e�ort, and the short-run player enters only on the good signal.

Note that the boundary cases are ruled out by the generic cost assumption.10

This result is described in terms of the comparative statics of entry cost c:
it shows how the set of equilibria changes as c is reduced. As all of the cuto�s
δπ/(1− δ+ δπ) = δπ/(1− δ(1− π)) and δ/(1 + δ(1− π)) are strictly increasing
in δ the results may equally be described in terms of increasing the discount
factor δ, with the (more complicated) cuto�s described in terms of c .

The proof is outlined below with the detailed computations in the Appendix.
The result has two main parts: the characterization of pure strategy equilibria
and the uniqueness of pure strategy equilibria. We will discuss each of these in
turn.

The pure strategy equilibrium is relatively intuitive. The assumption that
ε is small means that types are highly persistent so the short-run player does
not put much weight on the possibility of the type changing. Given the possible
strategies of the long-run player the signal 0 indicates either a bad type or a
normal type who will not provide e�ort if entry is not anticipated. Hence it
makes sense for the short-run player not to enter in the face of bad signal.
Similarly the signal 1 indicates either a good type or a normal type who will
provide e�ort if entry is anticipated, so it makes sense for the short-run player
to enter in the face of a good signal.

More subtle is the inference of the short-run player when the signal N is
observed. The short-run player can infer that the previous short-run player
chose not to enter - hence must have received the bad signal or was in the same
boat with the signal N. As a result while less decisive than the signal 0 the
signal N also indicates past bad behavior by the long-run player, so staying out
is a good idea.

For the long-run player the choice is whether to provide e�ort when entry
is anticipated and when it is not. The di�erence between the two cases lies in
the probability that e�ort results in a good reputation which we may denote
by p = 1 when entry is anticipated and p = π when it is not. It is useful to
consider the problem for general values of p: when the cost c is incurred there is
a probability p of successfully establishing a good reputation and gaining 1− c
in the future and probability 1− p of failing to establish a good reputation and
starting over again. Here the expected average present value of the gain from
e�ort is Γ = −(1− δ)c+ δp(1− c) + δ(1− p)Γ or

Γ =
δp(1− c)− (1− δ)c

1− δ(1− p)
.

10There is also a fourth case: if c < δ/ (1 + δ(1− π)) and there are �enough� normal types
then there are at least two mixed strategy equilibria. As this result is not central it is discussed
only in the online Appendix.
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If this is negative, that is δp(1−c) < (1−δ)c, then it is best not to provide e�ort
and conversely. Take �rst the case where information is revealed immediately,
that is p = 1. This is the situation most conducive to e�ort. The condition
for not wishing to provide e�ort is c > δ so when this is the case there will be
no e�ort. This is a standard case, corresponding to part (i) of the Theorem in
which the long-run player is impatient and does not �nd it worthwhile to give up
c for a future gain of 1− c. In this case e�ort will be provided only occasionally
during bene�cial events when the good type provides e�ort for non-reputational
reasons.

When c < δ it is worth it to maintain a reputation when the short-run player
enters as indeed in this case p = 1. The remaining question is whether it is also
worth it to provide e�ort when the short-run player does not enter. In this case
p = π, and the condition for e�ort is that given in (iii). If c is very small then
it is worth providing e�ort even when the short-run player does not enter. This
good equilibrium corresponds to the �usual� reputational case, for example in
Kreps and Wilson [1982], Milgrom and Roberts [1982], Fudenberg and Levine
[1989], Fudenberg and Levine [1992] or Mailath and Samuelson [2001]. There the
long-run player is always is willing to provide e�ort over the relevant horizon.11

Here, as in Mailath and Samuelson [2001], occasionally an adverse event occurs
and the bad type does not provide e�ort regardless of reputational consequences
so there is no e�ort until another normal or good type arrives.

The new and the interesting case is the trap equilibrium in case (ii) where
δ > c so the cost of e�ort is low enough to maintain a reputation, but c >
δπ/(1 − δ + δπ) so it is not worth it to try to acquire a reputation. Here we
have strong history dependence. Depending on the history a normal type will
be in one of two very di�erent situations. A normal type that follows a history
of good signals, will provide e�ort, have a good reputation and have a wealthy
and satisfactory life with an income of 1 − c. A normal type that has the ill-
luck to follow a history in which the last signal was bad or there was no signal
will not provide e�ort , will have a (deservedly) bad reputation, and have an
impoverished life with an income of 0. This is a reputational trap. The only
di�erence between these normal types is an event that took place in the far
distant past: did the last behavioral type correspond to an adverse or bene�cial
event? Looked at another way, adverse and bene�cial events, rare as they are,
cast a very long shadow. After a bene�cial event there will be many lives of
prosperous normal types - indeed until an adverse event occurs. Contrariwise,
following an adverse event normal types will be mired in the reputation trap
until they are fortunate enough to have a bene�cial event.

Observe that δπ/(1 − δ + δπ) is increasing in π so as π increases and news
spreads quickly the range of costs for the reputation trap diminishes and we are
more likely to see the �usual� good reputation case. More important, although

11In models without type replacement eventually e�ort stops and the equilibrium collapses
permanently into a no e�ort trap. Mailath and Samuelson [2001] show that with type replace-
ment there is always e�ort.
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we will defer discussion of mixed strategies, is the condition

δ > c > δmax

{
π

1− δ + δπ
,

1

1 + δ(1− π)

}
in which the trap equilibrium is the only equilibrium: that is, in this case not
only does the pure strategy equilibrium constitute a trap but there is no other
equilibrium. Here the crucial fact is that both π/(1−δ+δπ) and 1/(1+δ(1−π)
are both strictly less than one, so there is always a range of costs c in which the
trap is the unique equilibrium.

4. Discussion

We place this result in the literature then give the idea of the proof.

Literature Review and the Role of Behavioral Types

There are two distinct strands of the reputation literature. The �rst follows
the gang-of-four Kreps and Wilson [1982] and Milgrom and Roberts [1982] and
uses behavioral types. It focuses not only on the existence of equilibria, but on
the uniqueness of equilibrium. The second follows the repeated long-run short
run player game (without types) literature starting with Fudenberg, Kreps and
Maskin [1990] who show that many types of equilibria are possible.

In the literature with behavioral types the possibility of unique history de-
pendent equilibrium has been studied, but the type of equilibrium that has been
studied is cyclic. In a cyclic equilibrium long-run players with a good reputation
exploit it by providing low e�ort and reduce their reputation while those with
a bad reputation provide high e�ort in an attempt to rebuild their reputation.
This is the opposite of a trap equilibrium where those with a good reputation
work to preserve it and those with a bad reputation choose not to rebuild it.
Like a trap equilibrium a cyclic equilibrium alternates between good and bad
reputation, but a player with a bad reputation is by no means trapped: that
player has a bad reputation through the earlier choice of running it down and is
actively working to rebuild it. Cyclic equilibria are studied by Liu [2011] and Liu
and Skrzypacz [2014], and earlier work by Benabou and Laroque [1992] points
in the same direction. A related analysis can be found in Board and Meyer-ter-
Vehn [2013]'s good news case. Here it can clearly be seen the the informational
assumption is the opposite of the one that leads to a trap: when low e�ort is
provided information leaks out slowly even when the short-run player enters. A
related result is Phelan [2006], who also examines reputation that is gradually
rebuilt, albeit this is driven by the normal type playing a mixed strategy.12

In the literature without behavioral types trap equilibria have been studied
but there are no uniqueness results and trap equilibria are but one of many. The
idea can be understood by examining the model here without the behavioral

12Mathevet, Pearce and Stachetti [2019] examine mixing by the behavioral type.
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types. As usual the bad equilibrium, the static Nash equilibrium of always stay
out and never provide e�ort, is a subgame perfect equilibrium. In the high
cost/low discount case (i) of Theorem 2 this is the only equilibrium regardless
of whether their are behavioral types. For higher discount factors both the trap
and good strategies are also Nash equilibria13 What enables us to pin down a
particular equilibrium are the behavioral types. In the usual way in the gang-of-
four literature the presence of good types eliminates the static Nash equilibrium
once the discount factor is high enough. The bad types, however, are key in
selecting between the trap and good equilibria, and this is the new result of this
paper. The presence of behavioral types insures that the ergodic distribution is
unique and that all signals (except possibly N) are present - so acts somewhat
like trembles. The good equilibrium is eliminated in the intermediate case (ii)
and the trap equilibrium in low cost/high discount factor case (iii) because play
must be optimal following a signal of no e�ort.14

The result that without types their can be multiple equilibria including trap
equilibria is well established in the literature. Rob and Fishman [2005] use
an information structure similar to that here and establish the existence of a
trap equilibrium in which those with a good reputation provide e�ort and those
with a bad reputation do not. However, equilibrium is their model is certainly
not unique and indeed they �note the existence of a trivial equilibrium, which
replicates the static equilibrium under a one-shot interaction.� Along the same
lines is the bad-news case of Board and Meyer-ter-Vehn [2013]. Their model
di�ers from the standard reputation model. In the standard reputation model
reputation is analyzed as a substitute for commitment. By contrast Board and
Meyer-ter-Vehn [2013] allow partial commitment in the sense that actions by the
long-run player once taken persist for some length of time. In this setting with
a bad news information structure similar to the one here they show that trap
equilibria exist. They do not establish uniqueness, but in the opposite direction
they do give a su�cient condition for a continuum of equilibria to exist.

One paper that does combine the information structure of this paper with
(good) behavioral types is Ordonez [2007]. That paper, however, is not focused
on uniqueness, but rather introduces a second dimension of long-run player
action, how many groups to serve, and focuses on the issue how the number of
groups served depends on reputation and whether or not it is e�cient.

Outline of the Proof: Pure Strategies

The proof of the main theorem involves the interplay between the strategy
of the long-run player and the beliefs of the short-run player. The detailed
calculations are given in the Appendix through a series of Lemmas. Lemma 1
analyzes the optimum of the long-run player. It shows that regardless of the

13Only the trap equilibrium is subgame perfect, however.
14The good equilibrium is chosen in case (iii) despite the fact that it is not subgame perfect.

Although normal types always provide e�ort it is optimal for the short-run player to stay out
on a signal of no e�ort: this is because such a signal indicates a bad type.
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strategy of the short-run player the long-run player must provide e�ort when
entry is is anticipated if she is willing to do so when entry is not anticipated. It
shows in addition that unless the short-run player enters on the good signal and
stays out on the bad signal the long-run player should never provide e�ort. This
information is subsequently used to rule out many combinations of long-run and
short-run player strategies.

The next series of steps are to characterize the ergodic beliefs of the short-
run player about the long-run player. Lemma 2 examines the marginal ergodic
beliefs of the short-run player about the type of long-run player. As these
transition probabilities are exogenous it is straightforward to show that these
beliefs do not depend on ε and are bounded away from zero.

The key to showing that the unique equilibrium strategy of the short-run
player is to enter only on a good signal is to characterize the ergodic beliefs of
the short-run player about the type of long-run player conditional on the signal.
Let B be the probability of e�ort that makes the short-run player indi�erent
to entering, that is, BV = (1 − B). Recall that µ1(z) is the ergodic belief of
the short-run player about the probability that the long-run player will provide
e�ort. If µ1(z) > B it is strictly optimal to enter, and if it is less than this,
strictly optimal to stay out. If we can show that

µ1(1) ≥ 1−K ε

min{π, 1− π}

and
µ1(0), µ1(N) ≤ K ε

min{π, 1− π}
for some positive constant K depending only on Q then it follows that for

K
ε

min{π, 1− π}
< min{B, 1−B}

it is strictly optimal for the short-run player to stay out on a bad or no signal
and to enter on a good signal. This then gives the main theorem with ε =
min{B, 1−B}/K.

The derivation of the bounds requires several steps. Lemma 3 shows that
to a good approximation the beliefs of the short-run player about the type of
long-run player are the same at the beginning of a period where the type may
have changed as they were at the end of the previous period. This enables us
to compute approximate conditional beliefs about types and signals from the
simpler problem in which types are persistent. We then want to apply Bayes
law to compute the probability of types conditional on signals. To implement
this we need to know a lower bound on the marginal probability of the signals:
in the case of the good and bad signal this follows from the fact that the good
and bad types are playing the good and bad action; the crucial case of no signal
is addressed in Lemma 4 using ergodic calculations simpli�ed by Lemma 3.
Lemma 5 then uses Bayes law for the special case in which the long-run player
takes an action independent of signal (as is the case for the behavioral types).
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At this point there are three possible strategies for the long-run player and
eight for the short-run. It is now possible to check each of the twenty four
combinations to �nd the ergodic beliefs and show that the only best response
for the short-run player to a best response of the long-run player is to enter on a
good signal and stay out for all others. Fortunately many combinations can be
checked at once. This is done in Proposition 1 using the previously established
bounds and partial characterization of optimal strategies.

Finally, now that we know the unique strategy of the short-run player, we
must calculate the best response of the long-run player: this is the computation
with Γ above.

Intuition of the Main Result: Mixed Strategies

The important result is that there is a range of c for which there is a reputa-
tion trap and also no other equilibria. Why must this be the case? The reason
is that the equilibrium short-run player pure strategy of staying out on a bad or
no signal z ∈ {0, N}and entering on a good signal z = 1 provides the greatest
incentive for the normal type to provide e�ort. If c > δ this is not enough, so
weakening the incentive to provide e�ort by mixing does not help and the only
equilibrium is the one in which the normal type never provides e�ort.

In the Appendix it is shown that if the short-run player uses a pure strategy
the long-run player must do so as well. To understand why the short-run player
strategy must remain pure even for c < δ (but not too small) consider that
at c = δ the normal type strictly prefers to not to provide e�ort on a bad
or no signal and is indi�erent to e�ort on a good signal. When c is lowered
slightly the normal type now strictly prefers to provide e�ort on a good signal,
while of course the strict preference on bad and no signals remain. Can there
be an equilibrium in which the short-run player mixes only �a little?� That
cannot happen on a bad or no signal since to get the short-run player to mix
the normal type would have to mix �a lot� and this in turn would require the
short-run player to mix �a lot.�

What about the good signal? Here with c a little less than δ �a little� mixing
by the short-run player gets the normal type back to indi�erence. Without types
this can be an equilibrium - but not with types. The reason is tied to the ergodic
distribution of types and signals. With the normal type providing no e�ort on
a bad or no signal once those states are reached the normal type will no longer
get the good signal. With the short-run player mixing on the good signal there
is a positive probability that the normal type will get no signal: this �drains�
the normal types from the good signal so that in the ergodic distribution of
types and signals conditional on a good signal it is extremely likely the short-
run player is facing a good type. Consequently, the short-run player will not
mix on a good signal - rather the short-run player will enter for certain.

The conclusion is that mixed strategy equilibria require the short-run player
to mix �a lot.� Formally it is shown in Lemma 14 that in any mixed equilibrium
the short-run player must be at least as likely to enter on no signal as on a good
signal. This provides substantially less incentive for the normal type to provide
e�ort than the short-run player equilibrium pure strategy in which the short-run
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player is a lot less likely to enter on no signal than on a good signal. Hence the
value of c that is low enough to provide adequate incentive for e�ort is higher
for a pure strategy equilibrium than for any mixed strategy equilibrium.

5. Robustness

As indicated, we made two key assumptions about the information technol-
ogy: �rst that some information is generated even when the short-run player
stays out, and second that there is perfect information when the short-run player
enters. To focus thinking it is useful to think of the short-run player as choosing
between a single investment or purchase or making a large numberK of identical
investments or purchases. Each is subject to an idiosyncratic shock. In particu-
lar, for each investment/purchase, we may imagine that there is an independent
probability π that the behavior of the long-run player is observed. Hence with a
single investment/purchase - �staying out� - the probability of observation is π
as in the base model. If there are K investment/purchases then the probability
that the behavior of the long-run player is observed is 1− (1− π)K . Hence the
base model corresponds to the limit in which there are many investments or
purchases in which case the probability of observation is one.

In this context, it is important to know that our results are robust to K
large but �nite. This is straightforward because Theorem 2 shows that the
pure strategy equilibria are strict for both the long-run and short-run player.
The equilibrium conditions in the Appendix consist of �nitely many continuous
equalities and inequalities. Hence by standard arguments the equilibrium cor-
respondence is upper-hemi-continuous as K →∞. In the crucial case in which
equilibrium is unique, since it is strict, for K su�ciently large, the equilibrium
strategies are unique and exactly those described in Theorem 2: the key result
about a unique trap holds for K su�ciently large.

There is a second issue of importance, and that is the timing of information.
We have assumed that the e�ort of the long-run player is observed by the short-
run player only after entry - although of course it is not the timing that matters,
but the fact that neither player knows the action of the other when the decision
is taking. If the short-run player observes the e�ort of the long-run player before
the entry decision is taken then the long-run player is a Stackelberg leader in
the stage-game and the normal type will always invest: this is standard - there
is no need for reputation as a substitute for commitment when commitment is
possible in the stage game.

There is also the opposite timing: the long-run player observes the entry
decision of the short-run player before deciding whether or not to provide e�ort.
This is the case in Veugelers [1993], who studies a long-run government facing
a series of short-run foreign investors using a conventional reputational model
with a single good type and unlimited memory with the conventional result that
if the long-run player is su�ciently patient near �rst best results are obtained.
Veugelers [1993] is interested in the case of a government with low state capacity
unable to provide a rule of law that must decide ex post whether or not to
expropriate. While complete analysis of this case is beyond the scope of this
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paper, it is easy to see that if the long-run player instead of observing the signal
of the short-run player observes whether or not the short-run player entered
there can be no trap. The strategy spaces of the players and the belief dynamics
of the short-run players remain unchanged. Hence for the trap parameters the
long-run player provides e�ort when the short-run player enters, and does not
do so when the short-run player stays out. If a bad or no signal means that
the short-run player very likely faces a normal type it follows that the short-run
player should enter knowing that the long-run player will respond by providing
e�ort. This contradicts the supposition that the short-run player stays out on
these signals.
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Appendix

For brevity and clarity only the results of lengthy computations are reported
here. The interested reader can �nd the computations themselves in the online
version of this appendix.

Problem of the long-run Player

We examine the problem of the normal type of long-run player. Recall the
Bellman equation

V (α2) = max
a1

(1− δ) [α2 − ca1] + δ
∑
z′

P (z′|z, a1)V (α2(z′)).

We may write this out as
V (α2) =

max
a1

(1−δ) [α2 − ca1]+δ [(α2 + (1− α2)π)V (α2(a1)) + (1− α2)(1− π)V (α2(N))] .

Lemma 1. The optimum for the normal type of long-run-player depends on the
state only through α2 and one of three cases applies:

(i) V (α2(1)) − V (α2(0)) < c(1 − δ)/δ: it is strictly optimal to provide no
e�ort in every state. In particular if α2(1) = α2(0) this is the case.

(ii) V (α2(1)) − V (α2(0)) > c(1 − δ)/(δπ): it is strictly optimal to provide
e�ort in every state

De�ning

α̃2 =
1− δ

δ(1− π) (V (α2(1))− V (α2(0)))
c− π

1− π
(iii) it is strictly optimal to provide e�ort if α2(z) > α̃2 and conversely. In

particular the strategy α1(0) > α1(1) is never optimal.
In addition
(iv) if α2(0) = 1 then it is strictly optimal to provide no e�ort in every state.
Finally, if the short-run player uses a pure strategy then the optimum of the

long-run player is strict and pure.

Proof. The argmax is derived from:

max
a1
−(1− δ)ca1 + δ (α2 + (1− α2)π)V (α2(a1)).

The gain to providing no e�ort is

G(α2) = (1− δ)c− δ (α2 + (1− α2π) [V (α2(1))− V (α2(0))] .

We then solve this equation form α2 to see when e�ort is and is not optimal.
Finally, we analyze best response of the long-run player when the short-run

player uses a pure strategy. From (i) and (iv) if α2(0) ≥ α2(1) it is strictly
best to provide no e�ort . That leaves only the case α2(a1) = a1, or rather two
cases, depending on α2(N). This is a matter of solving the Bellman equations
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for each case to determine the value of c (if any) there can be a tie. This are
the �non-generic� values listed in the text.

Ergodic Beliefs of the Short-Run Player

Next we examine the beliefs of the short-run player. For given pure strategies
of both players the signal type pairs (z, τ) are a Markov chain with transition
probabilities independent of δ and depending only on ε, π and the strategies of
the two players. Excluding the stateN in case the short-run player always enters
the chain is irreducible and aperiodic so it has a unique ergodic distribution µzτ .
We �rst analyze the marginals µτ and µz.

Lemma 2. The marginals µτ are independent of ε. Let µ = minτ 6=n µτ . Then
µ > 0, µ0, µ1 ≥ πµ, if α2(0) = α2(1) = 1 then µN = 0, otherwise if the
short-run player plays a pure strategy then µN ≥ (1− π)µ.

Proof. The type transitions are independent of the signals, so we analyze those
�rst. For ε > 0 we have µτ > 0 since every type transition has positive proba-
bility. This ergodic distribution is the unique �xed point of the 3× 3 transition
matrix A, which is to say given by the intersection of the null space of I − A
with the unit simplex. Since A = I +Qε it follows that it is given by the inter-
section of the null space of Qε with the unit simplex. As the null space of Qε is
independent of ε the marginals µτ are independent of ε as well.

For the signals we have µ1 ≥ πµg and µ0 ≥ πµb. If if a2(0) = a2(1) = 1 then
the state N is transient. If α2(1) = 0 then µN ≥ (1 − π)µg while if α2(0) = 0
then µN ≥ (1− π)µb.

It will be convenient to normalize so that max(µσ/µτ )Qτσ = 1. Next we
show how the conditional probabilities µz|τ can be computed approximately by
using the ergodic conditions for ε = 0.

Lemma 3. When z = N

µN |τ = (1− π)

(∑
y

(1− α2(y))µy|τ + εHNτ

)

when z 6= N
µz|τ =∑

y

1 ((z = 1)α1(τ, y) + 1(z = 0)(1− α1(τ, y))) [α2(y) + π(1− α2(y))]µy|τ+εHzτ .

where |Hzτ | ≤ 2 for all z.

Proof. The idea is that the process for types is exogenous, so the stationary
probabilities can be computed directly. This enables us to �nd a linear recur-
sive relationship for the conditionals where the coe�cients depend upon the
strategies and the (already known) marginals over types. We then show that
when ε is small to a good approximation we can do the computation for ε = 0,
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that is, ignoring the type transitions, with the result above showing how good
the approximation is for given ε.

To apply Bayes Law we will need to bound marginal probabilities of signals
from below. The hard case is that of no signal where we must solve the equations
for the conditionals simultaneously. Here we analyze the short-run pure strategy
case. If the short-run player enters for both z = 0, 1 then no signals are unlikely
as they are generated only from type transitions, so we rule that out.

Lemma 4. Suppose α2(a1) = 0 for some a1 ∈ {0, 1}. Then

µN ≥
1− π

2

(
1− 4ε

π

)
µ.

Proof. Let τ be the type that plays a1. We have

µa1|τ =
∑
y

[α2(y) + π(1− α2(y))]µy|τ + εHa1τ

µN |τ = (1− π)

(∑
y

(1− α2(y))µy|τ + εHNτ

)
These imply the inequalities

µa1|τ ≥ π(1− µN |τ ) + [α2(N) + π(1− α2(N))]µN |τ + εHa1τ

µN |τ ≥ (1− π)
(
(1− α2(N))µN |τ + µa1|τ + εHNτ

)
.

Hence
µN |τ ≥ (1− π)

(
π + (1− π)µN |τ + εHNτ + εHa1τ

)
.

It follows that

µN |τ ≥
1− π

2

(
1− 4ε

π

)
.

The result now follows from µN ≥ µN |τµτ ≥ µN |τµ.

Finally we compute bounds on beliefs about types that play the same action
independent of the signal. Here we combine bounds from the equations for the
conditionals with Bayes Law.

Lemma 5. A long-run type τ that plays the pure action a1 regardless of the
signal has

µτ |−a1 ≤
2

µ

( ε
π

)
and if α2(1) = 1 and α2(0) = 0 then a type τ that plays the action 1 regardless
of signal has

µτ |N ≤
8(

1− 4
(
ε
π

))
µ

( ε
π

)
.
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Proof. If long-run type τ plays the pure action a1 from Lemma 3 µ−a1|τ =
εH−a1τ ≤ 2ε. From Lemma 2 µ−a1 ≥ πµ and Bayes law then implies

µτ |−a1 ≤
ε2

πµ
.

For the second part we have from Lemma 3

µN |τ = (1− π)
(
µ0|τ + [1− α2(N)]µN |τ

)
+ (1− π)εHNτ .

µ0|τ = εH0τ .

Plugging in µN |τ ≤ (1− π)µN |τ + (1− π)εH0τ + (1− π)εHNτ so

µN |τ ≤
(1− π)4ε

π
.

From Lemma 4

µN ≥
1− π

2

(
1− 4ε

π

)
µ.

Hence Bayes law implies

µτ |N ≤
8ε

π
(
1− 4ε

π

)
µ
.

Short-Run Player Optimality

Recall that µ1(z) is the probability of a1 = 1 in state z and that B =
1/(V + 1) is the critical value of µ1(z) such that

Lemma 6. If µ1(z) > B the short-run player strictly prefers to enter; if µ1(z) <
B the short-run player strictly prefers to stay out, and if µ1(z) = B the short-
run player is indi�erent.

We next show that it cannot be optimal for the short-run player always to
enter. Set B ≡ µmin{π, 1− π}min{B, 1−B}.

Lemma 7. For ε < (1/2)B always enter a2(z) = 1 for all z is not an equilib-
rium.

Proof. By Lemma 1 always enter implies no e�ort by the normal long-run player.
As there are few good types at z = 0 we show that this forces the short-run
player to stay out there so the short-run player should not in fact enter.

Lemma 8. For ε < (1/16)B the strict equilibrium response to never providing
e�ort is to enter only on z = 1 and do so with probability 1.
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Proof. As the normal and bad types never provide e�ort the signal z = 1 implies
a good type with high probability so the short-run player should enter there.
This means that the long-run player can have the signal z = 1, N only through
a type transition. In particular the bad signal is dominated by normal and bad
types so the short-run player should stay out. This in turn means that most of
the N signals are generated by normal and bad types, so the short-run player
should stay out there too.

Lemma 9. For ε < (1/16)B there is no equilibrium in which α2(0) = 1.

Proof. By Lemma 1 α2(0) = 1 implies never provide e�ort so by Lemma 8
α2(0) = 0 a contradiction.

Lemma 10. For ε < (1/32)B the unique equilibrium response to always provide
e�ort is to enter only on z = 1 and do so with probability 1.

Proof. This is basically the opposite of Lemma 8. Now at z = 1 there are mainly
good and normal types so it is optimal for the short-run player to enter. While
at z = 0 there are mainly bad types so it is optimal for the short-run player to
stay out. Hence no-signal is generated by bad types from z = 0 so it is optimal
for the short-run player to stay out there too.

Lemma 11. If ε < (1/2)B and for some a1 we have α1(a1) = a1 then α2(a1) =
a1.

Proof. If α1(0) = 0 then from Lemmas 3 and 2 µ1(0) = µ0|gµg/µ0 = εH0gµg/µ0 ≤
2ε/(πµ). If α1(1) = 1 then 1−µ1(1) = µ1|bµb/µ1 = εH1bµb/µ1 ≤ 2ε/(πµ). Hence

for ε/π < Bµ/2 it follows that α2(a1) = a1.

Uniqueness of Short-Run Pure Equilibria

We de�ne an equilibrium response of the short-run player to a strategy of
the long-run player to be a best response to µzτ induced by the long-run player
strategy and itself.

Proposition 1. There exists an ε > 0 depending only on V such that for any
ε satisfying

ε >
ε

µmin{π, 1− π}
> 0

in any short-run pure equilibrium the short-run player must enter on the good
signal and only on the good signal. Moreover this is a strict equilibrium response.

Proof. We rule out all other possibilities:
(a) Always enter a2(z) = 1 for all z is not an equilibrium. By Lemma 7
(b) The unique equilibrium response to never provide e�ort is to enter only

on z = 1. From Lemma 7.
(c) A equilibrium response requires a2(1) = 1, a2(0) = 0. Any other strategy

satis�es a2(0) ≥ a2(1). From Lemma 1 this implies no e�ort by the long-run
player. Part (b) then forces 0 = a2(0) < a2(1) = 1 a contradiction.
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(d) The unique equilibrium response to always provide e�ort is to enter only
on z = 1. From Lemma 10.

This leaves only the strategy ã in which the long-run player plays a1 = 1 on
entry and a1 = 0 if the short-run player stays out. As we know that α2(1) =
1, α2(0) = 0 there are two possibilities α2(N) = 1 and α2(N) = 0. The former
is ruled out because it leads to primarily bad types at z = N , and the latter is
a strict best response by the short-run player because there are few good types
at z = N .

Mixing

Recall that all of the Lemmas concerning short-run optimality hold for ε ≤
B/32 (and the remaining Lemmas do not place restrictions on ε) where B =
µmin{π, 1− π}min{B, 1−B}. Recall also the notion of a fundamental bound:
it may depend on the fundamentals of the game π, V, δ, c but not on the type
dynamics Q, ε. De�ne the fundamental bound A ≡ π2(1 − π) min{B, 1 − B}
and observe that if ε ≤ µA/32 then also ε ≤ B/32. We shall assume ε ≤ µA/32
hereafter.

Lemma 12. There is no non-pure equilibrium with α1(1) = 1.

Proof. By Lemma 2 µ1|b = εH1b ≤ 2ε. Hence for ε < B/2 by Lemma 6 α2(1) =
1. Then by Lemma 2 µ1|n = µ1|n+

∑
y∈{0,N} α1(y) [α2(y) + π(1− α2(y))]µy|n+

εHzτ .I t follows that∑
y∈{0,N}

α1(y)µy|n ≤ 2(ε/π) so max
y∈{0,N}

α1(y)µy|n ≤ 2(ε/π).

Moreover for z ∈ {0, N} we have µz|g = εHzg ≤ 2ε. Hence

µ1(0) =
µ0|gµg + α1(0)µ0|nµn

µ0
≤ 2(ε/π)(µg + µn)/(πµ) ≤ 2(ε/π)/(πµ).

So for ε/π2 < Bµ/2 (this is why π2 appears in A) by Lemma 6 we have α2(0) =
0. This implies by Lemma 4 that

µ1(N) =
µN |gµg + α1(N)µN |nµn

µN
≤ 2(ε/π)(µg + µn)/µN

≤ 8(ε/π)

(1− π)
(
1− 4ε

π

)
µ
.

So when this is less than or equal B by Lemma 6 we have α2(N) = 0. For
ε ≤ A/8 this is

16ε

π(1− π)µ
≤ B

so holds for ε < µA/16 which was assumed.
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Lemma 13. In any equilibrium α1(0) = α2(0) = 0.

Proof. We already know this to be true in any pure equilibrium, so we may
assume the equilibrium is not pure. From Lemma 11 if α1(0) = 0 then α2(0) = 0
so we may assume this is not the case, that is α1(0) > 0. From Lemma 12 we
know that α1(1) < 1. It cannot be that the normal type is indi�erent at both
z = 0, 1 for then by Lemma 1 it must be that α2(1) = α2(0) = α̃2 so that
V1 = V (α̃) = V0 and that the normal type never provides e�ort in which case
by Lemma 8 we would have a pure strategy equilibrium. Hence either the normal
type strictly prefers to provide no e�ort at z = 1 and is willing to provide e�ort
at z = 0 or the normal type is indi�erent at z = 1 and strictly prefers to provide
e�ort at z = 0. In either case from Lemma 1 we must have α2(1) < α2(0).

The key point is that having the short-run player enter when there is no
e�ort is kind of like winning the lottery - you get something for nothing. If that
happens in the state 0 it is particularly good because you are guaranteed that
you get to play again. Since α2(1) < α2(0) we can write α2(0) = β+(1−β)α2(1)
where β > 0 meaning that in the state z = 0 there is a better chance of winning
the lottery. We will use this to show that V (α2(0)) ≥ V (α2(1)) so that never
provide e�ort is optimal and the equilibrium must be pure by Lemma 8.

Lemma 14. In any non-pure equilibrium 0 < α2(1) < 1, α1(N) > 0, and
α2(N) ≥ α2(1).

Proof. First suppose that α2(1) = 1. Since the short-run player must be mixing
and by Lemma 13 is not doing so at z = 0 the short-run player must be mixing
at z = N , that is, that 0 < α2(N) < 1. Lemma 12 implies that at z = 1 the
normal type does not strictly prefer to provide e�ort. Since α2(N) < α2(1)
Lemma 1 implies that at z = N normal type strictly prefers not to provide
e�ort, so α1(N) = 0. Hence µ1(N) = µN |gµg/µN = εH0gµg/µN . As α2(0) = 0
by Lemma 13 it follows from Lemma 4 that

µ1(N) ≤ 4ε

(1− π)
(
1− 4ε

π

)
µ

as the RHS this is less than B by assumption we have α2(N) = 0 a contradiction.
Next suppose that α2(1) = 0. By Lemma 13 we also have α2(0) = 0 so by

Lemma 1 the long-run player never provides e�ort. Hence α2(1) > 0 follows
from Lemma 8, a contradiction. We have now shown strict mixing the the
short-run player at z = 1.

Now we show that since the short-run player is strictly mixing at z = 1 then
α1(N) > 0. Strict mixing by the short-run player at z = 1 implies from Lemma
6 1 − B = 1 − µ1(1) =

(
[1− α1(1)]µ1|nµn + µ1|bµb

)
/µ1. From Lemma 3 and

Lemma 13 if α1(N) = 0 we have µ1|n ≤ α1(1)µ1|n + 2ε and µ1|b ≤ 2ε. Hence by

Lemma 2 1− µ1(1) ≤ 2ε/(πµ), so for 2ε/(πµ) < 1−B this is a contradiction.
Since α2(N) > 0 the normal type weakly prefers to provide e�ort at z = N .

If α2(1) > α2(N) by Lemma 1 this implies the normal type would strictly prefer
to provide e�ort at z = 1 contradicting Lemma 12.
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Signal Jamming

De�ne the auxiliary system with respect to 0 ≤ λ, γ ≤ 1 as

V1 = (1− δ)α̃2 + δ [(α̃2 + (1− α̃2)π)V0 + (1− α̃2)(1− π)VN ]

VN = (1− γ)(λ− c) + γV1

V0 =
δ(1− π)

1− δπ
VN .

Since in a mixed equilibrium we know from Lemma 12 that α1(1) < 1 so that
at z = 1 the long-run player must be willing to provide no e�ort. This system
corresponds to providing no e�ort at z = 0, 1. From the contraction mapping
�xed point theorem this has a unique solution V1, VN , V0. De�ne the function
∆(α̃2) ≡ V1 − V0.

Lemma 15. We have

V1 =
δ(1− π)(1− γ)(λ− c) + (1− δ) [1− δπ − δ(1− π)(1− γ)(λ− c)] α̃2

(1− δπ − γδ(1− π)) + γδ(1− π)(1− δ)α̃2

strictly increasing in α̃2.

Proof. Here we simply solve the linear system and determine the sign of the
derivative of V1.

Lemma 16. ∆(α̃2) is strictly increasing. There is a solution 0 < α̂2 < 1 to

∆(α̃2) = ∆(α̃2) ≡ 1− δ
δ (α̃2 + (1− α̃2)π)

c,

it and only if

c < δ
(1− δπ − δ(1− π) [γ + λ(1− γ)])

1− δπ − δ2(1− π)
,

in which case it is unique.

Proof. Here solve V0 as a function of V1 from the system. We subtract this
from V1 and �nd that ∆(α̃2) is strictly increasing in V1. Hence we may apply
Lemma 15. Since ∆(α̃2) is decreasing there will be a unique intersection if and
only if ∆(0) > ∆(0) and ∆(1) < ∆(1). By computation we show that the �rst
condition is always satis�ed and the second is the condition on c given as the
result.

Proposition 2. If ε < µπ2(1− π) min{B, 1−B}/32 and

c ≥ δ 1

1 + δ(1− π)
.

all equilibria are in pure strategies.
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Proof. Suppose that α1(z), α2(z) is a non-pure equilibrium. If the normal type
is willing to provide e�ort at z = 1 we take α̂2 = α2(1). If the long-run
player strictly prefers to provide no e�ort at z = 1 we show how to construct a
1 > α̂2 > α2(1) for which the long-run player is indi�erent at z = 1 and strictly
prefers to provide e�ort at z = N . We show that 1−c ≥ V (α2(N)) ≥ V (α̂2) and
use this to show that at α̂2 we must have ∆(α̂2) = ∆(α̂2) for λ = 1. Applying
Lemma 16 then yields the desired condition.
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