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Abstract

The introduction of arti�cially intelligent algorithms in pricing decisions by �rms has

triggered a literature in industrial organization asking if the use of these algorithms

will lead to collusive outcomes. In a simple repeated game environment it is shown

that if algorithms can be reliably communicated or inferred the folk theorem breaks

and the long-run outcome must be collusive.
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�Of course, the whole point of a Doomsday Machine is lost, if you keep it a secret!

Why didn't you tell the world, EH?� Dr. Strangelove

1. Introduction

The introduction of arti�cially intelligent algorithms (AI) in pricing decisions by

�rms has triggered a literature in industrial organization asking if these algorithms

will enable collusion between �rms. The possibility of collusion between algorithms

has long been established by folk theorems in the theory literature in which players

are limited to choosing automata (algorithmic strategies).2 Hence, provided response

time is quick, �rms can collude using AIs. There is, however, a deeper question

that has been addressed with only partial success in the theory literature which is

whether �rms using AIs will always succeed in colluding, or whether they may only

achieve some less mutually pro�table equilibrium such as the Cournot equilibrium.3

In this paper I consider the latter question for AI algorithms and the other use of

programmed strategies.4

There is a simple intuition as to why in a repeated game between two players

long-run outcomes should be e�cient. If there is an existing status quo that is not

e�cient, each player has an incentive to make an o�er to the other that improves

utility for both. This is not a new idea, but the devil is in the details. In particular,

what happens if the two commit to incompatible o�ers? Indeed, the standard model

2Rubinstein (1986) makes this point. He goes on to show that in the Prisoner's dilemma if players
try to minimize the number of states used by their machines only a more limited set of outcomes
(never-the-less including e�cient ones) is attained. This latter result is generalized in Abreu and
Rubinstein (1988).

3For evidence that they do succeed in colluding, see the experimental work of Calvano et al
(2020), the simulation study of Asker, Fershtman and Pakes (2022) and the theoretical work of
Cartea et al (2022).

4Empirical work showing that �rms use programmed strategies includes Chen, Mislove andWilson
(2016), Brown and MacKay (2021), Leisten (2021) and Musol� (2022).



3

of Nash equilibrium in a repeated game can be viewed as a model in which players

make simultaneous commitments, and, as might be expected since neither can respond

to the other's commitment, the folk theorem holds for these games and there is no

particular tendency to e�ciency.

Re�ection on the use of AIs by �rms suggests that the standard repeated game

model may not be adequate for addressing the issue of commitment. Speci�cally

while an AI can respond quickly to opponent actions it must �rst be trained and

this is an expensive and time-consuming procedure. Hence it is natural to think

that while the response time of an AI is rapid, decisions about which AI to use are

taken only occasionally. This is more broadly true whenever a decision maker delates

authority, either to a computer program or to a bureacracy. Hence I distinguish

between response time, which is short, and decision time which is long. As indicated

this model applies not only to AIs but more broadly: for example, an organization,

team, or sales force is trained to respond quickly, but that training is only updated

occasionally.

In the context of decision time it is natural to think that decisions are taken

asynchronously, that is, the two players are unlikely to simultaneously update their

AIs or retrain their sales forces. The key insight of this paper is that when this is

the case choice of an AI becomes a commitment, and players e�ectively take turns in

making commitments. If these commitments are observed then I show that this breaks

the folk theorem in a favorable way: in the long-run equilibrium play is e�cient.

The role of time in this result needs emphasis. As indicated, there are two mea-

sures of patience and impatience in the model: reaction time and decision time. In

calendar time reaction is fast, but the time between decisions is long. This leads

to �folk-theoremesque� patience in terms of incentives - each player can provide the

other with incentives. On the other hand, because decisions can be revised only in-
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frequently (in calendar time) they represent a relatively long-term commitment. It

means that in assessing the implications of a particular commitment each player is

�relatively� myopic.

To understand the intuition of this main result, consider a player who is deciding

how to design their AI or organization. Their opponent is commited to a particular

automaton and will (probably) remain so for a long time into the future. Hence the

player should design a best response to the current commitment of the opponent.

However: only on-path play matters and the player is (largely) indi�erent as to how

to play o� path as this will not matter until the opponent revises their commitment.5

Hence o�-path play should be designed to in�uence the opponent's play in the future

when they revise their commitment. It should be in the form of an �o�er� to the

opponent that will provide them with incentives to �cooperate.� This leads to play

that in the long-run is e�cient.

After illustrating this main idea with a simple example, I extend the model to

a broad class of two-player safety games that includes public goods and duopoly

games. There are three main results. First, long-run e�ciency is shown to hold for

observable commitments. By contrast, it is shown to fail and that instead the folk

theorem holds with unobervable commitments. This re�ects the fact, known certainly

to Stanley Kubrick in 1964, that to be e�ective a commitment must be observed by

the opponent. Finally, I modify the model to add an element of uncertainty similar to

that in reputational models. This gives players an incentive to learn their opponent's

unobserved commitment through active experimentation and observation. I show

that in this case long-run e�ciency does hold but with one additional key proviso: it

5This indi�erence to o�-path play is important also in the evolutionary theory of cooperation,
since players are indi�erent between cooperating unconditionally and the equilibrium strategy of
cooperating conditionally.



5

must be the case that players are restricted to use automata that are forgiving.

Literature Review

As indicated the study of automata in repeated games is not new, and originates

in the work of Rubinstein (1986). That work also supposes that building automata is

costly. This is modeled by assuming that players choose automata once and for all and

try to minimize the number of states used by their automata. In contrast I model the

cost of building automata by assuming that they are only built occasionally leading

to rather di�erent conclusions. The basic folk theorem result without costly choices

of automata is reported in Rubinstein (1986) and has been extended to algorithmic

learning procedures by Cartea et al (2022).

The idea that of players reacting quickly but planning slowly is not new, nor is

the idea that the levels are important in the middle-run but reaction in the long-run.

This is the idea in Levine (1981), but due to unresolved issues about observability

the paper was never published. It is directly connected to the unpublished work of

Salcedo (2015) and Lamba and Zhuk (2023) upon whose framework I build. Both

study only the case of observable commitments and do so in a limited classes of

games. Salcedo (2015) studies symmetric equilibria of a special class of symmetric

games. Lamba and Zhuk (2023) also focus on symmetric games, albeit a price setting

duopoly game. Lamba and Zhuk (2023) consider only automata that react to the

previous period. I broaden the class of games to two player games that need only

satisfy a safety condition described below and consider more general automata. My

setup di�ers from theirs also smaller respects: neither assumes an adjustment cost

and Salcedo (2015) allows automata of unlimited complexity and does not consider

arbitrary initial conditions. Both restrict attention to Markov perfect equilibria.

Lamba and Zhuk (2023) rule out cycles but do so by allowing a player's strategy
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space to depend on the (observed) strategy of the other player. I rule out cycles

enogeneously through high costs, but players may cycle and incur the resulting costs.

These small di�erences are not so important in the observable case, but my main goal

is to extend the result to the unobservable case and I have chosen assumptions that

make sense in both contexts.

I should also mention the work of Aumann and Sorin (1989) who give a result for

special case of games of common interest. The idea behind this is di�erent than in this

paper or Salcedo (2015) and Lamba and Zhuk (2023). It is based on a reputational

model and applies only to pure strategy equilibria. Like the unobservable case here

forgiveness plays a key role. Also related to the result on the unobservable case is

the paper of Jindani (2022) who shows that a particular learning process leads to an

e�cient long-run solution. That paper draws on the earlier work of Foster and Young

(2003) on exogenously speci�ed learning processes. Here, in the unobservable case, the

learning process is endogenous. In the direction of endogeneous play there is a body of

related work by Abreu and Pearce, for example Abreu and Pearce (2007). This also

studies a game between two players. That work uses reputation and renegotation with

binding contracts to introduce the key elements needed to break the folk theorem:

commitment and foregiveness. They �nd a unique equilibrium payo� in contrast to

the results here showing that the long-run must be e�cient.

I should also mention the substantial literature on the evolution of strategies

in a large population that enforce cooperation through punishment. Axelrod and

Hamilton (1981), Binmore and Samuelson (1992), Johnson, Levine and Pesendorfer

(2001), Dal Bo and Pujals (2015), and Juang and Sabourian (2021) are but a few

examples. That literature is based on a di�erent mechanism: cooperative strategies

do well against each other so have an evolutionary advantage.
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2. An Example

Before introducing the general model I want to talk through the simple example

of the prisoners' dilemma game in which the actions are to cooperate or defect and

the payo�s are given by

cooperate defect

cooperate 2, 2 −1, 3
defect 3,−1 0, 0

Table 2.1: PD game

Players have a common discount factor in the form of a discount rate over calendar

time which we may normalize to one. I want to study a �folk theorem� type of

environment in which players can observe and respond to each other quickly, but

I want to distinguish between response time and decision time. The idea of quick

response is modeled by taking the length of a period ∆ to be short in calendar time

so that the discount factor e−∆ is close to one.

I now want to introduce the idea of decision time. The idea is that a player designs

an AI or trains a team to respond in a certain way, but that the design decision or

training takes place infrequently. We can think of a player as waking up, committing

to a particular response, then falling asleep for a long time while the AI or team

carries out the response plan. To be concrete, imagine that the commitment, that is

the period of being asleep, lasts for 2T periods and that these overlap so that initially

player 2 is committed for T periods and player 1 has just woken up. Think of this

as a crude approximation to a Poisson process that wakes the players - that will be

the formal model subsequently. Here the idea is that T is big in calendar time and

speci�cally that T = τ/∆ where calendar time τ is large.

For simplicity and concreteness, and indeed following the literature on evolution

in repeated games, suppose that the possible commitments are responses to what the
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other player did last period. In technical terms these are automata. There are four

such automata: play the same as the other player last period, that is, tit-for-tat,

play the opposite of the other player last period, that is, anti-tit-for-tat sometimes

called tat-for-tit, or to always cooperate, or to always defect. I suppose that player's

automata are observable by the opponent. This is the starting point I will use for

analyzing the unobservable case.

I am now going to talk through the case where initially player 2 is committed to

alway defect. Player 1 as indicated, has just woken up and must decide which of four

responses to implement for the next 2T periods. During the �rst T of those periods

if player 1 plays tit-for-tat or always defect they get 0. If they play anti-tit-for-tat or

always cooperate they get −1. If τ is large then the bene�t of getting 0 over T periods

rather than −1 is greater than any conceivable gain after T , so player 1 must commit

to either tit-for-tat or always defect: for the next T periods it makes no di�erence.

The crucial point is this: tit-for-tat is in fact better than always defect. Consider

what happens when player 2 wakes up. If player 1 is playing always defect then

player 2 is in exactly the same position as player 1 at the beginning of the game

and in periods T + 1 to 2T both players will get 0. On the other hand if player 1 is

playing tit-for-tat then player 2 will prefer to either playing tit-for-tat (with initial

cooperation) or to always cooperate as both of these give 2, while anything else either

cycles or gives 0. While in this game is possible to work out that the cycles give

strictly less than 2 this will not be true in general games, so I am going to rule out

cycles by �at, modifying the usual repeated game setup by assuming an adjustment

cost: if the current action is not the same as the previous period action then utility is

reduced by φiF > 0. If F is large, then without further calculation we can conclude

that player 2 is going to cooperate and player 1 will get 2 between T + 1 to 2T ,

much better than the 0 from playing always defect, and since T is large, dominating



9

anything after 2T .

Continuing on in this way, we see that player 2 will also commit to tit-for-tat (with

initial cooperation) and this will continue for the remainder of the game. In other

words: starting with player 2 committed to always defect, the unique equilibrium is

for player 1 to play tit-for-tat forever, and for player 2 to switch to tit-for-tat as soon

as possible. Player 1 makes a good o�er of cooperating to player 2 and as soon as

player 2 is able they accept the o�er and the outcome is e�cient. Most important:

this is the only equilibrium and the folk theorem has been broken in a favorable way.

3. The General Model

The simple example has a number of limitations, and I want to generalize it while

preserving some of the simplicity. The general setting remains one of a in�nitely

repeated two player �nite game. In each period t = 1, 2, . . . players i ∈ {1, 2} choose

observable actions ait ∈ Ai a �nite set withM i elements and receive utility ui(ait, a
−i
t ).

With respect to payo�s ui(ait, a
−i
t ) I am going to assume a generic condition on payo�s

I will state later. More important, I will limit the class of games to safety games like

the prisoners' dilemma in which each player has a safety action ai in the sense that

this pure action guarantees that i gets a non-negative payo� and their opponent gets

a non-positive payo�. This implies that both employing safety actions is a static Nash

equilibrium in which each gets 0. It also implies that the individually rational payo�

for each is 0. Speci�cally, a pro�le a is individually rational for i if ui(a) ≥ 0. There

is also an adjustment cost: if ait 6= ait−1 then utility is reduced by φiF > 0.

As noted, the prisoners' dilemma game is a safety game, where the safety action is

to defect, as are the related public goods contribution games in which the individual

gain from contributing is less than the cost and the safety action is to not donate.

However, the class of games is much larger. It includes Cournot duopoly games with
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downward sloping demand and diminishing return to scale in which it is optimal for

each player to produce to capacity when the other does and payo�s are pro�ts minus

the irrelevant constant of pro�ts when both produce to capacity. Here the safety

action is to produce to capacity. It also includes games with multiple equilibria, such

as the 2x2 game with payo� matrix

 2, 2 −1, 1

1,−1 0, 0

 .
Since in the class of safety games the mutual minmax point is a static Nash equilib-

rium, when in�nitely repeated the simple Friedman (1971) Nash threats folk theorem

implies the Fudenberg and Maskin (1986) general folk theorem.

As in the example, players have a common discount factor in the form of a discount

rate over calendar time which is normalized to one. The length of a period in calendar

time is ∆ so that the discount factor is e−∆.

In the example I limited players commitments to one-period responses to the

other player. I am now going to broaden the class of commitments to allow player

i to choose within the class of Bi-state machines where Bi ≥ Ai is an integer. A

Bi-state machine consists of a �nite set6 of states Bi with Bi elements together with

mappings αi : Bi → Ai and βi : Bi×A−i → Bi. The �rst mapping αi says what action

the machine will choose in state bi ∈ Bi while the second says what state the machine

will move to next period when the current state is bi and the opponent plays a−i.

In the example the class of commitments consisted of the subset of 2-state machines

for which βi(bi, a−i) = βi(a−i). I refer to machines that depend only on the (�nite

length) past play of the other player as reactive machines as they only react to what

6Having a maximum �nite number of states is a form of bounded rationality and rules out, for
example, time varying strategies.
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the other player did and not to their own past state or action. The class of feasible

machines for player i is a �xed subset Di of all Bi-state machines that includes at

least the reactive machines and with the property that for any βi every αi is feasible:

that is actions can be assigned to states in an arbitrary way. A commitment by player

i consists of a choice of a machine di ∈ Di together with an initial state bi ∈ Bi.

The model of coordinated overlapping commitments lasting 2T periods makes

little sense, and I adopted it solely for illustrative purposes. As indicated I do want

to assume that players wake up, take a decision, then fall asleep for a long period

of time, but the natural way to think of this is as stochastic and asynchronous.

Speci�cally, I want waking up to be triggered by independent Poisson events for the

two players where the probability of that event for player i each period is ∆/(hiτ) > 0.

For convenience, normalize hi < 1. As we do not imagine that Poisson events arrive

at exactly the same time, if both receive a Poisson event in the same period a coin

�ip determines which one received the event ��rst.�

A player might also like to make sure that their opponent's machine is in the

�right� state prior to making a commitment, or if commitments are unobserved, to

test their opponent's machine to see what it does. To model this I assume that after

waking and prior to committing a player has N i periods of free play in which they

are not committed to any machine and can do what they like. For simplicity and

because under the subsequent assumptions it will happen very rarely, I am going to

assume that a player who wakes up during an opponents free play goes back to sleep.

This re�ects the reasonable idea that if your opponent is not yet committed but in

the process of doing so it makes sense to wait and see what they are committed to

before trying to make a commitment. It avoids the complicated (but rarely needed)

reasoning: if I do this free play during my opponent's free play how will that alter

their eventual commitment? I want to emphasize, however, that while implicitly
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players observe whether the other is awake the machines do not and cannot condition

their play on Poisson events for the other player.

This structure makes sense, but it also leads to an analysis that is similar to the

2T coordinated overlapping commitments in the example: when player −i wakes up

the expected length of calendar time until the opponent wakes up is h−iτ which I will

assume is quite long. In this context it is useful to de�ne the notion of a switch: this

occurs when a player wakes up and �nds that their opponent was the last to wake

up.

Without loss of generality, we may continue to assume that the game begins with

player 1 having just woken up and an initial condition which is a commitment (d2, b2)

for player 2.

I am going to consider two assumptions about commitments. With observable

commitments when a player wakes up they directly observe the commitment and

current state of the opponent. This model is relevant if limited: if the commitment

involves training a bureacracy to carry out a rule, it may be possible for the opponent

to observe the training process. If the commitment involves coding an AI, it may be

possible for the opponent to see the code used by the AI. With unobservable commit-

ments the initial condition includes beliefs by player 1 in the form of a probability

distribution over the initial condition for player 2 and subsequently a player can ony

make observation based inferences about what commitment the opponent has made.

A strategy σi for a player in this game is a history dependent choice of commitment.

The notion of equilibrium is sequential equilibrium. In the observable case the game

has complete information so this reduces to subgame perfect equilibrium in which the

relevant subgames begin with a player waking up and �nding that their opponent has

a particular commitment. Regardless of observability the game does have sequential

equilibria. From Kreps and Wilson (1982) they exist for every time-truncated version
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of the game. Taking the limit as in Fudenberg and Levine (1983) there is a convergent

subsequence of strategies and assessments that converge to a Nash equilibrium where

play following is optimal with respect to the limit of the assessments. As consistent

assessments cannot converge to a limit that is not consistent, this limit is a sequential

equilibrium.

I will show that the folk theorem holds when commitments are not observed.

The reason for this is that players can have point beliefs giving them no incentive

to learn what their opponent might be doing. I want to also consider what happens

if they do have an incentive to learn. This is not a new issue in equilibrium theory:

point beliefs are instrumental also in the chain-store paradox, and it was to break

the tyranny of point beliefs that the gang-of-four introduced committed types and

the reputational model. Indeed: there are a number of ways of perturbing a model

to get rid of point beliefs: players trembling, the logistic response used in quantal

response equilibrium, global games, and so forth. These are all ways of forcing some

uncertainty about what the opponent is doing. In the context here it is convenient

to perturb beliefs directly as is sometimes done in the de�nition of trembling hand

perfect equilibrium. Speci�cally, suppose that player i has a �xed distribution µi

over feasible opponent commitments that puts weight at least µ on each one. Let

µ̃it be a sequentially rational assessment for player i at wake-up time. I de�ne an

ε-belief-perturbed equilibrium as a best response in each sub-form following wake-up

to the perturbed assessment (1 − ε)µ̃it + εµi. Now when a player wakes up they no

longer have point beliefs, so have an incentive to learn their opponent's commitment.

Note that that the existence of equlibrium continues to hold in the perturbed model.
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Assumptions

First, I want to make sure that N i is su�ciently long to initalize the opponents

machine. For initialization, observe that for a given initial condition b−i some states

in B−i may be inaccessible, for example, if b−i is an absorbing state. However, the

machine must cycle in at most B−i periods so an accessible state can be attained by

an input of length at most B−i. Hence I always assume

Assumption 3.1. N i ≥ B−i.

As the order of limits is important but hard to parse it is useful to make the

following de�nition

De�nition 3.2. F, τ are large and ∆F is small is short-hand meaning: For the given

game and �xed N i there exist τ > 0, F > 0 and for any F > F and τ > τ there exists

∆ > 0 and for any ∆ satisfying 0 < ∆F < ∆.

The crucial fact here is that after picking τ we pick ∆. The importance of ∆F

is this: after waking there is a period of free play of at most maxN i periods and

after that both players are committed to particular machines. These machines will

jointly cycle after some �xed additional time, at most B1B2 periods. Hence there

is a short-run epoch of up to N ≡ maxiN
i + B1B2 periods during which very little

can be said about how players play, followed by a cycle. As adjustment costs can

occur during this epoch from the point of view of average present value the utility

contribution of this epoch is proportional to ∆F . After the short-run epoch ends

there is a middle-run epoch of cycles that continue for roughly the calendar time

between Poisson events which is proportional to τ . When τ is very large the future

after τ matter very little. The order of limits allow us then to choose ∆F su�ciently

small that the short-run epoch matter much less than that distant future.

For clarity I give a formal de�nition of short-run, middle-run and long-run
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De�nition 3.3. An epoch is continguous sequence of periods. The short-run is an

epoch begining with one player waking up until the completion of the �rst cycle of

committed machines or until some player wakes up. The middle-run is from the

completion of the �rst cycle of committed machines until some player wakes up. The

long-run is the in�nite epoch following the medium run. According to this de�nition

there may be several short-runs before a medium run, but every medium run is

followed by a long-run.

To summarize: players wake up according to an exogenous Poisson process. This

is infrequent in calendar time and this is crucial to the results because it enables

�overlapping commitments.� An alternative would be to have a cost of attention and

endogenize the waking up but this is beyond the reach of this paper. Adjustment costs

are assumed to be large enough to rule out cycles. There is evidence of cycling in some

empirical work such as Brown and MacKay (2021) and Chen, Mislove and Wilson

(2016) but this also is beyond the reach of this paper. I should also emphasize that

while the assumption of observability makes sense as indicated in the introduction

it will not generally hold and I provide two results concerning unobservability, one

negative and one positive.

I will also use a generic assumption on payo�s. First I de�ne several constants.

De�nition 3.4. The scale of the stage game Γ > 0 is the largest utility di�erence

between any two pro�les.

The mixed action set Ai for player i are the mixed strategies that are divisible by

an integer less than or equal to B1, B2. The grain of the stage game is

ρ ≡ min
i∈{1,2}

min
ai 6=ãi∈Ai,α−i 6=α̃−i∈A−i

|ui(ai, αi)− ui(ãi, α̃−i|

.
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I can now state the generic assumption on payo�s. This is a strong no-ties condi-

tion.

Assumption 3.5. ρ > 0.

Note that this is su�cient for the results, but not necessary, as it does not hold

in the example, although of course it does for arbitrarily small perturbations.

Finally, as the goal is to confront equilibrium with e�ciency it is useful to say

what sort of e�ciency is under consideration.

De�nition 3.6. A pro�le a is constrained e�cient if it is Pareto e�cient among all

pure pro�les that are individually rational for both players.

4. The Main Results

There are three main results concerning the observable and unobservable case

respectively.

Observable Theorem. If F, τ are large and ∆F is small then with observable com-

mitments and any initial condition

(i) every sequential equilibrium converges to some â in the sense that after at most

two switches middle-run play on the equilibrium path is always â.

(ii) the limit â is constrained e�cient

This �rst result shows that observable commitments break the folk theorem a

good way by leading to long run constrained e�ciency. Notice that this does not

break the usual version of the folk theorem which refers to average present value

payo�s: about these we can say very little.7 Rather, the Friedman (1971) folk

7If, as in Salcedo (2015) and Lamba and Zhuk (2023), we assume the initial condition is
endogenous, and, following the model here, assume that it is chosen by the one player who is initially
asleep, then the method of proof of the Observable Theorem implies that constrained e�ciency begins
immediately and hence average present value payo�s are e�cient.
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theorem, which is relevant for safety games that are repeated in the ordinary sense,

has an obvious corollary: for any pure pro�le â that Pareto dominates a static Nash

equilibrium for all su�ciently large discount factors (small ∆s in this context) there

is a subgame perfect equilibrium in which â is always played on the equilibrium path.

That is: in the long-run anything can happen. That version breaks with observable

commitments. By contrast it remains unchanged with unobservable commitments.

Unobservable Theorem. For any pure pro�le â that is individually rational then

with unobservable commitments there exists an initial condition such that if F, τ are

large and ∆F is small then there is a sequential equilibrium in which â is always

played along the equilibrium path.

As this result is not central to the paper but included to show that the model

without commitment is a folk theorem environment this is proven in Appendix II.

The reason the folk theorem holds in the unobservable case is that players have

can have point beliefs and consequently no reason to try to learn their opponent's

commitment. If we instead examine ε-belief-perturbed equilibrium they will not have

point beliefs and will have an incentive to learn. In this case we can partially retrieve

the result of the Observable Theorem.

Learning Theorem. Suppose that all feasible machines are reactive. For any 1 >

ε > 0 if F, τ are large and ∆F is small then for any initial condition and any ε

belief-perturbed equilibrium

(i) every sequential equilibrium converges to some â in the sense that after at most

two switches middle-run play on the equilibrium path is always â.

(ii) the limit â is constrained e�cient.

This says that the result of the Observable Theorem goes through with one crucial

additional assumption: all feasible machines must be reactive. The need for this
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assumption is discussed in Section 7 but the idea is that if unforgiving machines such

as grim trigger are perceived as possible then there will be a reluctance to conduct

the experimention needed to learn.

I turn now to the details of the proofs.

5. Preliminaries

Before proving the main theorems it is useful to develop some key results concern-

ing optimal play. It is convenient �rst to de�ne an additional constant

De�nition 5.1. λτ = (1/h1) + (1/h2)− (1/(h1h2τ))

Recall that N ≡ maxiN
i +B1B2 is the maximum length of the short-run epoch.

The idea is that average expected present value can be computed by computing it

separately for each epoch and providing separate bounds for each epoch. Speci�cally

the following bounds are proven in Appendix I

Lemma 5.2. There exist constants ζ, ζ > 0 for all τ ≥ 1, F ≥ Γ (recall that Γ is the

scale of payo�s) and ∆ ≤ 1/(λ12N) such that

(short-run) ΓS the importance of the short-run de�ned as the greatest di�erence

in average expected present value over all short-run periods between any two di�erent

strategies satis�es ΓS ≤ ζ∆F .

(middle-run �ow) γ(∆, τ) the value of a steady state �ow de�ned as the average

expected present value during a middle run with a steady state yielding a single unit

of utility each period satis�es γ(∆, τ) ≥ ζ.

(middle-run cycle) ξM the value of a cycle de�ned as the greatest averaged expected

present value for player i during a middle run that has a non-trivial cycle for player

i satis�es ξM ≤ Γ− ζF .
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(long-run) L(∆, τ, σ) the long run value de�ned as the average expected present

value after the next wake-up of a single unit of utility each period satis�es 1/(1+ζτ) ≥

L(∆, τ, σ) ≥ ζ/τ .

(reversal) δiRthe importance of a reversal de�ned as the expected discount factor

from commitment until a reversal before player i wakes up again satis�es δiR ≥ ζ/(1+

ζτ).

These bounds imply the following key result that holds regardless of assumptions

about observability.

Theorem 5.3. If F, τ are large and ∆F is small and a player i has beliefs that are a

point mass on (d−i, b−i) that player must commit to a machine that plays a constant

action âi in the middle-run. If this machine yields a steady state â against (d−i, b−i)

then â must yield the highest utility among all steady states that are feasible with

respect to (d−i, b−i).

Proof. The automaton that plays the safety action no matter what yields at least 0

utility each period. Suppose instead that a machine is chosen that does not result

in a constant action in the middle-run. By Lemma 5.2 (middle-run cycle) during the

middle-run this gives utility at most Γ−ζF per period, from (short-run) ζ∆F during

the short-run and from (long-run) Γ/(1 + ζτ) during the long-run, so for small ∆F

and large τ is negative. This shows that a constant action must be chosen.

Next, observe that the middle-run gain of the best middle-run steady state â and

any other steady state a by (middle-run �ow) is at least ρζ. By contrast the short-run

loss from â is at most ζ∆F and long-run loss at most Γ/(1 + ζτ) so again for small

∆F and large τ the total loss is less than ρζ so that a cannot be optimal.
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6. Observable Commitments

To help in following the proof, I reiterature the statement of the Observable The-

orem.

Observable Theorem. If F, τ are large and ∆F is small then with observable com-

mitments and any initial condition

(i) every sequential equilibrium converges to some â in the sense that after at most

two switches middle-run play on the equilibrium path is always â.

(ii) the limit â is constrained e�cient

Proof. We know from Theorem 5.3 that when the commitment decision by i is made

the choice is between di�erent ai that will be constant in the middle-run. The same

will be true of the opposing player when a reversal occurs. Hence after the �rst

reversal the middle-run must be a steady state where both players play a constant

action.

Assume that the �rst reversal has occured. If i's commitment allows it is possible

that the best choice for −i causes a cycle for i: as shown in the proof of Theorem 5.3

this is no good, it would be better to o�er −i a steady state: this can be done, for

example, by the strategy of just playing the chosen ai no matter what.

What steady states a might be o�ered by i given a current steady state a? Let â

maximize i's stage game utility over pure pro�les subject to −i getting at least u−i(a)

and zero. Consider the reactive machine for player i that responds to a−i with ai, to

â−i with âi and respond to anything else with the safety action. Hence for player −i

the constant action a−i results in the steady state a, the constant action â−i results

in the steady state â and any other constant action a−i results in the steady state

(ai, a−i). Of these by construction â is best and so is chosen. Also â - as it maximizes
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i's utility subject to −i getting at least the utility from a and is individually rational

- is constrained e�cient.

In the middle-run clearly no result better than â is possible. If ui(a) = ui(â) then

the genericity condition says the two must be the same, so the only alternative is to

choose a steady state a with ui(a) < ui(â). This loses at least ρζ per period in the

middle-run by Lemma 5.2 (middle-run �ow). As the short-run gain by (short-run) is

at most ζ∆F and the long-run gain by (long-run) at most Γ/(1 + ζτ) for large F, τ

this is no good. Hence â will be played in the middle-run.

Finally, an o�er ã by i might be made that would be accepted and give less utility

than â. By (middle-run �ow) this would lose at least ρζ per period in the middle-

run following reversal, so including the short-run and long-run after reversal choosing

large F and τ as in the previous paragraph we can assure that the loss would be at

least ρζ/2 following reversal. However, potentially the alternative o�er might incur

less cost and provide more bene�t in the short-run prior to reversal: by (short-run)

this is at most ζ∆F . The loss that o�sets this gain must be discounted by no more

than ζ/(1 + ζτ) by Lemma 5.2 (reversal) as it occurs only following reversal. Hence

the loss in average present value is at least ρζ2/(2(1 + ζτ)). Here is where the order

of limits is crucial: recall that ∆F is chosen after τ . Hence it may be chosen so small

that the loss after reversal is greater than the gain in the immediate short-run. Hence

the o�er should be â.

Once the steady state on the equilibrium path is constrained e�cient, there is

nowhere to go: there is no �better o�er� that can be made to the opposing player, so

they keep that middle-run steady state.
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7. Learning and Forgiving

Recall the de�nition of an ε-belief-perturbed equilibrium. Each player i has a

�xed distribution µi over feasible opponent commitments that puts weight at least

µ on each one. Let µ̃it be a sequentially rational assessment for player i at wake-up

time. Then each player must play a best response in each sub-form following wake-up

to the perturbed assessment (1− ε)µ̃it + εµi. My goal is to show that the conclusion

of the Observable Theorem holds for ε-belief-perturbed equilibria.

The problem is: belief perturbation is not good enough. Suppose that instead

of the trigger automaton used in the proof of the Unobservable Theorem there are

also automata that respond not only to opponent play last period, but also to own

play last period. One such automaton is the grim-trigger machine. This looks �rst

to see if the player themselves played the safety action last period and if so plays the

safety action, otherwise it plays as the trigger machine. The point is that unless you

conform against a grim-trigger machine you will be punished with the safety action

forever. If we replace the trigger-machines in the proof of the Unobservable Theorem

with grim-trigger machines it goes through unchanged, but is now robust to small

ε belief perturbations: if ε is small the chance of triggering the safety action is so

large that it is sub-optimal to experiment. Nobody tests the doomsday machine on

purpose.

By contrast with grim-trigger machines, reactive machines are forgiving: after a

�xed period of time they ignore what the opposing player did and the fact is that

there no bene�t from threatening to punish forever rather than to merely punish

enough: there is a reason nobody has produced a doomsday machine. Given this,

it makes sense assume that players are forgiving in the sense that are restricted to

using reactive machines and that this is common knowledge (along with the length
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of history that these machines are limited to). The importance of being forgiving has

been documented in other contexts: it is crucial to the results of Aumann and Sorin

(1989) on common interest games, and the evolutionary advantage of forgiveness is

indicated both in the simulations of Axelrod and Hamilton (1981) and in the theory of

Fudenberg and Maskin (1990). It is also found in the laboratory work of Fudenberg,

Dreber and Rand (2012).

For convenience I reiterature the statement of the Learning Theorem before prov-

ing it.

Learning Theorem. Suppose that all feasible machines are reactive. For any 1 >

ε > 0 if F, τ are large and ∆F is small then for any initial condition and any ε

belief-perturbed equilibrium

(i) every sequential equilibrium converges to some â in the sense that after at most

two switches middle-run play on the equilibrium path is always â.

(ii) the limit â is constrained e�cient.

In short: with belief-perturbed equilibrium and reactive machines the folk theorem

is again broken and there is again long-run e�ciency.

Proof. First I examine what happens if a player chooses to learn. A key fact about re-

active machines is that they are not only forgiving, but they are steady state machines

in the sense that given a constant opponent action after a �xed period of time they

respond with a steady state. As cycles are still a very bad idea a player is interested

in which steady states are o�ered in the middle-run. This can easily be determined

by running each constant sequence long enough and seeing what the opponent does.8

8In general, as shown by Levine and Szentes (2006), determining an opponent machine by testing
it is problematic. This is not the case for reactive machines as testing it against every su�ciently
long sequence shows exactly which machine it is. However, such extensive testing is not needed
simply to determine the steady states.
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Once this is done beliefs are point beliefs and the proof of the Observable theorem

remain valid: the folk theorem is again broken and there is again long-run e�ciency.

Should a player choose to learn? As ε is �xed choosing small enough ∆ means the

cost of testing is not prohibitive relative to the bene�t. Speci�cally, since it is assumed

that F ≥ Γ the cost of testing a constant action for player i is at most (B−i + 1)F∆.

Moreover, if there is an action that has not been tested for which an opponent choice

could yield a better payo� than the best known steady state there is at least an εµ

probability that this steady state is available according to the perturbed beliefs. As

shown in the proof of Observable Commitments, the gain if this better steady state

is available is at least ρζ/2. In other words, the expected gain from testing is at least

εµρζ/2. Hence if ∆F is su�ciently small it is optimal to conduct the test and there

is long-run e�ciency.
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Appendix I

Recall that λτ = (1/h1) + (1/h2) − (1/(h1h2τ)) so that λτ∆/τ is the probability

that some player wakes up each period. Note that λ1 ≤ 1.

Lemma. there exist constants ζ, ζ > 0 for all τ ≥ 1, F ≥ Γ and ∆ ≤ 1/(λ12N) such

that

(short-run) ΓS ≤ ζ∆F

(middle-run �ow) γ(∆, τ) ≥ ζ

(middle-run cycle) ξM ≤ Γ− ζF

(long-run) 1/(1 + ζτ) ≥ L(∆, τ, σ) ≥ ζ/τ

Proof. Short-run. Recall that ΓS is the greatest di�erence in average expected

present value over all short-run periods between any two di�erent strategies. The

greatest di�erence between any two strategies in any individual period is Γ + F . If

we compute the average expected present value assuming that each wakeup event

triggers N periods of such a di�erence this overcounts the actual periods since after

free play a new wakeup event could occur before the current short-run concludes. As

we are interested in an upper bound on ΓS we compute accordingly an upper bound

on the loss

ΓS ≤ (1− e−∆)

(
1 +

∞∑
t=1

(λτ∆/τ)e−∆t

)
N(Γ + F )

=
(
1− e−∆ + e−∆λτ∆/τ

)
N(Γ + F )

≤ 2 (1 + λ1)N (∆F )

giving the �rst result.

Middle-run �ow



26

Recall that γ(∆, τ) is the average expected present value during a middle run with

a steady state yielding a single unit of utility each period. This is

γ(∆, τ) = (1− e−∆)
∞∑
t=0

e−∆t(1− λτ∆/τ)t

=
τ

e−∆λτ∆
1−e−∆ + τ

≥ 1

λ1
1/(λ12N)

1−e−1/(λ12N)
+ 1

where the �nal step uses the fact that ∆/(1− e−∆) is increasing in ∆. This gives the

middle-run �ow result.

Middle-run cycle

Recall that ξM is the greatest average expected present value for player i during

a middle run that has a non-trivial cycle for player i. We may take N as a bound on

the length of the cycle and assume that the loss from at least one switch F occurs at

the end of the cycle. Hence, the average expected present value is at most Γ minus a

lower bound on the probability that the cycle is not interupted by a wake up event

(1−Nλτ∆/τ). This gives

ξM ≤ Γ− (1−Nλτ∆/τ)(1− e−∆)e−N∆F/N ≤ Γ− (1−Nλ1∆)e−N∆F/N

≤ Γ− e−(1/2)

2N
F

giving the middle-run cycle result.

Long-run

Recall that L(∆, τ, σ) is the average expected present value of a unit utility �ow
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after the next wake-up and we want both an upper and lower bound.

L(∆, τ, σ) = e−N
i∆

∞∑
t=0

e−∆t(λτ∆/τ) (1− λτ∆/τ)t

=
e−N

i∆λτ∆/τ

1− e−∆ + e−∆λτ∆/τ
.

The lower bound is given by

L(∆, τ, σ) =
e−N

i∆λτ∆/τ

1− e−∆ + e−∆λτ∆/τ
≥ e−N

i∆λτ∆/τ

∆ + λτ∆/τ
=
e−N

i∆λτ/τ

1 + λτ/τ
≥ e−1/(2λ1)λ1/τ

and the upper bound

L(∆, τ, σ) =
e−N

i∆λτ∆/τ

1− e−∆ + e−∆λτ∆/τ
≤ e−∆λτ∆/τ

1− e−∆ + e−∆λτ∆/τ

=
1

(τ/λτ∆)(e∆ − 1) + 1

as ∆ ≤ 1 we have e∆ − 1 ≥ e∆ so

≤ 1

(e/λ1)τ + 1
.

Reversal

Recall that δiR is the expected discount factor from commitment until a reversal

before player i wakes up again. In period t this is the probability −i wakes up

∆/(h−iτ) times the probability that neither player had woken up before, and we add

up over periods to get

δiR =
∞∑
t=0

e−∆t(∆/(h−iτ))
(
(1−∆/(h1τ))(1−∆/(h2τ))

)t
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=
∆/(hiτ)

1− e−∆ + ∆e−∆/(h1τ) + ∆e−∆/(h2τ)− (∆e−∆/τ)2/(h1h2)
.

We are interested in a lower bound, and since ∆e−∆/τ ≤ 1

δiR ≥
∆/(max{h1, h2}τ)

∆ + 4∆e−1/(λ12N)/(min{h1, h2}τ)
=

1

max{h1, h2}
1

τ + 4e−1/(λ12N)/min{h1, h2}

proving the reversal result.

Appendix II: Unobervable Commitments

As a kind of sanity check I show that without observable commitments the model

is indeed a folk-theorem model. To help in following the proof, I reiterature the

statement of the Unobservable Theorem.

Unobservable Theorem. For any pure pro�le â that is individually rational then

with unobservable commitments there exists an initial condition such that if F, τ are

large and ∆F is small then there is a sequential equilibrium in which â is always

played along the equilibrium path.

Proof. What is a sequential equilibrium in this context? In each subform after player

i wakes that player has an assessment in the form of a probability distribution over

the commitment pairs (d−i, b−i) of the opponent. The set of player strategies has not

changed, and there are two requirements of sequentiality: �rst that in each subform

the �subgame� induced by the assessment the strategies are a Nash equilibrium and

second that the assessments satisfy a consistency requirement. In this setting the

consistency requirement is rather simple: there are two kinds of commitment pairs

by −i: those that are consistent with the history of play and past assessments those

that are not. Those that are not must be assigned zero probability. The requirement

for the remainder is that if a player wakes several times in a row and the history had
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positive probability in the previous assessment the relative probabilities within the

currently consistent set must not be changed.

De�ne the â-trigger machine to be the reactive machine that reacts to â−i with âi

and plays ai otherwise: by assumption there is a such a machine. The initial condition

is that player 2 is committed to the â-trigger plan and this is assessed to be the case

by player 1 with probability 1.

Next de�ne a subform to be normal if play is consistent with each player using

a feasible commitment that results during the middle run with the steady state of â

and prior to the next waking of either player the player who least recently committed

has always played âi or ai. A normal history is one in which every subform has been

normal. In any subform following a normal history the assessment is a point mass on

an opponent commitment that is consistent with the history and would respond to

any other action other than âi or ai with a−i, and that plays a constant middle-run

action of ã−i with ui(ai, ã−i) ≤ ui(â). Since i only played âi or ai during a normal

history because for any given state process any mapping α−i to actions is feasible

such a commitment exists. The assessment is by construction consistent. De�ne

a strategy for normal histories to use âi during free play, then commit to the â-

trigger machine with initial condition â−i. For all other histories pick some sequential

equilibrium, which one does not matter. Notice that the proposed assessments are

certainly consistent and the path of play for these strategies is always â as required

by the theorem. The point is to prove that when F, τ are large and ∆F at standard

histories no player wants to deviate.

For normal histories assessments are always point masses so Theorem 5.3 applies

so that players must commit to a middle-run constant best response. According

to their beliefs they can attain the middle-run steady state â, steady states of the

form (ai, a−i) or steady states of the form (ai, ã−i). If ui(ai, ã−i) = ui(â) then by
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the generic payo� assumption (ai, ã−i) = â so the �nal case is redudant and in all

cases â is best. The â-trigger machine gives this steady state, and given the proposed

equilibrium strategies the opponent −i is actually using the â-trigger machine. Under

these circumstances can i do better than the â-trigger machine?

One possibility is to choose an alternative strategy that plays the same way, for

example, always play â: this results in the same future, so no gain. Another is to

induce a middle-run cycle when a−i is played. By the usual argument this is a bad

idea.

The �nal possibility is to incur a short-run loss in hopes of a better future: by

playing di�erently now, perhaps the opponent can be convinced that there is a better

deal when there is another reversal. The short run lasts at most N periods and gains

at most Γ per period, since it must play di�erently, must lose at least F in one of

those periods, so for ∆ ≤ 1 and F ≥ Γ at least e−N∆Γ in average present value.

Hence if an alternative strategy is to be pro�table would have to garner that pro�t

by convincing the opponent after the next switch not to continue playing the steady

state â but instead switch to some more desirable steady state (from i's point of view).

The problem is that whatever i does −i (who is in fact using the â-trigger machine)

is only going to play â−i or a−i so the subform will continue to be normal and −i is

going to assess that any action other than â−i or a−i is going to be responded to with

ai. Hence the only possible middle run steady states will be â, (ai, a−i) and â is by

assumption strictly better for −i so they will choose that.

This leaves the issue of whether there might be some future short-run gain that

pays for the current short-run loss. Recall that N ≡ maxiN
i + B1B2 is the greatest

number of periods in a short-run epoch so that the length in calendar time is at most

N∆. The payo� gain in each period is at most the scale of the game Γ. Hence, in

average present value this gain is at most ΓN∆ at the beginning of that future short-
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run. However, by Theorem 5.2 the long-run bound implies that this is discounted by at

most 1/(1+ζτ), so in �rst period average present value no greater than ΓN∆/(1+ζτ).

For �xed Γ, N and su�ciently large τ this is smaller than the short-run average present

value initial loss of at least e−N∆Γ . Hence this is not optimal either.
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