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1. Introduction

In the empirical literature on cartels the strongly symmetric equilibrium model of Green and

Porter (1984), Rotemberg and Saloner (1986) or Abreu, Pearce and Stacchetti (1990) is often

referenced as a theoretical explanation of cartel behavior despite the fact that there is strong

evidence that cartels do not behave this way.2 A fundamental insight from Fudenberg, Levine and

Maskin (1994)'s work on repeated games with imperfect information is that collective punishments

such as price wars are ine�cient in comparison to punishments that involve transfer payments from

guilty to innocent: transfer payments provide incentives without diminishing overall cartel pro�ts.

The underlying repeated game equilibria are complex and in some ways do not re�ect how cartels

actually operate. This paper shows that a simple model of a repeated cartel that can use both

relatively e�cient but voluntary �nes and ine�cient prices wars delivers the insights of modern

repeated game theory in an empirically accurate and tractible form. The insight is this: it is

di�cult to monitor individual �rm output and/or price. Hence transfer payments should be used

to provide incentives. As these transfer payments are voluntary there must be a punishment also

for failing to pay a �ne. This, however, can be done with a collective punishment such as a price

war. The point is that while output and/or price are di�cult to monitor whether or not �rms pay

their �nes is easy to monitor. Hence there is little cost of using a collective punishment to enforce

�nes. The use of voluntary transfer payments are e�ective in the presence of noise and they convert

a noisy signal of behavior into a sharp signal of adherence to the rules. From a theoretical point of

view cartel equilibrium can be explicitly computed for every discount factor and are shown to be

the solution of a mechanism design problem in which �nes are chosen optimally subject to a simple

constraint on size that depends upon the discount factor.

Before proceeding with the model, we examine the underlying facts. First: there is strong

evidence that cartels do not use price wars to punish cheating. For example, much of the classical

study of sugar cartels by Genesove and Mullin (2001) is devoted to debunking the idea that the

behavior of the sugar cartel is consistent with strongly symmetric equilibrium and price wars as

an enforcement device. Another example is cited in Levenstein and Suslow (2006)'s survey of the

empirical literature: �after the adoption of an international price-�xing agreement in the bromine

industry, the response to violations in the agreement was a negotiated punishment, usually a side-

payment between �rms, rather than the instigation of a price war... As repeatedly discovered by

these cartel members, the threat of Cournot reversion is an ine�cient way to sustain collusion.�

Indeed one of the main conclusions of the survey is precisely the point that cartels do not generally

use price wars or collective punishment to deter cheating. Harrington and Skrzypacz (2011) have

similar evidence in the Lysine industry.

Second, the repeated game literature after the study of strongly symmetric equilibrium has

moved on to show that from a theoretical point of view �the threat of Cournot reversion is an

ine�cient way to sustain collusion.� These models are di�cult to solve, however, and there are

2See for example Hyytinen, Steen and Toivanen (2018).
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only a scattering of special cases solved in the literature: Roberts (1985) provides little in the way

of comparative static results, Athey and Bagwell (2001) study the possibility of attaining the �rst

best when the discount factor is su�ciently high. These models and those of Cramton and Palfrey

(1990) and Kihlstrom and Vives (1992) focus on the problem of private cost shocks. Here we focus

on the more empirically relevant problem of observing output. More recently Sannikov (2008) has

shown how to compute equilibria in continuous time models for the principal agent model - but

this computation is di�cult with more than two players and has not yet been adapted to the cartel

problem. Never-the-less fundamental to achieving good equilibria in these models is the idea that

punishments should take the form of transfers as long as it is feasible to do so and that collective

punishments such as a price war should be used only as a last resort.

The model here takes a simpli�ed yet empirically relevant approach based on the single-period

model of Levine, Mattozzi and Modica (2020): we allow contemporaneous transfer payments such

as �nes. We show that in this setting collective punishment should be used only to ensure that

�nes are paid and never to punish signals of cheating. This model is in the spirit Harrington and

Skrzypacz (2011) who show that when there are no transaction costs and �rms are su�ciently

patient full collusion can be obtained. The results here are di�erent than the anti-folk theorem

literature such as Postlewaite and Roberts (1977), Radner (1980), and Fudenberg, Levine and

Pesendorfer (1998) where collective punishments fail because of large numbers. The results here

are valid for any �nite number of �rms and any discount factor. The best cartel equilibrium itself

is the solution to a simple mechanism design problem, and we give here a closed form solution

for the special case in which demand and marginal cost are linear. By retaining the simplicity

of strongly symmetric equilibrium while allowing contemporaneous transfer payments we are able

to completely characterize cartel behavior as a function of the number of �rms, market demand,

cost, the discount factor, the di�culty of observing output, and the e�ciency of transfer payments.

This may be a useful foundation for future empirical studies. In addition anti-trust authorities use

screening rules for industry or �rm conduct to allocate scarce monitoring resources (see for example

Doan et al (2015)). In this context a clearer theoretical understanding of how collusion works in

practice may lead to improved screening tools.

2. The Model

We study a dynamic Cournot industry with N identical �rms with common discount factor

0 ≤ δ < 1. As is standard in the repeated game literature we use average present value throughout.

In period t = 1, 2, . . . �rm i produces output xit ≥ 0. Denote average �rm output by xt. The pro�t

of �rm i in period t is given by

u(xt, x
i
t) = p(xt)x

i
t − c(xit)

where we make the standard assumption that p(xt) is smooth for p(xt) > 0, p′(xt) < 0, limxt→∞ p(xt) =

0, and c(xit) is smooth with c′(xit) > 0, c′′(xit) ≥ 0. We need also that there is a (symmetric pure

strategy) Cournot equilibrium, and denote by xn the worst such equilibrium and xn the equilibrium
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with the least level of output. For example, a standard argument implies that if we assume that

for 0 ≤ ((N − 1)/N)xt + xit/N ≤ xc we have p′′(xt)x
i
t + 2p′(xt) − c′′(xit) < 0 there is a unique

(symmetric pure strategy) Cournot equilibrium in which case xn = xn.

The industry is governed by a cartel that sets a common quota xn ≥ yt ≥ 0 for all of the

identical �rms at the beginning of each period. After this production takes place. For each �rm

an independent public binary signal is observed of whether xit ≤ yt, that is whether the quota was

adhered to or not. The signal is either �good, adhered to the quota� or �bad, violated the quota.�

If the quota is adhered to, that is, xit ≤ yt, then a bad signal is generated with probability π > 0.

If the quota is violated, that is xit > yt, the bad signal is generated with probability πB > π > 0.3

We denote by Z denote the total number of bad signals in the industry. Finally, after signals are

commonly observed, �rms may optionally choose to pay �nes φit where a fraction 1 − ψ of the

proceeds are distributed among the remaining �rms and ψ of the �ne is lost due to transaction

costs with 0 ≤ ψ < 1.4

By restricting attention to strongly symmetric equilibrium we may use the results of Abreu,

Pearce and Stacchetti (1990) to give a simple characterization of the best agreement achievable

by the cartel. An agreement consists of a quota y, the rule that �rms produce to quota5 xit = y, a

system of required �nes φ(Z) paid by �rms with bad signals, termination (of the cartel) probabilities

Q(Z) and the rule that if any �rm fails to pay a required �ne termination (of the cartel) takes place

with probability one.6 A strongly symmetric pro�le is an agreement along with the rule that if

termination (of the cartel) takes place each �rm will produce at the Cournot level xn forever and

otherwise the agreement will continue for another period. Our notion of equilibrium is strongly

symmetric subgame perfect equilibrium: we say that an agreement is incentive compatible if in the

strongly symmetric pro�le every �rm is willing to pay the �ne and no �rm wishes to deviate from

the quota. Our goal is to characterize the best agreement : the incentive compatible agreement that

yields the highest per �rm pro�t.

3The bad signal should be thought of as evidence of a quota violation. Provided that this evidence is veri�able
it need not be public in the sense of being commonly observed by all �rms in the cartel. Even if the evidence is
private to one or a few �rms they can credibly communicate the signal to the rest of the cartel making it de facto

public. Generally speaking the literature on communications in repeated games with private signals (see, for example,
Fudenberg and Levine (2007)) is complicated by the need to provide incentives for information revelation. That is
not an issue here as �rms wish to see their rivals �ned so that they can receive their share of the proceeds. Firms
may also have private non-veri�able evidence of quota violations by rivals: following the literature on perfect public
equilibrium (see, for example, Fudenberg, Levine and Maskin (1994)) we assume that the cartel does not try to use
this additional private information.

4So for, for example, if there are two �rms and both are required to pay a �ne φ then each pays the �ne to the
other, paying φ and receiving (1− ψ)φ for a net loss of ψφ.

5Since we assume the quota is no greater than the least Cournot equilibrium output y ≤ xn no �rm will produce
less than the quota.

6Because the payment of �nes is perfectly observed this is without loss of generality.
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3. The Theorem

Denote the Cournot utility by un = u(xn, xn). De�ne the greatest utility from deviating from

a quota as uB(y) = maxxi u
(
((N − 1)/N)y + xi/N, xi

)
. A crucial aspect of the model is that the

transactional loss from a �ne ψ < 1 so at least some small part of the �ne is received by cartel

members. In other words, the social cost of using a �ne as punishment is strictly less than the size

of the punishment. By contrast, if the cartel is terminated, the social cost of the punishment is at

least equal to the size of the punishment. This suggests that it is always better to use �nes, and

our �rst result shows that this is true: termination of the cartel should be used only to enforce the

payment of �nes.

Theorem 1. In any best agreement Q(Z) = 0.

Proof. Let u be the utility from the best agreement. Then u ≥ un and if u = un then it must be

that Q(Z) ≡ 0. Hence to prove Q(Z) = 0 we may assume u > un.

De�ne the collective punishment as q(Z) = (δ/(1− δ))Q(Z) [u− un]. Suppose that N − 1 �rms

adhere to the quota and let Π(Z) be the probability that they generate exactly Z bad signals. Note

that since the quota is no greater than the least Cournot equilibrium output y ≤ xn no �rm will

wish to produce less than the quota. Hence the only incentive constraint is that �rms weakly prefer

producing to quota to deviating to a higher output and receiving uB(y) with a higher probability

of punishment:

u(y, y)−
N−1∑
Z=0

Π(Z) [(1− π)q(Z) + π (φ(Z + 1) + q(Z + 1))]

≥ uB(y)−
N−1∑
Z=0

Π(Z) [(1− πB)q(Z) + πB (φ(Z + 1) + q(Z + 1))]

which may be written as

uB(y)− u(y, y) ≤ (πB − π)

N−1∑
Z=0

Π(Z) [φ(Z + 1) + (q(Z + 1)− q(Z))] . (3.1)

The incentive constraint for paying �nes is

φ(Z) ≤ (δ/(1− δ))(1−Q(Z)) [u− un] = (δ/(1− δ)) [u− un]− q(z). (3.2)

.

Per �rm pro�ts when all �rms adhere to the quota are

u(y, y)−
N−1∑
Z=0

Π(Z) [(1− π)q(Z) + π (ψφ(Z + 1) + q(Z + 1))] . (3.3)

Start with an incentive compatible plan in which Q(Z0) > 0 and consider increasing φ(Z0) by
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r and decreasing q(Z0) by r. The RHS of 3.1

(πB − π)
N−1∑
Z=0

Π(Z) [φ(Z + 1) + (q(Z + 1)− q(Z))]

+1(Z0 ≤ N − 1)(πB − π)Π(Z0)r

so the incentive constraint for adhering to the quota is sati�ed. It is similarly clear that 3.2 remains

satis�ed.

Per �rm pro�ts are

u(y, y)−
N−1∑
Z=0

Π(Z) [(1− π)q(Z) + π (ψφ(Z + 1) + q(Z + 1))]

+1(Z0 ≥ 1)Π(Z0 − 1)π(1− ψ)r + 1(Z0 ≤ N − 1)Π(Z0)(1− π)r

which is strictly increasing in r. We conclude that Q(Z) ≡ 0.

De�ne φ̂(y) ≡
[
1/(πB − π)

] (
uB(y)− u(y, y)

)
. Because termination of the cartel is used only to

enforce the payment of �nes the punishment from termination imposes a simple constraint on the

size of the �nes used to enforce quotas. This enables us to reduce the dynamic problem of �nding

the best agreement to the simple static mechanism design problem of maximizing one-period utility

net of a cost of enforcing the agreement. This is our second result.

Theorem 2. In any best agreement the quota ya is a solution of the static mechanism design

problem maxy u(y, y) − ψπφ̂(y) subject to φ̂(y) ≤ (δ/(1 − δ))
[
u(y, y)− ψπφ̂(y)− u(xn, xn)

]
and

any such solution is part of a best agreement in which φ(Z) = φ̂(y).

Proof. We continue to let u be the utility from the best agreement. De�ne Φ =
∑N−1

Z=0 Π(Z)φ(Z+1).

Since Π(Z) is the probability thatN−1 �rms generate exactly Z bad signals, we have
∑N−1

Z=0 Π(Z) =

1. Since Q(Z) = q(z) = 0 the objective function is to maximize u(y, y) − πψΦ, the incentive

constraint for adhering to the quota is uB(y) − u(y, y) ≤ (πB − π)Φ, and the incentive constraint

for paying �nes is φ(Z) ≤ (δ/(1 − δ)) [u− un]. The �ne paying constraint may also be written

as maxZ φ(Z) ≤ (δ/(1 − δ)) [u− un] from which it is clear that Φ ≤ (δ/(1 − δ)) [u− un], while

conversely if that is the case then φ(Z) = Φ satis�es the constraint. Hence the constraint Φ ≤
(δ/(1 − δ)) [u− un] su�ces. Since the objective function is decreasing in Φ the quota adherence

constraint must hold with exact equality uB(y) − u(y, y) = (πB − π)Φ, which is to say Φ = φ̂(y).

Plugging in u = u(y, y)− ψπφ̂(y) then gives the result.

This mechanism design problem has an important feature. If the discount factor is large enough

the constraint on the size of the �ne does not bind, and for discount factors greater than this critical

level we need only solve the unconstrained mechanism design problem. This problem is independent

of the discount factor.
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Corollary 1. If we denote by φ the mininimum of φ̂(ya) over unconstrained solutions to the problem

maxy u(y, y)− ψπφ̂(y) and U the utility then for δ ≡ φ/(φ+ U − un) we have δ < 1 and for δ ≥ δ
utility from the optimal agreement is U , that is, the constraint does not bind.

Proof. The only thing to be proven here is U > un. If we set θ = ψπ/(πB − π) we can write the

objective as u(y, y) − θ
(
uB(y)− u(y, y)

)
. Consider the derivative with respect to y at y = xn.

From the envelope theorem the derivative of the second part
(
uB(y)− u(y, y)

)
is zero, so that the

derivative is just that of u(y, y), that is, the monopoly pro�t. But under our standard regularity

conditions the derivative of monopoly pro�t with respect to output is strictly negative at the

Cournot equilibrium so we are done.

4. The Square Root Rule

Given a particular pro�t function u(xt, x
i
t) the static mechanism design problem can be readily

solved. Here we give the solution in the quadratic case. We normalize slope of demand to 1 and and

take marginal cost to be constant and equal to zero so the competitive equilibrium is xt = xit = 1.

Pro�ts are then given by

u(xt, x
i
t) = (1− xt)xit.

It will be convenient to work with the patience ∆ = δ/(1 − δ) rather than the discount factor.

De�ne also the constants λ = 1/(πB − π),

A =
2N

N + 1
− 1

B =

[
4N

λ (N + 1)2
+ ψπ

]
and

D =
2
√
N√

λ (N + 1)
.

Theorem 3. The Cournot equilibrium is

xn =
N

N + 1
.

The critical cuto� is ∆ = 1/B. For ∆ ≤ ∆

√
φ =

∆A

1 + ∆B

with the corresponding optimal quota equal to

y = xn −D ∆A

1 + ∆B
.
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and utility

u(φ)− un = A2 ∆

(1 + ∆B)2
.

For ∆ ≥ ∆ we have φ = φ = (A/(2B))2 with the corresponding optimal quota equal to

y = xn − 1

2B
DA

and utility gain U − un = A2/(4B).

The global picture here is that indicated by Corollary 1: �nes go up, utility goes up, and quotas

go down as δ or ∆ increase up to a point δ,∆ at which the constraint no longer binds. What is

new and interesting is what happens for low discount factors. Here there is a square-root rule: the

square root of the �ne is locally linear in ∆ with derivative equal to A. By contrast the quota

declines approximately linearly with ∆ with derivative equal to −DA and utility increases with

derivative A2. This result is general because locally near the competive equilibrium supply and

demand are approximately linear. What this means is that when the discount factor is very low

quotas decrease and utility increases much faster than the �ne. As the markup is locally a linear

function of the quota, it also means that markups also increase approximately linearly, which is to

say much faster than the �nes.

In short, when collective punishment is weak due to a low discount factor there can be a

signi�cant markup with a very low �ne. This can be important for anti-trust authorities in an

investigation triggered by a high markup. A low ��ne� might not be a monetary penalty at all. As

an example an industry might have an annual awards banquet with a �CEO of the year award.�

If that award was given or denied on the basis of signals of adhering to a quota this might be

enough of a ��ne� to induce substantial markups. Hence, rather than looking for evidence of

�nes, investigators might also look for evidence that the award was based on adhesion to collusive

practices.

Proof. For any given quota y the pro�t of �rm i is[
1−

(
N − 1

N

)
y − xi

N

]
xi

and the corresponding best response is

xB =
1−

(
N−1
N

)
y

2/N
.

This enables us to explicitly compute the utility gain

uB(y)− u(y, y) = (1/N)(xB − y)2 = (1/N)

(
1−

(
N+1
N

)
y

2/N

)2

.
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When the incentive constraint holds with equality φ = λ(uB(y)− u(y, y)). Substituting in

φ = λ(1/N)

(
1−

((
N+1
N

))
y

2/N

)2

.

As this is strictly increasing we can invert it to �nd the optimal quota as a function of the �ne

y =
1−

(
(2/N)2

λ(1/N)

)1/2√
φ(

N+1
N

) .

Since u(y, y) = (1− y)y

u(φ) = y − y2 − ψπφ

=
1−

(
(2/N)2

λ(1/N)

)1/2√
φ(

N+1
N

) −

1−
(

(2/N)2

λ(1/N)

)1/2√
φ(

N+1
N

)


2

− ψπφ.

Notice that when φ = 0 this is the utility from the Cournot equilibrium so u(φ) − un is equal to

this expression net of the constant term, that is has the form

u(φ)− un = A
√
φ−B

(√
φ
)2
.

Multipling out the terms gives the constants A,B.

The unconstrained optimal �ne is then φ = (A/(2B))2 with U −un = A2/(4B). The constraint

is φ ≤ ∆ (u(φ)− un). This holds with equality at φ when ∆ = 1/B. The corresponding optimal

quota are then as stated in the Theorem.

For ∆ ≤ 1/(4B) the constraint is
(√
φ
)2

= ∆A
√
φ −∆B

(√
φ
)2

and solving for
√
φ and back

substituting gives also y and the utility gain result.

5. Conclusion

We study a repeated cartel problem in which cartels can use �nes as well as price wars. We

show that best agreement is the solution to a simple mechanism design problem, and we give here

a closed form solution with linear demand and marginal cost. By retaining the basic simplicity of

strongly symmetric equilibrium we are able to completely characterize cartel success and behavior

as a function of the number of �rms, market demand, cost, the discount factor, the di�culty of

observing output, and the e�ciency of transfer payments. This may be a useful foundation for

future empirical studies.

.
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