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Abstract

We study how optimal interventions in response to a shock with limited informa-
tion depend on the complexity of the system. We show that as the complexity
of the system grows, the optimal intervention shrinks to zero.
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1. Introduction

We consider a decision maker faced with limited information who has the
opportunity to intervene in a system that has received a shock. For example,
while driving a car, you hear a large bang, the car no longer accelerates properly,
and the engine makes loud noises. Should you get out of the car and try to �x it,
or simply struggle on? You are not an automobile mechanic, and do not know
how engines work, but you are aware of basic facts, for example, that breaking
parts of the engine with a hammer will make things worse.

Similar settings abound, such as whether to give aid to an injured person.
In settings of aiding others there is a substantial literature arguing that non-
intervention is generally thought to be better.5 However, we expect that that
someone's perceived obligation to intervene depends on the amount of infor-
mation they have relative to the di�culty of the problem. For example, in a
health emergency on an airplane a doctor would be expected to intervene when
an ordinary passenger would not. By contrast if an elderly person drops a bag
of groceries even an ordinary passer-by might be expected to help.

Similar issues arise with respect to economic systems: How much should pol-
icy makers intervene in in response to a pandemic? How should rich countries
intervene to help a developing country facing a crisis?6 How should business
�rms faced with unexpected systems failures or by competition from new prod-
ucts respond?

In static settings economics does not always clearly distinguish between omis-
sion and commission, but in dynamic settings such as Stokey (2009) there often
is a clear idea of inaction. Here we assume there is a known status quo, so there
is a clear distinction between a sin of omission, that is either not intervening
or intervening too little, and a sin of comission, intervening but making things
worse. Here we argue that utility maximization supports the common intu-
ition that sins of commission are to be avoided in complex systems with limited
information.

To make this point we adopt a very simple framework. We study a symmet-
ric quadratic loss function in n-dimensional Euclidean space where the loss is
measured by the Euclidean distance from the optimum. Initially the optimum
is know to be at zero, but a shock then displaces the optimum. The decision
maker knows how large the shock is, that is, how great the loss is, but does not
know the direction in which the optimum has moved. The decision maker is
restricted to responding in a single dimension, which we interpret as the result
of partial ignorance.. The decision maker does, know in which direction the
objective function is increasing, - which is akin to knowing not to break parts
of the engine with a hammer.

In this setting complexity is measured by the dimension of the system n.

5Spranca, Minsk and Baron (1991) and Cushman, Young and Hauser (2006), for example,
provide experimental evidence that this is a widely held view and review other evidence and
literature.

6Easterly (2002) discusses some of the ways such interventions can back�re.
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We show that in a one dimensional system the full optimum is obtained, and
that as the dimension increases optimal interventions become smaller and the
optimized loss grows. The intuition is that with more directions it is more likely
that an intervention in a randomly chosen direction will �overshoot� and lead
to an additional loss. In the limit as n → ∞ it is optimal not to intervene at
all and simply accept the loss. In addition if, following Stokey (2009)there is
a small �xed cost of intervention, then small interventions are not worthwhile
and no intervention is better. In this sense the more complex is the system, the
bigger the shock must be before it is worthwhile to intervene.

The problem of intervention with limited information as we formulate it
appears to be new. It is connected to Samuelson (1947)'s LeChatelier principle,
which shows that in a setting of certainty, where the location of the optimum is
known, the size of intervention is strictly smaller when intervention is possible in
a subet of the dimensions instead of all of them. We extend this to the case where
the location of the optimum is unknown, and show that this e�ect increases
as the complexity of the system does. Our setup has also some similarities
to Ely (2011), who also uses the number of control dimensions as a measure
complexity.. Our results are also, in a certain sense, a counterpoint to the �curse
of dimensionality� (see, for example, Bellman (1957)) that states that the time
it takes to reach the optimum increases exponentially with the dimension of the
problem. Here we show that incomplete optimization also does less well as the
dimension of the problem increases. We relate this to results about the rate of
convergence of gradient descent algorithms.

2. The Model

The state of the system is x in <n where n ≥ 1 and has the interpretation as
the complexity of the system. There is a loss minimizing action x̂ and the loss
function is quadratic and given by (1/2)

∑n
i=1(xi−x̂i)2. This function is known.

Initially there is a status quo, denoted by x0, at which the current intervention
and the loss minimizing action are both 0, that is, x0 = x̂0 = 0 . A shock then
occurs and x̂ is chosen randomly according to a constant density on the surface
of the sphere of radius |x̂| . The decision maker does not observe the new value
of x̂ but observes size of the loss L = (1/2)

∑n
i=1 x̂i

2 at the status quo, so knows
the Euclidean distance |x̂|.7

The decision maker is restricted to moving in one dimension, which we take
to be the x1 axis. Let d denote the column vector d = |x̂|(1, 0, 0, . . . , 0)T . The
decision maker observes the sign of the directional derivative of L in direction d
at the status quo, which is equal to −sgnx̂1; we denote it σ to lighten notation.8

7In this formulation the utility from the optimum after the shock is the same as before,
which is to say zero. This is a convenient normalization that does not matter for the analysis:
if the optimum after the shock is much worse, or better even than before our analysis is
unchanged.

8We subsequently consider the case where the decision maker observes the magnitude as
well as the sign.



4

Hence, the decision maker chooses a real number β(σ) and sets x = β(σ)d.
One way to think about one-dimensional adjustment is to imagine the system

as a mechanical machine controlled by dials, with each dial corresponding to a
coordinate axis. Being restricted to a single dimension corresponds to partial
ignorance, in the sense of being aware of only one dial. A decision maker who
knew the system better might be aware of more dials/dimensions. For example,
in trying to help a person with a severe leg wound a typical person might think
that putting pressure on the wound is a good idea, while a doctor might know
also that it is possible to use a tourniquet above the wound (a second dial).

The assumption that intervention is only contemplated in a single dimension
is a good approximation in many settings with partial ignorance. For example,
in the EU debate over pandemic aid the debate focused on a single dimension:
the division of aid between grants and loans. A less well known example is that
of the Wright brothers. An airplane is a complex system, and marketing one is
complicated as well. Faced with competition from Glenn Curtiss airplanes built
using the superior aileron technology, the Wrights did not consider redesigning
their airplane or change their marketing practices: the only dimension in which
they responded was in the �ling of patent lawsuits.9

It should be clear as well that some tinkering in other dimensions does take
place. For example, in the EU pandemic package, the pro-grant countries agreed
to decrease the total size of the aid package and increase the rebates of the
�Frugal Four.� These other dimensions typically are limited to small changes.
Subsequently we consider the robustness of our results to the possibility that
the decision maker might have some idea of a slightly better direction than d.

The goal of the decision maker is to choose β(σ) to minimize expected loss.
If the choice is β(σ) the loss is (1/2)|x̂−β(σ)d|2so that the overall expected loss
is this amount integrated with respect to x̂ according to a uniform distribution
over the n-dimensional sphere.

Preliminary Analysis

The problem is homogeneous, so the optimal solution βn(σ) is independent
of |x̂|, and if the minimum expected loss corresponding to |x̂| = 1 is Ln, the
corresponding expected loss for general |x̂| is Ln|x̂|2. With this in mind, we
normalize |x̂| = 1. It is convenient moreover to use coordinates in which x̂ =
(1, 0, 0, . . . , 0)T , so that d rather than x̂ is random and uniformly distributed
over the unit sphere. As the sign of the derivative is observed, the decision
maker should move in the direction r = −σd to reduce the loss. Moreover from
symmetry the optimal choice for the �bad� hemisphere is opposite that for the
�good� hemisphere, that is, for the optimum β(−1) = −β(1) ≥ 0. Hence the
original problem is equivalent to the decision maker choosing non-negative φ ≥ 0
and x = φr. We use φn to denote the optimal value of φ. Since d is uniform
on the sphere and the sign of the derivative re�ects the �bad� half-sphere to the

9A good account of the sad saga of the Wright brothers can be found in Shulman (2002).
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�good� one, r is uniform on the half-sphere de�ned by |r| = 1 and r1 ≥ 0. We
subsequently study this normalized problem.

In the one dimensional case, n = 1, the true optimum lies at x1 = 1 while
r1 = 1 so that the optimal choice of φ is φ = 1 with corresponding loss L1 = 0.
The key point is that in higher dimensions there is a tradeo�. If r = x̂ it would
be best to choose φ = 1. If r is orthogonal to x̂ it would be best to choose φ = 0.
Hence the optimal choice of φ is a compromise: a large φ works well for �good�
directions r close to x̂ but poorly in �bad� directions far from x̂. The intuition
we would like to establish is that in higher dimensions there are relatively more
�bad� directions so φ should be chosen smaller.

3. The Main Result

Theorem 1. The optimal solution φn and corresponding loss Ln satis�es φn+1 <
φn, Ln+1 > Ln with φ1 = 1, L1 = 0 and limn→∞ φn = 0, limn→∞ Ln = 1/2.

This says is that given a shock that without intervention would result in a
half unit loss, if the system has high complexity as measured by n it is better to
intervene very little with the result that almost the entire loss must be swallowed,
while if the system has low complexity a substantial intervention is optimal
resulting in a substantial mitigation of the loss.

The case n = 1 was proven above. The remainder of the proof follows from
several intermediate results which we now prove.

Lemma 1. The loss function is (1/2)(1 − 2anφ + φ2) with 0 < an ≤ 1 and

a1 = 1.

Proof. Fix r. Using the fact that |r| = 1 we can compute The the loss is
Ln(r, φ) = (1/2)[(1 − φr1)2 +

∑n
i=2(φri)

2] = (1/2)[1 − 2r1φ +
∑n
i=1(φri)

2] =
1/2 − r1φ + φ2/2. Hence an is the integral of r1 with respect to r which is
distributed uniformly over the unit half-sphere |r| = 1 and r1 ≥ 0. As r1 is
strictly positive with probability 1 and r1 ≤ 1 on the unit half-sphere it follows
that 0 < an ≤ 1, and the result for n = 1 is immediate.

Corollary 1. φn = an and Ln = 1/2− (an)2/2.

The theorem will follow if we can show thatan+1 < an and limn→∞ an = 0.
This we show next.

Lemma 2. Let h(n, θ) be the density function

h(n, θ) =
(sin θ)n−2´ π/2

0
(sinω)n−2dω

on [0, π/2]. Then for n > 1 we have an =
´ π/2
0

h(n, θ) cos θdθ.
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Proof. For n > 1 we do the integration by taking r1 = cos θ where θ ∈ [0, π/2].
For given θ the density is given by the surface area Sn−2 of the n−2 dimensional
sphere with radius equal to r1, which is Sn−2 = c(n−2)(sin θ)n−2 where c(n−2)
is positive, known, and irrelevant. Hence we can compute

an =

´ π/2
0

c(n− 2)(sin θ)n−2 cos θdθ´ π/2
0

c(n− 2)(sin θ)n−2dθ
.

The �nal step of proving the theorem is then

Lemma 3. an+1 < an and limn→∞ an = 0.

Proof. To show an+1 < an note that since cos θ is strictly decreasing10 in θ
it su�ces to prove that h(n + 1, θ) �rst order stochastically dominates h(n, θ).
Observe that if θ′ > θ since sin θ is strictly increasing we have

h(n+ 1, θ′)

h(n+ 1, θ)
=

(
sin θ′

sin θ

)n−1
>

(
sin θ′

sin θ

)n−2
=
h(n, θ′)

h(n, θ)
.

Hence as both are density functions it must be that h(n + 1, 0) < h(n, 0) and
there is a unique value θ ∈ [0, π/2] where h(n + 1, θ) = h(n, θ) which implies
stochastic dominance.

To show limn→∞ an = 0, let ε > 0, and observe that there is θε ∈ [0, π/2]
such that for all θ ∈ [θε, π/2,], cos(θ) < ε. Moreover, since sin θ is strictly
increasing on [0, π/2] for any M ∈ (θε, π/2) we have

lim
n→∞

´ θε
0
c(n− 2)(sin θ)n−2dθ´ π/2

0
c(n− 2)(sin θ)n−2dθ

≤ lim
n→∞

θε(sin θε)
n−2

´ π/2
M

(sin θ)n−2dθ
≤ lim n→∞

θε(sin θε)
n−2

(π/2−M)(sinM)n−2
= 0

Since cos θ ≤ 1

lim
n→∞

an ≤ lim
n→′∞

´ θε
0
c(n− 2)(sin θ)n−2dθ´ π/2

0
c(n− 2)(sin θ)n−2dθ

+

´ π/2
θε

c(n− 2((sin θ)n−2εdθ´ π/2
0

c(n− 2)(sin θ)n−2dθ
≤ ε.

Since ε was arbitrary it follows that in fact limn→∞ an = 0.

More Directions

As we indicated earlier, the decision maker might have some ability to slightly
improve the direction r . For example, the decision maker might be limited not
just to the coordinate axis, but to directions that lies within an angle θ of the

10Note that the only facts we use about cos θ is that on [0, π/2] it is strictly decreasing from
one to zero.
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coordinate axis, where θ is relatively small. This corresponds to directions r̃
lying on the unit sphere with |r̃′r| ≥ cos θ. The most information that the
decision-maker could have is to know the best direction within that cone. As
long as θ < π/2 this does not e�ect the monotonicity result which did not
depend on the range over which the integrals are taken, but rather on the fact
that worse directions are more likely in higher dimensions.

Knowing the best direction in a cone does change the asymptotic results:
with θ = 0 as in our base model, the optimal φ(r) on the boundary where
r′x̂ = 0 is φ(r) = 0 with corresponding loss L(r) = 1. With θ>0 weight is
still pushed towards the boundary as n increases, but now when r is orthogonal
to x̂ the direction of adjustment r̃ now has an angle π/2 − θ/2 lying closer to
the optimum . This implies a boundary optimum of φ(r̃) = cos(π/2 − θ/2)
with corresponding boundary loss of 1/2 − cos(π/2 − θ/2)2/2. In practice, the
decision maker is unlikely to know the best direction in the cone, and indeed
our results argue it will be more di�cult in higher dimensions. Hence these
should be viewed as upper bounds on the size of the optimal intervention φ and
a lower bound on the loss L. The key point is that even for these bounds, if θ is
small the asymptotic intervention φ(r̃) = cos(π/2 − θ/2) is small, and the loss
1/2− cos(π/2− θ/2)2/2 is close to 1/2.

4. Quantitative Information and Gradient Descent

In the base model only qualitative information about the direction of im-
provement, the sign of the derivative, is available. We now consider the im-
plications of quantitative information and ask what happens when the decision
maker observes not only the sign of the derivative but also its absolute value,
which is r1. Now the optimal choice of φ may depend upon r1; we denote it by
ϕn(r1) with corresponding expected loss λn(r1). Also denote by En the expec-
tation with respect to the direction d. If we consider the expected intervention
and corresponding expected loss the picture is the same as in the base model.

Theorem 2. The optimal solution ϕn and corresponding loss λn satis�es Enϕn =
φn, Ln+1 > En+1λn+1 > Enλn with λ1 = 0 and limn→∞Enλn = 1/2.

Proof. From the proof of Lemma 1 the objective function is 1/2 − r1φ+ φ2/2.
Hence ϕn(r1) = r1. It follows that E

nϕn = φn = Enr1, which is clear since the
best response is linear, so it does not matter if we �rst compute the optimum
then take the expectation as here, or �rst take the expectation and then compute
the optimum as in the base model.

Substituting back into the objective function we have λn(r1) = 1/2 − r21/2
so that Enλn = 1/2 − Er21/2. Since Ln = 1/2 − (Er1)

2/2 the result Ln+1 >
En+1λn+1 follows from Jensen's inequality. The remaining results follow from
Lemma 3 which as observed in footnote 10 holds not only for computing Enr1 =
En cos θ but also for computing Enr21 = En(cos θ)2.

The model here with the magnitude of the derivative known is equivalent to
a model in which |x̂| (and the length of d) is unknown, but it is possible to do
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a line search in the direction r to �nd the optimum, which will be at (r1/|x̂|) r.
This provides a connection to the method of gradient descent. To make this
connection it is helpful to translate the coordinate system by subtracting the
optimum. In these coordinates the optimum x̂ is at the origin and the status
quo x0 = −(1, 0, 0, . . . , 0)T .

We can index a problem of gradient descent by choosing a non-singular sym-
metric matrix A and a starting point y0 with the objective function (1/2)y′A′Ay.
The �rst step of gradient descent computes the gradient g = Ay0 at y0, and then
conducts a line search to �nd the optimum y1 in along that line. It then repeats
starting at y1.

The improvement made at the �rst step of the gradient descent process can
be analyzed using our methods. Let B be a nonsingular linear transformation
such that By0 = x0 and (AB−1)TAB−1 = I. In the coordinate system x = By
the loss function is (1/2)xTx and the initial condition is x0. The direction of
search is the tranformed gradient r = −Bg. Random choice of gradient descent
problems, that is (A, y0, B) then map to random choices of r in our environment.
This enables us to translate our results into conclusions about the �rst step of
randomly chosen gradient descent problems. In particular, in the Appendix we
show that if the probability distribution over gradient descent problems satis�es
a symmetry and monotonicity condition then as the dimension of the problem
increases the step size and gain from the �rst steps grow smaller and in the limit
approach zero.

This result about dimensionality and the �rst step has the same �avor as
rate of convergence bound results. There is a standard convergence bound (see,
for example, Meza (2010)) for the method of gradient descent. If the matrix A
is randomly chosen by independently choosing the diagonal and upper triangle
elements from suitable distribution and �lling in the rest by symmetry, a result
on the distribution of eigenvalues by Wigner (1958) implies, as explained in the
Appendix, that the convergence bound deteriorates as the dimension increases.

Finally, we observe that when the decision maker observes the magnitude of
the derivative, we can model decision makers who are less ignorant by supposing
they can adjust the �rst m coordinates rather than just the �rst. We conjecture
that similar results hold provided that m/n goes to 0.

5. Conclusion

We have have de�ned and studied the �optimal intervention problem with
limited information.� We modeled the complexity of a problem by its dimen-
sionality, and found that as dimension increases it is optimal to make smaller
interventions. Our proof follows the intuition that with more directions in which
to move there is greater opportunity for mistake, and hence greater need for cau-
tion.

We consider two notions of limited information, both corresponding to what
the decision maker knows about moving in any arbitrarily-chosen direction. In
one formulation, only the sign of the derivative is known, and in the other its



magnitude is known as well. In both cases we assume that the magnitude of
the loss from non-intervention is known. In the �magnitude� case if line search
is possible we show that this does not matter. More generally, while it may
not be the case in practice that the magnitude of the loss is known, in more
complex systems this information is likely to be more di�cult to come by, which
reinforces our results.

It is important to note that our result depends on the decision maker only
observing the magnitude of the derivative in a �xed and small number of di-
mensions. In particular, if the decision maker observes the magnitude of the
derivative in as few as n linearly independent directions then the full optimum
is achieved.11

There is another point worth emphasizing. If n > 1 since φn > 0 it follows
that while the expected loss is less than in the absence of intervention, there is
still a positive probability that intervention will make the realized loss worse:
Sometimes the intervention will make things worse rather than better.12

What do our theoretical results tell us? One case in point is that �rms who
do not respond to competition from complicated new products are sometimes
criticized for doing nothing. However, if a �rm lacks the technical expertise to
locate the new �optimum,� and are limited to adjustments in a single dimension
such as price, our results show that it may indeed be optimal to respond only
slightly if at all. The responses of WordPerfect to the Windows 3.0 shock in
1990 and of Nokia and Blackberry to the iPhone shock in 2007 all �t into
this category. In all three cases, �rms did little to respond to the shock, and
subsequent events showed that all indeed lacked the technical expertise to build
competitive products.

One way to read our theory is that even in time of crisis large interventions
are a bad idea. This is not the case. Instead, our model says that large ill-
considered interventions are a bad idea. One example is that of the failure of
NASDAQ computer systems during the Facebook IPO. Rather than study the
system to understand the reason for the failure, programmers were instructed
simply to make a large intervention in a single direction, namely to remove a
validation check that had caused the system to shut down. The consequences
were catastrophic: There was a cascading series of failures and �traders blamed
Nasdaq for hundreds of millions of dollars of losses, and the mistake exposed
the exchange to litigation, �nes, and reputational costs.�13

11This follows from the fact that the problem is quadratic, that the second derivatives are
known, and that the distance to the optimum is known.

12This can be seen from the fact that if d is orthogonal to x̂ the fact that φn > 0 implies
a strictly greater loss than in the absence of intervention, hence the same must be true for d
that are nearly orthogonal to x̂.

13The story and the quote are from Clear�eld and Tilcsik (2018), who also give examples
where similar catastrophes were averted because complex malfunctioning systems were not
restarted.

9
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Appendix: Gradient Descent

First Step of Gradient Descent

Recall that we have translated the coordinate system by subtracting the
location of the optimum, so that the optimum x̂ is at the origin and the sta-
tus quo x0 = −(1, 0, 0, . . . , 0)T . We describe a gradient descent problem as a
non-singular symmetric matrix A and a starting point y0 with the objective
function (1/2)yTATAy. We map this into our setting with a nonsingular linear
transformation B such that By0 = x0 and (AB−1)TAB−1 = I. The direction
of gradient descent, that is the negative of the gradient −g = Ay0 maps to
r = BAy0.

Observe that

−xT0 r = −xT0 BAy0 = −xT0 BB′x0 < 0
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so that r is a direction of decrease for the objective function and lies in the half-
sphere de�ned by x0 and x̂. If we �nd φn(µ) and λn(µ) in our problem then
the optimum in the original problem is given by φn(µ)g and the loss relative to
|y0|2 is given by λn(µ).

Any distribution over (A, y0, B) induces a distribution of r over our half-
sphere. If the induced distribution over r is uniform describe the distribution
over (A, y0, B) as pseudo-uniform.Our main theorem then says that in this case
as the dimension increases the expected size of the �rst step of gradient descent
and expected gain from that step shrink to zero.

There are in general many pseudo-uniform choices of gradient descent prob-
lems. Here is one example: let e be uniform on our half-sphere and A =√
2
(
(2/e1)

(
(e− (e1x̂)/2)(e− (e1x̂)/2)

T + (e21/4)I
))1/2

, y0 = A−1x0, and B =
A. Then as x̂ = (1, 0, 0, . . . , 0)T

r = 2A−1(AT )−1x̂

=
(
(2/e1)

(
(e− (e1x̂)/2)(e− (e1x̂)/2)

T + (e21/4)I
))
x̂

= (2/e1)
(
(e− (e1x̂)/2)(e− (e1x̂)/2)

T x̂+ (e21/4)x̂
)

= (2/e1)
(
(e− (e1x̂)/2)(e1 − e1/2) + (e21/4)x̂

)
= (2/e1)

(
(e1/2)e− (e21x̂)/4) + (e21/4)x̂

)
= e

is also uniform on our half-sphere so this distribution is indeed pseudo uniform.
Note that since B = A we can easily extend this to a measure with full support
over A. Take y0 = A−1x0. The mapping r = BAy0 = A−1x0 induces equiva-
lence classes of matrices A with two matrices being equivalent the give rise the
the same value of r . Regardless of the distribution over matrices conditional
on equivalent class, the example given provides a probability distribution over
equivalence classes such that we get pseudo uniformity.

Note pseudo uniformity can be relaxed substantially. In proving Theorem 1
we conditioned on the angle θ. For given θ we used the fact that the distribution
of directions r was symmetric. Let us say that a distribution over (A, y0, B) is
symmetric if this is the case. We view this as a fairly neutral assumption, that
the gradient descent problem does not favor any particular direction. Second
we used the fact that the distribution over angles gn(θ) is uniform on [0, π/2] .
However: the proof only requires that it be strictly positive and independent of
n. Moreover, it is clear that if as we increase n the distribution for n+1 weakly
stochastically dominates that for n then this enhances the results given. If this
is the case we say that the ensemble of distributions over (A, y0, B) is weakly
monotone. We conclude that symmetry plus weak monotonicity is su�cent for
our results.

Wigner's Theorem and the Condition Number

A standard convergence bound (see, for example, Meza (2010)) shows that
the rate of convergence declines as the ratio of the largest to smallest eigenvalue
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of A′A grows. If the matrix A is randomly chosen by independently choosing the
diagonal and upper triangle elements from a �xed and standardized distribution
with moments of all orders, and �lling in the rest by symmetry Wigner (1958)'s
semi-circle law says that the fraction of normalized eigenvalues λj/n

1/2 of A that
lie in an interval [λ, λ] ⊆ [−1, 1] converges in probability to

(2/π)

ˆ λ

λ

√
(1− λ2)dλ.

Graphically on [−1, 1] the function
√

(1− λ2) is a semi-circle, hence the name.
The implication for the ratio of the largest to smallest eigenvalue of AA′ is clear:
for any ε with high probability for large enough n there must be eigenvalues (and
indeed quite a few of them) in [0, 2ε] and in [1/2, 1/2 + 2ε] so that the ratio is
at least 1/ε. Hence, asymptotically, the convergence bound has no bite.


