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Abstract. We study general equilibrium with private and incomplete state verification.

Trade is agreed ex ante, that is, before private information is received. It is useful to

define a list of bundles as a derivative good that gives an agent the right to receive

one of the bundles in the list. Enforceable trade agreements can be described by Pi-

measurable plans of lists of bundles, instead of Pi-measurable plans of bundles as in

Radner (1968). In equilibrium, the price of a list coincides with the price of the cheapest

bundle in the list, and it is always the cheapest bundle of the list that is delivered. This

property leads to a system of linear inequalities which are deliverability constraints on

the choice set. We investigate existence of equilibrium in the case in which preferences

are Pi-measurable. If there is a perfectly informed trader in the economy, existence of

equilibrium is guaranteed.
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1 Introduction

In chapter 7 of his “Theory of Value”, Debreu (1959) shows how to extend the general

equilibrium model to the case of trade under uncertainty with public state verification.

All that is needed is to consider a generalized notion of commodity that also includes

in its description the state of nature on which its delivery is contingent (Arrow, 1953).

The model becomes equivalent to the model without uncertainty (Arrow and Debreu,

1954; McKenzie, 1959): prices for the contingent commodities are announced, and agents

choose the consumption plan that they prefer (specifying a consumption bundle for each

of the possible states of nature), among those that satisfy their budget restriction; after

trade agreements are made, the state of nature is publicly announced and agents receive

the consumption bundle that corresponds to the announced state.

We are interested in studying the implications of differential information, in the form

of private and incomplete state verification. While keeping the basic structure of the

model, we assume that each agent is only able to verify (in a court of law, for contracts

to be enforced) that the state of nature belongs to a certain set. The ability to verify

the occurrence of events (information) is exogenous and differs across agents.

The consequence of incomplete verification is that if an agent has bought different

bundles for delivery in two states and is not able to verify whether the true state is one

or the other, then he has to accept delivery of any of the two bundles. This is a natural

generalization of the classical model, in which state verification is complete.3

To study this economic setting, we consider that objects of choice are lists of bundles

such that the agents have the right to receive one of the bundles in the list (they have

to accept any of the alternatives).4 Contracts in which lists are traded are pervasive. A

plane ticket is a list, and there are many other examples.

A plane ticket gives you the right to travel if the plane is available at the date of

departure, and, if the plane is not available, the right to stay in a hotel and travel on

the next plane. But you cannot verify whether the plane is available or not. If, at the

3A related line of research initiated by Radner (1968) is based on the idea that the consequence of
incomplete information is that an agent must consume the same in states of nature that he cannot dis-
tinguish. The corresponding notion of the core was introduced by Yannelis (1991). Several developments
can be found in the volume edited by Glycopantis and Yannelis (2005).

4This concept builds on Arrow’s (1953) notion of contingent goods. A contingent bundle is obviously
a contingent list of bundles with a single element.
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date of traveling, the airline announces that the plane is not available, you may have no

alternative other than to accept staying in a hotel and traveling on the next day.

Some car insurance contracts give you the right to use another car temporarily, in

case of accident or malfunction. But the substitute car is left undefined in the contract.

It is only stipulated that the car should belong to a certain class. It may be red or

yellow, have radio or not, etc.

When you order a pizza, it is actually a list of bundles. The pizza may have more or

less mozzarella, more or less tomato, be made with olive oil or vegetable oil, have a thin

or thick crust, etc. Goods that you order are usually defined imprecisely.

More formally, consider an agent that cannot verify in a court of law whether the

state of nature is 1 or 2, but nevertheless has bought A1 (delivery of A in state 1) and

B2 (delivery of B in state 2). Then: if state 1 occurs, the agent can receive A or B.

When receiving B in state 1, the agent cannot prove in a court of law that the contract

has been violated (state 2 could be the actual state and B the contracted delivery). For

the same reason: if state 2 occurs, the agent can also receive the same bundles, A or B.

Observe that the set of alternatives that may be delivered, {A,B}, is the same in the

set of states that the agent cannot distinguish, {1, 2}. Something that is constant across

states of nature that the agent cannot distinguish is said to be “measurable with respect

to private information”. Technically, with Pi denoting an agent’s information partition,

a function that is constant in elements of the σ-algebra generated by Pi is designated as

“Pi-measurable”.

We could restrict our attention to plans of lists that are measurable with respect to

each agent’s private information, since, as exemplified above, any non-measurable choice

can be converted into a measurable one that is equivalent. Essentially, there may be

a difference between what an agent buys and what an agent gets (whenever the agent

is unable to prove that what he got is different from what he was entitled to receive).

Buying a non-measurable consumption plan (A in state 1 and B in state 2), the agent

obtains a Pi-measurable plan of lists (A ∨ B in state 1 and A ∨ B in state 2). It is

important to understand that this Pi-measurability property of lists is not a restriction

on trade, but the consequence of incomplete state verification on the enforceability of

trade agreements.

We have introduced this model of general equilibrium with private and incomplete

state verification in two previous papers (2007, 2008). All trade is agreed ex ante, that
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is, before private information is received. Prices of the contingent lists are announced,

and agents choose the plan of contingent lists that they prefer among those that belong

to their budget set. After receiving their private information, agents are able to verify

in which set of their information partition lies the true state of nature, and receive one

of the alternatives in the list that they bought for delivery in these states. Notice that

agents cannot choose which of the alternatives is delivered. On the contrary, they have

to accept any of the alternatives.

The selection of the bundle to be delivered to each agent must satisfy some restrictions.

First, each agent must receive an alternative that is present in the list that corresponds

to the actual state of nature, or to a state of nature that is undistinguishable (in the sense

that the agent cannot prove in a court of law that it is not the actual state of nature).

This means that, in equilibrium, no agent can prove that his contract has been violated.

Second, these deliveries must constitute a feasible allocation. These restrictions leave

some degrees of freedom, giving rise to a natural question: which of the alternatives

should an agent expect to receive?

If agents expect to receive the worst possible bundle in a list, there exists an

equilibrium in which these expectations are fulfilled. This is a prudent expectations

equilibrium (2007). Agents act very defensively, selecting alternatives with the same

utility for delivery in states that they cannot distinguish. They insure themselves com-

pletely against being deceived. Even if they are deceived, it implies no utility loss.

A more general notion is that of a subjective expectations equilibrium (2008). If agents

have subjective expectations, their beliefs about the probabilities of delivery of the differ-

ent alternatives in a list depend on the prices that they observe (perfectly or imperfectly),

and on the alternatives specified in the list.

In this paper, we study the case in which agents know the model of the economy, and

form their expectations accordingly (Muth, 1961).

We find that, in equilibrium: (1) the price of a plan of state-contingent lists (speci-

fying a list for each state of nature) is equal to the price of the cheapest consumption

plan (specifying an alternative to be delivered in each state of nature) that satisfies the

requirements of the plan of state-contingent lists; and (2) the alternative that is selected

for delivery is the cheapest alternative.

Rational agents expect, then, to receive the cheapest alternative in each state of
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nature.5 Observing the prices of all the contingent commodities and of all the lists,

agents can predict which bundle is going to be selected for delivery (the cheapest) in

each state of nature. In case of a tie, agents expect to receive the alternative that they

prefer (a similar assumption is made in the mechanism design literature: in case of

indifference, agents tell the truth).

Knowing the consumption bundle that results from buying each of the lists, agents

can, instead of choosing among lists, choose directly among these resulting consumption

bundles. These bundles are those that satisfy a system of linear inequalities, which are

endogenous deliverability restrictions. Consider an agent who does not distinguish be-

tween states s and t. For a state-contingent consumption plan, (xs, xt), to be deliverable,

it must be such that ps · xs ≤ ps · xt and pt · xt ≤ pt · xs. If these deliverability conditions

are not satisfied, then the agent will not receive xs in state s and xt in state t (because

these would not be the cheapest alternatives in the corresponding states). An agent with

rational expectations chooses among plans which are deliverable in this sense (denoted

x ∈ Ci(p)).

This deliverable choice set depends, therefore, on prices and on each agent’s private

information. The choice set of each agent is the intersection of the budget set and the

deliverable set, Bi(p) ∩ Ci(p). If the correspondence from prices to the choice set were

continuous, equilibrium existence would be guaranteed. It has closed graph, therefore,

in a bounded economy, Bi(p) ∩ Ci(p) is upper hemicontinuous. But Ci(p) is not lower

hemicontinuous.6 This property fails when prices in some state are null or when prices

in states s and t, with t ∈ Pi(s), are collinear.7

We give a simple example of non-existence of equilibrium caused by null prices. In

the presence of differential information, prices may be null, even if state-contingent

preferences are strictly monotonic. There may be some state in which resources are

abundant, but such that no agent can verify that it has occurred. As a result, no agent

is willing to buy commodities contingent on the occurrence of this state.

5Prices differ across states, thus, the cheapest bundle should also differ (and this implies that the
consumption plan is not Pi-measurable).

6The intersection of continuous correspondences may not be continuous, anyway (Aliprantis and
Border, 2007).

7With agents having preferences that are Pi-measurable, collinearity does not prevent existence of
equilibrium. In this case, it can be shown that (having convex preferences) agents choose the same
bundle for delivery in both states, implying that the deliverability restrictions are satisfied in equality.

5



Introducing a perfectly informed agent removes this problem, because this agent can

verify the occurrence of any state. This agent may have an arbitrarily small endowment,

resembling the ε-agent in the model of Dubey, Geanakoplos and Shubik (2005). To

impose a lower bound in prices, we also consider that this agent has strictly increasing

utility. The main result in this paper establishes existence of equilibrium in an economy

with this additional trader.

This paper is a contribution to the theory of general equilibrium with differential

information. The central paper in this literature is the pioneering work of Prescott and

Townsend (1984a, 1984b), who extended the general equilibrium model to economies

in which agents have private information about their preferences. In their work, an

allocation is a lottery over consumption plans, and prices are linear in probabilities (not

linear in consumption8). The same criticism applies to the core equivalence results of

Forges, Heifetz and Minelli (2001). Here prices are linear in consumption, which seems

to be more in the spirit of general equilibrium theory.

By thinking of assets as pools, Dubey, Geanakoplos and Shubik (2005), Bisin and

Gottardi (1999) and Minelli and Polemarchakis (2000) explore the relationship between

individual actions and the payoffs of assets.9 Our setup is closely related with the

“Hidden Information Economy” of Bisin and Gottardi (1999), but the way of formaliz-

ing uncertainty and information is quite different. In their model, uncertainty is only

about endowments, and the aggregate endowment actually becomes public information.

We consider uncertainty about endowments and preferences and allow agents to retain

private information about the aggregate endowment. In the model of Bisin and Gottardi

(1999), the outcome of trade depends on a set of messages sent by agents. Here, agents

must prove that events have occurred to enforce delivery, knowing that their information

is not transmitted to other agents (aggregation of information is exogenously barred). Fi-

nally, Bisin and Gottardi (1999) consider trade both before and after agents receive their

information. We restrict trade to be made ex ante, that is, before agents receive their

information, as in Radner (1968) and Yannelis (1991). The inclusion of spot markets

that open after agents receive their information is left for future research.

Recently, Zame (2007) developed a very comprehensive model with a continuum of

agents, in which the set of firms and the contracts that appear are also determined

8This was analyzed by Jerez (2005).
9In our paper, lists may also be seen as assets with many possible payoffs, with delivery rates being

equilibrating variables.
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endogenously at equilibrium. Other recent contributions in which agents also face in-

centives to make more or less effort were made by Prescott and Townsend (2006) and

by Rustichini and Siconolfi (2007). Our scope is more limited: we study the case of

pure exchange with a finite number of agents. In this setting, Forges, Minelli and Vohra

(2002) offered a survey on the core. We provide a price-equilibrium counterpart.

The paper is organized as follows: in section 2 we motivate the paper; in section

3, the consequences of private information are analyzed; sections 4 and 5 deal with

preferences over lists and prices of lists, respectively; in section 6 we present and char-

acterize equilibrium; in section 7 we establish existence, in the presence of a small but

perfectly informed trader; and section 8 concludes with some remarks. In appendix, we:

(1) collect all the proofs, (2) give an example of non-existence (without the informed

trader), and (3) study continuity of the deliverability correspondence.

2 The questions

Our point of departure is the classical general equilibrium model of trade under

uncertainty with public state verification (Debreu, 1959, chapter 7). Uncertainty con-

sists of a choice of nature among a finite number of possible states, Ω = {1, ..., S}. To

each state of nature corresponds a complete description of the environment (Savage,

1972), that is, the endowments and the preferences of each and every agent. Before the

choice of nature, knowing their state-dependent preferences and their state-dependent

endowments, agents make state-contingent trade agreements (trade is ex ante). After

the choice of nature, the state of nature is publicly announced and the corresponding

state-contingent trades are made.

This context is dealt with by considering a generalized notion of commodity (Arrow,

1953). Besides being defined by their physical properties and by their location in space

and time, commodities are also distinguished by the state of nature in which they are
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made available. For example, instead of talking about consumption of good A in state 1

and consumption of good B in state 2, we talk about consuming good A1 and good B2.

In the 1st period, each agent i: attributes subjective prior probabilities to the possible

states of nature, µi = (µ1
i , ..., µ

S
i ) ∈ ∆S; has preferences over consumption plans that are

represented by an expected utility function, Ui(xi) =
∑S

s=1 µ
s
iu

s
i (x

s
i ); observes prices

for delivery in each state of nature, p = (p1, ..., pS) ∈ ∆SL; trades its state-contingent

endowments, ei = (e1
i , ..., e

S
i ) ∈ IRS++ for a consumption plan, xi = (x1

i , ..., x
S
i ) ∈ IRSL+ ,

that maximizes expected utility among the possibilities that belong to the budget set,

Bi(p) =
{
xi ∈ IRSL+ :

∑S
s=1 p

s · xsi ≤
∑S

s=1 p
s · esi

}
.

In the 2nd period: the state of nature, s, is publicly announced; each agent i delivers

the endowments, esi , and receives the consumption bundle, xsi ∈ IRL+, that correspond to

this state of nature.

An equilibrium of this Arrow-Debreu-McKenzie economy with uncertainty is

composed by a price system and an allocation, (p∗, x∗), such that: taking prices, p∗,

as given, each agent i maximizes utility in his budget set, x∗i ∈ arg max
xi∈Bi(p∗)

Ui(xi); and

the allocation, x∗ = (x∗1, ..., x
∗
n), is feasible,

∑
i x
∗
i ≤

∑
i ei.

What happens if, in the 2nd period, agents receive different information? What hap-

pens if, instead of becoming public information, the state of nature is only incompletely

and differentially revealed to each of the agents? This is the question that we address in

this paper.

Let the information that agent i receives be described by a partition of the set of

states of nature, Pi. If the state that occurs is s, the agent is informed that the state of

nature belongs to the corresponding set of the partition, Pi(s). If state t belongs to the

same set of the partition, t ∈ Pi(s), then agent i cannot distinguish state t from state s.

Agents are endowed with what Laffont (1986) described as fixed information structures

without noise.

To deal with this kind of differential information, Radner (1968) postulated that agents
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should only be interested in contracts that are contingent upon events that they can

observe. In states of nature that an agent does not distinguish, the same bundle would be

delivered (and consumed). With this restriction, the model of Arrow-Debreu-McKenzie

could be reinterpreted to cover the case of private information.

The consumption set was restricted to IRSL+ ∩ Pi, meaning that if t ∈ Pi(s), then

xti = xsi . An agent had to consume the same bundle in states of nature that he could

not distinguish. It seemed that this single modification was enough to capture the

consequences of differential information.

An equilibrium of the Radner economy is composed by a price system and an

allocation, (p∗, x∗), such that: taking prices, p∗, as given, each agent i maximizes utility

in his choice set, x∗i ∈ arg max
xi∈Bi(p∗)∩Pi

Ui(xi); and the allocation, x∗ = (x∗1, ..., x
∗
n), is fea-

sible,
∑

i x
∗
i ≤

∑
i ei. The similarity with the Arrow-Debreu-McKenzie equilibrium is

striking.

Before presenting a critique of this solution, and an alternative concept, we want to

make more precise the notion of information that we consider in this paper.

Consider a tree that falls in a distant forest. An agent may not even be aware of the

existence of this tree. This is unawareness. Beyond this state of pure ignorance, we can

define three hierarchic levels of information. First, an agent can be aware that the tree

may have fallen or not, and attribute subjective probabilities to this event. A second

level of information could be to know whether the tree fell or not. Finally, a third level

would be the ability to prove that the tree fell or that it did not.

Having made a contract for the contingent delivery of goods, an agent may need to

prove that an event has occurred to enforce delivery. This is what we assume. The

meaning of the partition, Pi, is that, if state s occurs, agent i can prove that the state

of nature belongs to Pi(s), and uses this and only this information to enforce delivery.

A related line of research focused on the revelation of information by prices (Radner,

1979; Allen, 1981). But with trade taking place ex ante, an agent cannot infer the

information of the other agents because, at the moment of trade, the other agents still

haven’t received their information.10 After the opening of markets in the second period,

agents may be able to infer the information of others. But we assume that the information

10The only thing that agent i could possibly infer is the priors, µj , of the other agents (it may be
more acceptable to assume, then, a common prior).
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obtained through these inferences cannot be used (in a court of law, for example) to

enforce contracts.

Our main objection to the model of Radner (1968) is that agents should not be

restricted to consume the same bundle in undistinguished states of nature. The example

that follows shows that this restriction is too strong.

Consider an economy with two agents. Agent A is endowed with two units of ‘sugar’,

in all states of nature, Ω = {s1, s2}, while agent B has uncertain endowments: two units

of ‘tea’ in state s1 and two units of ‘coffee’ in state s2:

es1A = es2A = (2, 0, 0), es1B = (0, 2, 0) and es2B = (0, 0, 2).

The preferences of the agents are the same, and do not depend on the state of nature. The

goods ‘tea’ and ‘coffee’ are perfect substitutes, which agents like to drink with ‘sugar’:

us1A = us2A = us1B = us2B =
√

(xtea + xcof )xsug.

Agent A cannot distinguish the two states, which are equiprobable:

PA = {s1, s2} and PB = {{s1}, {s2}}.

With the restriction of consuming the same in undistinguished states of nature, there is

no trade. To see this, observe that agent A would like to consume some ‘tea’ in state

s1. But this would imply equal consumption in state s2, and there is no ‘tea’ in state s2

(only ‘coffee’...).

In a real-life situation, the two agents could make the following agreement (valid for

both states of nature): agent A would deliver one unit of ‘sugar’ in exchange for one unit

of ‘tea’ or one unit of ‘coffee’. Agent A would get the right to receive a ‘tea or coffee’,

or, to put it another way, would get the right to consume (1, 1, 0) or (1, 0, 1).

Both agents would end up consuming (1, 1, 0) in state s1 and (1, 0, 1) in state s2. This

contract for uncertain delivery allows the agents to attain an optimal outcome.11

Agents would buy what we call a list of bundles: a derivative good that gives the

right to receive one of the bundles in the list. To guarantee delivery of a precise bundle,

an agent must buy a list with a single alternative (notice that this concept builds on

Arrow’s (1953) notion of contingent goods, which are lists with a single alternative).

To model an economy with uncertain delivery, in which agents trade lists of bundles

11For other examples and a more detailed explanation, see our previous work (2007, 2008).
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(instead of bundles), we must face some questions:

(1) What are the consequences of private state verification?

(2) What is the utility of a list of bundles?

(3) What is the price of a list of bundles?

3 The consequences of private state verification

As mentioned above, in the model of Radner (1968), the consequence of not distinguish-

ing between two states is a restriction of having to consume the same in both states:

t ∈ Pi(s)⇒ xti = xsi .

We do not restrict trades in this way. Agents are allowed to buy different rights for

delivery in states that they do not distinguish. But, if an agent buys different rights for

delivery in two states and is not able to verify whether the true state is one or the other,

then the agent has to accept delivery of any of the two.

Consider an agent that cannot prove in a court of law whether the true state is s or t,

but that, nevertheless, has contracted for the delivery of bundle x in state s and bundle

y in state t. When receiving bundle y in state s (or bundle x in state t), the agent cannot

prove that the contract is being violated. Then: if state s occurs, the agent can receive

x or y; and if state t occurs, the agent can also receive the same bundles, x or y. Notice

that the set of alternatives that may be delivered, {x, y}, is the same in states that the

agent cannot distinguish, {s, t}.12

The same reasoning applies to lists. Suppose that the agent has contracted for the

delivery of some alternative in the list x̃ in state s and some alternative in the list ỹ

in state t. Then: if state s occurs, the agent can receive a bundle z ∈ x̃ or a bundle

z ∈ ỹ; and if state t occurs, the agent can also receive a bundle z ∈ x̃ or a bundle z ∈ ỹ.

Observe that the set of alternatives that may be delivered, x̃∪ ỹ, is the same in the states

that the agent cannot distinguish, {s, t}.

The condition that describes enforceability is not xsi ∈ x̃si (which means that the bun-

12Something that is constant across states of nature that the agent cannot distinguish is said to
be “measurable with respect to private information”. More technically, with Pi denoting an agent’s
information partition, a function that is constant in elements of the σ-algebra generated by Pi can be
designated as “Pi-measurable”.
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dle that is delivered in state s, xsi , belongs to the list that was contracted for delivery in

state s, x̃si ). This would be equivalent to assuming that contracts are always kept. They

are not, because, in state s, agent i can only enforce delivery of a bundle that belongs

to
⋃
t∈Pi(s)

x̃ti. The adequate condition to describe enforceability is: xsi ∈
⋃
t∈Pi(s)

x̃ti.

Notice that if an agent buys the same lists for delivery in the states that he cannot

distinguish, then
⋃
t∈Pi(s)

x̃ti = x̃si , and the enforceability condition becomes xsi ∈ x̃si .

Buying the same bundle for delivery in states that are not distinguished is a sufficient

condition for the contract to be enforceable (but not a necessary condition).

Formally:

(i) a state-contingent list (a list for delivery in state s) is a finite, non-empty, subset

of IRL+, denoted x̃si ∈ IF(IRL+);13

(ii) a plan of lists is a vector of state-contingent lists x̃i ∈ (IF(IRL+))S, specifying a list

for delivery in each of the possible states of nature.14

(iii) a Pi-measurable plan of lists is a vector of state-contingent lists such that t ∈
Pi(s)⇒ x̃ti = x̃si , denoted x̃i ∈ (IF(IRL+))S ∩ Pi.

We define a transformation, Mi, to describe the consequences of incomplete infor-

mation. If an agent buys a plan of lists x̃i, the plan of lists Mi(x̃i) = [M1
i (x̃i), ...,M

S
i (x̃i)]

represents what the agent gets, that is, the alternatives that the agent may receive, in

each state of nature. In state s, the agent may receive any of the bundles in the set⋃
t∈Pi(s)

x̃ti. Therefore, M s
i is defined as:

M s
i : (IF(IRL+))S −→ IF(IRL+) ;

M s
i (x̃i) =

⋃
t∈Pi(s)

x̃ti .

It should be clear that the condition that describes enforceability may be written as

xi ∈ Mi(x̃i). We point out that if agent i buys a list, x̃i, that is not Pi-measurable, the

agent gets a list, Mi(x̃i), that is Pi-measurable by construction.

In the model of Radner (1968), the consequence of incomplete information is a

restriction of the choice set to Pi-measurable plans of consumption bundles. Here the

13Everywhere below, IF(·) denotes the set of finite and non-empty subsets.
14It is equivalent to consider that objects of choice are: plans of lists of consumption bundles (there

is one list for each state, and an alternative in a list is a consumption bundle); or, alternatively, lists
of plans of consumption bundles (there is one list for all states, and an alternative in the list is a
consumption plan).
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consequences are less severe. An agent can enforce delivery of Pi-measurable lists (which

include all Pi-measurable consumption plans), and this does not imply Pi-measurability

of the resulting consumption plan.

The main conclusion of this section is that an agent that buys a list, x̃i = (x̃1
i , ..., x̃

S
i ),

may receive, in each state s ∈ Ω, an element of the list M s
i (x̃i) =

⋃
t∈Pi(s)

x̃ti.

4 Preferences over lists

When buying a list, a rational agent has expectations about what will be the re-

sulting consumption. These expectations, together with the preference ordering over

consumption plans, induce a preference ordering over plans of state-contingent lists.

We start by making standard assumptions about preferences over consumption plans.

Later we will derive preferences over plans of state-contingent lists from preferences over

consumption plans.

Preferences over consumption plans are represented by an expected utility function,

Ui(xi) =
∑S

s=1 µ
s
iu

s
i (x

s
i ), where µsi is the subjective probability that agent i attributes

to the occurrence of state s, and usi : IRL+ → IR is a particular representation of the

preferences of agent i over bundles when s is the state of nature.

Assumption 4.1.

Preferences over consumption plans are represented by an expected utility function,

Ui(xi) =
∑S

s=1 µ
s
iu

s
i (x

s
i ), where each state-dependent utility function, usi , is continuous,

concave and weakly increasing.15

In economies with uncertain delivery, agents choose a plan of lists, and therefore we

need an objective function defined over plans of lists. Preferences over plans of lists

depend on prices of lists, p̃ ∈ P , because rational agents see prices as a signal of the

alternative that will be delivered:

Ũi : (IF(IRL+))S × P −→ IR.

15By weakly increasing, we mean that x� y ⇒ us
i (x) > us

i (y).
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We allow for prices to be interpreted as a signal of the alternatives that will be delivered,

but it is a signal that we will only be able to understand when we characterize equilibrium

(Section 6). The precise relationship between prices and deliveries will be established

then. Right now, we give an example to convey the basic idea. Suppose that you want to

rent a car and the agency offers you a list that includes a cheap ‘Fiat’ and an expensive

‘Ferrari’. Wouldn’t you expect to receive the ‘Fiat’?

When buying a list x̃i, a rational agent is aware that the possible deliveries are Mi(x̃i).

Therefore, he attributes the same utility to the lists x̃i and Mi(x̃i).
16

Assumption 4.2.

∀(x̃i, p) ∈ (IF(IRL+))S ×∆SL : Ũi(x̃i, p̃) = Ũi(Mi(x̃i), p̃).

Knowing the utility of the Pi-measurable plans of lists, we can obtain, using only this

assumption, the utility of all the plans of lists that are not Pi-measurable.

We also make an assumption of no satiation. Agents select a list in the frontier of the

budget set.

Assumption 4.3.

Let x̃i ∈ arg max
z̃i∈B̃i(p̃)

Ũi(z̃i, p̃). Then: p̃(x̃i) = p · ei.

These are the starting assumptions that we make on preferences over lists. We will

find, later, that agents always receive the cheapest bundle of a list. Therefore, it will

make sense to assume that they attribute to a list the utility of the cheapest bundle in

the list.

5 Prices of lists

In economies with uncertain delivery, it is necessary to define prices on the space of plans

of lists:

16Recall that if x̃i is Pi-measurable, then x̃i = Mi(x̃i).
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p̃ : (IF(IRL+))S −→ IR+.

We will dedicate most of this section to finding properties of price systems that are

compatible with the absence of arbitrage, and that, therefore, are necessarily properties

of an equilibrium price system.

5.1 Buying and selling lists of bundles

Suppose that an agent buys (separately) a list that delivers ‘tea’ or ‘coffee’ and a list

that delivers ‘toast’ or ‘cookie’. The agent will receive one of four alternatives: ‘tea and

toast’, ‘tea and cookie’, ‘coffee and toast’ or ‘coffee and cookie’. More generally, an agent

that buys the lists x̃i and ỹi may receive any alternative in the list z̃i, defined as:

z̃i = x̃i ⊕ ỹi = {zi ∈ IRSL+ : ∃(xi, yi) ∈ (x̃i, ỹi) s.t. zi = xi + yi}.

Buying two or more lists is equivalent to buying a single list with more alternatives.

Agents are also allowed to sell lists. An agent that sells a list has to deliver (in the

future) one of the alternatives in the list. It is the seller that chooses the alternative to

deliver, thus selling a list is different from buying a list with negative quantities (in this

case, it would be the buyer that would select the alternative).

Consider an agent that buys list x̃i and sells list ỹi. The agent will receive xi ∈ x̃i and

deliver yi ∈ ỹi. We assume that, in each state s, the agent delivers a best response to

each possible received bundle (in case of a tie for the best response, we use a selection,

S, which is irrelevant for the results). A perfectly informed agent plans to deliver, in

each state s, the alternative ysi , defined as:

ysi (ỹ
s
i , x

s
i ) = S

(
argmax

y∈ỹs
i

U s
i (xsi − y)

)
.

And thus obtain an equivalent list, z̃i = (z̃1
i , ..., z̃

S
i ), defined as:

z̃si = x̃si 	si ỹsi = {z ∈ IF(IRL+) : ∃xsi ∈ x̃si s.t. z = xsi − ysi (ỹsi , xsi )};

z̃i = x̃i 	i ỹi = (z̃1
i , ..., z̃

S
i ).

An agent with incomplete information (that buys x̃i and sells ỹi) faces a further difficulty.

In state s, the agent may receive an element of x̃ti and be forced to deliver an element of

ỹti , with t ∈ Pi(s).17 The agent obtains, therefore, the list Mi(z̃i), with each z̃si defined

17Another option could be to consider that the agent could receive an element of x̃t
i, with t ∈ Pi(s),

and be forced to deliver an element of ỹt′

i , with t′ ∈ Pi(s). This would make trade even more difficult
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as above: z̃si = x̃si 	 ỹsi .

We impose a restriction on short sales. Agent i can only buy x̃i and sell ỹi such that

Mi(z̃i) ∈ (IF(IRL+))S (possible net deliveries are nonnegative). Thus, the agent can always

keep the contract for delivery of an element of the list ỹi. We rule out the possibility of

default.

Notice that if all possible net deliveries are positive for the fully informed agent they

are also positive for an agent i with incomplete information. This is true because we

assume that the vector of initial endowments is Pi-measurable (t ∈ Pi(s) ⇒ eti = esi ).

Information does not affect the restriction on short selling:

z̃i ∈ (IF(IRL+))S ⇔Mi(z̃i) ∈ (IF(IRL+))S.

5.2 Arbitrage

An arbitrage is a trade that involves a gain and no possibility of a loss. In our context,

it would consist of buying a list, x̃i, and selling another, ỹi, such that: (i) some income

is retained; (ii) all possible net deliveries are positive.

Definition 5.1.

An arbitrage opportunity consists of a pair of lists, (x̃i, ỹi), such that:

(i) p̃(x̃i) < p̃(ỹi);

(ii) ∀xi ∈ x̃i,∃yi ∈ ỹi : xi − yi ≥ 0 (that is, x̃i 	i ỹi ∈ (IF(IRL+))S).

The information of the agent is irrelevant to this definition of arbitrage. This is so

because if all possible net deliveries are positive for the fully informed agent they are

also positive for an agent i with incomplete information. Information does not enlarge

the possibilities of arbitrage.

If there is an arbitrage opportunity, then: in the first period, agent i buys list x̃i and

sells list ỹi (retaining some rent); in the second period, the agent receives xti ∈ x̃ti, with

t ∈ Pi(s), and delivers yti ∈ ỹti such that yti ≤ xti.

for uniformed agents.
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This implies that the budget restriction disappears. Instead of selecting a list w̃i, the

agent can, additionally, buy x̃i and sell ỹi. The agent retains some rent and receives the

same or more goods.

For a price system, p̃, to be an equilibrium price system, there cannot exist any

arbitrage opportunities. No-arbitrage is a necessary (but not sufficient) equilibrium

condition.

5.3 No-arbitrage prices

A necessary condition for absence of arbitrage is that prices must be additive, in the

sense made precise below. All proofs are collected in Appendix 1.

Proposition 5.1.

Absence of arbitrage opportunities implies that:

∀x̃i, ỹi ∈ (IF(IRL+))S : p̃(x̃i ⊕ ỹi) = p̃(x̃i) + p̃(ỹi).

Proposition 5.1 says that equilibrium prices of lists are additive. If a list that guarantees

delivery of ‘coffee’ or ‘tea’ costs 3, and a list that guarantees delivery of a ‘toast’ or a

‘cookie’ costs 5, then a list that guarantees delivery of ‘coffee and toast’ or ‘coffee and

cookie’ or ‘tea and toast’ or ‘tea and cookie’ must cost 8 (it is equivalent to buy the two

lists separately or to buy them bundled together).

With prices being additive, agents only buy a single list. There is no point in deviating

and buying two lists instead of a single one.

In the classical theory, a basic assumption on the price systems is that it does not

matter for an agent to buy a single bundle or to buy its constituents in separate (prices

are linear):

(i) ∀x, y ∈ IRSL+ : p(x+ y) = p(x) + p(y);

(ii) ∀x ∈ IRSL+ , λ ∈ IR : p(λx) = λp(x).

The classical assumption (i) is a particular case of Proposition 5.1 (they are equivalent

for lists with a single element). We make the classical assumption (ii) just for lists with

a single element, that is, bundles. We do not restrict prices of lists to be scalable in this

sense.
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Assumption 5.1.

Given any list with a single element, x ∈ IRSL+ , and any positive scalar, λ ≥ 0:

p̃(λx) = λp̃(x).

As a consequence of Proposition 5.1 and Assumption 5.1, the restriction of any price

system, p̃, to the space of consumption plans can be represented by a vector of prices

of the SL state-contingent commodities, p ∈ ∆SL, such that the price of a bundle is the

inner product between the vector of prices and the vector of quantities:

∀x ∈ IRSL+ , p̃(x) = p · x, with p ∈ ∆SL =
{
p ∈ IRSL+ :

∑S
s=1

∑L
l=1 p

sl = 1
}

.

The budget set of agent i is:

B̃i(p̃) = {x̃i ∈ (IF(IRL+))S : p̃(x̃i) ≤ p̃(ei) = p · ei}.

It is useful to define the function p̃s as the price of a list for delivery that is contingent

on the occurrence of state s:

p̃s : IF(IRL+) −→ IR+;

p̃s(x̃s) = p̃(0, ..., x̃s, ..., 0).

Observe that a plan of state-contingent lists, x̃ = (x̃1, ..., x̃S), is also the sum of the state-

contingent lists: x̃ = x̃1⊕ ...⊕ x̃S. By Proposition 5.1, no arbitrage implies that the price

of a plan of state-contingent lists is equal to the sum of the prices of the state-contingent

lists:

p̃(x̃) =
∑S

s=1 p̃
s(x̃s).

If a list, x̃, is cheaper than a list that contains it, ỹ ⊃ x̃, then there is an arbitrage

opportunity. An agent can buy x̃ and sell ỹ ⊃ x̃, retaining some rent. In state s, the

agent can use the goods received, xs ∈ x̃s, to keep the contract for delivery of ỹs (because

xs ∈ ỹs).

Proposition 5.2.

Absence of arbitrage opportunities implies that: x̃ ⊆ ỹ ⇒ p̃(ỹ) ≤ p̃(x̃).

A corollary is that if a list, x̃, is more expensive than one of its alternatives, x ∈ x̃,

then there exists an arbitrage opportunity. Agent i will buy the bundle x and sell the
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list x̃, receiving x and delivering the same x ∈ x̃. The agent gets a null delivery, x− x,

but retains some rent. The agent is never maximizing, because it is always beneficial to

scale up this arbitrage trade (buy x+ x+ ... and sell x̃⊕ x̃⊕ ...).

Corollary 5.1.

Absence of arbitrage opportunities implies that: ∀x ∈ x̃ : p̃(x̃) ≤ p · x.

Another corollary is that the list Mi(x̃), that describes what an agent gets when he

buys the list x̃, cannot be more expensive than x̃.

Corollary 5.2.

p̃(Mi(x̃)) ≤ p̃(x̃).

This implies that agents do not mind being restricted to select Pi-measurable lists.

They are never worse off by selecting Mi(x̃i) instead of x̃i (utility is the same, and the

price may be lower).

The price of a list that is chosen, x̃i, must be equal to the price of the actual list

of possible deliveries that the agent obtains, Mi(x̃i). Another consequence is that the

delivered bundle, xi ∈ Mi(x̃i), cannot be cheaper than the list that the agent buys. In

the next section we show that (in equilibrium) the price of the delivered bundle is equal

to the price of the list that the agent buys.

6 Equilibrium

6.1 Concept

We consider a finite number of agents (i = 1, ..., n), commodities, (l = 1, ..., L), and

states of nature (Ω = {1, ..., S}, indexed by s and also by t when necessary).

The economy extends over two time periods, τ ∈ {0, 1}, with uncertainty about which

state of nature will occur in the second period. Trade agreements are made at τ = 0 (all

trade is ex ante).
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Taking prices, p̃, as given, agents trade their state-contingent endowments, ei ∈ IRSL+ ∩
Pi, for a plan of state-contingent lists, x̃i = (x̃1

i , x̃
2
i , ..., x̃

S
i ), specifying the bundles that

may be delivered to them in each state of nature. Their objective is to maximize expected

utility, Ũi(x̃i, p̃) =
∑S

s=1 µ
s
i ũ

s
i (x̃

s
i , p̃).

At τ = 1, agents receive their private information, trade agreements are enforced, and

consumption takes place. If state s occurs, agent i should receive a bundle xsi ∈ x̃si , but

can only enforce delivery of a bundle xsi ∈M s
i (x̃i) =

⋃
t∈Pi(s)

x̃ti.

Below is a preliminary definition of the concept of general equilibrium of an economy

with uncertain delivery, in which agents trade lists of bundles instead of bundles.

Definition 6.1.

An equilibrium of the economy with uncertain delivery, (x̃∗, x∗, p̃∗), is composed by: state-

contingent plans of lists, x̃∗ = (x̃∗1, ..., x̃
∗
n); an allocation, x∗ = (x∗1, ..., x

∗
n); and a price

system, p̃∗. These are such that, for every agent i:

(1) The plan of lists, x̃∗i , maximizes expected utility, Ũi(x̃
∗
i , p̃
∗), in the agent’s budget

set, B̃i(p̃
∗) =

{
x̃i ∈ (IF(IRL+))S : p̃∗(x̃i) ≤ p∗ · ei

}
.

(2) In each state of nature, s ∈ Ω, the bundle that is delivered is an alternative that

the agent has to accept, xs∗i ∈
⋃
t∈Pi(s)

x̃t∗i , that is, x∗i ∈Mi(x̃
∗
i ).

(3) The allocation, x∗, is feasible. That is,
∑

i x
∗
i ≤

∑
i ei.

(4) The utility of the list is correctly anticipated: Ũi(x̃
∗
i , p̃
∗) = Ui(x

∗
i ).

6.2 Delivery of the cheapest alternative

In equilibrium, lists cannot be more expensive than any of the alternatives (Corollary

5.1). But can a list be strictly cheaper than any of the alternatives?

We show below that the price of a list that is chosen in equilibrium must be equal to

the price of the alternative that is delivered.

Proposition 6.1.

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Recall that the

following are true:
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(i) [enforceability] x∗i ∈Mi(x̃
∗
i ), ∀i;

(ii) [pricing of lists] p̃∗(x̃∗i ) = p̃∗(Mi(x̃
∗
i )) ≤ p∗ · x∗i , ∀i;

(iii) [no satiation] p̃∗(x̃∗i ) = p∗ · ei, ∀i;

(iv) [feasibility]
∑
i

x∗i ≤
∑
i

ei.

Then, for each i = 1, ..., n:

(1) p̃∗(x̃∗i ) = min
x∈Mi(x̃∗i )

{p∗ · x};

(2) x∗i ∈ arg min
x∈Mi(x̃∗i )

{p∗ · x}.

Given a plan of lists that is chosen in equilibrium, x̃∗i , the cheapest consumption plan in

Mi(x̃
∗
i ) plays a crucial role. It is the plan that is delivered, and the price of the plan of

lists is the price of this cheapest consumption plan.

6.3 Rational preferences

Knowledge of Proposition 6.1 induces rational agents to expect to receive the cheapest

of the bundles in a list.

A difficulty is that there may be a tie for the cheapest bundle. We assume that,

in this case, agents expect to receive the bundle with the highest utility among the

cheapest bundles. This is in the spirit of the mechanism design literature, where incentive

compatibility conditions only need to be satisfied in equality (in case of indifference, the

agent selects the action that is preferred by the principal).

This tie-breaking assumption makes existence of equilibrium more difficult, because

if agents do not actually receive this alternative with the highest utility, the economy

will not be in equilibrium (see Definition 6.1, point 4). Agents would not be anticipating

correctly the utility of a list.

If a rational agent did not expect to receive the bundle with the highest utility (among

the cheapest bundles in the list), he would prefer to modify the list very slightly, in order

to have a single cheapest bundle. We could never have an equilibrium in which an agent

selected the list x ∨ y with p · x = p · y, U(x) > U(y) and Ũ(x ∨ y) < U(x). The agent

would prefer a list x− ∨ y in which x is replaced by a similar, cheaper, x−. The list
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x− ∨ y would lead to delivery of x− (the strictly cheaper alternative), which has almost

the same utility as x, implying that Ũ(x− ∨ y) = U(x−) > Ũ(x ∨ y).

Consider the cheapest consumption plans, at prices p, in the list Mi(x̃i), denoted

Ỹi(x̃i, p). Select an alternative among those that have the highest utility, and denote it

by Yi(x̃i, p) (the arbitrary selection operator is denoted S).

Ỹi : (IF(IRL+))S ×∆SL −→ (IF(IRL+))S;

Ỹi(x̃i, p) = {x ∈ IRSL+ : x ∈ arg min
z∈Mi(x̃i)

{p · z}};

Yi : (IF(IRL+))S ×∆SL −→ IRL+;

Yi(x̃i, p) = S
[
x ∈ IRSL+ : max

xi∈Ỹi(x̃i,p)
Ui(xi)

]
.

The utility of a plan of lists is equated to the utility of this cheapest plan of bundles

(expected delivery). As a result, the preferences of rational agents over lists only depend

on p, and not on its extension to lists, p̃.

Assumption 6.1.

Ũi(x̃i, p̃) = Ui(Yi(x̃i, p)).

The problem of agent i can be written as: max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃) = max
x̃i∈Bi(p̃)

Ui(Yi(x̃i, p)).

Recall that if a plan, x̃i, maximizes utility in the budget set of agent i, then the plan

Mi(x̃i), which is Pi-measurable, also does. The utility is the same and the price of Mi(x̃i),

by Corollary 5.2, is not higher. Agents can maximize by accessing only Pi-measurable

plans of lists.

x̃i ∈ arg max
z̃i∈Bi(p̃)

Ũi(z̃i, p̃)⇒Mi(x̃i) ∈ arg max
z̃i∈Bi(p̃)

Ũi(z̃i, p̃).

We could restrict our attention to lists that are measurable with respect to the agent’s

private information. A natural refinement of the equilibrium set is to impose Pi-

measurability of the lists chosen by the agents.

Proposition 6.2.

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Then:

(M(x̃∗), x∗, p̃∗) is also an equilibrium of the economy with uncertain delivery.
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6.4 Essential equilibria

Lists that are not chosen in equilibrium may be strictly cheaper than the cheapest bundle

in the list. In this case, we can raise the price of this list to equal the price of the cheapest

bundle, remaining in equilibrium. If these lists were not bought by the agents before the

price raise, then they would remain not being bought after their price goes up.

We designate by essential price systems those that are such that the prices of lists

coincide with the price of the cheapest alternative contained in the list.

Definition 6.2.

The price system p̃ is an essential price system if and only if:

∀z̃ ∈ (IF(IRL+))S : p̃(z̃) = min
z∈z̃
{p · z}.

Observe that, if p̃ is an essential price system:

p̃s(x̃si ) = min
zs
i∈x̃s

i

{ps · zsi };

p̃(x̃i) =
S∑
s=1

p̃s(x̃si ) =
S∑
s=1

min
zs
i∈x̃s

i

{ps · zsi }.

The budget restriction faced by agent i becomes:

B̃i(p) =

{
x̃i ∈ (IF(IRL+))S :

S∑
s=1

min
zs
i∈x̃s

i

{ps · zsi } ≤
S∑
s=1

ps · esi = p · ei

}
.

A further refinement of the equilibrium set is to impose that the price system is essential

and to remove the irrelevant alternatives in the lists (those that do not affect the price of

the list and that are never delivered), making x̃∗ = M(x∗). We designate such equilibria

as essential equilibria.

Definition 6.3.

Let (x̃∗, x∗, p̃∗) be an equilibrium such that:

i) x̃∗ = M(x∗), that is, x̃∗i = Mi(x
∗
i ), for i = 1, ..., n;

ii) p̃∗ is an essential price system, defined by p̃(z̃) = min
z∈z̃
{p · z}, ∀z̃ ∈ (IF(IRL+))S.

Then, we say that the pair (x∗, p∗) is an essential equilibrium of the economy with

uncertain delivery.
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For every equilibrium of the economy with uncertain delivery, (x̃∗, x∗, p̃∗), there exists

an essential equilibrium, (x∗, p∗), that is equivalent in the sense that:

- the allocation is the same, x∗;

- prices of consumption plans coincide (p∗ · z = p̃∗(z), ∀z ∈ IRSL+ );

- selected lists, Mi(x
∗
i ), do not contain irrelevant alternatives, i.e., alternatives that

are never delivered.

Proposition 6.3.

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Recall that

prices of singleton lists are denoted by p∗. Let q̃∗(z̃) = min
z∈z̃
{p∗ · z}. Then:

i) ∀ỹ∗ s.t. x∗ ⊆ ỹ ⊆M(x̃∗) : (ỹ∗, x∗, q̃∗) is also an equilibrium.

ii) (x∗, p∗) is an essential equilibrium.18

6.5 Deliverability

Suppose that an agent bought a plan of singleton lists for delivery in two possible states

of nature, x̃ = (xs, xt). If the agent can distinguish states s and t, then M(x̃) = (xs, xt),

and thus delivery of xs in state s and xt in state t is guaranteed. If the agent cannot

distinguish the two states, then we have M(x̃) = (xs ∨ xt, xs ∨ xt). As a result: in state

s, the agent receives the cheapest of the two alternatives according to ps; and, in state

t, the cheapest according to pt.

An agent that buys x̃ always receives one of the cheapest bundles in Mi(x̃), therefore,

the bundle that is delivered in state s cannot be more expensive (according to prices for

delivery in state s) than any of the bundles that are delivered in states t ∈ Pi(s):

∀t ∈ Pi(s) : ps · xs ≤ ps · xt.

The plans that are deliverable depend on prices, and this dependence is described by the

deliverability correspondence defined below.

18It should be clear that q∗ coincides with p∗.
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Definition 6.4.

Ci : ∆SL � IRSL+ ;

Ci(p) =

{
xi ∈ IRSL+ : ∀s ∈ Ω, ps · xsi = min

t∈Pi(s)
{ps · xti}

}
.

A consumption plan is deliverable, xi ∈ Ci(p), if and only if there exists a Pi-measurable

list of which xi is the cheapest alternative. It is enough to check whether or not xi is the

cheapest alternative in the list Mi(xi).

We can formulate the problem of the agent, equivalently, as a choice over lists or as

a choice over consumption plans. The following propositions make this precise.

Proposition 6.4.

Let p̃ be an essential price system, x̃i ∈ arg max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃), and xi = Yi(x̃i, p). Then:

xi ∈ arg max
xi∈Bi(p)∩Ci(p)

Ui(xi).

Proposition 6.5.

Let p̃ be an essential price system, and xi ∈ arg max
xi∈Bi(p)∩Ci(p)

Ui(xi). Then:

Mi(xi) ∈ arg max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃).

This equivalence leads us to reformulate the notion of essential equilibrium.

Proposition 6.6.

The pair (x∗, p∗) is an essential equilibrium of the economy with uncertain delivery if

and only if:

(1) Each agent’s choice is optimal, x∗i ∈ arg max
xi∈Bi(p∗)∩Ci(p∗)

Ui(xi).

(2) The allocation, x∗, is feasible. That is,
∑
i

x∗i ≤
∑
i

ei.

Notice that this can be seen as an alternative definition that does not use preferences

over lists, Ũi, nor prices over lists, p̃. This means that we are ready to compare an
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equilibrium of the economy with uncertain delivery with the equilibrium with public

state verification (Arrow-Debreu-McKenzie under uncertainty) and the equilibrium with

differential information proposed by Radner (1968). Everything boils down to the choice

sets. In Arrow-Debreu-McKenzie: XAD
i = IRSL+ ; in Radner (1968): XR

i = IRSL+ ∩Pi; here:

Xi(p) = IRSL+ ∩ Ci(p). It should be clear that, for all prices p:

XAD
i ⊆ Xi(p) ⊆ XR

i .

7 Existence of equilibrium

If the correspondence from prices to the deliverable budget set were continuous, existence

of equilibrium would be guaranteed (we could apply Berge’s Maximum Theorem, and

then Kakutani’s Fixed Point Theorem). But, as we illustrate in Appendix 3, Ci(p) is

not lower hemicontinuous (this property fails when prices in some state are null, or when

prices in two undistinguished states are collinear).

7.1 A sequence of economies

In order to establish existence of equilibrium, we construct a sequence of economies. In

these economies, the choice set is not constrained to satisfy the endogenous deliverability

restrictions. But violating these restrictions implies an utility penalty. The penalty is a

function of the greatest of the differences between the cheapest bundles and the bundles

that are delivered.

These economies have no relation with reality. They are an artifice to establish

existence of equilibrium.

In the economy E j, if state s occurs, the utility penalty imposed on agent i is:

Zjs
i (xi, p) = j max

t∈Pi(s)
{ps · xsi − ps · xti}.

Since s ∈ Pi(s), the maximum is at least zero, thus penalties are never negative. Penalties

increase along the sequence of economies, and this is actually the only difference between

the economies in the sequence.

In the economy E j, the utility functions of the agents are:
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U j
i (xi, p) = Ui(xi)− j

S∑
s=1

µsi max
t∈Pi(s)

{ps · xsi − ps · xti}.

For any j ∈ IN, the utility functions are continuous in prices and bundles, (xi, p) ∈
IRSL+ × ∆SL. The maximum of linear functions is a convex function, and multiplying

a convex function by a negative constant, −j, yields a concave function. Hence, the

objective function, U j
i (xi, p), is concave in the first variable. Observe also that the utility

penalty preserves the property of no satiation. The plan xi + ε1̄ is always preferred to xi

(observe that the utility penalty remains constant). The fact that the utility functions

depend (continuously) on prices does not interfere with existence of equilibrium.19

Lemma 7.1.

Let E j be an Arrow-Debreu-McKenzie economy such that, for each agent i:

- initial endowments are strictly positive, ei � 0;

- the utility functions are U j
i (xi, p) = Ui(xi)− j

S∑
s=1

µsi max
t∈Pi(s)

{ps · xsi − ps · xti}, with

Ui(xi) continuous, concave and weakly increasing.

Then, there exists an Arrow-Debreu-McKenzie equilibrium.

The sequence of economies has a sequence of equilibria, {(xj, pj)}j∈IN, in the compact

set that contains the total endowments of the economy, [0, eT ]n×∆SL, where eT =
∑

i ei.

There exists a subsequence that converges. For the limit, (x∗, p∗), to be an essential

equilibrium of the original economy, the following conditions must be satisfied:

(1) Feasibility:
∑

i x
∗
i ≤

∑
i ei = eT ;

(2) Budget restriction: ∀i : p∗ · x∗i ≤ p∗ · ei;

(3) Deliverability: ∀i : x∗i ∈ Ci(p∗);

(4) Optimality: ∀i : xi ∈ Bi(p
∗) ∩ Ci(p∗)⇒ Ui(x

∗
i ) ≥ Ui(xi).

7.2 The first three conditions

It is straightforward to show that the first three conditions are satisfied.

19With price dependent preferences, it is known that equilibrium exists (Arrow and Hahn, 1971). In
the context of economies with uncertain delivery, see our previous paper (2008).
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Lemma 7.2.

Consider a sequence of economies {E j}+∞
j=1 defined as in Lemma 7.1, and a corresponding

sequence of equilibria, {xj, pj}+∞
j=1.

Then, the sequence of equilibria has an accumulation point, (x∗, p∗), that satisfies:

(1) Feasibility:
∑

i x
∗
i ≤

∑
i ei = eT ;

(2) Budget restriction: p∗ · x∗i ≤ p∗ · ei, ∀i;

(3) Deliverability: x∗i ∈ Ci(p∗), ∀i.

The difficult part of the proof is to verify condition (4): that the limit, (x∗, p∗), maximizes

the utility of the agents in the deliverable budget set, Bi(p
∗) ∩ Ci(p∗). The fact that

Ci is not lower hemicontinuous (as shown in Appendix 3) could prevent (x∗, p∗) from

being optimal. There could be a deliverable consumption plan yi ∈ Bi(p
∗) ∩Ci(p∗) that

is not even nearly deliverable in the economies in the sequence. In spite of having a

low utility level for high j (because of the penalty), this bundle could be optimal in the

original economy, and, in this case, (x∗, p∗) would not be an equilibrium (an example of

non-existence of equilibrium is given in Appendix 2).

For this fourth condition to hold, we need extra assumptions. One is the existence of

an agent that prevents prices from being null. We now introduce this agent.

7.3 The ε-agent

The ε-agent can have an arbitrarily small endowment (this is why it is called an ε-agent),

but is perfectly informed and has a utility function with bounded marginal utilities. Be-

low a certain price level, the demand of such an agent exceeds the aggregate endowment.

The effect of introducing this agent is to impose a strictly positive lower bound on

equilibrium prices (in the sequence of economies and in the limit).

Lemma 7.3.

Let the agent ε be such that: (i) Pε(s) = {s}, ∀s ∈ Ω; (ii) Uε is continuously differ-

entiable, strictly increasing and concave; and (iii) eε � 0.

Consider a sequence of prices, {pn}n∈IN, that converges to the boundary of the simplex

(∃s, l : lim
n→+∞

psln = 0).
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Then, for sufficiently large n, the demand of agent ε for at least one of the goods is

greater than the aggregate endowment of this good.

7.4 The fourth condition

To prove the fourth condition, and establish existence of equilibrium, we make two

additional assumptions: that there is an ε-agent in the economy; and that agents have

equal preferences in states that they do not distinguish.

Theorem 1.

Consider an economy with uncertain delivery, E ≡ (ei, ui, µi, Pi)
n
i=1, such that:

- Preferences are represented by a vector of Von Neumann-Morgenstern (1944) utility

functions usi : IRL+ → IR, which are continuous, concave and weakly increasing.

- Preferences are the same in undistinguished states: t ∈ Pi(s)⇒ uti(·) = usi (·).

- Initial endowments are constant across undistinguished states, ei ∈ IR+ ∩ Pi.20

- One of the agents is an ε-agent: (i) Pε(s) = {s}, ∀s ∈ Ω; (ii) Uε is continuously

differentiable, strictly increasing and concave; and (iii) eε � 0.

Then, there exists an equilibrium of the economy with uncertain delivery.

The strategy of the proof is to assume (by way of contradiction) that there exists a x′i

in Bi(p
∗)∩Ci(p∗) that is preferred to x∗i , and then find that there exists a similar xi which

belongs to Bi(p
j)∩Ci(pj), for large j. This contradicts that (xj, pj) is an equilibrium of

E j, because xi would also be preferred to xji in the economy E j.

20It is not necessary to consider that endowments are strictly positive because the ε-agent guarantees
irreducibility (McKenzie, 1981).
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8 Concluding remarks

We have introduced a new general equilibrium model of trade ex ante with differential

information. The agents make state-contingent trade contracts before receiving their

private information, and then use their private information to enforce contracts.

It is crucial that the information provided by the agents to enforce contracts is not

aggregated by any institution. Otherwise, such an institution could announce the true

state of nature, and the economy would be as described by Debreu (1959, chapter 7).

Agents find it useful to trade lists, which are a sort of incomplete contracts (an agent

that buys a list has to accept any possible outcome compatible with the list). We have

shown that these contracts are enforceable if and only if agents select Pi-measurable

plans of lists.

Using a no-arbitrage argument, we found a fundamental value property of prices: the

price of a plan of lists is equal to the price of the cheapest consumption plan that is

compatible with the plan of lists. Furthermore, we found that an agent that buys a plan

of lists should expect to receive this cheapest consumption plan.

Endowments and preferences were assumed to be constant across states that the

agent does not distinguish (Pi-measurable). While the assumption of Pi-measurable

endowments is used to analyze arbitrage and short selling, preferences are only assumed

to be Pi-measurable for the existence result.

For the existence result, we also needed to introduce in the economy the ε-agent, who

guarantees that if some price converges to zero, then aggregate demand becomes greater

than the aggregate endowment. Without such an assumption, equilibrium may not exist,

as shown by the counter-example in Appendix 2.

The ε-agent could be removed if we: (i) assume that, for any state of nature, there

exists an agent that can prove that it is the true state (∀s,∃i : Pi(s) = {s}); and (ii)

impose adequate bounds on marginal utility to guarantee that aggregate demand grows

beyond the aggregate endowment, when some price approaches zero.

Finally, we remark that a model in which all trade is ex ante does not cover the cases

in which agents arrive at the market with different information (Akerlof, 1970), a setting

in which trade is at the interim stage. The contributions of Radner (1979) and Allen

(1981) suggest that, in this setting, prices reveal all the private information of the agents.
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In a model of trade ex ante, prices cannot reveal the information of the agents, because

agents haven’t received their information yet.

The consequences of allowing trade after agents receive their information (ex post)

remain to be examined. This is left for future research.

Appendix 1: The proofs

Proposition 5.1:

Absence of arbitrage opportunities implies that:

∀x̃i, ỹi ∈ IF(IRSL+ ) : p̃(x̃i ⊕ ỹi) = p̃(x̃i) + p̃(ỹi).

Proof of Proposition 5.1:

Let z̃i = x̃i ⊕ ỹi = {zi ∈ IRSL+ : ∃xi ∈ x̃i, yi ∈ ỹi, zi = xi + yi}.

If p̃(z̃i) < p̃(x̃i) + p̃(ỹi), then an agent can buy z̃i and sell both lists x̃i and ỹi. By construction

of z̃i, for each zsi ∈ z̃si , there exist xsi ∈ x̃si and ysi ∈ ỹsi such that xsi + ysi = zsi . When receiving

zsi , the agent has enough resources to deliver xsi and ysi , in order to keep the contracts for

delivery of x̃i and ỹi. In the process, the agent retains some rent.

If p̃(z̃i) > p̃(x̃i)+ p̃(ỹi), then an agent can sell z̃i and buy both lists x̃i and ỹi. Receiving xsi ∈ x̃si
and ysi ∈ ỹsi , the agent delivers zsi = xsi + ysi , keeping the contract for delivery of z̃i. Again, the

agent retains some rent. QED

Proposition 5.2:

Absence of arbitrage opportunities implies that:

x̃ ⊆ ỹ ⇒ p̃(ỹ) ≤ p̃(x̃).

Proof of Proposition 5.2:

If p̃(x̃) < p̃(ỹ), an agent that buys x̃ and sells ỹ retains some rent.

In each state of nature, s, the agent can use exactly what is received, xs ∈ x̃s, to keep the

contract for delivery of ỹs, because xs ∈ ỹs. QED

Proposition 6.1:
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Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Recall that the

following are true:

(i) [enforceability] x∗i ∈Mi(x̃∗i ), ∀i;

(ii) [pricing of lists] p̃∗(x̃∗i ) = p̃∗(Mi(x̃∗i )) ≤ p∗ · x∗i , ∀i;

(iii) [no satiation] p̃∗(x̃∗i ) = p∗ · ei, ∀i;

(iv) [feasibility]
∑
i

x∗i ≤
∑
i

ei.

Then, for each i = 1, ..., n:

(1) p̃∗(x̃∗i ) = min
x∈Mi(x̃∗i )

{p∗ · x};

(2) x∗i ∈ arg min
x∈Mi(x̃∗i )

{p∗ · x}.

Proof of Proposition 6.1:

Suppose that the lists x̃∗i is strictly cheaper than the corresponding delivery, x∗i :

∃i : p̃∗(x̃∗i ) < p∗ · x∗i .

Summing across agents, using (ii):
∑
i

p̃∗(x̃∗i ) <
∑
i

p∗ · x∗i .

By no satiation (iii):
∑
i

p̃∗(x̃∗i ) =
∑
i

p∗ · ei.

This implies that the equilibrium allocation is not feasible.∑
i

p∗ · ei <
∑
i

p∗ · x∗i ⇒ ∃(s, l) :
∑
i

esli <
∑
i

xsl∗i .

Contradiction that, together with (ii), proves that: p̃∗(x̃∗i ) = p̃∗(Mi(x̃∗i )) = p∗ · x∗i .

Using Corollary 5.1, we finish the proof.
p̃∗(x̃∗i ) ≤ min

z∈Mi(x̃∗i )
{p∗ · z}

p̃∗(x̃∗i ) = p∗ · x∗i ≥ min
z∈Mi(x̃∗i )

{p∗ · z}
⇒ p̃∗(x̃∗i ) = p∗ · x∗i = min

z∈Mi(x̃∗i )
{p∗ · z}.

QED

Proposition 6.2:

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Then:

(M(x̃∗), x∗, p̃∗) is also an equilibrium of the economy with uncertain delivery.

Proof of Proposition 6.2:

The price of M(x̃∗) is not higher (Corollary 5.2) and the utility is the same (Assumption 4.2).
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If x̃i solves the problem of the agent, then Mi(x̃i) also does. QED

Proposition 6.3:

Let (x̃∗, x∗, p̃∗) be an equilibrium of the economy with uncertain delivery. Recall that prices of

singleton lists are denoted by p∗. Let q̃∗(z̃) = min
z∈z̃
{p∗ · z}. Then:

i) ∀ỹ∗ s.t. x∗ ⊆ ỹ ⊆M(x̃∗) : (ỹ∗, x∗, q̃∗) is also an equilibrium.

ii) (x∗, p∗) is an essential equilibrium.

Proof of Proposition 6.3:

By Proposition 6.2, (M(x̃∗), x∗, p̃∗) is an equilibrium of the economy with uncertain delivery.

If Mi(x̃∗) solves the problem of agent i under prices p̃∗, then it also solves the problem of the

agent under prices q̃∗.

This is so because: (i) the price of Mi(x̃∗) remains the same, q̃∗(Mi(x̃∗)) = p̃∗(Mi(x̃∗)); (ii)

prices of other lists do not decrease, ∀z ∈ (IF(IRL+))S : q̃∗(z̃) ≥ p̃∗(z̃); and (iii) preferences

remain the same, q∗ = p∗ ⇒ Ũi(·, q̃∗) = Ũi(·, p̃∗).

The price and the utility of Mi(x∗i ) and Mi(x̃∗i ) are the same, thus (M(x∗), x∗, q̃∗) is also an

equilibrium of the economy with uncertain delivery.

The same applies to any ỹ∗ s.t. x∗ ⊆ ỹ ⊆M(x̃∗) QED

Proposition 6.4:

Let p̃ be an essential price system, x̃i ∈ arg max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃), and xi = Yi(x̃i, p). Then:

xi ∈ arg max
xi∈Bi(p)∩Ci(p)

Ui(xi).

Proof of Proposition 6.4:

Suppose that there exists yi ∈ Bi(p) ∩ Ci(p) that is preferred to xi:

Ui(yi) > Ui(xi).

Since yi ∈ Ci(p):

Ũi(Mi(yi), p̃) ≥ Ui(yi) > Ui(xi) = Ũi(x̃i, p̃).

Since p̃ is an essential price system:

p̃(x̃i) = p · xi and p̃(Mi(yi)) = p · yi.

If yi ∈ Bi(p), then Mi(yi) ∈ Bi(p̃). Contradiction. QED
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Proposition 6.5:

Let p̃ be an essential price system, and xi ∈ arg max
xi∈Bi(p)∩Ci(p)

Ui(xi). Then:

Mi(xi) ∈ arg max
x̃i∈Bi(p̃)

Ũi(x̃i, p̃).

Proof of Proposition 6.5:

We know that Ũi(Mi(xi), p̃) = Ui(xi)

Suppose that there exists ỹi ∈ Bi(p̃) that is preferred to Mi(xi):

Ũi(ỹi, p̃) > Ũi(Mi(xi), p̃)

Let yi = Yi(ỹi, p). Then:

Ui(yi) = Ũi(ỹi, p̃) > Ũi(Mi(xi), p̃) = Ui(xi).

Since p̃ is an essential price system:

ỹi ∈ Bi(p̃)⇒ yi ∈ Bi(p). Contradiction. QED

Proposition 6.6:

The pair (x∗, p∗) is an essential equilibrium of the economy with uncertain delivery if and only

if:

(1) Each agent’s choice is optimal, x∗i ∈ arg max
xi∈Bi(p∗)∩Ci(p∗)

Ui(xi).

(2) The allocation, x∗, is feasible. That is,
∑
i

x∗i ≤
∑
i

ei.

Proof of Proposition 6.6:

The proof follows from Definitions 6.1 and 6.3 and from Propositions 6.4 and 6.5. QED

Lemma 7.1:

Let Ej be an Arrow-Debreu-McKenzie economy such that, for each agent i:

- initial endowments are strictly positive, ei � 0;

- the utility functions are U ji (xi, p) = Ui(xi)− j
S∑
s=1

µsi max
t∈Pi(s)

{ps · xsi − ps · xti}, with Ui(xi)

continuous, concave and weakly increasing.

Then, there exists an Arrow-Debreu-McKenzie equilibrium.

Proof of Lemma 7.1:

Restrict the choice set to the compact [0, T ], with T = 2
∑

i ei.
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Consider correspondences, ψi, which assign to given prices, p, bundles, x′i, that maximize

U ji (xi, p) in the budget set, Bi(p).

ψi : [0, T ]n ×∆SL −→ [0, T ];

x′i ∈ ψi(x, p)⇔ x′i = arg max
xi∈Bi(ei,p)

U ji (xi, p) , ∀i.

Consider also a correspondence, ψp, that assigns to the total demand,
∑

i xi, the prices, p′,

which maximize the value of excess demand:

ψp : [0, T ]n ×∆SL −→ ∆SL;

p′ ∈ ψp(x, p)⇔ p′ = arg max
p∈∆SL

{p ·
∑
i

(xi − ei)}.

The objective functions, U ji and Vp(x, p) = p ·
∑

i(xi − ei), are continuous, and Bi(p) is a

continuous correspondence. We can, therefore, use Berge’s Maximum Theorem to show that

each of the correspondences ψi and ψp is upper hemicontinuous with non-empty and compact

values. They also have convex values because the objective functions are concave. The product

correspondence retains these properties and maps a compact set into itself:

ψ ≡
n∏
i=1

ψi × ψp;

ψ : [0, T ]n ×∆SL −→ [0, T ]n ×∆SL;

(x′, p′) ∈ ψ(x, p)⇔ x′i ∈ ψi(x, p), ∀i and p′ ∈ ψp(x, p).

Existence of a fixed-point, (x∗, p∗), follows from Kakutani’s Theorem.

It is clear that x∗i solves the problem of agent i.

The fact that p∗ maximizes the value of excess demand implies that:

p′ ·
∑

i(x
∗
i − ei) ≤ p∗ ·

∑
i(x
∗
i − ei) ≤ 0, for all p′ ∈ ∆SL.

Making p′ = ej = (0, ..., 1, ..., 0), for each j, shows that x∗ is feasible:
∑

i(x
∗
i − ei) ≤ 0.

The usual extension from [0, T ]n to IRnSL+ applies. QED

Lemma 7.2:

Consider a sequence of economies {Ej}+∞j=1 defined as in Lemma 7.1, and a corresponding

sequence of equilibria, {xj , pj}+∞j=1.

Then, the sequence of equilibria has an accumulation point, (x∗, p∗), that satisfies:

(1) Feasibility:
∑

i x
∗
i ≤

∑
i ei = eT ;

(2) Budget restriction: p∗ · x∗i ≤ p∗ · ei, ∀i;
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(3) Deliverability: x∗i ∈ Ci(p∗), ∀i.

Proof of Lemma 7.2:

Conditions (1) and (2) follow from the fact that (x∗, p∗) is the limit of a sequence of equilibria.

(1) The set of feasible allocations is closed, and the limit allocation, x∗i , is the limit of a sequence

of feasible allocations, therefore it is feasible.

(2) The limit allocation, x∗i , is the limit of a sequence of allocations in the sequence of budget

sets. Therefore, it also belongs to the limit budget set.

Suppose that x∗i does not satisfy the budget restriction of agent i. Let α = 3‖eT ‖ + 1, and

select ε > 0 such that p∗ · x∗i − p∗ · ei = αε. Choosing a sufficiently high j, we can guarantee

that ‖x∗ − xj‖ < ε and ‖p∗ − pj‖ < ε. With pj = p∗ + dp, xj = x∗i + dxi, and manipulating:

(p∗ + dp) · (x∗i + dxi)− (p∗ + dp) · ei = p∗ · x∗i − p∗ · ei + p∗ · dxi + dp · x∗i + dp · dxi − dp · ei =

= αε+ (p∗ + dp) · dxi + dp · (x∗i − ei) > αε− ε− ε · 3‖eT ‖ = 0.

This means that xj would not satisfy the budget restriction of Ej . Contradiction.

(3) The limit allocation, x∗, satisfies the deliverability restrictions in the limit economy. To see

this, suppose that x∗ violated one of the restrictions by more than δ > 0, then, for a sufficiently

high j, xj would also violate the same restriction by more than δ. That is, for t ∈ P si , ∃j0 ∈ IN:

ps∗ · xs∗ > ps∗ · xt∗ + δ ⇒ psj · xsj > psj · xtj + δ, for all j > j0.

Utility among feasible allocations is bounded by Ui(eT ), so we can consider a j that is sufficiently

high for jδ > Ui(eT )− Ui(ei). It would follow that U ji (xj) < Ui(xj)− jδ < Ui(xj)− Ui(eT ) +

Ui(ei) < Ui(ei) = U ji (ei), which is a contradiction. QED

Lemma 7.3:

Let the agent ε be such that: (i) Pε(s) = {s}, ∀s ∈ Ω; (ii) Uε is continuously differentiable,

strictly increasing and concave; and (iii) eε � 0.

Consider a sequence of prices, {pn}, that converges to the boundary of the simplex

(∃s, l : lim
n→+∞

psln = 0).

Then, for sufficiently large n, the demand of agent ε for at least one of the goods is greater

than the aggregate endowment of this good.

Proof of Lemma 7.3:

Define the set E = {x ∈ IRSL+ : Uε(x) ≥ Uε(eε) ∧ x ≤ 2
∑

i ei}.

Find the minimum and the maximum of the partial derivatives of the utility function in the
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compact set E. Let asl = min
x∈E

∂Uε
∂xsl

and bsl = max
x∈E

∂Uε
∂xsl

. Let a = min
sl∈SL

asl and b = max
sl∈SL

bsl.

To satisfy the equalities between marginal rates of substitution and price ratios, for the

demand to be an element of E, we must have: a
b ≤

psl

ps′l′ ≤ b
a , ∀s, l, s

′, l′.

For sufficiently large n, this is not true. For at least one commodity, demand becomes

greater than the aggregate endowment. QED

Theorem 1:

Consider an economy with uncertain delivery, E ≡ (ei, ui, µi, Pi)ni=1, such that:

- Preferences are represented by a vector of Von Neumann-Morgenstern (1944) utility

functions usi : IRL+ → IR, which are continuous, concave and weakly increasing.

- Preferences are the same in undistinguished states: t ∈ Pi(s)⇒ uti(·) = usi (·).

- Initial endowments are constant across undistinguished states, ei ∈ IR+ ∩ Pi.

- One of the agents is an ε-agent: (i) Pε(s) = {s}, ∀s ∈ Ω; (ii) Uε is continuously differen-

tiable, strictly increasing and concave; and (iii) eε � 0.

Then, there exists an equilibrium of the economy with uncertain delivery.

Proof of Theorem 1:

It is not necessary to consider that endowments are strictly positive because the ε-agent guar-

antees irreducibility (McKenzie, 1981).21

In the presence of the ε-agent, we are sure that the limit of the sequence of equilibrium prices

is in the interior of the simplex.

Given Lemma 7.1 and Lemma 7.2, all that is left to prove is (4), which states that the limit of

the sequence of equilibria (x∗, p∗) is composed by optimal choices in the original economy with

uncertain delivery, that is:

∀i : xi ∈ Bi(p∗) ∩ Ci(p∗)⇒ Ui(x∗i ) ≥ Ui(xi).

Assume, by way of contradiction, that there exists a yi ∈ Bi(p∗) ∩ Ci(p∗) such that Ui(yi) >

Ui(x∗i ).

We need to show that this would imply that, for high j, (xj , pj) is not an equilibrium of Ej .

A preliminary remark

21Notice that, dividing the agents in two groups: the group that has the ε-agent strictly desires the
endowments of the other group; and has endowments that are strictly desired by the other group.
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Suppose that prices for delivery in s and in t ∈ Pi(s) are parallel: p∗s = ap∗t. The two

deliverability conditions that involve prices p∗s and p∗t yield equalities.{
p∗s · ysi ≤ p∗s · yti
p∗t · yti ≤ p∗t · ysi

⇒

{
ap∗t · ysi ≤ ap∗t · yti
p∗t · yti ≤ p∗t · ysi

⇒

{
p∗s · ysi = p∗s · yti
p∗t · yti = p∗t · ysi

The two consumption bundles, ysi and yti , must cost the same in both states. The utility

functions usi and uti are also equal, because s and t belong to the same element of the agent’s

partition of information. If usi (y
s
i ) > usi (y

t
i), then the agent would be better off selecting ysi for

consumption in both states. Thus, we must have usi (y
s
i ) = usi (y

t
i). Since the utility functions

are concave, the agent is not worse off consuming the average bundle in both states. Notice that

if the original vector satisfies the deliverability conditions, then this average vector also does.

Define the consumption vector x′′i by modifying yi, considering this average bundle whenever

there are two parallel prices. Therefore, we will have x′′si = x′′ti whenever p∗s = ap∗t.

Main argument of the proof

Reformulating, we assume that there exists a x′′i ∈ Bi(p∗) ∩ Ci(p∗) such that Ui(x′′i ) > Ui(x∗i ),

with x′′si = x′′ti whenever p∗s = ap∗t.

The neighbor x′i = (1 − δ)x′′i is still preferred to x∗i (for small δ > 0), also belongs to Ci(p∗),

and belongs to the interior of the budget sets in E and Ej (for high j):

Ui(x′i) > Ui(x∗i ); p∗ · x′i < p∗ · ei; pj · x′i < pj · ei.

Since the utility functions are continuous, there exists a radius ε > 0 such that the neighbors

of x′i are still preferred to x∗i and, therefore, to xji , for high j (according to Ui, which does not

include the possible utility penalty):

d(xi, x′i) < ε⇒ Ui(xi) > Ui(x
j
i ), for sufficiently high j.

We are assuming that the bundle x′i satisfies the deliverability conditions for the equilibrium

prices p∗. Consider, without loss of generality, the following element of the agent’s information

partition: Pi(s) = {1, ..., s}. It should be clear that this reasoning extends to all the elements

of Pi. The conditions for delivery in these states are written below, with all kij ≥ 0.
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

p∗1 · x′1i ≤ p∗1 · x′2i ;

...

p∗1 · x′1i ≤ p∗1 · x′si ;

p∗2 · x′2i ≤ p∗2 · x′1i ;

...

p∗2 · x′2i ≤ p∗2 · x′si ;

...

...

p∗s · x′si ≤ p∗s · x′1i ;

...

p∗s · x′si ≤ p∗s · x
′s−1
i .

⇔



p∗1 · x′2i − p∗1 · x′1i = k12 ≥ 0;

...

p∗1 · x′si − p∗1 · x′1i = k1s ≥ 0;

p∗2 · x′1i − p∗2 · x′2i = k21 ≥ 0;

...

p∗2 · x′si − p∗2 · x′2i = k2s ≥ 0;

...

...

p∗s · x′1i − p∗s · x′si = ks1 ≥ 0;

...

p∗s · x′s−1
i − p∗s · x′si = ks,s−1 ≥ 0.

We will find an xi that is a neighbor of x′i and belongs to Ci(pj) (which contradicts the fact

that the allocation xj is an equilibrium of Ej). This would prove (4) by contradiction.

Let d(xi, x′i) < ε. We already know that U(xi) > U(x∗i ). Consider a sufficiently high j for

Ui(xi) > Ui(x
j
i ) and also for d(pj , p∗) < ε.

Case 1: All inequalities are such that kst > 0.

Denote dxi = xi − x′i and dpj = pj − p∗. Pick the lowest kst among those that are strictly

positive and denote it by kmin. Manipulating the condition which guarantees that in state s,

the bundle x′si is not more expensive than x′ti :

p∗s · x′ti − p∗s · x′si = (pjs − dpjs) · (xti − dxti)− (pjs − dpjs) · (xsi − dxsi ) = kst ⇔

⇔ pjs · xti − pjs · xsi = kst + pjs · dxti + dps · (xti − dxti)− pjs · dxsi − dps · (xsi − dxsi )⇔

⇔ pjs · xti − pjs · xsi > kst − ε− ε(‖eT ‖+ ε)− ε− ε(‖eT ‖+ ε)⇔

⇔ pjs · xti − pjs · xsi > kst − 2ε− 2ε(‖eT ‖+ ε) = kst − 2ε(‖eT ‖+ 1 + ε).

Let ε2 = 2ε(‖eT ‖+ 1 + ε) > 0. We have:

pjs · xti − pjs · xsi > kst − ε2.

Choosing an ε > 0 small enough to make ε2 < kmin guarantees that the strict inequalities for

x′i and p∗ remain strict for any xi ∈ B(x′i, ε) and pj (with j large enough).

There is no utility penalty, therefore, U ji (xi) > U ji (xji ). We have a contradiction. The

consumption bundle in the equilibrium sequence, xji , is not a maximizer of U ji .

Case 2: For every t ∈ Pi(s), prices p∗s and p∗t are not parallel.

The difference relative to Case 1 lies in checking that the inequalities which are not strict at
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(x′i, p
∗) are still satisfied at (xi, pj) (with j large enough). The inequalities that are not strict

are those for which kst = 0.

Let γst =
(

1− p∗s · p∗t

‖p∗s‖‖p∗t‖

)
‖p∗s‖. Let γmin be the lowest of all strictly positive γst, with

t ∈ Pi(s). Since we have a lower bound on equilibrium prices, γst is only zero when prices p∗s

and p∗t are parallel (we are excluding this case, for now).

Keep xi sufficiently close to x′i in order to preserve the strict inequalities (pick ε > 0 such that

ε2 < kmin), and select displacements parallel to prices: dxsi = − ε
2
p∗s

‖p∗s‖ .

Let ε3 = εγmin

8‖eT ‖ , and consider a j that is high enough for: d(pj , p∗) < min{ε3, ε}.

Consider an inequality that is not strict, for example: p∗a ·x′bi = p∗a ·x′ai , implying that kab = 0.

Let’s verify that this generic deliverability condition still holds in Ej .

pja · xbi − pja · xai = (p∗a + dpja) · (x′bi + dxbi)− (p∗a + dpja) · (x′ai + dxai ) =

= p∗a · (x′bi + dxbi) + dpja · (x′bi + dxbi)− p∗a · (x′ai + dxai )− dpja · (x′ai + dxai ) =

= p∗a · dxbi + dpja · (x′bi + dxbi)− p∗a · dxai − dpja · (x′ai + dxai ) >

> p∗a · dxbi − ε3(‖eT ‖+ ε)− p∗a · dxai − ε3(‖eT ‖+ ε) =

= p∗a · dxbi − p∗a · dxai − 2ε3(‖eT ‖+ ε) >

> −p∗a · ε2
p∗b

‖p∗b‖ + p∗a · ε2
p∗a

‖p∗a‖ − 4ε3‖eT ‖ =

= − ε
2

p∗a·p∗b
‖p∗a‖‖p∗b‖‖p

∗a‖+ ε
2

p∗a·p∗a
‖p∗a‖‖p∗a‖‖p

∗a‖ − 4ε3‖eT ‖ =

= ε
2

p∗a·p∗a
‖p∗a‖‖p∗a‖‖p

∗a‖ − ε
2

p∗a·p∗b
‖p∗a‖‖p∗b‖‖p

∗a‖ − ε
2γ

min =

= ε
2(1− p∗a·p∗b

‖p∗a‖‖p∗b‖)‖p
∗a‖ − ε

2γ
min ≥ 0

In sum, this displacement dxi implies that:

pja · xbi − pja · xai > 0.

The deliverability condition is verified, and thus U ji (xi) > U ji (xji ). Contradiction.

Case 3: Prices p∗s and p∗t are parallel.

The same displacement as in case 2, dxsi = − ε
2
p∗s

‖p∗s‖ , is good for the case in which prices p∗a and

p∗b are parallel. In this case: x′ai = x′bi and also dxai = dxbi . Hence, xai = xbi and the conditions

remain satisfied in equality.

All deliverability conditions are satisfied, therefore: U ji (xi) = Ui(xi) > Ui(x
j
i ) ≥ U ji (xji ). The

consumption bundle in the equilibrium sequence, xji , does not maximize U ji , because xi is

preferred. This contradiction proves (4). QED
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Appendix 2: Example of non-existence of equilibrium

Consider an economy in which two agents trade a single good under uncertainty. There are

three states of nature, and their future endowments depend on the state of nature that occurs:

eA = (100, 100, 1) and eB = (1, 100, 100).

Agents only observe their endowments.

PA = {{1, 2}; {3}} and PB = {{1}; {2, 3}}.

The different states occur with objective and publicly known probabilities:

µ = (µ1, µ2, µ3) = (0.45, 0.1, 0.45).

A significant level of risk aversion induces agents to trade ex ante, in order to maximize expected

utility:

Ui(xi) =
S∑
s=1

µs
√
xsi .

Prices in states 1 and 3 must be strictly positive, or else the demands of agent B and A would

be infinite for the corresponding contingent goods.

With strictly positive prices for all the contingent goods, if agents selected different

consumption levels in states that they did not distinguish, then they would end up receiv-

ing the cheapest of the alternatives, which would be the one with the lowest consumption level.

In this case, we must have:

xA = (x12
A , x

12
A , x

3
A) and xB = (x1

B, x
23
B , x

23
B ).

Since agents are at the frontier of their budget sets:{
(p1 + p2)x12

A + p3x3
A = 100(p1 + p2) + p3;

p1x1
B + (p2 + p3)x23

B = p1 + 100(p2 + p3).

Adding the two:

p1(x12
A + x1

B) + p2(x12
A + x23

B ) + p3(x3
A + x23

B ) = 101p1 + 200p2 + 101p3.

For this to be an equilibrium, the allocation must be feasible:
x12
A + x1

B ≤ 101;

x12
A + x23

B ≤ 200;

x3
A + x23

B ≤ 101.

With strictly positive prices, the conditions are verified in equality. This implies that the

allocation is of the form:{
xA = (x12

A , x
12
A , x

3
A) = (x3

A + 99, x3
A + 99, x3

A);

xB = (x1
B, x

23
B , x

23
B ) = (x1

B, x
1
B + 99, x1

B + 99).
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The only individually rational allocation of this form corresponds to the initial endowments.

There is no trade. But are agents maximizing their utility levels?{
xA = (100, 100, 1);

xB = (1, 100, 100).
⇒

{
U(xA) = 0.45 ∗ 10 + 0.1 ∗ 10 + 0.45 ∗ 1 = 5.95;

U(xB) = 0.45 ∗ 1 + 0.1 ∗ 10 + 0.45 ∗ 10 = 5.95.

Suppose that p1 = p3. Agent A can trade consumption in s1 for consumption in s3. But

consuming less in s1 implies that delivery in s2 will also be of this lower quantity. In any case,

the agent can select:

x′1 = (x′12
1 , x′12

1 , x′31 ) = (81, 81, 20).

The corresponding utility level is:

U(x′1) = 0.45 ∗ 9 + 0.1 ∗ 9 + 0.45 ∗ 4.47 = 6.96.

In the case with asymmetric prices (p1 6= p3), the same trade is even more favorable for one

of the agents. We reached a contradiction, implying that there is no equilibrium with strictly

positive prices.

With p2 = 0, an alternative bundle can be big enough to violate feasibility and still be

deliverable. The deliverability restriction is not relevant because it is of the form 0 ·x2 ≤ 0 ·xs.
Agents can choose a consumption level for state 2 that is big enough to violate feasibility and

still desire to increase it. There cannot be a rational expectations equilibrium with p2 = 0.

Appendix 3: The deliverability correspondence

The set of bundles that satisfy the deliverability restrictions depends on the prevailing prices.

Consider the correspondence from prices to the set of deliverable bundles:

Ci : ∆SL −→ IRSL+ ;

Ci(p) =
{
x ∈ IRSL+ : ∀s ∈ Ω, ps · xs = min

t∈Pi(s)
{ps · xt}

}
.

If the correspondence Bi(p)∩Ci(p) were continuous, we could apply Berge’s maximum theorem

and Kakutani’s fixed point theorem to establish existence of equilibrium in economies with

uncertain delivery.

Upper hemicontinuity of Ci at p0 means that, given an arbitrary open set, V , containing

Ci(p0), there exists δ > 0 such that for all p ∈ B(p0, δ), we have Ci(p) ⊆ V .

The correspondence is closed since all the restrictions are inequalities which are not strict.

With a compact range, a closed-valued correspondence is upper hemicontinuous if and only if

it is closed. Therefore, when restricted to a bounded economy (for example, by the total initial

endowments in the economy), Ci is upper hemicontinuous.
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Lower hemicontinuity of Ci at p0 means that given an arbitrary open set, V , intersecting

Ci(p0), there exists δ > 0 such that for all p ∈ B(p0, δ), the image Ci(p) also intersects V .

The correspondence under study, Ci, is not lower hemicontinuous. Lower hemicontinuity

fails when prices in are null (ps = 0) or collinear (ps = apt).

When prices are null, the deliverability restrictions disappear. It is always true that 0 ·xs ≤
0 · xt. But with a small perturbation, the restrictions appear. This is why l.h.c. fails.

When prices are collinear, the failure of l.h.c. is more subtle.

Consider an economy with two goods, A and B, and two states of nature, s and t. Let

p0 = (ps0, p
t
0) = (pAs0 , pBs0 ; pAt0 , pBt0 ) = (1

4 ,
1
4 ; 1

4 ,
1
4). The bundle x0 = (1, 0; 0, 1) belongs to the

deliverable set, since:

ps0 · xs0 ≤ ps0 · xt0 ⇔ 1
4 ≤

1
4 , and

pt0 · xt0 ≤ pt0 · xs0 ⇔ 1
4 ≤

1
4 .

Delivering (1, 0) in state s and (0, 1) in state t does not violate deliverability because both

bundles have the same price in both states.

A small perturbation in prices can make (0, 1) cheaper in state s and (1, 0) cheaper in state

t. Consider an open ball around x0 with radius 0 < ε < 1
10 . After a perturbation in prices to

p = (1
4 + δ, 1

4 − δ,
1
4 − δ,

1
4 + δ), this ball does not intersect the deliverable set.

Suppose that there existed a vector dx = (εAs, εBs, εAt, εBt) such that x = (1 +

εAs, εBs; εAt, 1 + εBt) is inside that open ball and belongs to the deliverable set:

(1) (1
4 + δ, 1

4 − δ) · (1 + εAs, εBs) ≤ (1
4 + δ, 1

4 − δ) · (ε
At, 1 + εBt)⇔

⇔ (1
4 + δ)(1 + εAs) + (1

4 − δ)ε
Bs ≤ (1

4 + δ)εAt + (1
4 − δ, )(1 + εBt)⇔

⇔ 1
4 + 1

4ε
As + δ + δεAs + 1

4ε
Bs − δεBs ≤ 1

4ε
At + δεAt + 1

4 + 1
4ε
Bt − δ − δεBt ⇔

⇔ 1
4(εAs + εBs − εAt − εBt) + δ(εAs − εBs − εAt + εBt) ≤ −2δ;

(2) (1
4 − δ,

1
4 + δ) · (εAt, 1 + εBt) ≤ (1

4 − δ,
1
4 + δ) · (1 + εAs, εBs)⇔

⇔ (1
4 − δ)ε

At + (1
4 + δ)(1 + εBt) ≤ (1

4 − δ)(1 + εAs + (1
4 + δ)εBs)⇔

⇔ 1
4(εAt + 1 + εBt − 1− εAs − εBs) + δ(−εAt + 1 + 1 + εBt + εAs − εBs ≤ 0⇔

⇔ 1
4(εAt + εBt − εAs − εBs) + δ(−εAt + εBt + εAs − εBs) ≤ −2δ.

Adding the two inequalities, we obtain:

(1 + 2) δ(εAs − εBs − εAt + εBt) ≤ −2δ ⇔ εAs − εBs − εAt + εBt ≤ −2.

Which is impossible, because εAs − εBs − εAt + εBt ≥ −4ε > − 4
10 .
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