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This paper develops an approach to equilibrium selection  in game theory based on studying . 

the learning process through which equilibrium is achieved. The differential equations derived 
from models of interactive learning typically have stationary states that  are not isolated. Instead, 
Nash equilibria that specify different out-of-equilibrium behaviour appear in connected compo- 
nents of stationary states. The stability properties of these components can depend critically on 
the perturbations to which the system is subjected. We argue that it is then important to incorpor- 
ate such drift into the model. A sufficient condition is provided for drift to create stationary 
states, with strong stability properties, near a component of equilibria. Applications to questions 
of forward and backward induction are developed. 

1. INTRODUCTION 

Backward induction performs badly in predicting the outcome of laboratory experiments 
in some games, but well  in others. Forward induction is similarly erratic.' In the face  of 
such mounting evidence from carefully run experiments, game theorists are reconsidering 
their theories of equilibrium selection.  Why do the principles of forward and backward 
induction sometimes work and sometimes  fail? We need a theory that explains when and 
why experienced and well-motivated players honour  or ignore such principles. In this 
paper, we argue that players' behaviour is often consistent with game theory, even  when 
backward and forward induction fail-provided we recognize that people must learn to 
play  games in an imperfect world. 

In Binmore and Samuelson (1 994) and Binmore, Gale  and Samuelson (1999, we 
showed that simple models of learning can direct players to  Nash equilibria in the Ulti- 
matum  Game in  which player 2 receives a significant share of the surplus-a result closer 
to experimental observations than  to the subgame-perfect prediction. This paper broadens 
the scope of our study of perturbed learning processes. We show that  our results for the 
Ultimatum Game are not pathological by analysing several equally well-known  games. 

Our methodology requires examining the stability properties of the Nash equilibria 
of games, paying close attention  to the perturbations of the learning process that  are 
intended to  stand in for the many imperfections of the world that are idealized  away 
when formulating an  abstract model. Until recently it was taken for granted that such 
perturbations could be  relied upon to eliminate weakly dominated strategies. But  Binmore 
et  al. (1994,  1995) show to the contrary  that vanishingly small perturbations can actually 

1. Davis and Holt (1993) and Kagel and Roth (1995)  survey the experimental literature. 
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play a key role in stabilizing Nash equilibria in  weakly dominated strategies that would 
be  refined away if forward or backward induction criteria were applied. 

We use the term drqt to summarize the  perturbations  to be studied and address the 
following questions. When does such drift matter? What  can be said about equilibrium 
selection  when it does? 

The  landscape  metaphor. Our answers to these questions are easiest to understand 
when  expressed  in terms of the landscape metaphor used  by biologists in  discussing  evol- 
utionary dynamics. It is commonplace to think of a stable equilibrium as lying at the 
bottom of a pit that represents its basin of attraction. The dynamic system under study is 
then envisaged as  a ball that rolls down the sides of the pit, eventually coming to rest at 
the equilibrium at the  bottom. Evolutionary drift becomes important when the pit is 
replaced by a valley with a flat floor of equilibria. Once the ball reaches the floor of such 
a valley, its movement is determined by tiny shocks which can be  neglected  when the 
system is not close to equilibrium (because they are then vanishingly  small compared with 
the selection pressures that power the evolutionary dynamics). These tiny shocks represent 
the  perturbations we call drift. 

The importance of genetic drift in  biology has been emphasized by many authors. 
Kimura (1983) argues that drift may account for  the bulk of genetic variation. Our con- 
cern is with drift  through landscapes that contain hanging valleys, with one end of a 
hanging valley cutting  into  the wall of an adjoining, deeper valley. Hanging valleys appear 
to have received little attention in  biology or elsewhere. In single-person decision prob- 
lems,  even a flat-bottomed valley  is a sufficiently exceptional occurrence as to be  safely 
ignored. But flat-bottomed, hanging valleys are common in landscapes corresponding to 
the strategic situations modeled by games, arising out of the same freedom to choose 
actions at unreached information sets that gives  rise to the equilibrium refinements 
literature. 

When a ball reaches the flat floor of a hanging valley,  even  very small amounts of 
drift  can be large compared to  the weak  selection pressures that  surround the equilibria 
lying on  the floor. Small amounts of drift can then have a large effect. The outcome 
depends on the overall direction of the drift that operates in the valley.  If the drift propels 
the ball away from unstable equilibria that can sit on the edge of a precipice  where the 
hanging valley cuts into  the wall of an adjoining, deeper valley, then the system will  be 
stabilized in the hanging valley. Alternatively, the drift may propel the ball  over the cliff- 
edge, whereupon strong selection pressures reappear and the ball plunges to the floor of 
the deeper valley. But the  story may not end here, for the deeper valley  may  itself hang 
above a  further valley. It may even hang above the original valley. The slopes transversed 
by one player in a strategic interaction are themselves moving in response to the changing 
play of other players, allowing the landscapes of evolutionary dynamics to resemble those 
of Escher, in  which one may walk consistently down stairs, but find  oneself on a higher 
story. 

Refinements. The different equilibria found  on the flat floor of a hanging valley,  in 
the landscape metaphor, typically correspond to differences in play  off the equilibrium 
path.  The ability to  adopt various plans of action for out-of-equilibrium contingencies is 
reflected in a variety of alternative best replies to  the strategies of the equilibrium profile. 
Until recently, the equilibrium refinements literature sought to address the problem of 
how rational players might choose between alternative best  replies by introducing explicit 
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or implicit “trembles.” Our  approach replaces such trembles by a  drift term built into  an 
explicit equilibrating process. 

When drift stabilizes the system  in a hanging valley, plans of action for dealing with 
out-of-equilibrium contingencies that  are condemned as “irrational” by one refinement 
concept or  another may not be  cleansed from the equilibrium strategies. The standard 
assumptions of refinement theories will then fail. The evolutionary process provides press- 
ures that inhibit such irrationalities, but the limiting outcome of the evolutionary process 
depends on the relative rates at which different kinds of irrationality are eliminated. Very 
frequently, the selection  process  is so adept at stamping out certain very deleterious 
irrationalities that it reaches an equilibrium before it has had  a chance to wipe out  other 
types  of irrationality. Refinement criteria that deny the possibility  of the latter type of 
irrationality then fail to be honoured in the limit. 

Outline. The model is presented in  Section 2. Our point of departure is a system of 
continuous, deterministic differential equations describing how the proportions of the 
player-populations attached  to each strategy adjust over time. We  view this system as a 
model of the selection or learning forces that. guide players’  decisions. Section 2 explains 
the sense  in  which these differential equations can serve as an approximation of an under- 
lying, stochastic strategy-adjustment process governing the behaviour of the players in the 
game. In terms of the landscape metaphor, the differential equations describe the motion 
of the ball rolling over a landscape. 

In some cases, the approximation provided by the selection dynamics will  suffice for 
an analysis of long-run behaviour. This may not be the case,  however, if these dynamics 
lead to  a valley  with a flat floor. If the valley  completely  encloses a floor of equivalent 
points, then we need proceed no further,  but we must carefully consider the behaviour of 
the system  in the valley if one end hangs above another valley. 

We respond by adding a drift term to the selection dynamics. We  view this as con- 
structing a more detailed approximation of the underlying stochastic process, incorporat- 
ing additional considerations into the model that were thought  to be insignificant, and 
hence were excluded, when constructing the selection dynamic, but which  have turned out 
to be important. Sections 3-4 present an example  in  which drift is crucial in  assessing the 
outcomes of the learning process. The different points on the floor of the hanging valley 
in this example correspond to different actions at  an information set that is not reached 
in the course of equilibrium play. If drift pushes the players toward actions at this infor- 
mation set that  are compatible with the equilibrium, and hence pushes the system toward 
states that  are contained within the equilibrium component, then drift can stabilize the 
equilibrium. Alternatively, if drift pushes players toward actions that  are inconsistent with 
the equilibrium, then the system can fall off the edge of the equilibrium component and 
selection pressures can arise that lead to  other equilibria. 

Section 5 generalizes this intuition to establish a sufficient condition for  a component 
of equilibria to be stable in the face of drift. Any pure-strategy equilibrium, with the 
property that  a strict best response is played at every information set that is reached 
under equilibrium play, can potentially be stabilized by drift. We can break our sufficient 
condition into two parts, one addressing drift within the actions corresponding to particu- 
lar information sets and one addressing relat.ive rates of drift across information sets. At 
a given unreached information set, the drift must be compatible with the equilibrium, in 
the sense  of pushing the system into the interior of the set of actions which cause the 
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equilibrium strategies to be  best  replies.  Across information sets, drift at unreached infor- 
mation sets must be  sufficiently strong relative to drift at information sets that  are actually 
reached. 

The  former drift condition is more likely to be  satisfied the larger is the component 
of states corresponding to  an equilibrium. Hence, drift is unlikely to stabilize equilibria 
that impose quite specific, extreme requirements about play at unreached information sets. 
In the extreme, drift has virtually no  chance of stabilizing an equilibrium with an un- 
reached  information set at which the set  of actions compatible with the equilibrium has 
no interior. 

Our willingness to work with the latter drift condition reflects a belief that players  in 
a game are likely to devote considerable resources to analysing and  making decisions that 
matter,  but  pay little attention  to decisions that  do  not matter. At  information sets that 
are reached, the selection dynamics are thus likely to be a  good description of behaviour 
and drift is  likely to be unimportant, while behaviour will  be  much more susceptible to 
drift at unreached  information sets. The extent to which drift must be  relatively larger at 
unreached  information sets, in order to stabilize an equilibrium, varies from game to 
game.  Our theoretical analysis avoids this issue  by  allowing  relative drift levels to become 
arbitrarily sensitive to potential payoffs, but  our results are clearly  less  likely to hold in 
situations where drift is generated by background noise that has  nothing to  do with the 
game. 

The finding that drift can be important  might  appear  to be a  death knell for empirical 
applications of  game theory. How  can we hope to make use  of a theory whose implications 
depend  upon the details of an arbitrarily small drift process?  Section 6 offers  several 
examples that illustrate the forward  and  backward induction implications of drift. Build- 
ing on  our examples,  Section 7 suggests that we might exploit the properties of drift to 
derive testable predictions from game-theoretic models. Far from being the end of empiri- 
cal applications, we have hopes that an  understanding of drift may provide the key to 
such  work. 

2. THE  MODEL 

We consider an n-player  extensive  game G of  perfect  recall. Simultaneous-move games 
are  an  important special  case. Members of n subpopulations  are repeatedly matched to 
play the game.  We speak of “players” when referring to the game G, and “agents” when 
referring to the members of the populations in the evolutionary model. 

Each agent is characterized by a  pure strategy in the pure reduced normal form 
(Mailath, et  al. (1993)) of G. A population state identifies the fraction of agents playing 
each of the pure strategies available to each subpopulation. 

We shall identify a strategy in terms of the actions it specifies at each information 
set. Let Hi be the set  of player i’s information sets and A(h) the actions available at 
information set h. If no  other  information set for player i precedes h€ Hi, then the state 
zh is a  nonnegative vector of  dimension IA(h)l whose  elements  identify the fraction of 
agents in subpopulation i playing  each  of the IA(h)l pure actions available at h (with the 
elements  of zh summing to one).2 A state zi for  subpopulation i is a vector summarizing 

2. If h e  Hi is  preceded  by  an information  set  for  player i, then zh is  a  nonnegative  vector of dimension 
IA(h)l whose  elements  identify  the  fraction of agents in subpopulation i whose strategies do not preclude reaching 
h and  who  play  each of the IA(h)l pure actions  available  at h (with  the sum of zh)s elements  being  less  than  or 
equal to one, where  the  residual  is  the  proportion of subpopulation i playing  strategies  that  preclude h). We 
confine  the  treatment of this  case to footnotes to avoid  obscuring  the  important  issues. 
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the state at each  of player i’s information sets. A population state z of the entire system 
is a vector summarizing the state of each information set for each subpopulation. Let Z h ,  
Zi, and 2 denote the set of states in each case. 

The  deterministic  dynamics. Let z(t)  be the population state at time t .  As the game 
is played, agents adjust their strategies. A formal model of this process will necessarily 
abstract away a host of perturbing influences to  obtain  an underlying selection  process 
that drives strategy revisions. It is common to model the selection  process as a determin- 
istic Markov process represented by the differential equation 

dz 
dt 

i = - = f (z) .  

We call the vector-valued function f the selection function and refer to  (l) as the selection 
dynamic to emphasize the origins of our  approach in  biological  models of natural selec- 
tion.  In the models of Young (1993) and  Kandori,  Mailath  and Rob (1993), f models a 
best-response learning process. Fudenberg and Levine (1  995) examine a model in  which f 
is a smoothed form of fictitious play. 

The trajectories of the selection dynamic (1) are studied in the hope that they capture 
the important features of the strategy-selection process  sufficiently well that they approxi- 
mate the trajectories of the true process from which the selection model is abstracted. To 
study the extent to which this approximation is successful, we introduce a new differential 
equation 

dz 
i = - = f ( z )  + g(z). 

dt 

The trajectories of this perturbed selection dynamic provide a better approximation of the 
true trajectories, because of the inclusion of a drift function g capturing small perturbations 
of the strategy-selection process  excluded from the unperturbed dynamic (1). In biology, 
the vector g summarizes the numerous sources of genetic variation. In  Kandori,  Mailath 
and Rob (1993) and Young (1993), g models random alterations in strategies. In  Fuden- 
berg and Levine  (1995), g captures perturbations of the payoffs. 

If the unperturbed selection  process  (1:) is to be  useful  in predicting the asymptotic 
behaviour of the  true adjustment process,  the trajectories of  (1) must exhibit the same 
asymptotic behaviour as those of the perturbed process (2), for the case  in  which g is 
small. We shall find that this criterion often fails to be  satisfied  even if g is vanishingly 
small. We accordingly conclude that dr f t  sometimes  matters. 

Drift. How can g matter, even though it may be arbitrarily small and we allow no 
discontinuities in the model? To discuss this issue, it is  useful to introduce a distinction 
between  time spans borrowed from the theory of the firm.  As  in Binmore, Samuelson and 
Vaughan (1995), the short run refers to  a length of time too  short  for a movement from 
the initial condition to be perceptible. The medium run refers to  a length of time  sufficient 
for  the forces of selection to operate, and hence for z(t) to  depart from z(O), but not long 
enough for z(t)  to provide much indication of the asymptotic behaviour of the system. To 
simplify discussion of the long run, we assume that the deterministic processes currently 
under discussion converge. The long run then refers to  a time large enough for z(t) to 
serve as an approximation to  a rest point of the system. 
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We compare  the  unperturbed  and perturbed selection  processes by computing their 
respective trajectories z'(t) and ~ ~ ( t ) ,  beginning with the same initial condition z'(0) = 
z2(0) = zo. Using the unperturbed tiajectory z'(t) to  approximate the perturbed trajectory 
z2(t) is certainly valid  in the  short  run.  It is a well-known continuity property of differential 
equations  that z'(t) also approximates z2(t) for any fixed t when g is  sufficiently  small 
(Sanchez (1968)). Small levels  of drift therefore never matter in the medium run. Problems 
arise only in the long run. 

The study of the asymptotics of z'(t)  and z2(t )  as t becomes arbitrarily large and g 
becomes vanishingly small, requires taking two limits. Asymptotic predictions obtained 
from the unperturbed process (1) require that g be  allowed to vanish before studying the 
limit t +CO. To argue that such a prediction will serve also for the perturbed process (2), 
given that g is  sufficiently small, and hence that z'(t) can be  used to approximate z2(t) in 
the long run, is to claim that it is innocent to reverse the order of limits. Drift  matters 
precisely  when these limits fail to commute. 

Stochastic dynamics. Section l ' S  informational discussion of evolutionary dynamics 
using the landscape metaphor was couched in terms of small stochastic shocks to the 
system. We have elsewhere emphasized the importance of being realistic about building 
stochastic noise into selection  processes (Binmore and Samuelson (1993),  Binmore et al. 
(1993)). How can we then proceed as if a real-world stochastic process can be studied 
with a deterministic model like (2), which we then hope to  approximate by (l)? 

As an example of what we have in mind, consider a stochastic process  in  which the 
game is repeatedly played at discrete points in  time, by agents drawn from large butjinite 
subpopulations, each of  size N .  We are then led to a  Markov process of the form3 

z(t + z) = H(z(t)), 

where z(t) is a  random variable representing the  population  state at time  t, z is the interval 
between  successive periods, and H is a  random function that depends on N, the procedure 
by which agents are matched, the payoffs in the game, the rules by  which players choose 
their strategies, and all the perturbations  that one would like to be  negligible  when N is 
large and z small. 

Biologists standardly reduce (3) to  a deterministic differential equation like (2) simply 
by taking expectations, appealing to the law  of large numbers to justify the procedure 
when N is large. Binmore, Samuelson and Vaughan (1  995) study the circumstances under 
which this informal argument can be made to work in the context of a simple one-dimen- 
sional biological model. Appendix I1 confirms that the extension to the more general case 
of this paper creates no  difficultie~.~ 

In this section, we discuss how the deterministic, continuous-time dynamics (2) can 
provide a useful approximation of the discrete, stochastic process (3), as long as we are 
interested in large subpopulations N (allowing a deterministic approximation) and  short 
time periods z (allowing a continuous-time approximation). We  confine our  attention  to 
a class of Markov processes satisfying (3) that is described in Appendix 11, which proves 
the following. For any Jixed time t, the solution z3(t) of a stochastic process in this class 

3. The  Markov assumption is strong, potentially calling for players to abandon large amounts of pre- 
viously-collected information in order to concentrate on their current observation, but we leave its relaxation 
for  future research. 

4. Appendix I1 corrects an error in the proof of Binmore et al. (1995). 
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is approximated with probabilityp arbitrarily close to  1 by the solution z2(t) of a determin- 
istic process of the form (2), provided that (N ,  z) +(GO, 0) so that N2z+0. It suffices for 
N2r-+0 if the limit z+O is taken first and N+co second. 

Because this result sounds like the continuity property we quoted  to justify ignoring 
drift in the medium run,  it is important  to be clear on how it helps  when studying the 
stochastic process (3). First solve the deterministic differential equation (2). Next, deter- 
mine the asymptotic behaviour of the solution z2(t). If z2(t) -+z* as t +GO, then the state 
z* serves as  a high-probability prediction of the first Nash equilibrium of the game that 
will  be approached by the random variable z3(t), provided N is large and z and N2z 
are small.’ The asymptotics of the perturbed selection dynamic (2) thus predict the first 
equilibrium visited by the  Markov process (3) with high probability. However, the asymp- 
totic behaviour of (2) does not predict the asymptotic behaviour of (3). To make this 
distinction clear, we introduce a  further time span-the ultralong run. 

The long run is enough time for  a  Markov process (3), with appropriately large N 
and small z, to  approach  a rest point z* of (2) with  high probability.6 The system will 
then linger near z* for  a long time.  But unlike the deterministic dynamic given  by (2), the 
Markov process will not remain near z* forever. Given long enough, some perturbing 
shock that is highly  unlikely  in any small  time interval will eventually occur. If it occurs 
at time t’, it will bounce the system to  a  state z3(t’) that is not contained in the basin of 
attraction of z*. We can then solve the deterministic dynamic (2) with initial condition 
~’(0) = z’(t’) to  obtain  a high-probability prediction of the subsequent behaviour of the 
Markov process (3), including the next equilibrium W* in  whose neighbourhood z’(t) will 

’ linger. Given enough time, further such shocks will occur, causing z3(t) to visit  all of the 
population states in 2, pausing at rest points like z* and W * ,  and rushing past other states 
in its passage between them. In the ultralong run, a probability distribution over 2 will  be 
established that describes the likelihood that z’(t) will  be found in any particular region 
of 2 at a large enough time. This limiting distribution assigns a negligible probability to 
regions not containing a rest point of 

In brief, z2(t) summarizes the high-probability deterministic predictions that can be 
made about z’(t) given the initial condition zo. Because events that occur only with low 
probability in short time periods must eventually occur with high probability before some 
large enough time t’, z2(t) cannot successfully predict the behaviour of z’(t) after time t’. 
Hence, z2(t) only predicts the behaviour of the Markov process (3) over a finite time 
period. The asymptotic behaviour of the deterministic dynamic (2) is used to predict the 
behaviour of the  Markov process (3) in an interval [t”, t”’], where t” is  sufficiently large 
to ensure that z2(t) is  close to a rest point z*, and t”’ (with t” < t”’ t’) is chosen to ensure 
that only small perturbations occur with significant probability in [t”, t”’]. As N+Go,  t” 
remains bounded while t”’+ CO. 

Equilibrium selection  criteria. We  now have two equilibrium selection  criteria-the 
history-independent distribution to which the  Markov process (3) converges  in the 

5 .  To see this, choose t ,  N and z such that (Iz2(t) -z*ll < $ E  and llz3(t) -z2(t)ll < $ E  with probability at least 
1 - E .  Then llz3(t) -z*ll < E  with probability at least 1 - E .  

6. It is important  to remember that we are restricting attention  to processes  whose approximating deter- 
ministic dynamics  converge. 

7. The achievement of Kandori,  Mailath  and  Rob (1993) and  Young (1993)  was to find  cases  in  which 
high probability is attached only to regions that  contain  a particular equilibrium 2. They  say that 2 is selected 
in the long run. We say instead that 2 is  selected  in the  ultralong  run. 
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ultralong  run,  and  the history-dependent state z* to which the approximating determin- 
istic differential equation converges.* Which is relevant is a  matter of the time available 
for  the system to converge. 

Binmore, Samuelson and Vaughan (1995) study the expected waiting time to reach 
the  ultralong-run  distribution in a simple 2 X 2 game. Using the best-response dynamics 
of Kandori,  Mailath  and Rob (1993) and Young (1993), the expected waiting times are 
stupendously large for plausible parameter values.' Models in  which agents' choices are 
stochastic offer the system more opportunities to climb out of basins of attraction  that 
are  not selected  in the  long  run,  and reduce the expected waiting time to several thousand 
periods, though  the waiting time still grows explosively  in the  population size. Young 
(1997) has followed Ellison (1  993)  in exploiting the speeding-up effects of local interaction 
effects  in  his model. Araki and Low  (1997)  have done the same for  the model of Binmore, 
Samuelson and Vaughan (1995). Their simulations yield expected waiting times that might 
realistically be  achieved  in laboratories. We therefore do not discount the possibility that 
ultralong-run selection may be important in some practical contexts. But we believe that 
long-run equilibrium selection results will frequently be more relevant in applied work. 

Properties of the dynamics. If we are  to examine the long-run, when can we ignore 
drift  and work with the simpler unperturbed selection dynamic (1) rather  than  the per- 
turbed dynamic (2)? We begin  by making four assumptions about  the unperturbed and 
perturbed deterministic dynamic processes  (1) and (2). 

Assumption 1 .  The selection and drift functions f and g are Lipschitz continuous. 

This ensures that  the processes  (1) and (2) each have a unique solution z(t ,  2') for 
each time t>= 0 and each initial condition zo [Hale (1969), p. 181." Lipschitz continuity is 
not necessary for this conclusion, but it is a  standard assumption that is satisfied by 
common examples like the replicator dynamics. Our basic results continue to hold without 
this assumption as long as (1) and (2) have unique solutions, though some of the state- 
ments and arguments become more tedious. However, we would  like to stress that the 
(ordinary) continuity off and g plays an  important role in our analysis, apart from issues 
of existence. Adjustment processes like the  pure best-response dynamics, that can respond 
dramatically even to arbitrarily small payoff  differences, are  not  continuous and hence 
are excluded, but we consider continuous processes to be more realistic. 

Assumption 2. For each t 20 ,  the solutions to the  unperturbed  and perturbed selec- 
tion dynamics are  population states, meaning that  the  proportions of a  subpopulation 
playing the available strategies are nonnegative and sum to one. 

Let n h k ( Z )  - n h p ( Z )  denote the expected change in  payoff if a randomly chosen mem- 
ber of subpopulation i, whose strategy allows information set h€ Hi to be reached, chooses 
action k~ A(h) instead of V E  A(h) at information set h€ Hi, given the behavior specified 
by state z (including the agent's choices at other information sets). We assume that the 

8. We  say that z* is history-dependent because it depends on  the initial condition zo. 
9. Sandholm and Pauzner (1997) show that even moderate amounts of population growth make these 

long waiting times infinite. Robles (1996) reaches a similar conclusion. 
10. Iff and g satisfy Lipschitz continuity or  the weaker condition of local Lipschitz continuity, then it is 

straightforward (because 2 is convex) to  extendfand g to locally Lipschitz functions on an open set containing 
2. The result then follows from Theorems 1.1, 2.1, and 3.1 of Hale [( 1969), ch. l]. 
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selection mechanism, restricted to each information set, is regular and monotonic (cf. 
Samuelson and  Zhang (1992)): 

Assumption 3. 

(3.1) Regularity. For each player i, information set h€ Hi and action kE A(h),  the 

(3.2) Monotonicity. For each player i and information set h e  Hi, growth rates are 
growth rate fhk/Zhk is continuous on the state space 2." 

monotonic in the sense that,  for actions k and k' in A(h) and  state ZE 2, 

hdZ) =. h k '  (z) 
zhk ZhK 

nhk(Z)-zhk'(Z)20 @ --p- 
- 

Monotonicity ensures that the proportion of a population playing a relatively high- 
payoff action grows faster than the proportion playing a relatively  low-payoff  action.12 

In many biological  models of mutation as well as in the models of Young (1993) and 
Kandori,  Mailath  and Rob (1993), the drift function g does not depend on payoffs at all. 
We think it more appropriate in economic contexts to follow Myerson's (1978) proper 
equilibrium in modeling more costly mistakes as being  less  likely to be made. However, 
we do not view agents as making detailed calculations of the costs of making various 
mistakes, as such agents would  have then calculated enough to avoid making mistakes at 
all. Instead, we believe that people ordinarily make many decisions simultaneously, only 
a fraction of which can be analysed carefully. Most decisions are made by applying rules- 
of-thumb  that agents have  become accustomed to using  in what appear  to be similar 
circumstances, but which  may not be suited to the problem at hand. These appear in our 
model as drift. The larger are the payoff consequences of a decision, the more likely  is 
the decision to command an agent's analytical resources, and hence the less important 
will  be  drift.13 To capture this idea, we assume that players' behaviour is related to  a 
measure Ah of the potential cost of making a mistake at the information set h.14 As in 
Binmore, Gale  and Samuelson [9], the results would remain unchanged if  we used other 
measures of payoff dispersion, but we concentrate on the difference  between the largest 
and smallest  expected payoffs because this seems  simplest 

Ah(4 = nwc ( 4  - %zk'(Z), 

where k e  A(h) and k ' ~  A(h) maximize nhk(z) - zW(z). For an information set h€  Hi pre- 
ceded by no  other information set for player i, we then assume:15 

Assumption 4. The vector g, of drift terms associated with the actions kE A(h) 
satisfies 

g&) = 77(Ah(Z>>(0h  - Z d ,  (4) 
where eh is a fixed state in the interior of Zh and q: R+-+R+ is decreasing and Lipschitz 
continuous. 

1 1 .  In particular, finite limits of the growth rates exist at the boundaries of the state space, where some 
population proportions are zero. 

12. The rate at which the proportion playing action k at information set h= Hi grows may depend upon 
the choices made by agents in population i at other information sets in Hi, but the direction of the learning at 
h must reflect payoff differences at h. 

13. McKelvey and Palfrey (1992) similarly  suggest that players will  be more likely to make mistakes or 
experiment when payoff implications are small. 

14. Our debt to Myerson lies  in making A,, a function of the vector nh(z) of payoffs to each action available 
at h in state z. 

15. If h is preceded  by another of player i's information sets, then gh(z)  = q(Ah(z))(Zh(z)(& -zh)),  where 
Zh(z) is the proportion of subpopulation i whose actions do not preclude h. 
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The  state eh is to be interpreted as a parameter determined by the characteristics of 
the  subpopulations  from which the agents are  drawn. When the agents are distracted from 
the game at  hand,  or make  a mistake for some other reason, Oh is the expectation of 
the distribution of proportions of each subpopulation  that takes a  particular action at 
information set h. For example, agents may  be accustomed to resolving bargaining prob- 
lems by coordinating  on the fifty/fifty outcome. When faced with the Ultimatum Game, 
they may not immediately take  proper account of its unusual strategic structure, but 
simply apply the fifty/fifty rule of thumb instead. Such a tendency would  be  reflected  in 
the specification of eh. 

The assumption that Oh lies  in the interior of Zh ensures that drift can always  inject 
strategies that  are currently not played  in the population,  and hence tends to carry the 
state z away from the boundary. This formulation is justified if there is always some 
chance that each strategy might be played, and hence each state in Zh realized, as a 
consequence of agents making mistakes. 

We do  not argue that Assumption 4 is plausible as a qualitative description of the 
drift likely to occur in all contexts. On the contrary, different drift conditions are likely 
to  operate in different circumstances and one must tailor the assumptions made about 
drift  to  the application in hand.  For example, potential entrants in the Chain-Store Game 
of Section 3 might be inclined to experiment more  than incumbents, or might devote more 
attention  to their decision, leading them to experience either more or less drift. We would 
capture this by generalizing Assumption 4 to allow different functions for different 
subpopulations. But as long as drift levels are sufficiently  sensitive to payoffs, our results 
continue  to  hold. 

3. WHY DRIFT MATTERS 

Although small drift terms can have no significant  effect  in the medium run, they matter 
in the long run whenever  (1) and (2) have different asymptotics. This section uses the 
Chain-Store  Game  to illustrate this possibility. We choose this game  because textbooks 
commonly use the same example to justify subgame-perfect equilibria. 

The  Chain-Store  Game. Figure 1.1  shows the extensive form of Selten's  (1978) 
Chain-Store Game. Player 1 moves first, choosing to  enter ( E )  a  market  or  not ( N ) .  If 
player 1 enters, player 2 can acquiesce ( A )  or resist entry (R). The payoffs satisfy the 
inequalities a > e > c, so that the entrant prefers to enter if the chain store acquiesces but 
prefers to stay out if the chain store resists. They also satisfy b > d, so that the chain store 
prefers acquiescing to resisting. 

Figure 1.2 shows a phase diagram for  an  unperturbed dynamic. Any regular, mono- 
tonic dynamic gives a phase diagram with the same qualitative features. The horizontal 
axis measures the  proportion of agents in population  2 playing R while the vertical  axis 
measures the  proportion of population  1 agents playing N .  We can see two types of 
equilibria in Figure 1.2. There is a subgame-perfect equilibrium (denoted by S )  in  which 
player 1 enters and 2 acquiesces. There is also a component of Nash equilibria (denoted 
by M ' )  that  are  not subgame perfect, in  which player 1 does not  enter  and player 2 resists 
entry with probability at least (a - e)/(a - c ) .  Depending on the initial state, the dynamics 
will converge either to  the subgame-perfect equilibrium, or  to  the  Nash equilibrium 
component X .  The subgame-perfect equilibrium is asymptotically stable, but the Nash 
equilibria are  not.  In terms of the landscape metaphor, X is the bottom of a hanging 
valley, the left end of which opens into  a pit with S at the bottom. 
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How does M ’  fare when faced with perturbations caused by factors excluded from 
the model that led to the unperturbed selection dynamic? In the long run, these pertur- 
bations  appear in the form of drift. Figure 1 shows two specifications of drift, and the 
corresponding phase diagrams  for the Chain-Store Game.  In each case, drift causes agents 
to choose randomly between their two strategies, with equal probability attached  to each 
strategy (i.e. 8 attaches probability $ to each strategy at each information set). Figures 
1.3-1.4 illustrate the case when 77 of Assumption 4 is constant. Agents are then equally 
prone  to drift in  every state. In this case, the addition of drift yields a system that has a 
unique, asymptotically stable state  that  attracts the entire space and which is approxi- 
mately the subgame-perfect equilibrium.16 

Near  the top of the state space, the payoffs to player 2’s two strategies are virtually 
identical. We would accordingly expect player 2 to be more subject to drift near the top 
of the state space. Figure 1.5 shows the state space for such a drift process, which corre- 
sponds  to  making 77 of Assumption 4 strictly decreasing, with the corresponding phase 
diagram shown in Figure 1.6.17 There are now two asymptotically stable states. One of 
these (denoted by 6 )  is approximately a Nash equilibrium that is not subgame perfect. In 
this case, drift stabilizes the system  in the middle of a hanging valley. Different specifica- 
tions of drift can thus give  rise to different long-run behavior. 

Drift  and  the  medium  run. Section 2 discusses  how the long-run behaviour of the 
stochastic process (2) is approximated with high probability by the asymptotics of the 
perturbed differential equation (2). The asymptotics of the unperturbed deterministic pro- 
cess  (1) sometimes provide an analogous medium-run approximation. 

To illustrate this point, consider a specification of drift in the Chain-Store Game  that 
fails to stabilize the perturbed dynamic in the hanging valley , M ’ ,  as in Figures 1.3-1.4. 
The subgame-perfect equilibrium S will then be our long-run prediction for z’(t), the 
underlying stochastic process. Suppose, however, that the initial condition zo lies  in the 
basin of attraction, relative to the unperturbed dynamic (given  by (l)), of an equilibrium 
v* E . K .  Then the  unperturbed dynamic, z’(t), approaches v* as t -+CO. If the drift term is 
sufficiently small, the  perturbed dynamic, z’(t), will also initially approach v*. As z’(t) 
approaches .A”, the selection term f ( z )  becomes small, since this selection term is zero on 
the set of equilibria K.  The forces of selection will then eventually be dominated by those 
of drift. We have assumed that in the long run,  drift will push the system  away from I 4” 
to the subgame perfect equilibrium S. But if drift is small, z’(t) will move  away from v* 
very  slowly. The same is therefore true with high probability of z3(t), and the medium- 
run behaviour of z3(t) thus calls for  the system to approach v* and then slowly drift away. 
In some cases, z’(t) may linger so long in the vicinity  of v* that only the medium-run 
behaviour is  of practical relevance, and this medium-run behaviour is captured by z1 ( t )  
as well as z’(t), allowing us to work with the  unperturbed dynamic. In other cases, it will 
be essential to examine long-run behaviour, and hence to work with the perturbed process 
z’(t) that  incorporates  drift. 

Do we  need  dynamics? Our analysis is capable of stabilizing Nash equilibria in the 
hanging valley ,M- if the  drift has appropriate properties. These equilibria are  not subgame 

16. “Approximately” is needed here because the inward-pointing drift prevents exact convergence to the 
subgame-perfect equilibrium. 

17. Because player 2 is relatively prone to drift near the top of the state space, the drift trajectories near 
.;f ’ have flattened, causing relatively rapid movements in player 2’s strategies toward the fifty/fifty mixture 
specified  by 8. The trajectories are quite steep near those states at which R is played  with probability i, where 
the payoff to player l’s strategies are virtually identical and hence player 1 is relatively subject to drift. 
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perfect  because  they  involve the use of the strategy R, which is an inferior reply at the 
incumbent’s information set. How does this result compare with the  orthodox game- 
theoretic approach, in  which the stability of equilibria is studied by introducing pertur- 
bations in the payoffs or strategies of the game? With the exception of Fudenberg, Kreps 
and Levine (1 988)”,  such orthodox analyses destabilize equilibria, like those in the compo- 
nent containing ( N ,  R), that sit  in a hanging valley  which  calls for  an inferior reply to be 
chosen at  an unreached information set. Which stability analysis should command our 
attention? Samuelson (1994)  examines a setting in  which the trembles of orthodox stability 
analysis need to be  infinitely large compared with perturbations in the equilibrating pro- 
cess before their effect  becomes  significant. 

4. WHEN  CAN  DRIFT BE IGNORED? 

Having shown that drift can matter, the question arises:  when can the problems raised by 
drift safely  be  neglected? 

If z* is a hyperbolic stationary  state of the unperturbed selection  process (l), then the 
perturbed selection  process (2) has a rest point close to z*.19 The latter rest point moves 
arbitrarily close to z* as the drift term becomes arbitrarily small, and has the same stability 
properties as z* (Hirsch and Smale  [(1974), Theorems 1-2, p. 3051). Hence, if  we are 
working with hyperbolic rest points of i = f ( z ) ,  then we can ignore drift. The rest points 
of i = f ( z )  provide approximate information about the rest points of i = f+ g that lie 
nearby and are of the same type. The approximation becomes arbitrarily sharp as g gets 
small. Nonhyperbolic rest points, however, do not have this “structural stability.’’ The 
addition of arbitrarily small drift terms to the equation i = f ( z )  can completely change 
the nature of a nonhyperbolic rest point. 

It is often said that almost all dynamic systems  have  only hyperbolic rest points.20 
Many mathematicians and physicists therefore ignore the possibility of nonhyperbolic 
rest points when working with similar dynamic systems. However, the economics  of the 
applications to which learning models are applied usually force us to  confront nonhyper- 
bolic  rest points. For example, the equilibria in the component of the Chain-Store 
Game  are  not hyperbolic. This is not exceptional. Any Nash equilibrium that specifies a 
path which does not reach every information set  (excluding  some  games featuring fortu- 
itous payoff ties)  fails to be isolated, and hence  fails to be hyperbolic, under all  of the 
familiar selection dynamics. 

We might try to respond by shifting the focus of our analysis to components of rest 
points, seeking components that satisfy a set-valued notion of asymptotic stability such 
as that offered by Bhatia and Szego  [(1970), Def. 1 S ,  p. Since the Nash equilibria 

18.  They stabilize all Nash equilibria by allowing the players’ knowledge of the rules of the game or their 
own payoffs to tremble. 

19. A stationary  state or rest point of a differential equation is hyperbolic if the Jacobian matrix of the 
differential equation, evaluated at the rest point, exists and has no eigenvalues with zero real parts. Hyperbolic 
rest points are isolated and are either sources, saddles or sinks (Hirsch and Smale [(1974), ch. 91). Nonhyperbolic 
rest points need not be isolated and isolated rest points need not be hyperbolic. 

20. The Peoxito theorem (Hirsch and Smale [(1974), p. 3141) shows that for two-dimensional systems, 
there is a precise  sense  in  which “almost all” dynamic systems  have only hyperbolic rest points. A similar result 
holds in higher dimensions for certain classes  of dynamic systems, such as linear and gradient systems (Hirsch 
and Smale, pp. 313-315). 

21. Ritzberger and Weibull  (1995), Schlag (1993) and Swinkels  (1993) examine components that satisfy a 
set  version  of asymptotic stability. A similar motivation but different techniques appear in Ritzberger (1993), 
who introduces the idea of an essential component, where (very roughly) a component is essential if all nearby 
games have nearby equilibria. 
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in a component like <K in the Chain-Store Game often specify the same path  through the 
tree, differing only  in the details of what happens off the equilibrium path, there is often 
no loss of information in treating components as a single entity. This approach is adequate 
when the component of rest points constitutes the flat floor of a pit in the evolutionary 
landscape. Drift will then be irrelevant, since we do not care where it takes us on the floor 
of the pit. But the Chain-Store Game of Figure 1 shows that we must often expect our 
components of rest points to form the floor of a hanging valley  whose equilibria can be 
stabilized by some types of drift  and destabilized by others. Drift then may or may not 
push the system over the cliff, and  cannot be ignored. 

5. WHEN  DRIFT MATTERS 

Section 3 shows that drift can stabilize a  Nash equilibrium in the hanging valley ,A’” of 
the Chain-Store Game. If z* is a  Nash equilibrium in a general game, this section  defines 
the  notion of z*-compatible drift to provide a criterion that ensures stability for some 
Nash equilibrium W* that lies on the floor of the same valley as z*. 

A  Nash equilibrium z* is a strict-path equilibrium if, at every information set  reached 
with positive probability under z*, the action prescribed by z* is a strict best response. 
Notice that  the strategies that  support such an equilibrium need not be pure, since  mix- 
tures are allowed  off the equilibrium path, though no mixtures can occur on the equilib- 
rium path.22 For generic extensive-form games,  all pure-strategy equilibria are strict-path 
equilibria. Figure 5 below contains  a game  with a pure-strategy but not  a  strict-path 
equilibrium. 

We could apply similar techniques to  Nash equilibria that allow mixtures along the 
equilibrium path,  but  postpone such an inquiry for  future work. Mixed equilibria raise 
new analytical complications because many monotonic selection  processes cannot con- 
verge to mixed equilibria. For example, mixed equilibria are centers for common versions 
of the replicator dynamics.23 

If z* is a  strict-path equilibrium, let c(.*) c 2 be the set of Nash equilibria specifying 
the same path of play as z * . * ~  We refer to <(z*) as a comrnon-path set of equilibria and 
refer to the path of play itself as a strict path. Because the equilibria in @*) have the 
same path of play, they have the same collection of information sets that  are reached  with 
probability zero. 

Let z* be a  strict-path equilibrium. We say that the specification of drift is z*-compat- 
ible if  we can find an equilibrium W*, in the relative interior of the common-path set of 
equilibria c(z*) and hence  giving the same path of play as z*, with the property that W* 

attaches  the action eh of Assumption 4 to each information set h that is reached with zero 
probability under equilibrium z*, but is not precluded by previous choices of the player 

22. This concept differs from simply applying quasi-strictness in the pure reduced normal form in that  a 
strict-path equilibrium allows no mixtures along the equilibrium path, unlike a quasi-strict equilibrium. However, 
a quasi-strict equilibrium induces mixtures off the equilibrium path that have full support  on the set  of available 
actions, in order to satisfy the condition that the equilibrium contains every pure-strategy best response within 
its support, while a strict-path equilibrium does not impose such a requirement. 

23. Fudenberg and Levine  (1993a,  b) direct attention to self-conjirming equilibria in extensive-form games, 
the study of which we also postpone. 

24. As in the less formal introductory sections we speak interchangeably of Nash equilibrium strategy 
profiles and the corresponding population states. 
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who moves at h.25 If a z*-compatible drift process  were the only force acting at  an infor- 
mation set h that is unreached under equilibrium z*, then it would converge to the actions 
given  by eh at information set h, which  would support the outcome z* as a Nash 
equilibrium. 

The Chain-Store Game shows that we must pay attention  to the sensitivity of drift 
levels to payoff  differences. To examine this question, we parameterize the function q of 
Assumption 4. Replacing q by q, for n = 1,2, . . . , we can then study comparative statics 
questions by observing the result  of varying n in the corresponding drift function g,. In 
addition to the requirements of Assumption 4, we require: 

Assumption 5.  

For a fixed 8, higher values of n then correspond to drift that is more payoff-sensitive. 
The function q,(A) = e-"' satisfies  these assumptions. 

A drift function g,  is z*-compatible if, and only  if, the same is true of gl .  It is 
therefore meaningful to speak of drift being z*-compatible without specifying the value 
of the parameter n. In  addition, if drift is compatible with one element of a  common-path 
set of equilibria corresponding to  a single outcome, then it is compatible with  every 
element of that set. 

It does not follow from z*-compatibility that z* itself  is the limit of rest points of the 
perturbed dynamic as n 303, but the following proposition, proved in Appendix I, indi- 
cates that something similar must be true  for at least one equilibrium W* with the same 
strict path. 

Dejinition 1. An equilibrium W* is stabilized by drift if, for any neighbourhood V 
containing W * ,  there exists an integer n( V )  such that  for any specification of drift  that is 
at least as sensitive to payoffs as i.e. for any n > n( V ) ,  V contains two further 
neighbourhoods B and U,, such that, 

(1.1) any trajectory of the perturbed dynamic that begins  in B remains in V, eventu- 
ally enters U,, and never subsequently leaves U,; 

(1.2) W * €  U , c B c  V ;  
(1.3) U, shrinks to W* as n-+ CO. 

Proposition l. Let drift be compatible with a  strict-path equilibrium z*. Then there 
exists an equilibrium W* with the  same  strict path as z* that is stabilized by  drift. 

Proposition 1 shows that z*-compatibility provides a criterion for drift to create a 
stable rest point on the floor of a hanging valley  when drift is  sufficiently  payoff-sensitive. 
We shall often find it convenient to say that the payoff path corresponding to z* and W* 

is stabilized by such drift. In all the examples we have computed, the neighbourhood U, 
contains only one rest point of the perturbed dynamics, which  is asymptotically stable. 

25. The equilibrium W* is  in the relative interior of c(.*) if the actions prescribed by W* at each nonpre- 
cluded information set reached with probability zero under z* and W* lie  in the interior (relative to the product 
of the Zh's corresponding to these information sets) of the set of actions consistent with z* and W* being Nash 
equilibria. 
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Proposition l holds for  arbitrarily small drift levels,  since we can replace g,  by Ag,, 
for  any sufficiently small A, without affecting the conclusion. What is crucial is that n be 
sufficiently large, so that  drift levels are sufficiently  sensitive to payoff differences. 

6. EXAMPLES 

This section uses the results of Proposition 1 to examine several games that have become 
standard in thinking about backward and forward induction. Our conclusion is that the 
perturbed dynamic process may stabilize outcomes that fail to satisfy backward and for- 
ward induction properties. In each example, the common-path set of equilibria is a compo- 
nent of equilibria in the  standard sense. 

Backward  induction. We  first return to the Chain-Store Game of Figure 1.  Let z* 
be a  Nash equilibrium in  which the  entrant does not enter, so that z* is an element of the 
component cK. Then z* must specify that  the incumbent resist entry with probability at 
least (a  - e)/(a -c)  = Y*. Drift is z*-compatible if, and only if, 0, > r*, where 0, is the 
probability with which drift induces a member of population 2 to resist entry. For 
example, if r* < i and 0, = $, so that drift prompts members of population 2 to choose 
between their two strategies with equal likelihood, while entry is unprofitable if only a 
minority of incumbents resist entry, then drift is z*-compatible. This is the case illustrated 
in Figure 1. Alternatively, if r* > i, so entry is unprofitable only if a majority of incum- 
bents resist, then drift is z*-compatible only if drift  incorporates  a bias in favour of 
resisting. Notice that compatibility depends only on the actions of agent 2. 

If drift is z*-compatible, then we can proceed to the next step. The perturbed process 
will  have stable outcomes near JT if the drift process is  sufficiently  sensitive to payoffs. 
In Figure 1.3, drift is not sensitive to payoffs at all and there is no such stable state. 
In Figures 1.5-1.6, drift is  sufficiently  sensitive to payoffs, and  the component .A ' is 
stabilized. 

Why are  the relative drift levels induced by payoff differences so important? Figure 
2 shows a detail of the region of the Chain-Store Game's phase diagram near the compo- 
nent ,Ap. The  arrows represent the direction of the selection process and  the direction of 
the combined drift of the agents in the two subpopulations. Figure 2.1 corresponds to 
Figures 1.3-1.4, where drift is compatible with but is not sensitive to payoff  levels. 
The key here is that the trajectories of the drift process near -4" create a force pushing 
the  state to the right that is weaker than  the force of the learning dynamics pushing the 
state  to the left. The state is then pushed ever leftward until it reaches the cliff-edge at the 
end of the  component .H and falls into the basin of attraction of the subgame-perfect 
equilibrium. In terms of our landscape metaphor, drift causes the state  to roll to the end 
of the hanging valley corresponding to  and fall off a precipice into  a pit whose bottom 
is S.  

In  Figure 2.2, which corresponds to Figures 1.5-1.6, drift pressures pushing the state 
back into  the basin of attraction of .M' (i.e. to the right) are more powerful than learning 
pressures as long as the  state is not  too close to the edge of <N. Drift now stabilizes the 
state in the middle of the hanging valley M ' .  The heart of the proof of Proposition 1 
involves showing that this relationship will hold whenever drift is compatible with an 
equilibrium and sufficiently  sensitive to payoffs. Payoff sensitivity ensures that the drift 
near  a  component M will  be shaped primarily by the agent whose unreached information 
set creates the equilibrium indifference that gives  rise to the component ,,K. Compatibility 
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FIGURE 2 
Detail of phase  diagram, Chain-Store Game 

ensures that the result will  be a force pushing the system into the basin  of attraction of 
the component 

Because the ability of drift to stabilize equilibria arises out of the relative directions 
of the drift and learning forces, there is a trade-off between the properties that the drift 
and learning processes must have  in order  for drift to be  effective.  We have  assumed 
relatively little about the learning process, and then have made strong assumptions about 
relative drift rates at reached  and  unreached  information sets in order to ensure that the 
drift  and learning dynamics sometimes  have the relationship shown  in Figure 2.2. We 
could  impose fewer restrictions on the drift process  if we were made stronger assumptions 
about the learning process, requiring learning to be  relatively fast at reached  compared to 
unreached  information sets. 

The first step in evaluating the Chain-Store  Game was to check for compatibility of 
the drift process  with component X .  Notice  that  for  any fixed  specification  of drift, 
compatibility is more likely to be  satisfied the larger is the component X .  This suggests 
that the perturbed process should be more likely to lead to outcomes  near X when 
payoffs are chosen so that J is relatively large. This observation forms the basis for  a 
comparative statics investigation discussed  in  Section 7. 

Outside options. The  shape of the extensive form of the game in Figure 3 suggests 
that it be  called the “Dalek  Game”  (Binmore (1987-88)). 

26. We could formulate  a geometric version  of Proposition 1 based on these ideas. Intuitively, suppose 
that, given a  component A’”, we could find a subset X *  with the  property  that  the  drift process on X* points 
into  the basin of attraction of -K* under  the selection  dynamics. Then  under  the  perturbed process, all trajector- 
ies beginning in a  neighbourhood of X *  would approach X*. This result holds for  any  drift process and hence 
replaces the compatibility and payoff  sensitivity  of drift in Proposition 1 with the geometric “pointing  into” 
condition.  Proposition 1 allows us to formulate our result  while working directly with the  game  rather  than with 
the phase diagram of the  dynamics  and directs attention  to  the role of drift at unreached  information sets. 
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FIGURE 3 
Dalek  Game 

The  Dalek  Game  has  two  components of Nash equilibria, including a strict Nash 
equilibrium given  by (M,  L) with payoffs (9,3) and a  component X of equilibria with 
payoffs (7,4), in  which player l takes the outside option (plays T )  and player 2 plays R 
with probability at least 2/9. The  former is a (hyperbolic) sink under regular, monotonic 
dynamics while the stationary states in the latter  component  are  not hyperbolic. 

It is common to argue that forward induction forces us to restrict attention  to the 
equilibrium (M,  L) in this game.27 How  does this forward induction argument fare in our 
terms? For  drift  to be compatible with Nash equilibria in the component X,  drift must 
induce player 2 to play R with probability greater than 2/9. If it does, then perturbed 
dynamics  for which drift is  sufficiently  sensitive to payoffs will  yield stable outcomes in 
which player l takes the outside option. 

It is interesting to note that Balkenborg’s (1994) careful experimental investigation 
of the Dalek  Game finds that the outside option is virtually always chosen. This exper- 
imental result is one of a number which  suggest that the forward induction criterion has 
little predictive power. From  our point of  view, its results are mildly encouraging because 
they are consistent with the type of drift  analysed in Proposition 1 .  Section 7 proposes a 
more telling experiment  capable of refuting the relevance  of this type of drift to the learn- 
ing behaviour  of  human experimental subjects. 

Burning money. We consider another  common  forward-induction  example, the gen- 
eral form of  which  is due  to  van  Damme (1987, 1989) and Ben Porath  and Dekel (1992). 
The Battle-of-the-Sexes  game has two pure-strategy Nash equilibria and one mixed-strat- 
egy equilibrium. It is common to dismiss the mixed-strategy equilibrium. How do we 

27. Kohlberg  and  Mertens  (1986),  early  and  forceful  advocates of forward  induction,  introduced  a  version 
of the  Dalek  game. To apply  forward  induction, we  might  appeal to the  iterated  elimination of weakly  dominated 
strategies. B is  strictly  dominated  for  player 1 .  Removing B causes R to be  weakly dominated  for  player 2, the 
removal of which  causes T to be  weakly  dominated  for  player 1,  leaving ( M ,  L). Alternatively, we could  appeal 
to the  forward induction  reasoning of van  Damme (1987, 1989)  or to the  normal  form  variant of this  reasoning 
given in Mailath,  Samuelson  and  Swinkels (1993). 
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FIGURE 4 
Burning-Money Game 

choose between the two pure-strategy equilibria, given that the players have opposing 
preferences over these equilibria? Both equilibria are hyperbolic stationary states, so that 
appealing to drift is no help in this game. 

Suppose that before the game is played, player l has the  option of burning two 
dollars. The payoffs in the larger signaling game that results are shown in Figure 4. Notice 
that if the money is burned, then 2 is subtracted from player l’s payoffs. The iterated 
elimination of weakly dominated strategies leads to  a unique outcome for this game of 
(Not,  T;  LL),  giving player 1 her preferred payoff. 

The assessment of this game again turns on the issue of compatibility. Consider the 
equilibrium in  which player l  burns the money and (T, L) is then played, yielding the 
payoff pair (2, 1). Compatibility requires tha.t, at player 2’s right information set, drift 
induces agents to play R with a probability exceeding $. A drift process that introduces 
strategies in equal proportions then cannot stabilize an equilibrium in  which money is 
burned. 

Consider the equilibrium in  which no money is burned but (B, R) is played, yielding 
the payoff pair (1,4). Compatibility requires that, at player 2’s left information set, R is 
played with a probability exceeding f . In this case, compatibility appears  to be plausible. 
The  perturbed dynamics may then yield outcomes in  which player 1 burns no money, but 
in  which the  forward induction argument carries no force and payoffs are  (1,4). 

Incompatible drift. Not all Nash equilibria yield outcomes that can be stabilized by 
drift. To see that this is the case, consider the  Nash equilibrium (L,  L) in Figure 5. This 
component  cannot be stabilized because there is no interior to  the set of actions at player 
2’s information set that  are consistent with the equilibrium, and hence no possibility for 
inward-pointing drift  to be compatible with this equilibrium. 

Cheap talk. One of the  apparent successes  of evolutionary game theory has been to 
use refinements of the evolutionarily stable strategy concept to examine issues  of cheap 
talk. Blume, Kim and Sobel (1993), Kim and Sobel (1992), Matsui (199 l), Sobel (1993), 
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FIGURE 5 
Game  with  Nash  equilibrium  that  cannot  be  stabilized 

and Warneryd (1990) establish conditions under which the evolutionary process, operating 
on the cheap talk game, selects  efficient equilibria of the underlying game. To see  why such 
a result might  be expected, consider an  outcome in  which  everyone plays an inefficient 
equilibrium. Let  a strategy appear in  which  some agents send the currently unused  mess- 
age a and in  which all agents play the efficient equilibrium whenever at least one agent 
sends message a. The resulting dynamics will lead to  an outcome with  only the efficient 
equilibrium being played. Two steps are  important in making this argument.  The first is 
to establish that  an unused message  exists. The second, upon which we shall focus, is to 
ensure that agents react to this message  by,  playing the efficient equilibrium. The validity 
of both steps can  be seen as raising questions of drift.** 

To consider cheap talk, we begin  with the Stag Hunt Game shown  in Figure 6.1. 
This  game  has  two  Nash equilibria, ( A ,   A )  and (B, B), with the former being risk-dominant 
and the latter  payoff-dominant. 

Now  suppose that, before playing the game, player 1  has an  opportunity  to  announce 
either A or B. We interpret this as  an  announcement of the strategy that the agent claims 
she will play, but the announcement is cheap talk, in the sense that it  imposes no restric- 
tion on  the action that the player actually takes. The game  with cheap talk is  then  given 
in Figure 6.2. One  component of pure-strategy Nash equilibria gives  payoffs  (10,  10). This 
component is asymptotically stable, a reflection of the fact that 10  is the largest payoff 
available in the game. 

Consider an equilibrium in which  player 1 plays AA (announce A and play A )  and 
payoffs (8,8) are received. The conventional cheap talk argument now  observes that if 
player 2’s strategy is A B  (respond to announcement A by playing A and  to B by playing 
B), then it is a better reply for player 1 to choose BB, leading to  a payoff  of (10,lO). The 
analysis is then  completed with an  argument  as to why  we would  expect player 2  to be 
playing A B  rather  than AA.  But the difference  between AB and AA appears only  off the 
equilibrium path.  The plausibility of AB rather  than AA therefore depends  on  what is 
assumed about  drift. 

Let be the component of equilibria in  which player 1 chooses AA. Drift at the 
unreached  information set corresponding to  l’s  announcement of B is compatible with 
Nash equilibria in <M’ if it causes player 2 to choose A at the left information set  with 

28. Banerjee  and  Weibull  (1993)  note  that  inefficient  outcomes  can  persist  in  their  evolutionary  model 
with  “discriminating”  players  for  reasons  analogous to those that  allow  inefficient outcomes  to persist  when 
there  are no unused  messages. 
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6.1 

FIGURE 6 
Stag  hunt  and  Cheap  Talk  Games 

6.2 

probability at least f . The  perturbed  dynamics may therefore give stable outcomes near 
._ 1 . Because the announcements  are  cheap talk, drift can similarly  lead to stable outcomes 
in  which player 1 announces B but plays A ,  with  player A playing A in  response to 
the announcement of B and playing A at the unreached  information set  following an 
announcement of A with probability at least f . 

We therefore consider it unsafe to conclude that evolutionary processes  will  necessar- 
ily  select  efficient outcomes in cheap talk games. This view  is to be contrasted with  much 
of the literature on evolutionary processes  in cheap talk games. For example, Sobel(l993) 
rejects a  component of equilibria if there is uny realization of the underlying stochastic 
drift process that leads away from the component. This may  be an  appropriate notion for 
an ultralong-run analysis, since the ultralong run is a period of  time long  enough that any 
realization of the process that can happen will happen. For  a long-run analysis,  however, 
drift may  yield quite different results. 

Cooper,  DeJong,  Forsythe  and  Ross (1992) conduct  an experimental investigation of 
the Stag Hunt Game  and  a  Cheap  Talk  Game shown  in Figure 6. They  find that in the 
Stag Hunt Game, virtually all  of the players chose action A .  When cheap talk was allowed, 
virtually all of the announcements were strategy B, but strategy A was  still often played, 
appearing slightly more  than 30%  of the time. The  latter result  is consistent with our 
observation that  outcomes in  which A is played can be  stabilized by drift, though  a  more 
likely explanation appears to be that the system has simply not yet settled on  an 
eq~i l ibr ium.~~ 

Cooper,  DeJong,  Forsythe  and Ross also investigate a  game in  which the two  players 
simultaneously announce either A or B, and then play the Stag Hunt  Game of Figure 6. 
Figure 7 presents the normal  form of this game. A strategy in such  a game  is  now a triple, 

29. For  example,  most of the  cases  in  which A was  played  involved  an  opponent  who  played B, suggesting 
disequilibrium  rather  than  an  equilibrium  in  which  players  have  coordinated on A .  
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FIGURE 7 
Two-sided Cheap  Talk  Game 

such as ABA, interpreted  as  announcing A ,  playing B if the  opponent announces A ,  and 
playing A if the  opponent  announces B. Behaviour  in this game differs markedly  from 
the case of  one-sided cheap  talk, with the strategy BBB now  being virtually always  played 
by the experimental subjects. 

This  game has  a  component of equilibria that gives outcome (B,  B),  for payoffs 
(10, lO),  that includes every pure strategy combination giving  payoff (10, 10) and which  is 
asymptotically stable  under  a deterministic, monotonic dynamic.  This stability arises out 
of the  fact  that 10  is the largest possible payoff  in the game.  The  game also has  two pure- 
strategy Nash equilibria which produce  the  outcome ( A ,   A ) ,  one in  which both players 
choose A A A  and one in which both choose BAA. In  both cases, announcements are 
ignored. Neither of these equilibria is a  strict-path equilibrium and neither is stable under 
a deterministic, monotonic dynamic  (much  like the equilibrium (L,  L)  of  Figure 5). If 
strategy AAA is played, for example,  then  it takes only a  trace of strategy BAB to trigger 
dynamics that lead to everyone playing strategy BAB for  outcome (B, B). No small 
amount of drift  can  then stabilize pure-strategy equilibria in  which action A is chosen, 
making it no surprise that  action B is  commonly  observed in the experimental o~tcorne.~' 

7. PREDICTIONS 

Despite the  Two-sided  Cheap  Talk  Game  and  Figure 5, we  will typically find components 
with the  property  that some specifications of drift will stabilize them but  other specifica- 
tions of drift will not.  The interesting question concerns the likelihood with  which a com- 
ponent will  be stable. This appears to be an impossible question to answer  because  it 
depends  upon  the specification of a  drift process about which we are likely to have little 
information. On the  other  hand, progress on this question is essential if  we aspire to a 
theory that will be useful in studying  behaviour,  whether in  the  laboratory  or in the field. 
We  accordingly turn  to  the question of  how an  understanding of the role of drift can 
provide the  foundation  for testable predictions. In particular, we suggest an experiment 
designed to examine the role of drift in equilibrium selection. The experiment  proceeds  in 
three stages. 

The basic intuition  for this experiment  emerged from our discussion of the  Chain- 
Store  Game, where we noted that drift is more likely to be  compatible  with an equilibrium 
that allows a large set of out-of-equilibrium behaviours than  an equilibrium with  very 

30. There remains the mixed,  babbling  equilibrium in  which  players  randomize  between A A A  and BAA. 
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stringent out-of-equilibrium requirements (as in Figure 5). Our task now  is to make this 
intuition usefully  precise.  Since the problem is inherently an exercise  in comparative  stat- 
ics, the experiment  must involve comparisons of outcomes of  games that  are similar but 
involve different payoffs. 

The suggested experiment centers around a version  of the Dalek  Game studied exper- 
imentally by Balkenborg (1994) (Figure 3). Consider the version  of this game shown in 
Figure 8. The  component of equilibria supporting the outcome (T, R) is relatively large 
when X is small, and shrinks as X grows. Our  model of drift then leads to the prediction 
that we should see the outcome (T, R) when X is  small  (say X = 0 or 1) and the outcome 
( M ,  L)  when X is large (say X = 6) .  

9 X 0  6 
' 3  0 0  6 

FIGURE 8 
Game 8-Modified Dalek  Game 

The equilibria (T, R) and (M,  L) in Figure 8 are  both  subgame perfect. We are 
especially interested in the ability of drift to stabilize Nash equilibria that  are  not subgame 
perfect. In light  of this, consider the game  in Figure 9. Provided that X > 0, this game  has 
a unique  subgame-perfect equilibrium (M, L), though (T, R) remains  a  Nash equilibrium. 
Our prediction is again that the latter equilibrium will appear when X is  relatively  small 
(such as X = 1)  and (M,  L)  when X is large (say X = 6).  Our suggested initial experiment 
thus involves running  Games 8 and 9 while varying the value  of X through the suggested 
range of  values. 

These predictions are based on the observation that, when X is  large, the component 
supporting equilibrium (T,  R) is small, and it  is accordingly less  likely that drift will  be 
compatible with this component.  Experimental  outcomes may match our predictions, and 
yet drift still  be compatible with (T, R) when X is large (contrary to  our suggested expla- 
nation), simply  because large values  of X prompt experimental subjects to  adopt initial 
play that happens to be  in the basin  of attraction of (M,  L), while  small  values  yield initial 
play  in the basin of attraction of (T,  R). 

Our suggestion for addressing this possibility  is to construct a second experiment 
with Games 8-9  in  which different groups of subjects  begin by playing a common game 
whose  payoffs are gradually allowed to diverge, during the course of repeated play, until 
one  group plays Game 8 and the other  Game 9. This would ensure that the players cannot 
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9 X 0  0 
3 0 0  12 

FIGURE 9 
Game  9-Modified  Dalek  Game 

condition their initial behaviour  (or their behaviour in the initial few periods) on the value 
of X and hence cannot begin  with  systematically different initial play. Any  differences  in 
outcomes  could  then  reasonably  be  attributed to  drift influencing the learning process in 
different ways. 

To gain further insight into the role of drift, and pose a more  demanding challenge 
for the theory, we suggest a  third  experiment in  which the human subjects are initially 
matched  not against other subjects but against a computer whose  play  is programmed to 
direct one  group of subjects to equilibrium (M,  L) and  one  group of (T, R), in each of 
Games 8 and 9.31 The  computerized players would then be eliminated and the subjects 
matched against each  other.  When X is  small, both ( M ,  L)  and (T,  R) are stable outcomes 
of the perturbed  dynamics, in each of Games 8-9, and each  group of subjects should 
continue to play the  outcome established by its initial conditioning. When X is large, 
however, we expect only (M,  L)  to be stable, and expect (T, R) to be displaced by (M,  L)  
in those groups  of subjects who  have initially been conditioned to play (T,  R). 

8. CONCLUSION 

The ideas behind this paper  are simple: The criterion for a model to be  successful  is that 
it include important  factors  and exclude unimportant ones. But how do we know what is 
important  and  what is not? In the case of evolutionary games, the model itself provides 
some  of the answers. If the model produces  stationary states that  are  not hyperbolic 
and  do  not occur in components that satisfy some variation of asymptotic stability, then 
important factors have been  excluded from  the  model  and the latter  should be expanded. 

The factors to be  added to  the model are  important, in the sense that they can have 
a significant impact on the behaviour of the dynamic system, but they also may  be arbi- 
trarily small  in magnitude. It is presumably  because they are small that they are excluded 
from the model in the first analysis. How  can a model whose behaviour is shaped by 

31.  Binmore et al. (1993) and  Winter  and  Zamir (1996)  find  a  similar  conditioning  process to be  quite 
effective. 
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arbitrarily small factors be of any use  in applications? One  conclusion of this paper is 
that, while the  factors themselves  may  be small, their existence can nevertheless be  used 
to derive experimentally testable predictions that  do  not depend upon observing arbitrarily 
small magnitudes. 

APPENDIX 
I. Proof of Proposition 1 

Let z* be a  strict-path equilibrium. Construct  the equilibrium W* by letting W* take  the same  action as z* at 
any information set  reached  with  positive probability under z*, and let W* take  the mixed  action eh at any 
information set h reached  with  zero  probability  under z*, but  not precluded by previous  choices  of  the  player 
moving at h. Notice that because 8 is  z*-compatible, W* is a  Nash equilibrium  contained  in the relative  interior 
of c(.*). Let H+ be the set  of information sets  reached  with  positive  probability  under  equilibrium W* and let 
H- be the set  of information sets  reached  with  probability  zero  under W* but  not precluded by previous  choices 
of the player  moving at the  information set. 

Let V(6, E )  be the set  of  states  such that Ilzh, - wt, 1 1  5 6  for all hie H+ and ((zh, - wt, )I  =<E for all hie H-,  where 
l(.II is the max  Let V be a neighbourhood  of W * .  

Step 1. Choose E* > 0 sufficiently  small to ensure: 

(i) V(&*, E * )  c V. This  can be done because V is a neighbourhood  of W * .  

(ii) V(0, E * )  is a set  of  strict-path Nash equilibria  giving the same  outcome as W* and contained  in the 
relative interior of c(.*). This can be done because W* lies  in the relative  interior of c(.*). 

(iii)  There  exist p > p  > 0 such that the  payoff to  the action  specified  by W* at any  information set he H+ 
exceeds the payoff to every other  action available at h by at least p;  while the payoffs to two  actions 
at  an information set h€ H- differ by at most p .  This  can  be done because W* specifies strict best 
responses at information sets in H+, while information sets  in H- are unreached in equilibrium. 

(iv) There exists ko > 0 such that  at every information set  in he H+ and  for every state in V(&*, E * ) ,  the 
total of the  subpopulation  proportions playing  each of the nonequilibrium  actions  declines at a  rate 
greater than  or equal to ko . Condition (iii) and  the monotonicity off ensure that this can be done. 

Step 2. Choose 6 < &*/4 sufficiently  small that, if there  were no  drift, then  any  trajectory  beginning in 
the set V(6, 6) would  converge to a  state in V(0, ~ * / 4 )  without  leaving V(&, E ) .  We take V(S,6) to be the set B 
of the theorem. To verify its existence,  consider a trajectory  whose initial condition lies  in V(6, 6) c V(&*, E * ) .  

Let a(t) be the largest  (over the  information sets in H,) proportion of a  subpopulation at time t that is not 
playing the equilibrium action specified by W * .  Then a(0)=<6 by definition, and a(t) decreases to zero at  an 
exponential rate  that is at least ko (from (iv)). In  addition, there  is a  constant kl such that  the maximum  payoff 
difference  between  actions at any information set h €  H-  is  less than k la ( t ) .  The monotonicity and Lipschitz 
continuity off then  ensures that there is a  constant k2 such that  the  proportion of the  subpopulation playing 
action k at any information set  in he H- satisfies  lzhk(t)l <: k2a(t) .  We  then  need  only  choose d <  &*/4 sufficiently 
small that fhk(t)dt<sr k2a(t)dt=<k2 6e-kn‘dt = 6k2/ko < &*/4 - 6. This  ensures that  as actions at infor- 
mation sets in H+ converge to the equilibrium  actions  specified by W * ,  the  proportion playing an action at an 
information set in H- cannot change  by more  than ~ * / 4  - 6 ,  and hence a  proportion beginning  within 6 of W* 

must  end  within &*l4 of W * .  

Step 3.  For each  sufficiently  large n, there  exists yne [0, E * )  such that  for any state in 
V(&*, &*)\V(yn, E * ) ,  the  total of the  subpopulation  proportions playing  each of the nonequilibrium  actions at 
any information set  in H,, under the perturbed  dynamic,  declines at a  rate  that is at least ko/2 .  To verify this, 
fix an information set h€ H+ and let k* be the  equilibrium  action at h. Then we need to find a value y < E* such 
that  the final  inequality  in the following  holds  (where ‘‘k#k*” is a  shorthand  for ‘‘ke A(h)\{k*)”): 

S-ko + k <-0 
2 ’  

32. The max norm (Ix(( is  defined  by ((X(( = maxi {(xi(), where 1 . 1  is absolute value. 
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where y is the  total probability attached to nonequilibrium actions at h. By letting n be large, and hence q,(p) 
be small, we can find a value y E* for which (5) holds. Let yn be the smallest such y given n. Then limn+m yn = 
0 (because limn+oo q,,(s) = 0). 

Step 4. For sufficiently large n, any trajectory beginning in V(S, S) enters V(y., E*) .  To verify this, notice 
that for all states in the set V(&*, &*)\V(y,, E * ) ,  the subpopulation proportion attached to nonequilibrium actions 
at each information set in H+ declines at rate at least ko/2. If there were no drift, the absolute value  of the 
derivative in the subpopulation  proportion playing any action at  an information set in H- would be at most k2 
(from Step 2). We can then choose n sufficiently large that the absolute value of each such derivative with drift 
is at most 2k2. A sufficient condition for trajectories beginning in V(6, 6) to enter V(y,, E * )  is then 
2k2 6e-k’2dt = 46k2/k0 E* - 6, which follows from our earlier choice of S to ensure Sk2/k0 < ~*/4 - 6. 

Step 5 .  For all sufficiently large n, the set V(y,, E * )  is forward invariant. In addition, let {A,,,},“= o be a 
sequence of nonnegative numbers with limm-ta3 A,,, = 0. For each A,,,, there is a smallest value of n, denoted by 
n(m), such that any trajectory beginning in V ( Y , ( ~ ) ,  E * )  enters and subsequently remains in V(y,,,,,,, e,,,). The 
proof is then completed by taking the  latter to be our set U,,. To verify these claims, it suffices to examine actions 
at information sets in H-, since by definition the proportion of each subpopulation playing the equilibrium action 
at each information set  in  H+  is growing at each state in V(y,, E * )  in  which this proportion is only 1 - y,. To 
check information sets in H-, we note that the change in the subpopulation proportion playing an action k at 
an information set h e  H- is given  by: 

i h k  =fhk(Z) + qn(Ah)(ehk-Zhk). 

The result then follows from noting that qH(Ah) 2 V,@), fhk(Z) < k2yn, and 

In particular, this ensures that  for sufficiently large n, i h k  takes the sign of 6hk - Zhk whenever the absolute value 
of the  latter difference exceeds &,, > 0, no  matter how  small we take &,,, which  yields the result. To verify (6), 
notice that q@)/q(P) approaches zero as n grows (because p P) .  It then suffices to show that y,,/q(p) is 
bounded above  as ngrows. If not, then q(B)/y,  approaches zero. But then yn is not the smallest value of y for 
which (5) holds, which  is a  contradiction. 1 1  

11. Foundations 

This section presents the stochastic foundations of (2). Our point of departure is a model in which each of the 
n populations contains a finite number of players N .  We consider a discrete-time model, with periods of length 
z, so that players are matched to play the game at times (0, z, 22, . . .}. The  state space is a finite subset ZNcZ, 
where 2, contains only those proportions that can be created by assigning the N agents of each population to 
various pure strategies. We  let Zhik be the  proportion of the ith population playing action k e  A(hi)  at information 
set hi. We often abbreviate this to simply zk. 

We shall be interested in the expected state at time t + z given state z(t). Let v = 1/N. Suppose there exists 
a function on h(z, v)  on Z x  [W, such that 

Z { z ( t  + z) Iz(t)} = z(t) + z[h(z(t), v)] + 0 ( z 2 N 2 )  (7) 

where 

h(z, v) = h(z, 0) + q v ) .  (8) 

The first “z” that appears  on  the right side of (7) captures the fact that we expect only small changes in the 
state to occur in small intervals of time. Binmore and Samuelson (1993) and Binmore, Samuelson and Vaughan 
(1995) provide examples in  which (7) is derived from explicit models of how agents change their strategies. The 
key feature of these models is that in each period of length z, each agent takes an independent draw  that causes 
them to retain their current strategy with probability l - z and consider changing to a new strategy with prob- 
ability z.33 The “0(v)” in (8) allows us to think of h(z, 0)  as the change that would be expected in an infinite 

33. It suffices that the probability of changing strategies is proportional to z. The probability that exactly 
one agent considers changing strategies is zN + 0(z2N2)  while the probability that more than one agent considers 
changing is 0(z2N2) .  Given that one agent changes strategies, the result is to move z by at most I / N  in a 
direction described by h(z, v), giving an expected movement that is described by (7). 
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population, with the expected  change  in a finite population of  size N ,  given  by h(z, v), departing  from this as  a 
result  of  finite-sampling  effects by an amount  that decreases  with the  population size. 

We  now  consider the differential equation 

j = h(z, 0). 

We can  rearrange (7) to give 

We now  direct attention to the case in  which the  populations  are large and  the interval  of  time z is short. Letting 
the  population grow  allows  us to smooth some of the randomness in the system,  while  letting z shrink gives us 
a model in  which  agents’  strategy  revisions  occur at idiosyncratic, uncoordinated times. As we take  the limits 
z+O and N + w ,  with z N 2  +O, the left  side  of  (10) appears to become the derivative dzldt, causing  (10) to 
converge to (9). The only apparent sticking point is the removal  of the expectation on  the left  side  of (10). This 
removal  is  often  justified  with an informal  law-of-large-numbers  argument.34 

When can the  link  between (10) and (9) be established  formally?  Binmore,  Samuelson and Vaughan  [(1995), 
Theorem l], using  techniques  introduced by Borgers and  Sarin (1995) and Boylan  (1997,  1995),  establish  such 
a link for  a model  with  one population  and  a one-dimensional state space. The following  proposition  extends 
this  result to the  current model. We assume that there  exist a finite S such that,  for any information set i and 
action k~ A(hi), 

P { ( Z i k ( t + z ) - Z i k ( t ) ) 2 ~ Z ( t ) } = < z V S +  O(z2N2). (1 1) 

This condition is  satisfied in the models  developed in Binmore and Samuelson  (1993) and Binmore et al. (1995). 
To see  why  we expect it to hold,  notice that if h is continuous, then  (10)  ensures that there  is S’ with 

/ { z ( t + z ) - z ( t ) ( z ( t ) } ~ Z S ’ + O ( Z 2 N 2 ) .  

But the key difference  between zr+ - zt and ( z ~ + ~  - z ~ ) ~  is that  an agent  who  switches  strategies appears  as  a 
term  whose  magnitude  is l/N in the former and  1/N2 in the  latter,  and it is  this extra “N” in the  denominator 
that accounts for  our  condition (1 1) on F { ( z I+ - Z ~ ) ~ ) Z ,  1. 

Proposition 2. Let (7) and (1 1) hold, and let h(z, v) be Lipschitz continuous on Z (in  the  max norm on Z ) ,  
with Lipschitz constant C holding for all sufJiciently smull v. Then for  any  time T and any E ,  we can choose a 
sufficiently large N a n d  sufficiently small z (so that zN2 is sufficiently small)  that the realization of the underlying 
stochastic strategy adjustment model at  any  time tE [0, T ]  is within E (in  terms  of  the max  norm) of the  expected 
value given by (9) with probability at least 1 - E .  

Proof. Step 1. Fix a value T >  0 and fix a  rational initial condition z(0). Unless  otherwise stated, t will 
be  assumed to be admissible, i.e. to be  of the  form t = kz  for some  integer k.  We  assume that N is  always  such 
that z ( O ) E  2,. We let y(t)  be the solution to the differential equation j = h( y ,  0) given initial condition y(0) = 
z(0). Our task is to show that,  for  any admissible t =< T,  

Let Y ( t )  solve Y= h( Y ,  v). Then it suffices to show, for any  admissible t 5 T, that 

prob { 1 1  Y ( t )  - z(t)II l i e }  < E .  

Step 2.  We first establish (13). Because h( y ,  0)  is  Lipschitz continuous on 2 and h( y ,  v) = h( y ,  0)  + O(v), 
there  exists K such that,  for any pair of states X and y ,  

llh(x, 0) -h(.Y, 0 ) l l ~ K I l x  -YII 

1 1 4  Y ,  0) -h( Y ,  v>ll =<Kv. 

34.  See, for example,  van Damme [( 1984),  ch. 9.41 and  Hofbauer  and Sigmund [(l 988), ch. 16. l]. 
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We then have: 

For any u s t ,  we then also have 

where IIy(u) - Y(u) 1 1  is nonnegative and continuous. We can then invoke Gronwall’s lemma (Hirsch and Smale 
[(1974), p. 1691) to conclude: 

Ily(z) - Y(T)\I sKvteK‘ < E ,  

where the final inequality holds if N is  sufficiently large (and hence v small). 

Step 3. We now turn  to (14). Our first step is to notice that 

Y(t) - z(0) = h( Y(s), v)&. I: 
The next step is to find a corresponding expression for z(t) - z(0). Define: 

rn(kT) = Z(k2) - z(0) - * V { Z ( j T )  - z( jz  - T)lZO’T - 7)). 

z(t)-z(0)= m(t)+x;= ~ { z o ‘ z ) - z o ’ T - z ) ( z o ’ z - T ) )  

On rearranging, we get, for t = kz,  

= m(t) + g =  * h(zO’z - T), v) + kO(T2N2) 

= m(t) + /‘ h(z([s/z]z), v)& + O(TN2), 
0 

where [X] denotes the integer part of X and kO(z2N2) = O(kz2N2) = O(tzN2) = O(zN2).  Now we subtract (17) 
from (1 5 )  to get (where 1 .  I is a vector of absolute values): 

1 Y(t) - z(t) 1 =< Im(t) I + Jh( Y(s), v)  - h(z([s/z]z), v) 1 dr + O(zN2).  I: 
for 

This implies that 

I I ~ ( ~ > - z ( ~ > l I ~ l l ~ ( ~ ) l l +  llh(Y(S)’ v)-h(z([s/zlz), v)Ilds+ O W 2 )  

where h(z, v)  is Lipschitz continuous  on 2 with Lipschitz C for all sufficiently small v. This in turn implies that, 
for all U St,  we have 

where 

M4 = sup Ilm([s/zlz)II + O(zN2)  + O(z), 
O S s Q t  

where the final O(z) is added so that (18) holds for all U =<t and not just admissible U (i.e. U of the form kt for 
some k). Again noting that 1 )  Y(u) -z([u/z]z))I is nonnegative and continuous at all but finitely many points, we 
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can apply Gronwall's lemma to (18) to obtain 

I1 U t )  - z([t/zlz) II -weC' 

for all t with 0 S t r  T.35 We  use this to conclude that, for all admissible t ,  

prob{IIY(t)-z(t)IILiE}'prob {IIM(t)ll'$Ee-"'}. 

It then suffices to show, for admissible t ,  

prob max I l r n ( , s ) J l  ~ ~ E - " '  66 ,  

where z and z N 2  are taken to be  sufficiently  small that the error terms in the definition of M(t) are less than 
~ e - ~ * / 4 .  Hence, letting rni(t) be an element  of rn(t), it suffices to show that,  for large N and small z and zN2 
(where IZI denotes the dimension of Z ) ,  

i O S s 5 1  l 

i osssr l ,;l (19) 
prob max Irn,(s:)l2a~e-~' -I-, 

since the probability that Ilmi(s)I( exceeds  in the max norm is  less than the sum of the probabilities that 
Imi(s)l exceed $&e-"' and there are 121 such probabilities. 

Step 4. We  now  use inequality (19). From Kolmogorov's inequality, we have (hereafter deleting the "i', 
s u b s ~ r i p t ) ~ ~  

prob max Irn(s) I L$Ee--C' 5- var { m(t)} . I l OLssr 

Hence, since the expected value of m(t) is zero, it suffices for (1 9) to show that,  for all t 2 T, 

To do this, we define (hereafter 

Then, if j > l ,  we have 

&{AjAl} = F { A / , F { A j l ~ ( h ) } }  = 0, 

since F{AjIz(lz)} = Z { m ( j z ) I z ( k ) }  - i${m(jz - z)lz(k)} = m(lz) -m(lz) = 0. Then we have 

Hence, it suffices for (21) that 

Since d {A,} = P { m(jz) - m(jz - z)} = 0, we have 

8 {Aj}' = var Aj = &'{(z(jz - z(jz - ~ ) ) ~ l z ( j z  - z)} 

-<zvS+ 0(z2N2).  

35. Gronwall's lemma is typically stated with the requirement that the integrand be continuous. However, 
the proof requires only that the derivative of the integral be integrable, which  will hold if the integrand is 
continuous almost everywhere. 

36. If the increments rn(j7) - m(j z  - z) where independent, (20) would be a statement of a simple form of 
Kolmogorov's inequality for sums of independent random variables (Billingsley  [(1986), p. 2961). In our case, 
these increments are  not independent, since the distribution of mGz) may depend on  the realized value of 
m(jz - 7). However, Kolmogorov's inequality requires only that m(t) is a martingale (Chung [(1974), p. 3311). 
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Equation (22) then becomes 

X:=, cP{Aj]2<k(zvS+ 0 ( z2N2) )  

=< TvS + O(zN2)  

where the final inequality holds as long as N is large and zN2 is small. ( 1  
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