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Abstract

I introduce the idea of behavioral mechanism design where in addition to the usual

sel�sh players there are noisy players who play randomly and ethical players who

actively seek to maximize social welfare and are willing, up to a point, to �do their

bit� to achieve that goal. I calibrate this model using data on risk aversion and giving

in dictator games. I then use it to study twelve di�erent (out of sample) experiments

involving stag hunt games, ultimatum bargaining games, and public goods games

with and without punishment. I show that this simple calibrated model makes sharp

predictions and does a good job both qualitatively and quantitatively in explaining

the data from those experiments. The theory also identi�es quantitative anomalies

in the data pointing the way to future improvements. I conclude that this simple

calibrated model might be a good benchmark for other experiments.

1. Introduction

You and three friends are on your way to the experimental laboratory to meet

eight other students to be randomly matched to play an ultimatum bargaining game.

You and your friends are public spirited in the sense you would like to maximize the ex

ante expected utility of the participants - provided it is not too costly for yourselves.

You and your friends also know that while the other students are, like you, risk averse,

unlike you they are not so public spirited. About half are sel�sh and will try to get

what they can for themselves; the other half will have other agendas, such as worrying
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about what they will do over the weekend, or trolling the experimenter. Knowing

that you will get to play a number of times what should you and your friends agree

to do? This is a prototypical example of a behavioral mechanism design problem:

behavioral because in addition to sel�sh types there are two behavioral types: ethical

players like the friends in the example, and noise players with other agendas.

In this paper I analyze the behavioral mechanism design problem and provide

solutions for a number of games that have been played in real laboratories. In the

example, you and your friends should o�er an even split as �rst mover, should accept

o�ers of four dollars or more, and for each dollar less increase the rejection rate by

about 30%. The striking fact is that in this and the other games I study the observed

play in the laboratory resembles the idealized solution of the behavioral mechanism

design problem both qualitatively and quantitatively. To be clear: it is unlikely

that if there are ethical players in these experiments they are able to collude or that

they know in advance what game they will play. Never-the-less play by experienced

participants in the laboratory experiments I study may reasonably be described �as

if� it is the solution to a behavioral mechanism design problem.

The setting for the formal model is a �nite normal or extensive form game. In

that game players are drawn from a population with three types. Sel�sh types are

�standard� players who care only about their own utility. Noisy types are like behav-

ioral or commitment types in the reputation literature or noise traders in the �nance

literature and play according to a �xed exogenous strategy. Ethical types are like eth-

ical or group rule-utilitarian voters. One the one hand they are willing (to an extent)

to sacri�ce their individual utility for the common good. On the other hand they act

as mechanism designers, picking an equilibrium that maximizes social welfare and

optimally deploying their largesse. Below in the literature review I indicate that none

if these types are new, and that they are adopted from the existing literature.

The main application of the model is to calibrate it and propose it as a benchmark

for analyzing experimental data for standard stakes experiments involving college

student participants. A benchmark model in my view is a model that is not estimated

from data, but converts experimental instructions into quantitative predictions about

play. The point of a benchmark model is to detect anomalies: if the experiment

is what is predicted by the benchmark then there is little reason to search for new

theories or modify old ones. The standard Nash (or subgame perfect) model with

sel�sh risk neutral agents is an example of a benchmark model, and is widely used as
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such. It is a low bar because vast numbers of anomalies are known and it is easy to

�nd new ones. The Levine (1986) calibrated model of signalling spite and altruism is

a benchmark model albeit it has not proved a very useful one. The Fehr and Schmidt

(1999) calibrated model is also a benchmark model and has proven more useful.

To use the behavioral mechanism design model as a benchmark model it must be

calibrated. In the calibrated version of the model I make the uniformity assumption

that all types are equally likely, the social welfare function puts equal weight on

all types, and the noise players maximize a measure of entropy at each information

set. In addition all players have the same risk averse utility function for money

income. This and the largesse of the ethical types are calibrated to data on individual

decisions for games that are non-strategic in the sense that strategies are ordered by

strict dominance. I particularly want to empasize the role of risk aversion because

e�ciency creates a demand for insurance and this in turn means that �fair� allocations

are preferred to �unfair� ones.

Having provided a calibrated model I use it to benchmark twelve di�erent ex-

perimental treatments. All are classical experiments that have been replicated many

times. The �rst application is to stag hunt for which there are four treatments. In

this application social preference in the form of largesse plays no role, but the role of

noise players and equilibrium selection is highlighted. In stag hunt theories lacking

noise players do poorly and despite the fact they do not make precise predictions are

wrong in the few predictions that they do make. The second application is to ultima-

tum bargaining for which there are two treatments. These experiments highlight the

role of risk aversion in generating a demand for fairness. They also provide evidence

that players are not merely reacting to unfair or unkind behavior by their opponents

but are acting as mechanism designers and actively seek to achieve social goals. The

�nal application is to public goods games with and without punishments of varying

costs. This application demonstrates how the constraint on largesse interacts with

the possibility of punishment to generate �the law of demand.� The ultimatum and

public goods contribution games are chosen not only to illustrate speci�c points about

the theory but because they have been widely used to assess models of social prefer-

ences. In each case the behavioral mechanism design benchmark is qualitatively and

quantitively on the mark, albeit with some quantitative anomalies that I explore.

What, then, is the marginal contribution of this paper to the existing literature?

First, with respect to theory, this paper advances a di�erent point of view than most
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existing models. With rare exceptions, behavioral models take account of psycholog-

ical factors such as desire for fairness, reciprocity and altruism and build theories of

what should be considered kindness and fairness. The theory here approaches these

issues from a di�erent angle. Take the willingness to punish those who fail to con-

tribute to the common good. Standard behavioral theories build this into preferences

as a kind of desire for revenge against those who fail to do their fair share, who are

unkind, or in order to improve equity. In the mechanism design model here punish-

ment is a means to an end - ethical players are willing to punish others to provide

them with incentives to contribute to the common good. Fairness is not in con�ict

with e�ciency, but in the presence of risk aversion fairness is demanded by e�ciency.

As I indicate below in the literature review this is not a new idea, but the model here

through its simplicity and starkness provides the basis for a benchmark calibration

which earlier models do not.

The second contribution of the paper is to the experimental literature. It provides

a simple qualitative and quantitative (and new) explanation of a wide variety of

experimental results and can be used as benchmark for detecting anomalies. It enables

us to ask and answer questions such as: is risk aversion is su�cient to explain the

demand for fairness or is there trade-o� between e�ciency and fairness?

The model has two ingredients: noise players and the idea that punishments are

issued in order to provide incentives. I provide evidence for both of these ideas. In

the stag hunt game models that lack noise players predict only that all players should

choose the same action. In fact after nine periods of play more than 27% fail to play

the modal action. In ultimatum bargaining models of fairness and kindness predict

that the frequency with which an o�er should be rejected should not depend upon

how frequently that o�er is made. In fact, in the same population, when the frequency

of $3.00 o�ers increases from 3% to 31% the frequency of rejections drops from 85%

to 14%. Mechanism design, by contrast, says that punishments should not be issued

if they do not accomplish the purpose of discouraging ungenerous o�ers.

2. Literature Review

As I indicated, the viewpoint of this paper has precedent and I would be remiss

not to acknowledge the extent to which it builds on my earlier work with Rohan

and Salvatore in Dutta, Levine and Modica (2021). That paper had ethical players

(there called acolytes) and sel�sh players, but no noise players. Instead it had a
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noisy signalling technology that (as acknowledged in the paper) makes sense outside

the laboratory but not inside the laboratory. Although we did try to calibrate that

model, the calibration was clumsy due to the mismatch between the model and the

laboratory and there was very little out of sample testing of the calibration. Here

I have dropped the signalling technology as it is irrelevant to the laboratory and

replaced it with noise players who are. This leads to a cleaner model and one that

can be calibrated using only data from non-strategic settings and used as a benchmark

(out of sample) in strategic settings.

The work here is also in the spirit of recent work, for example Fudenberg and

Karreskog Rehbinder (2024), exploring how experimental data can be explained by

models that are both simple and sensible. The idea of using a numerical target (here

welfare) to measure consistency of the theory with data is reminiscent of the idea of

measuring losses in Fudenberg and Levine (1997).

Ingredients of the Model: Ethical Players

As I indicated, the features of the model are not new and the types of players have

ample precedent in the literature. In the empirical literature Coase (1960), Ostrom

(1990) and Townsend (1994) argue that small groups are good at self-organizing to

�nd solutions to mechanism design problems. The formal model of an ethical player

is taken directly from the literature on ethical voters, including the theoretical model

of Feddersen and Sandroni (2006) and the voting study of Coate and Conlin (2004).

Other theoretical and applied uses of these models can be found in Herrera, Morelli

and Nunnari (2016) and Levine and Mattozzi (2020) among others.

The idea that ethical players are willing to �do their bit� but only up to a limit is

also closely related to the experimental literature on �warm glow� giving. Examples

are Andreoni (1990) and Palfrey and Prisbrey (1997). It is similar also to the idea of

�revoking costs� used in the bargaining literature such as Dutta (2012).

Ingredients of the Model: Noise Players

As indicated, noise players are not new either. They have been extensively used

in the reputational literature, including but not limited to, Kreps and Wilson (1982),

Milgrom and Roberts (1982), Fudenberg and Levine (1989), and Mailath and

Samuelson (2001). Noise traders are widely used in the �nance literature: a quick

overview can be found in the Palgrave article by Down and Gorton (2008). Noise

players are also related to the quantal response players of McKelvey and Palfrey
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(1995) and especially the extensive form version in McKelvey and Palfrey (1998).

Their behavior is similar to the limiting case as sensitivity to incentives grows small.

Finally, the role of noise players has parallel in the notion of risk dominant equilib-

rium, especially in the evolutionary literature: see for example Kandori, Mailath and

Rob (1993), Young (1993), and more recently Peski (2010) among many others. Al-

though the time frame for evolution and mutations is quite di�erent than considered

here, the role of noise is the same.

Psychological Models

As I have indicated the main alternative to the theory here are the many psycho-

logical theories of fairness and or reciprocity. In general these are qualitative analyses

of experimental data and are not suitable as benchmark models. To mention a few

of the more popular theories: Fehr and Schmidt (1999) and Bolton and Ockenfels

(2000) develop models of fairness with which they do qualitative analyses for a va-

riety of experiments, and Fehr and Schmidt (1999) do quantitative analyses as well.

Charness and Rabin (2002) introduce a psychological theory of fairness with many

factors and do a set of experiments determine which are the most important. Falk and

Fischbacher (2006) use higher order beliefs to model intentions and reciprocity. This

is primarily a qualitative analysis. Dufwenberg and Kirchsteiger (2004) similarly

model intentions, kindness and reciprocity. Along somewhat di�erent lines Levine

(1986) models intentions that are inferred from type signalling and uses it to analyze

several experiments quantitatively.

Quantitative Calibration: Benchmark Models

As indicated, in addition to the sel�sh risk-neutral Nash model, there are two

models that are potential benchmark models.

Levine (1986) calibrates a type signalling model on ultimatum and a public goods

contribution game. There are two parameters describing the three types: altruistic,

spiteful, and sel�sh (constituting 52% of the population). There are two out of sample

analyses, that of the centipede game and that of a market game. Both are relatively

successful.

Fehr and Schmidt (1999) calibrate a preference for fairness from ultimatum game

data. There are two parameters one of which can take on four values and one three.

The calibration is not complete as they do not specify the correlation between the two

parameters. They conduct three out of sample analyses, that of a market game and
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that of a public good contribution games with and without punishment. All three

are relatively successful. They also give a qualitative analysis of the trust game.

Fehr and Schmidt (1999) also examine dictator, which fails. Levine (1986) did

not discuss dictator, but it is easy to apply the model and it fails even worse than Fehr

and Schmidt (1999). By contrast, behavioral mechanism design does �ne, although

this is not an out of sample test as the largesse of ethical players is calibrated from

dictator data.

I should add that I have not analyzed a market game as done in those two papers

because that fruit is very low-lying: virtually any model predicts that with enough

competition we will see competitive equilibrium. In a similar vein I have avoided

analyzing games such as best shot where there is no real scope for social preferences,

where subgame perfection performs well, and where other theories do equally well.

The only exception is the public goods game without punishment: I include that to

provide a contrast to the games with punishment.

In both the Levine (1986) and Fehr and Schmidt (1999) models there can be

multiple equilibria so that the predictions of those theories are not sharp. I want to

emphasize that in contrast to these other models - including sel�sh risk neutral Nash

- the theory here makes sharp predictions. There is a single number - the optimal

social welfare - that is spit out be the model from experimental instructions and can

easily be compared to the theoretical data. The play leading to that optimum need

not be unique but often is, including in settings where the other models make few

useful predictions.

3. The Model

The setting is that of a game. Although this may be an extensive form game to

limit notation I formally describe only the normal form. There are n player roles

and each player role has a �nite strategy space si ∈ Si with payo�s ui(si, s−i). Mixed

strategies are denoted by σi and ui(σ) is the expected utility. Each player role is drawn

privately from a single population in which there are three types: (S)el�sh, (N)oise

and (E)thical, where τ ∈ {S,N,E} denotes the type and φτ > 0 is the fraction of the

population that is type τ with the obvious property that φS+φN+φE = 1. Player roles

are partitioned into classes of roles that are indistinguishable and mixed strategies for

a type are feasible if and only if they are symmetric within each class. For example,
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in a fourteen player public goods contribution game with identical players there are

14 player roles, but players cannot distinguish what their �player number� is.

As expected the sel�sh types are standard players who try to maximize their utility

ui(si, s−i) for the player role i they are assigned. The noise type plays according to

a �xed probability distribution σN with σiN(s
i) > 0. The ethical players are public

spirited and act as mechanism designers, choosing incentive compatible strategies

for themselves and the sel�sh types to maximize a social welfare function as I now

explain.

To be speci�c, for given mixed strategies for each type στ denote the mixture by

σ =
∑

τ φτστ . The mechanism design problem can be stated as a choice of σS, σE to

maximize the expected per capita social welfare function

E
∑
τ

wτ

∑n
i=1 u

i(σiτ , σ
−i)

n

where the welfare weights wτ ≥ 0 and
∑

τ wτ = 1. For sel�sh types there are incentive

constraints for i = 1, . . . , n and si ∈ Si

ui(σiS, σ
−i) ≥ ui(si, σ−i).

In addition the willingness of the ethical players to contribute to the public cause

is not unlimited and the ethical players are characterized by a utility limit γ, the

largesse, on how much they are willing to sacri�ce. This gives additional incentive

constraints

ui(σiE, σ
−i) + γ ≥ ui(σiS, σ

−i).

Discussion of the Model

Two aspects of the model deserve mention. First, I have not assumed that the

welfare weights are all positive. It might be, for example, that the ethical players do

not care about the noise players, viewing them as being deviant. Or they might care

only about the welfare of the ethical types.

Second: the behavior of the ethical types (and possibly of the sel�sh types as

well) is not individualistic. Coate and Conlin (2004) refer to ethical voters as �group

rule-utilitarian� and this is accurate. That is, ethical players ask: what would we

like to happen (given the incentive constraints) and how can we do our share to

make it happen. In particular: even if γ = 0, or, as is the case in stag-hunt if γ is
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irrelevant, if there are multiple equilibria the ethical players get to select the most

favorable equilibrium. It is for this reason that one of my applications is to the stag

hunt game. Ordinarily this is viewed as a failure of the hypothesis that most favorable

equilibria are selected. As I will show this is not the case for the calibrated behavioral

mechanism design model: the presence of the noise player changes the calculus of both

equilibrium and welfare and is consistent with what is seen in stag hunt experiments.

Incentive Constraints

The incentive constraints are applied after player roles have been assigned and

types determined, but, if the game is sequential, before moves take place. Hence

the equilibrium concept is Nash rather than subgame perfect. In this setting with

noise players who play everything with positive probabiity this distinction is meaning-

less: every information set feasible given a player's strategy is reached with positive

probability, Bayes law always applies, and every Nash equilibrium is sequential.

The ex ante nature of the incentive constraints does have implications for the

behavior of the ethical types. That is, their willingness to accept a utility loss of

γ is measured ex ante. For example, if they move second they may be required

in response to an unlikely move of the �rst player to take a greater loss than γ.

The ethical types are committed to do �whatever it takes� when the time comes,

provided the ex ante expected loss from doing so is not too great. I should note

that in experimental treatments where one round is chosen at random to be paid

the commitment is automatic: at the time the decision is made the action chosen is

purely hypothetical and will involve an actual loss only with some probability - after

the fact it is impossible to renege.

Existence of a Solution

The one relevant theoretical fact is that the behavioral mechanism design problem

has a solution.

Theorem 3.1. The problem of maximizing social welfare subject to the incentive

constraints has a solution.

Proof. This follows if the expected utility functions are continuous in the strategies

and the constraint set is closed and non-empty. Continuity of expected utility in

strategies follows from the fact that the game is �nite so they are multi-linear. The

constraint set is closed because the utility functions are continuous and the constraints
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are de�ned by weak inequalities. The only substantive issue is whether the constraint

set is non-empty. Since the noise players act as �nature� there is a Nash equilibrium

for the sel�sh and ethical players in which the ethical players act sel�shly: this satis�es

all the constraints.

4. Overview

Before analyzing the experiments in detail I �rst give an overview of the calibrated

model and results. The utility function u(m) for monetary payo�s and γ are calibrated

to data. This is done below, but I want to indicate that this calibration is for standard

stakes with students as participants: those are the applications I am going to consider.

I suspect that for other stakes and with other populations this calibration would not

�work.� In addition the theory is an equilibrium theory and we only observe something

resembling equilibrium in the laboratory when participants have an adequate chance

to play and learn. Consequently, in the applications I will only look at data from late

stages of repeated matches.

The Calibrated Model

The besides the monetary payo� function, which is given by the experimental

instructions, the mechanism design problem depends upon the utility u(m) for mon-

etary payo�s m, the largesse γ of ethical players, the weights wτ in the social welfare

function, the fractions of types φτ , and the strategy of the noise types σN .

Here is the calibrated model. Utility is given by

u(m) = 1− (1 +m/C)1−ρ

where C = 40 and ρ = 9. If there are τ paid rounds then largesse in each round

is u−1(γ) = $1.00/τ . For the utility weights and fractions the simplest assumption

and the one I will adopt is the uniformity hypothesis : this is wτ = φτ = 1/3. For

the behavior of the noise players σN I will adopt the maximum entropy hypothesis.

I �rst partition and order the actions at each information set by weak dominance.

Within each weak dominance class actions are chosen with equal probability; and each

weak dominance class has the same probability as the combination of all lower weak

dominance classes. For example, the probability some weakly undominated strategy

is chosen is equal to the probability that some weakly dominated strategy is chosen.
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Results

The strong prediction made by solving the mechanism design problem concerns

welfare. This is reported below in Table 4.1 for the three experiments and twelve

treatments analyzed in this paper.2

period(s) theory data actual err SGP err FS err

stag

n = 2p 7 $1.18 $1.18 $0.00 $0.22*
n = 2s 5 $1.18 $0.91 $0.27 $0.39*
n = 14 10 $0.64 $0.60 $0.04 $0.70*
n = 15 10 $0.60 $0.66 −$0.06 $0.64*
n = 16 10 $0.60 $0.61 −$0.01 $0.69*

ult
no obs 21− 40 $3.45 $3.46 $− 0.01 $0.06 $1.36
obs 21− 40 $3.45 $3.43 $0.02 $0.09 $1.39

pub

no pun 10 $1.51 $1.51 $0.00 −$0.01
pun 1 10 $1.81 $1.64 $0.17 −$0.14
pun 2 10 $1.88 $1.78 $0.10 −$0.28 $0.63*
pun 3 10 $1.91 $1.99 −$0.08 −$0.49 $0.42*
pun 4 10 $1.92 $1.91 $0.01 −$0.41 $0.50*

Table 4.1: Welfare

n in stag hunt is number of players, for n = 2 the s denotes strangers and p partners
in ultimatum bargaining no obs is the standard treatment and obs is the treatment
where the play of another player is observed
in the public goods game pun represents the punishment factor (or no punishment)

The experiments are stag (hunt), ult(imatum bargaining) and pub(lic good con-

tributions). Welfare is reported in certainty equivalent units by applying u−1 to the

expected utility of a player in the game generated by the theory. I then computed the

actual utility from the data in the same units and the di�erence between the theory

and the data (actual err). This in itself proves little: it is possible to develop theories

that generate predictions that do not depend upon the data at all: for example, the

maximum possible payo� in the game. It is important to know that there is a wide

range of possible predictions for welfare, that is, that the theory can be wrong. To

this end, as I explain in Online Appendix 2, I computed welfare for two other bench-

mark theories, sel�sh risk neutral subgame perfect equilibrium (subgame perfection

2To avoid informational overload I do not report standard errors here. They are discussed in
the context of speci�c experiments in the text and in Online Appendix 4. They add little to the
information presented in the table.
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or SGP) and the calibrated Fehr and Schmidt (1999) (FS) model. In the �nal two

column I then computed the error for each of these other theories. In cases where

there were multiple equilibrium (marked with a *) I followed Fehr and Schmidt (1999)

and picked the most e�cient one.

For one game, the public good game with no punishment, all the theories agree

that there will be very little contribution. In nine of the other eleven experiments the

actual error is no more than $0.10 in absolute terms. By contrast, the other theories

come within $0.10 of empirical welfare only for subgame perfection in ultimatum

bargaining and generally have much larger errors. Overall, I take this to mean that

behavioral mechanism design does fairly well in predicting welfare.

In the table I have highlighted the two anomalies identi�ed by the calibrated

model. These are the stag hunt game with strangers (players are randomly matched

each period) and the punishment factor one public goods game. These I will ex-

amine below, but for the moment note that the �rst and worst anomaly, the stag

hunt anomaly, occurs with relatively inexperienced players who got to play only �ve

periods. For the punishment factor one public goods game both subgame perfection

and Fehr-Schmidt do better than mechanism design underpredicting welfare by $0.14

rather than overpredicting it by $0.17, but none of thsee theories do terribly well.

The one case in which an alternative theory does relatively well - subgame per-

fection in ultimatum bargaining - is, unfortunately, a case of the broken clock being

right twice a day: subgame perfection makes two o�setting errors. On the one hand

it underpredicts the generousity of o�ers, predicting $1.00 o�ers as against at least

$3.63 in the data. This lowers welfare. On the other hand it also underpredicts rejec-

tions, predicting that no o�ers will be rejected, while the actual rejection rate in the

data is about 20%. This raises welfare and the two errors more or less cancel out. In

contrast the Fehr-Schmidt model does poorly with ultimatum welfare, overpredicting

by more than $1.25. Unlike subgame perfection Fehr-Schmidt gets the distribution

of o�ers fairly accurate for one of the two ultimatum games, but overpredicts welfare

because it gets the rejection rate too low. This shows that the details are important,

and I will go through the details of the mechanism design model shortly.

Before turning to the details of the theory and data, I must explain how the

calibration is done.
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5. Benchmark Calibration for Long-Term Play

The utility u(m) for monetary payo�s m, the largesse γ of ethical players, the

welfare weights wτ , the fractions of types φτ and the strategy of the noise types σN

all must be calibrated. As indicated for the utility weights and fractions are not

calibrated to data, rather I adopt the uniformity hypothesis: this is wτ = φτ = 1/3.

Similarly as I describe below the strategy of the noise players is derived from the

maximum entropy hypothesis. Then I calibrate σN and u(m), as these are needed for

calibrating γ, and conclude by calibrating γ.

I want to emphasize that in this calibration I have taken data from standard

experiments using best practices that have been replicated many times. In addition I

use only data from non-strategic settings. By this I mean games where strategies are

ordered by strict dominance with respect to monetary payo�s: dictator and public

goods contribution games.

Entropy Maximation in the Agent Normal Form

Strictly speaking I do not calibrate σN at all, rather I assume that it is noisy

in the sense of maximizing a measure of entropy. As it is the behavior of noise

players that matters, it makes sense to talk of behavior strategies and the most

straightforward assumption is that the noise players randomize uniformly over actions

at each information set. This leads to absurd play in some settings, so I instead adopt

the maximum entropy hypothesis which I now describe.

To motivate the maximum entropy hypothesis, consider the public goods game

with punishment studied by Fehr and Gachter (2000). Here in the second stage of

a game a player must decide how to allocate 20 �punishment points� among three

opponents. These are costly both to the punisher and the punished.

What does this structure means in terms of the information set where punishment

is allocated? There is one action in which no punishment points are allocated. There

are three actions in which one punishment point is allocated among the three oppo-

nents, and in general there are (k + 1)(k + 2)/2 actions which allocate k punishment

points among three opponents. The point is that a uniform distribution over actions

at this information set implies that large numbers of punishment points are far more

likely than small numbers because there are many more ways to allocate them. In

particular the probability that six or fewer punishment points are assigned is less

than 5% while the probability that 16 or more punishments points are assigned is
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more than 50%. This is not reasonable and is grossly inconsistent with the play of

laboratory participants.

To provide a more �reasonable� description of the play of noise players, I instead

categorize actions and assume that entropy is �rst maximized between categories,

then within categories. Speci�cally, working in the agent normal form so as to deal

with behavior strategies and actions at information sets, for each information set

I at which player i is playing, strategies can be divided into those that are weakly

dominatedW 0(I) and those that are not N0(I). By zero order reasonableness I mean

that it should not be more likely to play a weakly dominated strategy than a weakly

undominated strategy:

Pr(N0(I)) ≥ Pr(W 0(I)).

This criterion should be applied recursively: we can de�ne W 1(I) as the subset of

N0(I) that are weakly dominated by a strategy in N0(I) and N1(I) as those which

are not, and continuing in this way de�neW k(I), N i(I) until we run out of strategies.

The reasonableness constraints are

Pr(Nk(I)) ≥ Pr(W k(I)).

The maximum entropy hypothesis then asserts that entropy should be maximized

among categories subject to the reasonableness constraints: this says that the con-

straints should bind and that each category except the last has half the probability

of the preceding category with the �nal two categories having equal weight. It then

asserts that entropy within each category should be maximized so that actions within

each category are chosen with equal probability.

In the example the maximum entropy hypothesis gives rise to the punishment

strategy for the noise players: the probability of issuing k punishment points is

(1/2)k+1 for k ≤ 19 and (1/2)20 for k = 20. For each level of punishment k there are

3k ways of allocating those punishments among three opponents, and each of these

has equal probability.

Risk Aversion

It has long been observed that players are risk averse over the small stakes in

laboratory experiments. Risk aversion plays a key role in the theory both because

there are risks and because it induces a demand for fairness. That is, if agents are
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risk averse, maximizing ex ante expected utility of a player means that an equal split

provides both players with insurance. The social optimality of the equal split plays a

key role in the analysis of ultimatum bargaining.

To get a particular utility function I followed Fudenberg and Levine (2011) who

derive a �short-run� laboratory utility function in a way that is consistent with risk

aversion outside the laboratory. Speci�cally, this is the CES or constant relative risk

aversion function

u(m) = 1− (1 +m/C)1−ρ

where C = $40.00 is an estimate of daily �pocket cash� and ρ is a coe�cient of relative

risk aversion determined from laboratory choices over gambles. The bottom line here

is that I take ρ = 9.0 .

To calibrate ρ I used data from two di�erent experimental approaches: the risky

investment approach of Gneezy and Potters (1997) and the multiple price list ap-

proach popularized by Holt and Laury (2002). These methods are discussed in the

review paper Charness, Gneezy and Imas (2013) and are the two methods used as

objective measures of risk aversion in the large scale standardized survey of Snowberg

and Yariv (2021). In both cases I used data from the original papers.

Gneezy and Potters (1997) give 84 participants an endowment of $1.20 and ask

them to decide how much to invest in a risk project that pays nothing with probability

2/3 and pays 3.5 times the investment with probability 1/3. They played nine times:

the average investment was x = $0.30 and did not vary much from round to round.

Di�erentiating the objective function

(2/3)u(1.20− x) + (1/3)u(1.20− x+ (3.5)x)

with respect to x, equating to zero, substituting x = $0.30, and solving for ρ yields

the estimate ρ = 8.7.

Second, following Fudenberg and Levine (2011), I use data from Holt and Laury

(2002)'s normal stakes experiments. They provide 187 participants with a menu of

paired lottery choices where the �rst is a lottery between $2.00 and $1.60 the second

between $3.85 and $0.10. The menu gives di�erent probabilities between the �rst and

second prize. They �nd when the odds are 50− 50 that 70% of participants take the

safe choice, while when the odds are 60 − 40 only 45% of participants take the safe

choice. For the �rst lottery indi�erence requires ρ = 4.2 and for the latter ρ = 12.5.
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The median individual lies between these two, presumably closer to the top. This is

generally consistent with the ρ = 8.7 from the Gneezy and Potters (1997), so, to

avoid spurious precision, I take ρ = 9. Such an individual is indi�erent on the Holt

and Laury (2002) list at 56− 44.

Those familiar with the literature on risk aversion in the laboratory may be puzzled

by the fact that these values of ρ are much higher than appear in other studies. This

is because I have assumed a �wealth� of C = $40.00 while other studies assume much

smaller �wealth.� With larger wealth risk aversion must be larger to �t the data.

Over the relevant range it makes little di�erence what utility function is �t to the

data. In Appendix 1 I have plotted along with the calibrated utility function a CARA

utility function �t to the Gneezy and Potters (1997) data: it looks the same over the

relevant range of zero to ten dollars.

One additional remark is important for interpreting the numerical values of welfare

and utility: they are reported in certainty equivalent units, that is, by applying u−1.

Largesse

How willing are ethical players to sacri�ce for the common good, or to say the

same thing, what is γ? To answer this question I use data only from non-strategic

settings where actions are completely ordered by strict dominance with respect to

monetary payo�s: these are the dictator game, the one shot Prisoner's Dilemma

game, and public goods contribution games without punishment. The bottom line is

that if there are τ paid rounds then I take u−1(γ) = $1.00/τ .

I am interested in games where experienced players have played many times. A

robust �nding from many studies is that willingness to give declines substantially over

time. Figure 5.1 below plots contributions over time from Fehr and Gachter (2000)'s

repeated public goods contribution game with about 66 strangers, and another with

about 44 partners. In the �nal period the two are quite similar and the average of

the two µ = 0.268 I take to be the long-term ratio. For comparative purposes I also

show the fraction of the population cooperating in Dal Bo (2005)'s one-shot prisoner's

dilemma game with 390 strangers. This is quantitively quite similar to the Fehr and

Gachter (2000) stranger treatment and stabilizes in about the 7th round with the

average over the last four rounds equal to 0.242.
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Figure 5.1: Willingness to Give Declines with Experience

I view the long-term ratio µ as discount factor that multiplies giving in a �rst

time game to determine giving for a pool of experienced players. To determine �rst

time giving I use data from the dictator game.

In the dictator game one player allocates a �xed amount between themselves and

one other player. The basic source of information about dictator is the Engel (2011)

meta-study based on 83 papers with a total of 20, 813 observations. The key relevant

�nding is that with student participants the donation rate is about 25%. The most

common dictator game in the laboratory is for $10 stakes where giving is in whole

dollars.

In the standard $10 dictator game with students in the laboratory Engel (2011)'s

data indicates we can expect an average contribution of $2.50. Discounting this

by µ = 0.268 and taking account of the fact that the experienced noise players each

contribute on average $1.00 yields the formula for the willingness of the ethical players

to contribute

u−1(γ) = 3(2.50)µ− 1 = 1.00. (5.1)

The given value of γ makes sense when one round is chosen randomly to be paid.

When all rounds are paid it makes sense that the given value of γ applies to the entire

game. That is, if the game is played ten times it makes no sense that each time it

is played the ethical players are willing to sacri�ce $1.00, but rather that they are

willing to sacri�ce that much over the entire course of play, that is, $0.10 for each

round. More generally, if there are τ paid rounds I take u−1(γ) = $1.00/τ .

I note that there is an issue with the γ constraint failing to bind which would

invalidate these computations - in Online Appendix 1 I show that the calculations

here are robust to this concern.
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6. Stag Hunt

The �rst experiments I analyze are the stag hunt games of Van Huyck, Battalio

and Beil (1990) designed to illustrate how coordination on e�cient equilibria can

fail. This class of games is interesting because the standard benchmark theories Fehr-

Schmidt and subgame perfection have little to say about these games, and what little

they do say is wrong.

The games studied in Van Huyck, Battalio and Beil (1990) are simultaneous move

n player games in which each player chooses e�ort in dollars from qi = {0.10, 0.20, . . . , 0.70}.
The monetary payo� of i is given by

mi(qi, q−i) = .60 + 2.0min{qj} − qi.

Players are paid for every period. There are two treatments: one with a large �xed

population that plays for ten periods with n ∈ {14, 15, 16}. Three sessions were

conducted with n = 16 and two each with n = 14, 15. The other treatment is for a

small population with n = 2: this is done both with a �xed population (partners)

and randomly matched players (strangers).

Qualitative Analysis. In the stag hunt game no individual player, nor even a third

of them, have a substantial chance of raising the minimum, so social preferences

including largesse play no role. Rather it is the play of the noise players together with

equilibrium selection that is crucial. With a large population (14 or more players) the

chances one player messes it up for everyone by choosing a low e�ort is high and it is

impossible to sustain high levels of e�ort. With a small population the chance of the

one other player messing it up is not so great and high e�ort levels are sustainable.

Hence the theory predicts low e�ort levels in the large population and high e�ort

levels in the small population. This is characteristic of stag hunt experiments. Risk

dominance makes similar predictions but involves hypothetical players as opposed to

noise players. Characteristic of noise players is that, unlike in other theories, there

should be dissidents who fail to play the modal action, and indeed that nearly a

third of the population should be dissidents. This is, in fact, true. Note that this

analysis provides a strong rationale for explicitly including noise players in substantial

numbers: if noise players and equilibrium selection were added to existing models such

as Nash equilibrium or models of social preferences the results would be identical to

those found here.
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Description of the Solution. In all cases the mechanism design problem has a unique

solution. All the sel�sh and noise players choose the same target level of e�ort.

When n = 2 noise players are rare and every target e�ort level is an equilibrium.

Welfare is increasing in the target and so the optimum is maximal e�ort $0.70. When

n = 14, 15, 16 the chances of at least one noise player are high and there are only

equilibria with low e�ort levels. Speci�cally, when n = 14 the e�ort levels $0.10, $0.20

are equilibria and the optimum is $0.20. When n = 15, 16 the only equilibrium is

$0.10 so this is the optimum.

Below in Table 6.1 I summarize the theoretical solution and the data from the

�nal period of play. Note that the maximum attainable joint money payo� is $1.30

per player.

n strangers
welfare mean e�ort

period participants
theory data theory data

2 yes 1.18 1.18 0.60 0.64 7 28
2 no 1.18 0.91 0.60 0.53 5 16
14 no 0.64 0.60 0.27 0.19 10 28
15 no 0.60 0.66 0.20 0.14 10 30
16 no 0.60 0.61 0.20 0.18 10 48

Table 6.1: Summary of Stag Hunt

Qualitatively the theory does extremely well capturing the fact that welfare and

e�ort are higher with fewer players. Quantitatively the theory does reasonably well:

however when n = 2 with strangers the theoretical welfare is substantially greater

than welfare in the data.

I turn now to a more detailed analysis of the mechanism design problem in these

stag hunt games.

The Large Population Game

I should start by noting that the large population games are played with a �xed

set of players: a partners rather than strangers treatment. However, data is from the

�nal period so that there are no repeated game e�ects.

To solve the mechanism design problem observe that there are no weakly dom-

inated strategies, so that the noise players randomize uniformly over contributions.

Using this, I compute the utility of a sel�sh player for a particular contribution under
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the assumption that that no sel�sh or ethical player is choosing a smaller contribu-

tion: I refer to this as the popular minimum, as it is the minimum for 2/3rds of

the population, although it need not be the minimum at all when noise players are

accounted for. As the combinatorics of the noise players is complicated, I computed

utility by matching players in a Monte Carlo simulation with 1, 000, 000 draws. The

results are below in Table 6.2 for the case n = 16.

popular minimum n = 16 welfare

0.70 0.27 0.36
0.60 0.37 0.43
0.50 0.46 0.50
0.40 0.56 0.55
0.30 0.64 0.60
0.20 0.695 0.63
0.10 0.700 0.60

Table 6.2: Large Population Game: Sel�sh Payo�

It follows from these utilities that for sel�sh players each wants to reduce the

popular minimum: the only equilibrium behavior is for all to contribute the minimum

$0.10. In Online Appendix 3 I show that this is also the optimum for the ethical

players.

From Table 6.2 it should be clear that the equilibrium at $0.10 rather than at

$0.20 is delicate: this is why I used the full risk averse utility function even though

risk aversion is minor over these stakes. With n = 14 there is an equilibrium at $0.20

as well as $0.10 and this would be chosen by the ethical players.

Also from Table 6.2 observe that the gain in social welfare of moving from $0.10

to $0.20 is small: it is about $0.03. This highlights a limitation of the mechanism

design: while the prediction of welfare is strong, even if equilibrium is unique it may

be delicate in the sense that a small perturbation of the parameters may cause it to

jump. Moreover, it seems unrealistic that an equilibrium could jump with respect to

such a tiny change: in the n = 14 game the loss to a sel�sh player to erroneously

choosing e�ort $0.10 rather than $0.20 is less than half a cent, and if even a modest

fraction of them wrongly decide $0.10 is best they all want to switch. This is known

problem with mechanism design: it allows the designer to choose equilibria that are

not terribly robust.
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Dissidents

Consider the Fehr-Schmidt and subgame perfection theories. For these minimum

games fairness is not at issue and a player with social preferences behaves no di�erently

than a sel�sh player: there is no bene�t from increasing e�ort above the minimum

or decreasing e�ort below the minimum. In other words, in the usual way with

coordination games, every common e�ort level is an equilibrium. The only prediction

made by these theories is that there should be no dissidents in the sense that every

player should play the modal e�ort level. In Table 6.3 below I provide information

about the modal e�ort levels for the n = 15, 16 games and the fraction of dissidents.

As can be seen the prediction of no dissidents fails badly as more than a quarter of the

population are dissidents. By contrast the behavioral mechanism design benchmark

makes precise and correct predictions about the modal e�ort levels and matches the

number of dissendents in the large population games quite well.

n
modal e�ort dissidents
theory data theory data

15, 16 0.10 0.10 29% 27%

Table 6.3: Dissidents are those not choosing the modal e�ort

It is interesting also to take a look at what the dissidents do. Below in Figure

6.1 I plot the theoretical (n = 15 or n = 16) and empirical distribution (all large

population sessions pooled) of contributions conditional on contributing more than

$0.10. As is assumed, the theory is �at. What is interesting is the data: there is a

slight bias towards lower contributions and against intermediate contributions. What

is striking though is the high fraction who are contributing the maximum: $0.70.

This is especially the case since in no round of any session was the minimum ever

close to $0.70. Perhaps these noise players are making a statement?

I should indicate that the data here is weak. There are 106 observations and 7 of

them have e�ort $0.70. In the theory each player has a 1/3 chance of being a noise

player, and a noise player has a 1/7 chance of providing e�ort $0.70. The binomial

probability of getting 7 or more such draws in 106 trials is fairly large by the standards

of statistical signi�cance: 13.3%.
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Figure 6.1: Dissidents

Small Population Game

To compute the unique equilibrium in the small population game, the popular

minimum payo� from Table 6.2 is recomputed for n = 2 in Table 6.4 below using

10, 000 Monte Carlo draws. Here there is a Nash equilibrium at $0.70 and as it max-

imizes welfare it is chosen by the ethical players giving the unique solution reported

below in Table 6.4.

popular minimum n = 2 welfare

0.70 1.09 1.18
0.60 1.05 1.11
0.50 1.00 1.03
0.40 0.94 0.94
0.30 0.87 0.84
0.20 0.79 0.72
0.10 0.70 0.60

Table 6.4: Small Population

In the small population game and the partners treatment the theory does well. I

will therefore focus on the strangers treatment in which players play against randomly

matched opponents. This is the worst anomaly in Table 4.1. Since the individual

matches were not reported I used a Monte Carlo to randomly match the players

10, 000 times in order to compute welfare from the data.

As observed above when n = 2 in the strangers treatment the theory predicts

too high a level of welfare and too low a rate of dissidence. However, in addition

to relatively little data (16 observations) the game was played only 5 times so the

participants cannot be considered experienced. It is important then to ask: how has
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the game progressed over time? Did they start by trying to cooperate at si = 0.70

and then this gradually unravelled? Or has cooperation increased over time so that as

experience is gained play more closely resembles the prediction of the theory. Below

in Table 6.5 I report the distribution of play between the �rst and �fth round: by

every measure play is moving towards that predicted by the theory as player become

increasingly successful at coordinating on $0.70.

1st round 5th round theory

minimum = 7 10% 25% 51%
minimum ≥ 4 39% 66% 73%
minimum = 1 44% 12% 6.5%
dissidents 69% 50% 29%

Table 6.5: Evolution of Play Over Time

Overview

The most important anomalies are

• In the n = 14 game the equilibrium has mode 0.20 rather than 0.10 as in the

data.

• With n = 2 in the strangers treatment the theory indicates far more coordina-

tion than in the data.

• The distribution of the dissidents is very di�erent in the data than in the theory.

None of these anomalies are terribly important.

7. Ultimatum Bargaining

Many ultimatum bargaining experiments have been conducted with similar results.

In ultimatum bargaining game the �rst mover proposes the division of a �xed amount

of money, usually $10.00, and the second mover either accepts and both are paid as

agreed, or rejects and both get nothing. Here I analyze data from Du�y and Feltovich

(1999) for the important reason that players got to play 40 times rather than the usual

10. This is important because play after round 10 is di�erent than earlier, but remains

largely constant during the �nal 30 periods indicating that this is �the long-run� with

experienced players. The experimental design is also a clean one with the standard



24

$10 stakes, o�ers in whole dollars, no zero o�er, and one randomly chosen round

paid. The whole dollars greatly eases the analysis of the data: when o�ers are in $.05

increments we see things like a single o�er of $4.60 rejected and one of $4.55 accepted.

In other words, to make sense of it the data has to be aggregated into cells and this

is always fraught.

Another useful feature of Du�y and Feltovich (1999) is that there are two treat-

ments: one the standard treatment (nobs, 32 participants), and a second in which

players get to observe the results of one other match each period (obs, 40 participants)

- a treatment that they and I expect to enhance learning. In all cases I use data from

the �nal 30 rounds.

Qualitative Analysis. Ultimatum bargaining highlights the importance of risk aver-

sion in generating a demand for fairness. Without noise players the ethical players

would simply insist on the e�cient outcome which is an equal split and back this up

by rejecting less generous o�ers. Without noise players this punishment is entirely

hypothetical and has no cost. With noise players enforcing more generous o�ers in-

creases the number of o�ers that must be rejected, so imposes a social cost o�setting

the gain in fairness. Hence the theory predicts that o�ers should be generous but

many should fall short of an equal split. This is characteristic of ultimatum game

experiments. The theory also predicts a substantial rejection rate, also characteristic

of ultimatum experiments.

Description of the Solution. The behavioral mechanism design problem has a unique

solution for this game. There is a target for the sel�sh �rst mover. This is supported

by the ethical players rejecting o�ers less generous than the sel�sh target at an in-

creasing rate. The rejection rate should be as small as possible subject to incentive

compatibility. These facts are proven in Appendix 2. I then compute that the welfare

maximizing target is $4.00 for the sel�sh players while the ethical players themselves

o�er $5.00.

I report the key statistics of the solution below and contrast it with the data for

both the obs and nobs treatments. For the rejection rate I also reported for the obs

treatment the �nal 10 periods only. This is to verify that the noise as measured by

rejected o�ers is not declining over time.
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mean o�er rejection rate welfare
theory obs nobs theory obs nobs obs 10 theory obs nobs

4.83 4.46 3.63 0.18 0.20 0.19 0.18 3.45 3.46 3.43

Table 7.1: Ultimatum Bargaining

For welfare and the rejection rate the theory and data match well. The mean

o�ers for the obs treatment is reasonably close to the theory but the mean o�er for

the nobs treatment is anomalous.

O�er Distribution

Figure 7.1 below provides detail with the theoretical and empirical o�er densities.

Figure 7.1: Observed O�ers (left), Unobserved O�ers (right)

The empirical distribution for the obs case looks similar to the theory. The nobs

case looks much like the obs case but with o�ers shifted a dollar to the left except for

a modest number that remain at $5.00. In othe words, the nobs case looks as if the

target for the sel�sh players is 3 rather than 4 and that the majority of the ethical

players are o�ering $4.00 rather than $5.00.

Play in the obs case looks quite di�erent than the theory. I want to emphasize,

however, that there is very little welfare loss in doing this. Theoretically welfare

should be $3.51 and in the obs case it is $3.49, not much worse. To understand this

better I compute below in Table 7.2 below the welfare corresponding to each target

o�er for the sel�sh type. This was needed in any case to �nd the optimum. Note

that the constraint only binds on the ethical players when target is $1.00 in which
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target 5 4 3 2 1

welfare 3.41 3.45 3.42 3.33 3.17

Table 7.2: Welfare

case they must o�er $4.00 rather than $5.00 as they do for the other targets. As can

be seen setting a target of $3.00 rather than $4.00 results in the same small drop in

welfare as in the obs treatment. The same cannot be said for other targets: as the

target is lowered below $3.00 welfare drops o� fairly rapidly.

The $3.00 target mechanism also does not match the obs data since all the ethical

players are o�ering $5.00. Again, however, the welfare consequences of their the

ethical players switching to $4.00 is quite small: I computed this and it lowers welfare

from $3.42 to $3.40.

I note that Du�y and Feltovich (1999) argue that the di�erence between the two

treatments is because the learning process is changed by the additional information

about other player's play. That makes sense the context of mechanism design as well:

I do not imagine that the players make some sort of exact calculation of the solution

to the mechanism design problem in their heads, although I imagine they have some

general ideas, such as �we must reject bad o�ers so as to encourage good ones.� In

particular ethical players may be unsure what �their bit� is supposed to be: some may

think $5.00 while others think $4.00 would be enough. Observing the o�ers of others

might well convince those making $4.00 o�ers that they are not doing their bit, and

so switch to $5.00 o�ers.

Good O�ers

There is an anomaly in the o�er distribution that is hard to see in the �gures.

That is that there are far too many good o�ers. The theory predicts 16.7% of all o�ers

with be for $6.00 or more. In the data this is true for only 20 out of 1080. Moreover,

the same as has been found in hundreds of ultimatum experiments: the only apparent

exception is the experiment conducted with the whale hunting Lamalera reported in

Henrich et al (2004). In that case, however, the noise player was the experimenter -

the �low o�ers plotted for the Lamalera were sham o�ers created by the investigator.�

A good robustness check is to ask what happens if ad hoc and by �at I were

to assume that players cannot make o�ers better than $5.00. This raises the cost

to the ethical players of providing incentives to the sel�sh players because the noise
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players now make more bad o�ers. It changes the optimal mechanism: the target for

the sel�sh players drops from $4.00 to $3.00 and, accounting for the poorer o�ers by

the noise players, reduces the mean o�er from $4.83 to $3.67. This mechanism now

mirrors the data for the noobs case where the mean o�er is $3.63. The reduction in

welfare due to increased rejection of bad o�ers is o�set by the fact that uniform o�ers

between $1.00 and $5.00 are more e�cient than between $6.00 and $10.00 and both

welfare and the rejection rate are unchanged. Overall, the theory with this ad hoc

modi�cation does about as well as the original.

Associated with the anomaly in the good o�ers is an associated anomaly with the

rejection rates. By pooling all the good o�ers out of 20 only 1 is rejected, a rejection

rate of 5%. According to the theory the rejection rate should be 17% - much higher.

Rejection Rates

I turn �nally to the theoretical and empirical rejection rates. At the aggregate

level the theory matches the data quite well. Below I report the conditional rejection

rates. Qualitatively the theory matches the nobs data well: declining until the target

of $4.00 is reached, then �at. Not unexpectedly for the nobs case the decline ends

when the target of $3.00 is reached. I will focus on the nobs case.

Figure 7.2: Observed O�ers (left), Unobserved O�ers (right)

Quantitatively the theory does poorly. Good o�ers are rejected far too often and

bad o�ers not often enough. The low theoretical rate of rejection of bad o�ers is not

in itself surprising. The theoretical rates make the sel�sh players exactly indi�erent.

This is a general problem in mechanism design theory. In practice with heterogeneity



28

and noise to get sel�sh players to behave themselves it is wise to give them stronger

incentives than exact indi�erence.

Assuming the ethical players reject more frequently than the theory says is inad-

equate to explain the data, however. In the data we may call an o�er bad if it is less

than $4.00 in the obs treatment and less than $3.00 in the nobs treatment. In the

data there are 84 bad o�ers and 64, that is 76% of them, are rejected. By contrast

the theory says that the maximum possible rejection rate when ethical players reject,

sel�sh players accept, and noise players reject half the time is only 50%. Even if all

the noise players and ethical players rejected the o�ers the probability of seeing so

many rejections 64 is less than 4%. This suggests that the sel�sh players might be

ethical players albeit with a much smaller put still positive value of γ, so willing to

punish unlikely bad o�ers.

Fairness, Kindness and Reciprocity

Models of fairness or kindness and reciprocity such as Levine (1986), Fehr and

Schmidt (1999), Bolton and Ockenfels (2000), Falk and Fischbacher (2006) and

Dufwenberg and Kirchsteiger (2004) predict that an o�er should be equally likely to

be rejected regardless of how often it is made. Whether an o�er is fair or kind does

not depend upon how likely it is to be made. The left shift of equilibrium going from

the obs to the nobs case provides a test of this hypothesis: the frequency of unfair

and unkind o�ers of $3.00 jumps up. Table 7.3 below shows that in fact when the

frequency of $3.00 o�ers jump up from 3% to 31% the rejection rate plunges.

obs nobs

frequency of o�ers 3% 31%
rejection rate 85% 14%

Table 7.3: O�ers of 3

As indicated above, while mechanism design prediction is consistent with the obs

data it is not with the nobs data. From a broader perspective however, what we

see in the nobs data is an incentive compatible mechanism that is not the best, but

very close: welfare of $3.40 against $3.45. On the other hand emotional players who

rejected o�ers of $3.00 at the rate seen in the obs case would do terribly against

�rst movers who acted like those in the nobs case: welfare would plunge to $1.79.

Mechanism designers by contrast are pragmatic: even dropping incentives entirely
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and allowing the sel�sh types to o�er one would result in much higher welfare of

$3.16.

Overview

The most important anomalies are

• In the no-observation case the o�ers distribution is shifted about $1.00 to the

left from the theory.

• The data has too few good o�ers and too low a rejection rate for them.

• The data rejects bad o�ers far too much.

I argued that the no-observation shift is not terribly important. That the theory

produces too many good o�ers and rejects them too frequently is entirely due to the

behavior of the noise players so can be isolated. The rejection of bad o�ers, however,

implies that even sel�sh players must sometimes reject bad o�ers.

8. Public Goods with Punishment

Public goods experiments with punishment have been much studied and replicated

since Fehr and Gachter (2000) and an overview can be found in Chaudhuri (2011).

These studies show that without punishment little contribution occurs, but with

punishment contribution levels are quite high. I used data from Nikiforakis and

Normann (2008) who vary the cost of punishment and use a relatively easy to analyze

linear cost structure.

Four partners play ten times but are randomly relabeled each period. The game

has two stages. In the �rst stage money payo�s are given by

mi(1) = 1.50− si + 0.4
n∑
j=1

qj

where qi ∈ {0, 0.075, 0.150, . . . , 1.50} and n = 4. There is a punishment factor λ ∈
{0, 1, . . . , 4} and if λ > 0 there is a second stage

mi(2) = mi(1)−
∑
j 6=i

pij − λ
∑
j 6=i

pji
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where pij ∈ {0, 0.075, 0.150, . . .} is a punishment assigned by player i to player j.

There is also a constraint on individual punishment
∑

j 6=i p
ij ≤ mi(1). As indicated

the punishments have a common cost to the sender but di�er in how costly they are for

the recipient. Besides the ability to do comparative statics over λ this experiment also

has a linear cost structure making it easier to analyze than some earlier experiments.

How to Spend It. Insight into the solution can be gained by considering the problem

for an ethical player of optimally deploying their largesse for the lowest punishment

factor λ =1. For a private cost of 0.6 an ethical player can increase their own contri-

bution by 1. Suppose instead that the ethical player increases punishment for anyone

who chooses the current and lower levels of contributions by 0.6. There are three

opponents: roughly, another ethical player, a sel�sh player, and a noise player. The

noise player will contribute the current level or less at some of the time, so the ex-

pected cost of the increased punishment is something less than 0.6. On the other

hand, both the other players will be induced to increase their output by 1 resulting

in a total output increase of 2. In other words, for somewhat lower expenditure of

largesse, the ethical player can achieve a greater increase in contribution using it for

punishment rather than for their own contribution. Higher punishment factors make

largesse even more attractive. Hence punishment is always the right way to expend

largesse.

Qualitative Analysis. The importance of these type of experiments is that they show

how contributions jump up when punishment is an option. The analysis of the optimal

use of largesse provides one explanation. Without punishment there is not enough

largesse to lead to substantial contributions. With punishment using largesse for

punishment, as shown above, is an e�ective way to generate high contribution rates.

Moreover, unlike in the other experiments, here the largesse constraint binds in an

important way. Higher levels of contribution require more punishment and while

the gain in contribution outweighs the loss of punishment socially it does not do so

individually. The amount of punishment sent by the ethical players does not depend

on the contribution rate, rather it is determined by the largesse constraint. With

lower punishment factors the punishment received is smaller so less high contribution

rates can be sustained: this is the �law of demand� identi�ed by Nikiforakis and

Normann (2008).
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Description of the Solution. As the stakes are not great, for simplicity of analysis I

abstract here from risk aversion (see Appendix 1 for discussion). With this simpli�-

cation it is easy to compute the solution to the mechanism design problem for each

set of parameters. There is a single target for the sel�sh players. The ethical players

provide incentives by punishing contributions below target. This punishment should

be as small as possible subject to incentive compatibility. These facts are proven in

Appendix 3. Computationally I �nd that welfare is increasing in the target while the

cost of punishment also increases, so the target should be chosen as high as possible

subject to the γ constraint for the ethical players. Because of the integer constraint

of the sel�sh players this may not exhaust the largesse o� the ethical players: any

additional largesse is spent with a probability of the next higher contribution level.

The equilibrium described in terms of expected punishment is unique but there may

be several mixtures over punishment levels by the ethical players that give the same

expected punishment and any of these is an equilibrium. Using these facts I computed

the welfare optimal target for each punishment factor.

Below in Table 8.1 I report the optimum and compare it to the data the �nal

(tenth) period. Note that �punishment� is the punishment sent by the punisher not

the punishment received by the punished. For comparative purposes, note also that

the maximum possible welfare is all contributing the maximum $1.50 and there is no

punishment: it is $2.40.

punishment factor
contribution punishment welfare participants
theory data theory data theory data

4 1.16 1.24 0.06 0.07 1.92 1.91 24
3 1.05 1.16 0.06 0.05 1.91 1.99 24
2 0.90 0.68 0.06 0.04 1.88 1.78 24
1 0.70 0.24 0.06 0.01 1.81 1.64 24

none 0.07 0.03 0.00 0.00 1.51 1.51 24

Table 8.1: Public Goods Contribution with Punishment

Before comparing the theory to the data I want to comment on the big picture. An

important reason public goods with costly punishment has been frequently studied

is because of the stark contrast between the no punishment and punishment case.

This can be seen in the data, where contributions jump from practically none with

no punishment to 83% of the maximum with punishment factor four. The discussion

of how to spend it above provides an explanation. Without punishment the ethical
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players have no choice but to spend their largesse on increased contributions, but as

their largesse is limited this has little impact. Punishment, by contrast, is far more

cost e�ective: the same largesse that has little impact on voluntary contributions has

a big impact when used to provide incentives in the form of costly punishments.

Turning back to the comparison between the theory and the data, as expected

from Table 4.1 the theory and data match quite well for the higher punishment factors

(3, 4) and when there is no punishment. It does, however, underpredict contributions

by about $0.10. Qualitatively the model gets right the declining contributions as

the punishment factor declines. However, the theory does poorly from a quantitative

point of view for lower punishment factors (1, 2). In both cases actual contributions

are substantially lower than predicted by the theory with correspondingly lower wel-

fare.

The contribution schedule in the theory is �atter than in the data. This is partly

due to the fact that in all treatments the noise players each make an expected contri-

bution of $0.75 regardless of the punishment factors. Below in Table 8.2 are the per

capita contributions of the ethical and sel�sh players

punishment 4 3 2 1

contribution
ethical+sel�sh 1.36 1.20 0.98 0.68

data 1.24 1.16 0.68 0.24

Table 8.2: If noise players do not contribute

When the punishment factor is 1 the empirical punishment is also much lower

than the theory says is needed to sustain high contributions.

Distribution of Contributions

Below in Table 8.3 I provide greater detail for the punishment factor three and

four cases. To provide some smoothing with 24 observations spread over so many

categories I aggregated the 21 contribution levels into 7 by grouping them in blocks

of 3 contribution levels.
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e�ort
frequency punishment

theory data theory data

1.50 0.71 0.71 0.03 0.00
1.13 0.05 0.04 0.06 0.00
1.03 0.05 0.13 0.09 0.00
0.67 0.05 0.00 0.13 ?
0.53 0.05 0.00 0.16 ?
0.30 0.05 0.00 0.19 ?
0 0.05 0.13 0.23 0.55

e�ort
frequency punishment

theory data theory data

1.50 0.05 0.46 0.03 0.00
1.13 0.71 0.21 0.03 0.05
1.00 0.05 0.13 0.08 0.08
0.78 0.05 0.13 0.12 0.00
0.53 0.05 0.00 0.16 ?
0.38 0.05 0.04 0.21 0.00
0 0.05 0.04 0.26 0.83

Table 8.3: Left: Punishment Factor 4 - Right: Punishment Factor 3

The distribution of e�ort between the theory and data is reasonably good. The

data on punishment is quite noisy since there are only 24 observations so less than

3 individuals in all but the top cell. Never-the-less the broad picture �ts the theory:

there is increased punishment for contributing less than the target, and probably that

increases as distance to the target grows.

Low Punishment Factors

I would like to draw attention instead to what happens with punishment factors

two and one. These are reported in Table 8.4 below.

e�ort
frequency punishment

theory data theory data

1.50 0.05 0.33 0.03 0.00
1.28 0.05 0.00 0.03 ?
1.02 0.71 0.08 0.03 0.00
0.75 0.05 0.08 0.06 0.08
0.52 0.05 0.00 0.09 ?
0.30 0.05 0.08 0.12 0.00
0.02 0.05 0.42 0.15 0.09

e�ort
frequency punishment

theory data theory data

1.50 0.05 0.08 0.03 0.00
1.28 0.05 0.00 0.03 ?
1.05 0.05 0.02 0.03 0.00
0.75 0.71 0.05 0.04 0.11
0.52 0.05 0.00 0.07 ?
0.26 0.05 0.08 0.11 0.00
0.03 0.05 0.75 0.16 0.06

Table 8.4: Left: Punishment Factor 2 - Right: Punishment Factor 1

The theory says ethical and sel�sh types all share the same target and that 71%

of the population should be contributing that target. In the theory column I have

highlighted the modal contribution levels implied by the theory: $0.98 for punishment

factor two and $0.68 for punishment factor one. For punishment factor one the

equilibrium seems to have collapsed to a mode of zero rather than $0.68.
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The data for punishment factor two has two peaks at the highest and lowest

contribution levels. I have highlighted these as well in Table 8.4. This led me to

wonder if there was not a mechanism with two peaks, but there is not: if the ethical

players can be induced to contribute at the highest level then the sel�sh players will

contribute not much less. Moreover, the punishment levels in the data are not nearly

incentive compatible - the punishment for contributing at the lowest levels - also

highlighted - is far too low to make it unpro�table for any type to deviate from the

highest to lowest level. As I explain below this anomaly may be due to pooling across

sessions.

Partners

As indicated these experiments were conducted using a partners treatment in

which the same four players remained together for the entire ten periods. There is

no issue with repeated game e�ects as data is only used from the �nal period. There

is, however, another element of the partners treatment: the possibility of learning

about the types of opponents. According to the model types are drawn once and

for all at the beginning of the game and noise players randomize independently each

period. Hence repeated play provides information about opponents' types. Learning

about types provides a possible resolution to the anomaly found in the distribution

of contributions for punishment factor two. Note that while the model provides a

precise way of analyzing the learning it would not make sense to apply it to this data.

While the players may be experienced with the one shot game after nine rounds, they

are not experienced in learning about their opponents. To apply Bayesian updating

about types I would want data with repeated repeated play as in Dal Bo (2005).

Speci�cally, with low punishment factors, the optimal mechanism is sensitive to

how many ethical and noise players there are. In the extreme, if there are no ethical

players, then the modal play is the least contribution while if there are no noise

players the modal play is the greatest contribution. Each of these has a 20% chance.

More generally with learning and low punishment factors, there will be some groups

in which most players make the least contribution and others in which they make

greatest contribution but there should rarely be groups in which many players do

both. Never-the-less when the sessions are averaged it will give the anomalous pattern

seen in Table 8.4 for punishment factor two.

To determine the frequency of anomolous groups in which many players simul-
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taneously make both the lowest and highest contribution, I disaggregated the data

for the punishment factor two treatments by group. For each group I calculated the

minimum frequency of the highest and lowest contribution cells ($1.50 and $0.05 in

Table 8.4). If groups tend to cluster at the top or the bottom but not both then

these minima should be small. Below in Table 8.5 I report the fraction of punishment

factor two groups that correspond to the di�erent minima. There are 4 observations

per group in the �nal period and 20 over the last �ve periods. For example, if the

minimum frequency is 0.05 in the table for the last �ve periods one of two things is

true: only one time out of 20 was the minimum contribution made or only one time

out of 20 was the maximum contribution made. In other words the anomaly in Table

8.4 is not present in that session.

minimum frequency �nal period last �ve periods

0− 5% 67% 67%
20− 25% 33% 33%

Table 8.5: Top and Bottom E�ort Levels

As can be seen, most groups do not simultaneously have high fractions of both

the highest and lowest e�ort, so clustering and aggregation are largely responsible for

the anomaly reported in Table 8.4 for punishment factor two. This clustering may be

due learning in the partners treatment.

Robustness

As the public goods games with punishment are the only games in which γ plays

a role indetermining the solution of the mechanism design problem I want to examine

robustness with respect to the calibrated value of γ. Speci�cally, as observed above,

the discount ratio µ for �rst period largesse is µ = 0.242 in the �nal periods of the

Dal Bo (2005) data. From equation 5.1 this corresponds to a value of u−1(γ) = 0.082

substantially less than the calibrated 0.10. Below the welfare results are reported

both for the calibrated u−1(γ) = 0.10 and for the alternative u−1(γ) = 0.08 . As

expected tightening the constraint reduces welfare - but very little. It results in a

slightly worse �t for the high punishment factors and a slightly better �t for the low

punishment factors.
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welfare/punishment factor 4 3 2 1 none

u−1(γ) = 0.10 1.92 1.91 1.88 1.81 1.51
u−1(γ) = 0.08 1.89 1.88 1.84 1.80 1.51

data 1.91 1.99 1.78 1.64 1.51

Table 8.6: E�ect of µ = 0.242

Overview

There is one important anomaly: for low punishment factors players are far less

successful at achieving high contribution levels than indicated by the theory. This

might be explained by learning in the partners treatment.

9. Conclusion

I have presented a simple and stark calibrated benchmark model and documented

its successes and failures across a range of di�erent experiments. What do the anoma-

lies tell us about how the model can be improved?

With respect to the sel�sh and ethical players their sharp optimization could

be softened in several ways. The quantal response model of McKelvey and Palfrey

(1995) rather than exact best response would eliminate the �good� equilibrium in the

large population stag hunt game, for example. However, quantal response models

are di�cult to use for benchmarking purposes as they require an intensity parameter

that is hard to predict without looking at the data. Another softening would be to

introduce a trade-o� for the ethical players between social welfare and own utility

rather than a sharp limit. As a practical matter it seems unlikely that ethical players

are willing to sacri�ce as much for a small gain in social welfare as for a large gain.

This could help in the public goods experiments with low punishment factors: perhaps

ethical players with a smoother trade-o� would be willing to forgo completely sel�sh

behavior with only modest punishment because the social welfare loss is so great.

Similarly, ethical players in public goods experiments where the punishment factor is

low might be less willing to forgo sel�sh behavior when the social welfare gains are

modest.

I think that softening the play of the sel�sh and ethical players while improving �t

with the data would not make a good benchmark model: the additional parameters

and complexity would not make sense when the model is doing reasonably well with

these players already. Where the action is, I would say, is with the noise players.
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Modeling the Noise Players

The noise players play a key role in the theory. They serve to keep the ethical

players �honest� by forcing them to bear real costs of providing incentives through

punishment. They also introduce an element of risk dominance that is important in

equilibrium selection. Moreover the number of dissenters in the stag hunt and public

goods contribution games are consistent with the calibration and show that indeed,

a substantial fraction of the population are in some sense �noise� players.

In many respects the noise players are what di�erentiates this theory from others.

If we just had ethical and sel�sh types with risk aversion the model would not be

so di�erent from using the Fehr and Schmidt (1999) model and choosing the best

equilibrium as they suggest. In a similar vein if we introduced noise players into the

Fehr and Schmidt (1999) it would likely �x the equilibrium selection problem in the

large population stag hunt game and increase the rejections for ultimatum bargaining

bringing the model into closer alignment with the data.

Roughly speaking simple entropy maximization delivers the basics at an aggre-

gate level and so is useful as a benchmark. It does less well with the details. In

large population stag hunt the dissidents appear to be split between those �making a

statement� by providing the highest level of e�ort and those providing slightly more

e�ort than the minimum. In ultimatum the most important anomaly is caused by

the noise players making far too many good o�ers. They also reject far too many

good o�ers and not nearly enough bad ones. In the public goods contribution games

the noise players �atten the contribution schedule below that observed in the data.

Let me highlight some of the theoretical issues with the model of noise players.

In the public goods games there is an abrupt change in the behavior of the noise

players depending on whether or not there is punishment. Without punishment higher

contributions are dominated by lower ones, so the probability of contributions falls

o� exponentially, and expected contributions by the noise players is quite small. By

contrast with punishment no contribution level is weakly dominated so the probability

of contributions is uniform and expected contributions jump up from near zero to

$0.75. This �ts well with the no punishment case and the high punishment factor

case, but fares poorly with low punishment factors.

There is also a denomination issue. If there are two actions, one that earns zero and

one that loses a dollar both are equally likely. If we add an intermediate denomination

so that there is an action that loses �fty cents, then the probability of choosing zero
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remains at a half, but the probability of losing one falls to a quarter. As we add more

intermediate denominations the expected loss falls. This might be true to an extent

- but surely not when denominations become hard to distinguish.

In a related vein, when there are just two actions ordered by dominance both

have equal probability. As I indicated this is already problematic in ultimatum as

it leads to rejections rates too high for good o�ers and too low for bad o�ers. It

is problematic for other games with two actions, for example, the one shot prisoner

dilemma game. In that game suppose that the γ constraint binds on the ethical

players so that they cheat. However, the noise player will cooperate half the time

leading to a 17% cooperation rate. In fact (see, for example, Dal Bo (2005)) the

cooperation rate with experienced players is more like 6%.

To �work� the noise players need to be impulsive and willing to do things �just

for the heck of it.� This should be clear from the roughly 30% of dissenters in stag

hunt and in the public goods contribution games with punishment (see Table 8.3).

But the data suggests that noise players are not, as the theory assumes, completely

oblivious to what other players are doing. As I have indicated in the literature review,

psychological models have become popular: surely an important role for these models

is to better understand the behavior of noise players - to model their emotion and

impulsivity?

Last Words

In considering the role of psychology I want to indicate that if I were designing

a functional and e�ective human being I would design a person who was emotional

and sometimes would be angry. The point is that emotions serve as a commitment

device: because we are angry we carry out punishments that ex post are not in

our interest. But we can control our anger, tailoring it to circumstances: an ethical

player would use anger as an ends to a mean, carrying out the commitment to punish,

but determining the level of punishment to provide e�cient incentives. Perhaps the

di�erence between ethical players and noise players is that the former have greater

control over their emotions?

Finally, I want to conclude by emphasizing that the model is calibrated to western

college students playing for standard stakes in the laboratory. We know from the

work of Snowberg and Yariv (2021) and others that the general population is both

more risk averse and more generous than college students. We also know from cross-



39

cultural studies such as Henrich et al (2004) that behavior in experiments di�ers

between cultures. However, I have no reason to think that the fraction of ethical

players is invariant to culture, and indeed in Dutta, Levine and Modica (2021) we

developed a model of how the fraction of ethical players might vary depending on the

nature of public goods problems faced by di�erent cultures. One of the advantages

of a benchmark model is that by identifying anomalies it provides hints as to what

might be di�erent between di�erent populations, stakes, or cultures.

Appendix 1: Risk Aversion for Low Stakes

Figure 9.1 below plots the CES utility function with ρ = 9 (the dots) and a CARA

utility function �t to the Gneezy and Potters (1997) data (solid line) along with a

risk neutral utility function normalized to match utility at $3.31.

Figure 9.1: CES and CARA Utility

The linear utility function is a good approximation in the public games experi-

ments, including stag hunt, because participants were paid for every period so the

stakes were quite low. In Nikiforakis and Normann (2008) the greatest possible

monetary payo� in a single period is $3.31 marked with a vertical line.3 As can be

seen while the utility function has substantial curvature over the entire range, it is

minimal over [0.00, 3.31] where a straight line is an accurate approximation.

As it enormously simpli�es computations I treated the players in the Nikiforakis

and Normann (2008) experiments as risk neutral. I did not do so in stag hunt

although it also makes very little di�erence: however in stag hunt as indicated above

3Negative monetary payo�s are possible be this never occured in practice.
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the bene�t of deviating is so small in the large population games that I wanted to be

sure that the calculations were valid when risk aversion was accounted for.

Appendix 2: Optimal Mechanism for Ultimatum

Proposition. Sel�sh �rst movers use a pure strategy and no sel�sh or ethical players

o�ers more than $5.00. The rejection rates are as small as possible subject to incentive

compatibility.

Proof. Selfish players never reject offers. This is obvious.

There is an optimal mechanism in which no selfish or ethical player

makes a good offer greater than $5.00 with positive probability. Sup-

pose not. Set all rejection rates by ethical players for good o�ers and $5.00 to zero.

If there is a sel�sh player making a good o�er move all ethical and sel�sh players

to $5.00. This is the �rst best so certainly weakly welfare improving and is incentive

compatible since the sel�sh player making the good o�er is at least as willing to o�er

$5.00 without punishment than a better o�er.

If the only good o�ers are by ethical players, move all ethical players to $5.00.

This is certainly weakly welfare improving. it is incentive compatible for �rst movers.

The utility of sel�sh �rst movers does not change. Since originally all ethical players

had the same utility and the ethical player making the greater o�er has at least as

much utility after the move their utility weakly increases, so is incentive compatible.

It is incentive compatible for second movers. For o�ers at or above $5.00 the utility of

sel�sh second movers does not change and the utility of ethical second movers weakly

increases. For o�ers below $5.00 the utility of ethical second movers decreases less

than that of sel�sh �rst movers since the move is to a weakly lower rejection rate for

the ethical second movers.

There is an optimal mechanism with minimum incentive compatible

rejection rates. Fix the �rst mover strategies. Lowering rejection rates subject to

those strategies remaining incentive compatible improves welfare and improves second

mover incentive compatibility for ethical players.

There is an optimal mechanism in which selfish first movers use a

pure strategy. If they are indi�erent moving them to a higher o�er does not

change their utility, but increases the utility of the second mover who gets a better

o�er with lower probability of rejection.



Appendix 3: Optimal Mechanism for Public Goods with Punishment

Proposition. There is a single target for the sel�sh players. The ethical players

provide incentives by punishing contributions below target. This punishment should

be as small as possible subject to incentive compatibility.

Proof. There is an optimal mechanism in which pji depends only on qi.

Take an optimal mechanism q̂, p̂and de�ne pji(qi) = E[p̂ji|qi]. Then q̂, p is also incen-
tive compatible and yields the same welfare.

De�ne q̂ to be the maximum in the support of sel�sh player contributions. There

is an optimal mechanism in which there is no punishment for qi > q̂. This

is welfare improving and incentive compatible for sel�sh types. Because I showed

in the text that largesse is best spend on providing incentives it is also incentive

compatible for the ethical types.

There is an optimal mechanism with minimum incentive compatible

punishments. Fix the �rst period strategies. Lowering punishment rates subject

for those strategies remaining incentive compatible improves welfare.

There is an optimal mechanism in which selfish first movers use a

pure strategy. If they are indi�erent moving them to a higher contribution level

does not change their utility, but increases the utility of everyone else.
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ONLINE Appendix 1: Willingness to Sacri�ce

For the calibration of γ in the text to be valid the γ constraint should bind both

for the dominant strategy experiments in which willingness to give is measured over

time and for the one-o� dictator game in which base willingness to give is measured.

Take �rst the public goods experiments in Fehr and Gachter (2000). From the

information given concerning overall earnings, we �nd in dollars

mi = 1− (0.6)si + (0.4)
n∑
j=1

sj.

where si ∈ {0, .05, 0.10 . . . , 1.00} and n = 4. The derivative of social welfare with

respect to si is given as

dS

dsi
= (1/n)

n∑
j=1

u′(mj) ((0.40)− 1(i = j)(0.6))

where

u′(m) = −(1/C)(1− ρ)(1 +m/C)−ρ.

Observe that if an ethical player contributes the maximum of $1.00 and nobody else

contributes they get $0.80 and everyone else gets $1.40. Marginal utility for the

former is u′(0.8) = 0.0206 and the latter u′(1.4) = 0.0183. Hence

dS

dsi
≥ (0.0183)(0.40)− (0.0206)(0.25)(0.6) = .010 > 0,

that is, the fact that a one dollar increased contribution results in a six dollar increase

in welfare dominates the (modest) unfairness of ethical players contributing more than

others, so an ethical player should contribute the most they can: that is, the constraint

should bind.

In the dictator experiments, by contrast, fairness dictates that an ethical player

contribute no more than half the maximum, and this constraint might bind. However,

in $10.00 dictator experiments with $1.00 increments average contributions are $2.50

while in $5.00 dictator experiments with $0.50 increments such as List (2007) they fall

to about half that, to $1.33 in List (2007) (24 participants). If the γ constraint was

strictly binding that should not happen as the sel�sh types continue to contribute
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zero, the noise types halve their contribution, and the ethical types reduce their

contribution by less than a half.

However, List (2007) provides us with extra information: he considers allowing a

�take� option of taking up to $5.00 (48 participants). If the constraint is not binding

when the take option is available then contributions by the ethical type should remain

�xed at $2.50, while the contributions of the sel�sh player should fall by $5.00 and

that of the noise players by approximately that amount. That is, contributions should

fall by $3.33. However, they fall by $3.82 which indicates that the constraint does

bind in the take treatment. The actual contribution in this treatment is −$2.48, or
$2.52 above the �oor. Conveniently this is about the same as the approximately $2.50

contribution in the standard $10.00 treatments, so we conclude that $2.50 is a good

estimate of contributions when the constraint does bind.

ONLINE Appendix 2: Welfare Comparison

The Fehr-Schmidt calculations are based on Fehr and Schmidt (1999).

For ultimatum I computed rejection rates, then optimal o�ers for each type. This

led to 70% o�ering 5 and having it accepted and the remainder o�ering 4 and having

it accepted 90% of the time.

For public goods contributions games I used their Proposition 5. It requires β =

0.6 for the non-sel�sh type. The correlation between α and β for their calibrated

model is not speci�ed, but even assuming independence there are at least 12% of

the population with α ≥ 1 and β = 0.6 and this guarantees that the condition in

Proposition 5 is satis�ed for all the relevant punishment factors.

There is also a constraint that links the best possible equilibrium to the greatest

possible punishment. Let Q be the best possible equilibrium, ψ the fraction of types

with β = 0.6 and α ≥ 1, and punishment factor λ. Recall that the greatest possible

punishment if everyone chooses Q in the �rst state is 1.6Q. From Fehr and Schmidt

(1999) Proposition 5 the constraint is

Q

4ψ − 1/λ
≤ 1.6Q.

The fraction of types with β = 0.6 and α ≥ 1 could be anywhere from 0.12 to 0.40. At

λ = 1 the necessary ψ is greater than 0.40 so the constraint fails. I took the fraction
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ψ to be greater than 0.28 as the constraints for λ > 1 are satis�ed and this best �ts

the data.

ONLINE Appendix 3: Ethical Players in Stag Hunt

Given that sel�sh players are contributing $0.10 should ethical players they raise

their contribution to a greater amount, for example $0.20 instead of $0.10? This

results in a sure loss to themselves (33% of population) of $0.10. However, if there

are no sel�sh players and all the noise players contribute $0.20 or more, it does raise

the income of all players by $0.10.

The implication is that if and only if there is a greater than 1/3 chance both that

there are no sel�sh players and that all the noise players contribute $0.20 or more then

it is welfare improving for the ethical players to increase their contribution. However,

the chance of this happening is much less than 1/3: the chance that there are no

sel�sh players by itself is less than 0.3%.

The same analysis applies to contributions greater than $0.20, and indeed above

$0.30 welfare would be reduced even if the sel�sh players were also willing to contribute

that amount. Hence the unique equilibrium as reported above and to contributions

above $0.20 when that is the equilibrium.

ONLINE Appendix 4: Sampling Error

Hypothesis testing is fraught and standard errors are often subject to misinter-

pretation. The gap between theory and practice is large, and I refer the interested

reader to the relevant literature and in particular Leamer (1983) and Imbens (2021).

Before explaining how standard errors they should be interpreted in this setting,

let me �rst describe how to compute them. Standard errors are computed with respect

to a model: in this case the �hypothesis� is a point hypothesis - the calibrated model

with given and known coe�cients that are not estimated and certainly not from

the data being analyzed. From the theoretical model samples are drawn in exactly

the same way as in the data and this gives the entire distribution of sampling error

including the standard error. A convenient way to do this is via Monte Carlo.

There are two possible results of �nding con�dence intervals based on the standard

errors. First, the con�dence intervals may be small and the data may lie outside the

con�dence intervals. Since the theory is certainly wrong and is expected to be wrong
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with enough data this will always be the case, and so it is meaningless. In smaller

samples the con�dence intervals might be large relative to the distance from the

theory to the data. When the theory is closer to the data than the standard errors

suggest the only reasonable conclusion that can be drawn is that I manipulated either

the theory or the data: for example, I cherry-picked the experiments to �t the theory,

or I chose the calibration after looking at the data. For this reason there is some

importance in reporting the standard errors.

In the stag hunt games I analyzed sampling error in the context of dissidents

where it was relevant. I have not computed standard errors in the ultimatum games

because the sample is large and there is an issue of whether there is serial correlation

over the thirty periods of data used. Below in Table 9.1, in the public goods games

with punishment, I add to Table 4.1 the standard errors (se) computed using a Monte

Carlo with 1, 000 draws.

theory data se actual err SGP err FS err

pun 1 1.81 1.64 0.07 0.17 −0.14
pun 2 1.88 1.78 0.10 0.10 −0.28 0.63
pun 3 1.91 1.99 0.13 −0.08 −0.49 0.42
pun 4 1.92 1.91 0.15 0.01 −0.41 0.50

Table 9.1: Welfare and Standard Errors for Public Goods with Punishment

Speci�cally the procedure is this. For each treatment each Monte Carlo iteration

draws six matches. In each match four players are randomly drawn from the player

types and the noise players randomly draw contributions and punishments. The

punishments of the noise players by the ethical players is then computed, and welfare

for the match is determined and averaged over the six matches. This is done 1, 000

times to �nd the distribution of the draws.

The standard errors are large enough that except in the case of punishment factor

one the data is within two standard deviations of the theory. Except in the case of

punishment factor four the data is not exceptionally close to the theory compared

to the standard error. In addition the standard errors are small enough that with

the exception of punishment factor one they exclude SGP and FS which lie consid-

erably more than two standard deviations from the data. This argues that if we

were to engage in hypothesis testing the test would have some power. We may also

wish to conclude that the anomolous data point - the increase in welfare going from



punishment four to three - might be due to sampling error.

Overall the standard errors, while computable, add only modestly to our under-

standing of the theory and the data.
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