
Electronic copy available at: http://ssrn.com/abstract=1303494

 
  

 

Cowles Foundation 
    for Research in Economics 
    at Yale University 

 
 
 
 
 

Cowles Foundation Discussion Paper No. 1684 
 
 
 
 
 
 

MANAGING STRATEGIC BUYERS 
 
 

Johannes Hörner and Larry Samuelson 
 
 

November 2008 
 
 
 
 
 
 
 
 
 

An author index to the working papers in the 
Cowles Foundation Discussion Paper Series is located at: 

 http://cowles.econ.yale.edu/P/au/index.htm  
 
 
 

This paper can be downloaded without charge from the 
Social Science Research Network Electronic Paper Collection: 

http://ssrn.com/abstract=1303494 



Electronic copy available at: http://ssrn.com/abstract=1303494

Managing Strategic Buyers∗

Johannes Hörner Larry Samuelson

Department of Economics, Yale University Department of Economics, Yale University

Johannes.Horner@yale.edu Larry.Samuelson@yale.edu

November 17, 2008

Abstract

We consider the problem of a monopolist with an object to sell before some deadline,
facing n buyers with independent private values. The monopolist posts prices but has
no commitment power. We show that the monopolist can always secure at least the
larger of the static monopoly profit and the revenue from a Dutch auction with a zero
reserve price. When there are only a few buyers, her profits are higher than this bound,
and she essentially posts unacceptable prices up to the very end, at which point prices
collapse to a “reservation price” that exceeds marginal cost. When there are many
buyers, the seller abandons this reservation price in order to more effectively screen
buyers. Her optimal policy then replicates a Dutch auction, with prices decreasing
continuously over time. With more units to sell, prices jump up after each sale.
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Managing Strategic Buyers

1 Introduction

1.1 Revenue Management

The revenue management literature addresses the pricing of goods sharing three essential
characteristics: (i) there is fixed quantity of resource for sale, (ii) the resource is perishable
(i.e., there is a time after which it is valueless), and (iii) consumers have heterogeneous
valuations. Revenue management is practiced in a variety of industries, including airlines,
apparel, electricity, hotels, packaged vacations, pipelines, rental cars, and shipping.

The buyers in a standard revenue management model arrive sequentially and are perfectly
impatient. Each buyer must be served immediately or forever lost, and the only relevant
price from a buyer’s point of view is the current one.1 In contrast, this paper examines
revenue management with strategic buyers. Who hasn’t wondered whether an airline ticket
would be cheaper or more expensive tomorrow? How often must a retailer wonder whether
she should purchase her winter line of clothing now, or wait in hopes of a better price?

This paper considers a monopolist with a single unit for sale, facing a fixed, known number
of strategic buyers whose private valuations are drawn independently (and for several results,
uniformly) from the unit interval.2 The seller can set a price in each of a finite number of
instants. If the price is accepted by at least one buyer, the game ends, and otherwise the
game continues until the next instant (if there is one). There is a terminal date after which
the good has no value, if unsold. The seller cannot make commitments, in the sense that
her sequence of prices must be sequentially rational. Nonetheless, the impending end of
the game can effectively provide some commitment power. If there is only one instant, for
example, then the seller has just one chance to set a price, which will be the static monopoly
price. Our interest, however, concerns the case in which the time between successive offers,
∆, is very small: we believe that setting and reacting to prices takes time, but perhaps not
very much time, and so follow the durable-goods literature in considering the limit ∆→ 0.

It is often argued that the problem of revenue management with strategic buyers is
equivalent to that of a durable-goods monopolist.3 Our first set of results, in Section 4,

1See Talluri and van Ryzin [25] for an introduction to revenue management, and Gershkov and Moldovanu
[14] for an extension to heterogeneous objects.

2Sequential arrivals play virtually no role with strategic buyers other than to complicate the calculations,
and so we simply assume that the buyers are all present from the beginning. Similarly, discounting plays
little substantive role once we have a finite horizon, and so we retain the standard revenue-management
assumption of no discounting.

3Talluri and van Ryzin [25, p. 365], for example, contend that customers of seemingly perishable revenue-
managed goods are unlikely to buy more than one unit during the life cycle of the product, making the
product effectively infinitely lived. In addition, customers for such goods are exhausted over time. Most
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shows that conclusions from the durable-goods literature definitely do not apply to revenue
management. In particular, unlike a durable goods monopolist, a revenue-managing seller’s
expected payoff does not tend to zero as price-revision opportunities become more frequent.
Instead, the seller can always guarantee at least the static monopoly payoff. To see why,
notice that a seller with k opportunities to revise prices must necessarily get a payoff at least
as large as a seller with k − 1 such opportunities, since by charging a price above the choke
price at the first opportunity, she can be sure that no consumer will accept it (independently
of her continuation strategy), and hence that her overall payoff is at least as large as her
continuation payoff. Iterating this argument, the seller’s payoff must be at least as large as
her payoff with only a single opportunity to set prices, and hence at least as large as the
static monopoly payoff.4

Section 4 also provides an alternative lower bound—the seller earns at least as much as
she would in an optimal auction with zero reserve price. This would be immediate if the seller
could commit to a sequence of prices that finely partitions the range of buyers’ valuations.
Indeed, this is the kind of strategy described by Wilson [26] in the case of a finite number of
buyer valuations v1 < v2 < · · · < vn (see also Harris and Raviv [16]). This strategy consists
of charging, with k instants to go, a price pk for which a buyer with value vk is indifferent
between buying and delaying for one instant, so that it is optimal for the strategic buyer to
behave myopically. However, not only might this strategy fail to be sequentially rational,
but now the simple iterative logic applied in the previous argument breaks down. To see
why, suppose the payoff with k − 1 types to go is at least as large as the payoff from the
“Wilson” strategy. This says very little about the sequence of prices the seller will actually
post. Therefore, when considering the seller’s outlook with one more pricing opportunity,
and one more type vk > vk−1, it is unclear whether the price that would make this higher
type indifferent between accepting or not is at least as large as the price specified by the
“Wilson” strategy. Nonetheless, we can prove this is the case, and doing so is the key to our
result.

These results provide some information on payoffs but say little about the prices that are
charged. Does the seller allow prices to drop to marginal cost, as in the case of a durable-
goods monopoly or a zero-reserve-price auction, or does the seller effectively adopt a higher
reservation price? Section 5 shows that the range of prices that are posted depends on the
number of buyers. As long as there are at least two buyers, all prices are “serious,” that is,
they are accepted with positive probability. If the buyers are sufficiently numerous, the seller

importantly, customers are aware that the revenue management monopolist finds it difficult to commit to its
price. A good example of price dynamics consistent with such a claim is provided by the cruise-line industry
(see Talluri and van Ryzin [25, pp. 560–561] or Coleman, Meyer and Scheffman [11]), where significant,
last-minute discounts are common and customers often wait until the last minute to purchase.

4Notice that it does not suffice to simply exhibit a pricing strategy that, if followed, would yield the static
monopoly payoff—such as sitting on the choke price until the last pricing opportunity. This strategy will
typically fail to be sequentially rational.
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sets a sequence of descending prices whose limiting value approaches zero as the number of
remaining instants grows large.5 In this case, the seller’s payoff is exactly equal to that of an
optimal auction with zero reserve price. The seller here has no difficulty “committing” to a
sequence of arbitrarily small price increments that allow perfect price discrimination, but is
unable to maintain a positive reserve price.

In contrast, if buyers are scarce, the seller sets a descending sequence of prices whose
limiting value is positive, effectively committing to a positive reserve price. However, the
cost of doing so is that sequential rationality compels the seller to lower prices in lumpy
chunks, imperfectly discriminating between buyers of different valuations. The result is a
payoff higher than that of a zero-reserve-price optimal auction, but not as high as the seller
could earn if she could shed the shackles of sequential rationality and simply commit to a
sequence of prices.

This provides a description of the values of the prices that the seller posts, but does not
address the timing of these offers. For example, does the price drop to marginal cost (with
many buyers) or to its terminal value (with few buyers) “in the twinkling of an eye,” as in
the Coase conjecture? Our last set of results, in Section 6, describes the price trajectory.
We study the limiting price path (as the length ∆ of a pricing interval goes to zero), as
a function over [0, 1], the normalized horizon. With few buyers, this limit is quite simple:
the price equals the choke price, except at the very end. That is, prices do collapse in the
twinkling of an eye, but only as time expires, and not to marginal cost. With many buyers,
prices come down to marginal cost, but they do so continuously over time. In the case of the
uniform distribution, this limiting price path is a power function of the remaining time. As a
benchmark, we show that the optimal price path with commitment is also a power function,
but this function involves higher prices and does not end up at marginal cost.

Section 6 also describes the extension of our analysis to the case of multiple objects
for sale. Here, declining prices designed to screen buyers are punctuated by price jumps
whenever an object is sold. We find that closed-form solutions become elusive as we move
beyond the case of a single object, just as the calculations can be tedious for the single-unit
case.

As a technical aside, it is worth pointing out that these limiting results could not have
been obtained if the analysis had been carried out in continuous time directly. This is not only
because the limiting paths are ill-defined with few buyers, but also because, in continuous
time, all price trajectories that are continuous, decreasing and onto are revenue-equivalent,
and the analysis could not distinguish among these. To put it differently, time would lose
its meaning in that case.

5In the case of the uniform distribution, assumed here, the minimum number of buyers turn out to be
six.

3



1.2 The Literature

There are four related bodies of work. First, as we have noted, a large revenue management
literature (e.g., Talluri and van Ryzin [25]) has examined the case of a seller who faces
sequentially-arriving buyers. The standard assumption in this literature is that the buyers
are myopic, i.e. they base their decision on a comparison of the prevailing price with their
valuation. This removes all consideration of whether selling to all or some of the current
marginal buyers has any effect on next period’s optimal price, a consideration that will play
a prominent role in our analysis.6 In contrast, our buyers remain until the good is sold and
are fully strategic, constantly trading off buying the good today or waiting for a chance to
buy later at a lower price. As Besanko and Winston [4] argue, mistakenly treating forward-
looking customers as myopic may have an important impact on revenue (in their example,
the seller’s profit is more than halved as a consequence). Aviv and Pazgal [3] consider a
model with scarce supply, forward-looking consumers, and a seller who cannot commit, but
attention is restricted to two periods.

Second, the difficulties faced by a seller who cannot make commitments lies at the center
of the durable-goods monopoly problem (e.g., Ausubel and Deneckere [2] and Gul, Sonnen-
schein and Wilson [15]). The durable-good setting differs from ours in its infinite horizon
and, more importantly, in the fact that there are as many goods as buyers, with discounting
rather than scarcity providing the driving force to make agreements. In our model with a
finite horizon and no discounting, the seller can always do at least as well as waiting until
the final period and setting the monopoly price, immediately generating considerably more
commitment power than that enjoyed by a typical durable-goods monopolist. The scarcity
of the good in our setting changes the issues surrounding price discrimination, with the im-
petus for buying early at a high price now arising out of the fear that another agent will
snatch the good in the meantime, rather than discounting.7

The central dilemma facing a durable-goods monopolist is the inability to commit to not
lowering future prices. The seller would like buyers to purchase at the static monopoly price
now, on the strength of the promise that no lower price will be forthcoming, but faces an
irresistible temptation to lower prices once she has the chance. A similar phenomenon arises
in the example we present in Section 2, in that a seller facing two or three buyers would

6Several papers in this literature take into account the seller’s limited capacity, providing an analysis of
how the option value of postponing a sale to myopic consumers affects optimal pricing (e.g., Bitran and
Mondschein [5] and Gallego and van Ryzin [13]).

7Kahn [17] introduces an element of scarcity within a period by examining a durable-goods monopolist
with increasing costs, showing that this allows the seller to escape the zero-profit conclusion of the Coase
conjecture. Similarly, a sufficiently small capacity constraint (a stylized form of increased costs) introduces
scarcity within a period and allows positive profits. McAfee and Wiseman [21] show that capacity constraints
have this effect even if the seller can choose to increase the capacity constraint in any period at a nominal
cost. Cho [9] examines an alternative source of commitment, arising out of the assumption that the good
deteriorates while held by the seller.
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like to sell to type-v3 buyers first, promising to then set price v2. Unfortunately, once the
v3’s (if any) have purchased, the seller finds it optimal to set price v1 rather than v2. Unlike
in the durable-goods monopoly, however, this feature is not intrinsic to our problem. Cases
can arise (cf. our Supplementary Appendix) in which the seller’s difficulty is that she would
prefer that future prices be much lower (and hence future demand brisk, in order to make
current buyers more anxious to buy), but cannot commit to lowering them.

Third, our seller can be viewed as conducting a Dutch auction without commitment.
McAfee and Vincent [20] and Skreta [24] examine a seller who conducts a sequence of auctions
and a sequence of optimal mechanisms, respectively. As in our case, scarcity is of paramount
importance. McAfee and Vincent examine an infinite horizon with discounting, focussing
attention on the sequence of reserve prices set by the seller. As agents become more patient
(or equivalently as the time between auctions decreases), the seller’s revenue converges to
that of an optimal auction with a zero reserve price. The infinite horizon thus effectively
precludes commitment to a reserve price. Skreta concentrates on a two-period model with
discounting, finding that if buyers are symmetric, then it is optimal for the seller to conduct
an auction in each period, with a reserve price that decreases across periods.

The most important difference between our analysis and that of McAfee and Vincent
[20] or Skreta [24] is that the latter papers allow their sellers to commit to a mechanism
within each period. Especially when allowing direct mechanisms, this makes it quite difficult
to tell just what commitment power is allowed the seller. We typically interpret direct
mechanisms not as literal descriptions of the interaction between seller and buyers, but as a
way of analyzing an underlying indirect mechanism. Depending on the nature of the latter,
allowing the seller to commit to a direct mechanism in each period may invest her with
enormous commitment powers. For example, in the limit as the discount factor gets large,
the sequential mechanisms problem become trivial—the seller should simply wait until the
last period and implement an optimal mechanism. In contrast, our results remain robust to
the introduction of discounting. As a result, we consider it important to take an indirect-
mechanism approach that is specific about the actions available to the seller in each period.
We must expect the results to be sensitive to the particular indirect mechanism chosen, of
course, as repeated bargaining may give a different result than repeated price-posting, but
we see no other way of examining commitment.8

Finally, we postpone until Section 6.3 a discussion of how our work is related to Bulow
and Klemperer [7].

8For example, McAdams and Schwarz [19] examine the case of a single seller facing multiple buyers over
an infinite horizon, where delay is costly for the seller but not the buyers. The buyers make offers for the
object in each period while the seller decides only whether to accept an offer or proceed to the next period.
They find that the seller fares worse than she would in an optimal auction unless her cost of delay is very high
(allowing commitment to a first-price auction in the first period) or very low (allowing an English auction
to be run over a sequence of periods).
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2 An Example

This section illustrates our results with a simple example. Consider the seller of a single
good facing buyers whose valuations are drawn from the set {v0, v1, v2, v3} with respective
probabilities {ρ0, ρ1, ρ2, ρ3}, where

v3 = 1.000 ρ3 = 0.09
v2 = 0.520 ρ2 = 0.09
v1 = 0.333 ρ1 = 0.09
v0 = 0 ρ0 = 0.73

. (1)

The seller’s payoff is the transfer she receives from the buyers (i.e., the good is valueless to
the seller) while a buyer’s payoff is the difference between his valuation (iff he receives the
good) and the amount he pays the seller. Suppose further there are three periods.9 In each
period, the seller names a price and the buyers then simultaneously accept or reject. The
game ends with the good being allocated equiprobably among those accepting if there are
any (with the winning buyer paying the posted price), and the process otherwise continues
to the next period (if there is one). There is no discounting.

One buyer: Static monopoly. Suppose first there is only one buyer. One possibility
for the seller is to set the price equal to v3 in each period, i.e., to set the price sequence
(v3, v3, v3), allowing the seller to sell the object at price v3 if the buyer is type v3 (making
the innocuous assumption that indifferent buyers accept), with the object remaining unsold
otherwise.10 Alternatively, the seller could set price sequence (v3, v3, v2) (or an equivalent
sequence, such as (v3, v2, v2)), selling at price v2 if the buyer is either type v2 or v3.11 Finally,
the buyer might set the price sequence (v1, v1, v1) (or any of a number of equivalents, such
as (v3, v2, v1)) and sell to the buyer at price v1 no matter what the buyer’s type.12 Letting
π1(p, q, r) be the payoff from naming the price sequence (p, q, r) when there is one buyer, the
payoffs from these three price sequences are (with the inequality following from (1))

π1(v2, v2, v2) = (1− (ρ0 + ρ1))v2 >

{
π1(v3, v3, v3) = (1− (ρ0 + ρ1 + ρ2))v3

π1(v1, v1, v1) = (1− ρ0)v1
.

9With only three possible nonzero valuations, additional periods are of no value to the seller.
10There are many other price sequences that also allow the seller to sell at price v3, in which the last price

equals v3, and all previous prices are at least as high and rejected for sure.
11The seller might hope that a type v3 buyer would accept one of the initial v3 prices (or some such initial

price higher than v2), with the seller then lowering the price to v2 if the buyer rejects in order to sell at v2 if
the buyer is type v2, but this is impossible with a single buyer. Anticipating the subsequently lower price, a
buyer of type v3 would simply wait for price v2.

12Again, the fact that there is only one buyer ensures that attempts to charge higher prices to higher-type
buyers would simply prompt the buyer to wait until price v1 appears.
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The seller should accordingly set price sequence (v2, v2, v2). The seller is effectively a static
monopoly in this case, and the corresponding monopoly price is v2.

Two buyers: Optimal reserve price. Suppose now there are two buyers. We can
calculate

π2(v3, v3, v3) = (1− (ρ0 + ρ1 + ρ2)2)v3 >

{
π2(v2, v2, v2) = (1− (ρ0 + ρ1)2)v2

π2(v1, v1, v1) = (1− ρ2
0)v1

,

and hence the price path (v2, v2, v2) is now dominated by (v3, v3, v3) (and many other equiv-
alent price paths). Equivalently, the static monopoly price is now v3 rather than v2. This
reflects two straightforward and general results—the static monopoly price increases in the
number of buyers, and the seller can always earn at least the static monopoly payoff. The
finite horizon thus brings considerable commitment power.

Can the seller do better than π2(v3, v3, v3)? Perhaps. Because there are two buyers, the
seller can now practice price discrimination. A buyer may purchase at a relatively high price,
even knowing that the next price will be lower, if it is more likely that the buyer will obtain
the good at the higher price. We see here the important role played by scarcity (in contrast
to the standard Coase-conjecture formulation where the seller has as many goods as there
are buyers).

One possibility is to set price v3 in the first period, rejected by all buyers, then a price
p3 ∈ (v2, v3) in the second period that is accepted by buyers of valuation v3, and then to set
price v2 in the last period if p3 draws no acceptances.13 Why would a buyer accept p3 rather
than waiting for v2? Because only one buyer can receive the object. A buyer accepting price
p3 faces competition only if the other buyer also has valuation v3, while waiting for price v2

raises the risk not only that a v3 competitor will grab the good, but that one will have to
compete with a v2 competitor. There is then a price p3 ∈ (v2, v3) which v3 buyers will accept.
What makes us think this strategy is better than simply setting price v3? We can do the
relevant calculations (reproduced in the Supplementary Appendix), but can also appeal to
another familiar result. The optimal reserve price in an auction is independent of the number
of bidders (Krishna [18, pp. 25–26]). The reserve price is v2 with only 1 bidder, and hence
the optimal strategy with any number of bidders involves a pricing sequence culminating in
v2.

There is only one difficulty with the preceding paragraph’s argument. Because the seller
cannot commit to subsequent prices, the presumption that the seller can set the sequence of
prices (v3, p3, v2) requires that once the rejection of p3 has revealed there are no v3 buyers,
price v2 (rather than v1) is optimal. The sequential rationality condition is(

1−
(

ρ0 + ρ1

ρ0 + ρ1 + ρ2

)2
)
v2 ≥

(
1−

(
ρ0

ρ0 + ρ1 + ρ2

)2
)
v1, (2)

13We use pj to denote a price accepted by buyer types vj and above.
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which fails (given (1)). Should the seller screen out the v3 buyers in the penultimate period,
her last move would be to set price v1 rather than v2.

All is not lost. The seller can set a price p′3 > p3 in the penultimate period, in response to
which the v3 buyers mix, some accepting and some rejecting. The possibility that a v3 buyer
has rejected p′3 ensures that there are more buyers in the last period willing to pay price v2

than would otherwise be the case, and the v3 rejection probability in the penultimate period
can be set so that the counterpart of (2) holds with equality in the final period, allowing the
seller to rationally set price v2.14

Is this an optimal strategy for the seller? There are two obvious alternatives (as well as
some other strategies that are easily shown to be suboptimal). The seller could still insist
on price v3 by choosing the price path (v3, v3, v3). The result that the optimal reserve price
in an optimal auction is independent of the number of buyers does not tell us that pricing
sequence (v3, p

′
3, v2) dominates (v3, v3, v3), since we lack the ability to commit to the optimal

sequence of prices ((v3, p3, v2)) on which this result rests. However, one can calculate that
(v3, p

′
3, v2) is indeed superior to (v3, v3, v3). Alternatively, the seller may choose a strategy

(p′′3, p
′′
2, v1), inducing all of the v3 buyers to accept in the first period, then all of the v2 buyers

in the second period, and finally all of the v1 buyers in the final period.15 Once again, we
can calculate that price path (v3, p

′
3, v2) is superior.

With two buyers, the seller thus chooses prices (v3, p
′
3, v2). In weighing the choice between

(v3, p
′
3, v2) and (p′′3, p

′′
2, v1), the seller faces a trade-off. The price sequence (p′′3, p

′′
2, v1) takes

the seller below the optimal reserve price, diminishing her payoff in the process. On the
other hand, it allows her to more precisely discriminate between buyer types v2 and v3 (than
does (v3, p

′
3, v2)), since all the v3 buyers are induced to buy at price p′′3 rather than some

slipping through the first screen to be lumped with the v2 buyers. With two buyers, this
trade-off between maintaining a reservation price and being able to more finely discriminate
between buyers is resolved in terms of the former.

Three buyers: Price discrimination. Now let us go one more step to consider the case
of three buyers. The static monopoly price is still v3 (as expected, since the static monopoly
price can only increase in the number of bidders), and the price sequence (v3, v3, v3) gives this
payoff. The optimal reserve price remains v2, ensuring that the price sequence (v3, p3, v2),
with p3 set so that all type-v3 buyers attempt to purchase at p3, is superior to (v3, v3, v2).
However, reproducing the counterpart of (2) for three buyers shows that we again have a
commitment problem. The price v2 is no longer optimal once buyers of type v3 have been

14Notice that p′3 > p3, because a rejecting buyer faces stiffer competition in the final period under price
sequence (v3, p

′
3, v2), making rejecting less attractive.

15Why doesn’t this conflict with our contention that the seller cannot commit to price v2 once she has
learned there are no v3 buyers? Because the price p′′2 in this case falls short of v2 and occurs in the penultimate
period (rather than equalling v2 and being set in the final period), and is chosen to make a buyer of type v2

just indifferent between accepting p′′2 and rejecting to take his chances on getting the good at price v1.
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screened out, ensuring that (v3, p3, v2) is not feasible for a seller without commitment power.
The seller has two remaining choices. She can set the price sequence (v3, p

′
3, v2), with p′3

calculated so that buyers of type v3 purchase with just the right probability required to
make price v2 optimal should p′3 be rejected.16 This sequence preserves the optimal reserve
price but lumps some v3 buyers together with v2 buyers. Alternatively, the seller can set
prices (p′′3, p

′′
2, v1), with all buyers of type v3 purchasing at price p′′3, sacrificing the reserve

price in order to perfectly screen v2 and v3 buyers. Calculations analogous to those for the
two-buyer case show that price schedule (p′′3, p

′′
2, v1) yields a higher payoff than does either

(v3, p
′
3, v2) or (v3, v3, v3). When n = 3, higher buyer types are more likely, making it less

likely that the reserve price is relevant and more important to finely screen high-type buyers.
These contending forces thus now tip in favor of better price discrimination and hence price
sequence (p′′3, p

′′
2, v1).

Our general model allows a continuum of possible buyer valuations. The seller will
attempt to screen these buyers as finely as possible by setting each period’s price lower
than its predecessor. If the terminal price is allowed to approach zero (as the length or a
pricing period decreases, and hence the price sequence lengthens), these prices can be set
arbitrarily close together, allowing very fine price discrimination among the buyers at the cost
of surrendering on the reserve price. If the terminal price is positive, there is necessarily some
lumpiness in the price discrimination—the final period poses a monopoly pricing problem
leading to a terminal price that is necessarily bounded below the penultimate price (if the
former is positive), with similar calculations applying to preceding periods. A positive reserve
price is thus purchased only at the cost of lumpy price discrimination. Reserve prices are
relatively important when there are few buyers and price discrimination relatively important
when there are many buyers, leading to our results.

3 The Model

We consider a dynamic game between a single seller, with one unit for sale, and n buyers.
The seller has a unit interval of time in which to sell the good, after which it is valueless.
The seller can post a price at each time {∆, 2∆, . . . , 1} (restricting attention throughout to
values of ∆ that divide 1 without remainder). We can thus think of the seller as facing a
finite horizon of length T∆ = 1

∆
. Since our arguments will typically involve solving backwards

from the final period and the number of periods will vary with ∆, we find it convenient to let
t = 1, . . . , T∆ index the number of remaining periods, so that T∆ is the first and 1 the last
period. At each period t, the seller posts a price pt ∈ R. After observing the price, buyers

16The price p′3 required to induce some type-v3 buyers to purchase at price p′3 and some to wait for price
v2 will be different when there are only two buyers and when there are three (as will prices p′′3 and p′′2),
though we do not distinguish them with our notation.
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simultaneously and independently accept or reject. If the price is accepted by at least one
buyer, the game ends with a transaction at this posted price between the seller and a buyer
randomly selected from among the accepting buyers. If the offer is rejected, the game moves
on to the next period.17

Each buyer has a private valuation v, independently drawn from a cumulative distribution
F on [0, 1] and constant throughout the game. A buyer of valuation v who receives the object
at price p garners payoff v− p. The seller has a zero reservation value, with her payoff being
the price at which she sells the good. There is no discounting.18

A nontrivial history ht ∈ H t is a sequence (pT∆
, . . . , pt+1) of prices that were posted by

the seller and rejected by all buyers (we set HT∆ = ∅). A behavior strategy for the seller is
a finite sequence {σtS}

T∆
t=1, where σtS is a probability transition from H t into R, mapping the

history of prices ht into a probability distribution over prices. A behavior strategy for buyer
i is a finite sequence {σti}

T∆
t=1, where σti is a probability transition from [0, 1] ×H t × R into

{0, 1}, mapping buyer i’s type, the history of prices, and the current price into a probability
of acceptance.19

Given a (perfect Bayesian) equilibrium,20 we call the seller’s price serious if it is accepted
by some buyer with positive probability, and losing otherwise. Clearly, the specification of
losing prices in an equilibrium is to a large extent arbitrary. Therefore, statements about
uniqueness are understood to be made up to the specification of the losing prices.

As a useful benchmark, let πD(n) denote the expected revenue from an optimal (Dutch)
auction with n bidders and a zero reserve price. This is also the equilibrium revenue of the
seller in the continuous-time, infinite-horizon game considered by Bulow and Klemperer [7],
in which the seller has no commitment power.

4 Lower Bounds on Payoffs

Our first result establishes that the ability to revise prices more rapidly cannot harm the
seller. This result is nearly trivial, but already shows that our seller confronts a quite different
situation than that facing a durable-goods monopolist. The durable-goods monopolist would
dearly love to have only one chance to set a price, and sees her payoffs dwindle away to zero

17An outcome of the game is a vector (v, t, pt, i), i = 1, . . . , n, or (v, 0,∅); with the interpretation that
the realized profile of valuations is v = (v1, . . . , vn) and the price pt is accepted in period t by buyer i if the
outcome is (v, t, pt, i), and that no buyer ever accepts in case (v, 0,∅).

18The seller’s von Neumann-Morgenstern utility function over outcomes is simply pt if the outcome is
(v, t, pt, i), and zero otherwise. Buyer i’s utility is vi − pt if the outcome is (v, t, pt, i) and zero otherwise.
We define the players’ expected utilities over lotteries of outcomes in the standard fashion.

19That is, for each ht ∈ Ht, σtS(ht) is a probability distribution over R, and the probability σtS(·)[A]
assigned to any Borel set A ⊂ R is a measurable function of ht, and similarly for σti .

20The generalization of Fudenberg and Tirole’s [12, Definition 8.2]) definition to our infinite game is
immediate.
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as price-revision opportunities become more frequent. Our seller can only welcome more
rapid price revisions.

Let π∆(n) denote the sellers’s payoff from a given perfect Bayesian equilibrium of the
game with n buyers and period length ∆. Let π∆(n) (resp. π∆(n)) denote the infimum
(resp., supremum) of this payoff over all equilibria. Notice that π1(n) = π1(n) = π1(n) is
the static monopoly payoff with n buyers, being uniquely defined by

π1(n) = max
p∈[0,1]

p(1− (F (p))n). (3)

Proposition 1. If ∆ < ∆′ and hence T∆ > T∆′, then

π∆(n) ≥ π∆′(n), and π∆(n) ≥ π∆′(n).

In particular, π∆(n) ≥ π1(n). The opportunity to revise prices more quickly increases what
the seller can guarantee, and the seller can always do at least as well as the static monopoly
payoff.

Every equilibrium thus gives the seller a payoff higher than that of a static monopoly,
and if it is unique for all ∆, the equilibrium in a game with more rapid price revision gives
at least as high a payoff as the equilibrium in a game with more sluggish price revision. The
result follows immediately (and hence its proof is omitted) from noting that a seller facing
k remaining periods can always set a price of 1 and thereafter duplicate the equilibrium
behavior of a seller facing k − 1 remaining periods. This ensures that an additional period
can only increase the seller’s payoff (if the equilibrium is unique). Coupling this with the
observation that the seller necessarily earns the static monopoly payoff if there is only a
single remaining period gives the result.

Let us now make the common assumption that the distribution of buyer types F has a
differentiable density f . Under the additional assumption that f ′ ≤ 0, we can impose an
alternative lower bound on the seller’s payoff, this time in the limit as pricing periods grow
arbitrarily short. This restriction on the density is not universal, but is compatible with
many commonly used distributions, including the work-horse uniform distribution, and is
also consistent with the assumption of increasing virtual valuations. The Appendix proves:

Proposition 2. If F has differentiable density f with f ′ ≤ 0, then

π(n) ≡ lim
∆→0

π∆(n) ≥ πD(n),

i.e., the seller can always achieve at least the payoffs of an optimal auction with zero reserve
price.

Obviously, Proposition 1 gives that the limit is well-defined and that lim∆→0 π∆(n) ≥
π1(n). Which of these two lower bounds—the static monopoly profit of Proposition 1 or
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the zero-reserve-price optimal auction from Proposition 2—is more stringent depends on the
number of buyers and the distribution of their valuations. If f is uniform, for example,
then the static monopoly payoff is larger when there is only one buyer (1

4
rather than 0) or

two buyers ( 2
3
√

3
rather than 1

3
), but otherwise the zero-reserve-price optimal auction gives a

higher payoff.
The proof of Proposition 2 (in the Appendix) proceeds in two steps. First, we suppose

the seller could space her prices uniformly throughout the unit interval, i.e., could set prices
(1−∆, 1− 2∆, . . . ,∆, 0). It follows from Athey [1, Theorem 6, proof] that the seller’s payoff
will then approach that of the optimal zero-reserve-price Dutch auction as ∆ gets small and
hence the grid of prices becomes quite dense.

It may appear that this first step already gives the desired result, but we must next deal
with the fact that such a sequence of prices may not be sequentially rational. Moreover,
sequential rationality is difficult to characterize because at each stage of the auction, the
seller’s optimal action depends upon the buyers’ behavior, which in turn depends upon the
continuation equilibrium, about which we know very little. The proof exploits the following
insight, formalized in Lemma 1 below: Given any remaining interval of possible buyer types
[0, v], there is no incentive-compatible mechanism (and hence no continuation equilibrium)
that gives a buyer of type v a higher payoff than a zero-reserve-price Dutch auction. Bearing
this in mind, suppose the seller is in the middle of a sequence of prices and considering her
next move. She could always set a new price ∆ lower than her previous one. It would be
easy to identify the buyers that will accept this price if the seller would continue shaving
her price by ∆ each period. She might not choose to do so, of course, but Lemma 1 ensures
that if the seller contemplates doing anything else, then the marginal buyer will have an
even bleaker future, and hence will be all the more willing to accept the current price. This
in turn ensures that in every period, the seller can garner an incremental payoff at least as
high as she could from cutting prices by ∆ each period, and hence can altogether ensure a
payoff approaching (as ∆→ 0) the payoff of an optimal auction with zero reserve price.

The lemma behind this argument is:

Lemma 1. If F has differentiable density f with f ′ ≤ 0, then an efficient auction maximizes
the expected utility of the highest type buyer (i.e, a buyer with valuation 1) among all feasible
and incentive-compatible mechanisms.

It is then immediate that if the game reaches a period with remaining buyer types [0, v],
then continuing with an efficient auction maximizes (over the set of incentive-compatible
mechanisms) the payoff of buyer type v.

This lemma is the only place in the proof of Proposition 2 we use the assumption that
f ′ ≤ 0. The argument for the lemma begins with Myerson’s [22] characterization of incentive
compatibility. Myerson shows that in any incentive compatible mechanism, the payoff of the
highest-type buyer is given by

∫ 1

0
q(v)dv, where q(v) is the probability that a buyer of type
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v is allocated the object (conditional on being of type v). Then how do we raise the highest-
type buyer’s payoff? By setting every buyers’ probability of receiving the object as high as
possible, with incentive compatibility ensuring that this spills over into a higher payoff for the
highest type. Unfortunately, there are feasibility constraints on the extent to which buyers
can be promised the object—they cannot all receive it with probability one. The most
effective way to boost the overall acceptance probability

∫ 1

0
q(v)dv without running afoul

of these constraints is to make q(v) high when f(v) is small, effectively making promises
that affect incentive compatibility, thereby increasing the highest type’s payoff, but that are
unlikely to have to be kept, thus also preserving feasibility. When f ′ < 0, this means that
we should make q(v) large when v is large, doing our utmost to award the object to a high-
valuation buyer. But nothing does this more effectively than an efficient auction, opening
the door to the result.

Lemma 1 does not hold without the assumption that f ′ < 0. Suppose, for example,
that the cumulative distribution function of bidder valuations is given by F (v) = (ev −
1)/(e − 1), with support [0, 1], and with two bidders. We have f ′ > 0 in this case, though
this distribution satisfies the assumption of increasing virtual valuation. The utility of the
highest type in the efficient auction is (e− 2)/(e− 1) ≈ .4, which is less than what he gets
if the good is just given away, namely (1/2). Hence, it is not the case that the efficient
auction maximizes the payoff of the highest type buyer, over the set of incentive-compatible
mechanisms.

With a bit more structure, we can obtain a result that is again intuitive but nonetheless
requires proof:

Corollary 1. Suppose F has differentiable density f with f ′ ≤ 0 and the virtual valuation
v − 1−F (v)

f(v)
is increasing in v. Then more buyers are better for the seller: for every n,

πn+1 ≥ πn ≡ lim
∆→0

π∆(n).21

Proof. Bulow and Klemperer [8] show that under these assumptions, the payoff from a
zero-reserve-price English auction with n + 1 bidders exceeds the payoff from an optimal
mechanism with n bidders. Since the former is a lower bound on π∆(n + 1) for ∆ small
enough (Proposition 2) and the latter by definition an upper bound on π∆(n), the result
follows.

5 Price Discrimination vs. Reserve Prices

Section 4 provides lower bounds on the seller’s payoff, in the process clearly showing that
we are not dealing with a durable-goods monopolist. We now ask when and how the seller

21The stronger statement that more buyers is better for the seller for a fixed ∆ holds when F is uniform.
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can do better than an optimal auction with zero reserve price.

5.1 One Buyer

We warm up by confirming that when there is only one buyer, the argument developed in
the example of Section 2 is general—the seller is effectively a static monopolist.

It follows from Samuelson [23] that among all mechanisms, the optimal ones are equivalent
to having the seller make a take-it-or-leave-it offer to the buyer. As the seller can always do
so by posting a price of 1 in every period but the last, every equilibrium must then yield this
maximal payoff to the seller. In particular, in every equilibrium, she must charge the optimal
take-it-or-leave-it offer (say p∗) on the equilibrium path at some point. Since all buyers with
values above p∗ must accept it, no lower price can ever be assigned positive probability,
while all higher offers must always be rejected with probability one. Observe now that,
if the buyer accepted with positive probability a price (namely, p∗) before the last period,
then any subsequent optimal take-it-or-leave-it price would be strictly lower (reflecting the
adverse information about the buyer’s valuation conveyed by a rejection), and therefore the
buyer would not have been willing to accept the earlier price. Therefore, all prices but that
posted in the last period must be losing prices, and the price in the last period must be p∗.

To summarize, with n = 1 and for any ∆, all equilibria are such that all equilibrium
prices are at least p∗, and the last one is p∗. All prices are rejected except the last one, which
is accepted by buyer of type v if and only if v ≥ p∗. Hence, when n = 1, a deadline is an
effective way for the seller to commit. Independently of the period length, she does as well
as in the optimal mechanism.

5.2 Many Buyers

We now turn to the more interesting case n > 1 of multiple buyers. This poses a considerably
more formidable technical challenge, forcing us to restrict attention to the case in which
buyers’ values are uniformly distributed.22

Let p∆t denote the equilibrium price set by the seller when there are t periods to go
(including the current one), given period length ∆. Let v∆t ∈ [0, 1] denote the valuation of
the “critical” buyer, who is indifferent between accepting and rejecting in period t, given
p∆t.

23 (Set v∆t = 1 if every buyer rejects, and v∆t = 0 if every buyer accepts.)

22A similar but more involved analysis applies to distributions of the form F (v) = vα. Moving beyond
this class of distributions, with its convenient scaling property, would engender significant complications.

23If type v∆t is indifferent between accepting and rejecting price p∆t, then it must be that higher types
accept and lower types reject. This skimming property holds despite the absence of discounting because
there are more buyers than objects (it is here that we use the fact that n > 1) and an acceptance ends the
game.
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Proposition 3. Let buyers’ values be uniformly distributed. For any period length ∆ and
number of buyers n > 1, the equilibrium is unique. The sequences {p∆t}T∆

t=1 of equilibrium
prices and {v∆t}T∆

t=1 of equilibrium critical buyer valuations take values in (0, 1) and are
strictly increasing in t (decreasing over time). Further:

(3.1) For n < 6, lim∆→0 v∆1 > 0 and lim∆→0 π∆(n) > πD(n).

(3.2) For n ≥ 6, lim∆→0 v∆1 = 0 and lim∆→0 π∆(n) = πD(n).

(3.3) lim∆→0 v∆1 is decreasing in n.

The proof is involved, and is postponed to the Appendix. This proposition tells us that
the seller’s limiting price and payoff depend on the number of buyers. The larger is the
number of buyers, the lower does the seller allow the ultimate price to drop (Proposition
3.3). If there are more than six buyers (for the case of a uniform distribution of buyer values),
then the seller’s payoff matches that of a continuous-time, infinite-horizon auction and her
asking price approaches zero (Proposition 3.2). In this case the seller’s lack of commitment
power poses no difficulties in discriminating between buyers, but she abandons all hope of
maintaining a reservation price. With five or fewer buyers, the finite horizon allows the
seller to commit to a positive reservation price, no matter how long the horizon, reflected
in a payoff higher than that of the continuous-time, infinite-horizon auction and a limiting
price (equal to v∆1) larger than zero (Proposition 3.1).

What lies behind these results? Sequential rationality forces the seller to set a series of
prices that decline over time, in each period skimming off an upper interval of high-valuation
buyers. As ∆ shrinks and price-revision opportunities come more frequently, the seller sets
a higher and higher initial price p∆T∆

, using her frequent price revisions to skim off smaller
intervals in each period and hence more effectively price discriminate among the buyers.
If p∆T∆

increases sufficiently rapidly as ∆ shrinks, the higher starting price and smaller
skimming intervals will counteract the more frequent price revisions and the terminal price
p∆1 will never fall to zero—the seller commits to a reserve price. If p∆T∆

increases more
slowly as ∆ shrinks, the more frequent price revisions will more than make up for the higher
initial price and smaller intervals, and p∆1 will approach zero—no commitment.

Which is optimal? At one extreme, with only one buyer, the seller finds it optimal to
commit by setting a serious price p∆1 (equal to the static monopoly price) only in the last
period, no matter how many previous prices she can set. Suppose there are more buyers and
the seller chooses a price path culminating in p∆1 = v∆1 > 0. This path has the advantage
(over a smaller terminal price) of increasing revenue whenever the highest and second-highest
buyer valuations straddle v∆1. This benefit, overwhelming for small n, evaporates as the
number of buyers gets large—a static monopolist owning one unit sets a price at which she
is arbitrarily likely to sell as the number of buyers gets arbitrarily large. Setting p∆1 > 0 has
the cost that the seller loses if all valuations fall short of p∆1, but this cost also evaporates as
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the number of buyers grows. Finally, fixing p∆1 = v∆1 > 0 (along with sequential rationality)
fixes v∆2 > v∆1 and v∆3 > v∆2 and so on, imposing constraints on the seller’s prices that
impede her ability to discriminate among buyers of higher valuations. This cost goes to zero
relatively slowly in the number of buyers, ensuring that the seller prefers to abandon the
attempt to commit and to let p∆1 and v∆1 approach zero when there are enough buyers.

6 Pricing Dynamics

We are interested here in characterizing the timing of the seller’s prices. We study the
limiting path of prices and indifferent types, as the period length ∆ goes to zero. To this
end, we assume throughout that the buyers’ valuations are drawn uniformly from the unit
interval.

6.1 The Benchmark: Commitment

We first consider the case in which the monopolist can commit to prices. Let v∆t denote
the indifferent type of buyer with t instants to go. Given any period length ∆ and given
the sequence of indifferent types {v∆T∆

, . . . , v∆1} maximizing the payoff of a seller with
commitment, define the step function

v∆ (x) = v∆t for all x ∈
[
t− 1

T∆

,
t

T∆

)
, v∆ (1) = 1,

where, in keeping with our use of t to identify the number of remaining pricing opportunities,
we think of x as the time remaining before hitting the terminal horizon. Our purpose is to
prove that the (continuous extension of the) limit

v(x) = lim
∆→0

v∆(x) (4)

exists, and determine this limit, as well as the corresponding limit p(x) of the analogously
defined price function p∆(x). Clearly, with only one buyer, only the last posted price matters,
and we accordingly assume n > 1.

Proposition 4. Let buyers’ values be uniformly distributed and n ≥ 2. The limiting function
v (cf. (4)) describing the path of indifferent buyers induced by a seller who can commit to
prices is well-defined, and equal to

v (x) =
1

2

((
2

n+1
3 − 1

)
x+ 1

) 3
n+1

, (5)

while the corresponding price function is given by

p (x) =
(n− 1)v(x)n + 2−n

nv(x)n−1
. (6)
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The limiting indifferent buyer’s type v(x) and the seller’s price p(x) thus both decline
as the terminal point approaches (x decreases). As expected, v(1) = 1 and v(0) = 1/2, so
that the seller begins (at x = 1) slicing off the highest-type buyers, moving downward to a
valuation of 1/2 (at x = 0). The function v is concave in x (it is affine in x for n = 2), so that
the seller runs through buyers more rapidly as time goes on, and is increasing in n. Prices
are also increasing in n, and of course increasing in x—prices decline over time—but they
are not concave in x. Rather, they are convex for x low enough, and concave for high enough
values of x (this higher interval being empty if and only if n ≤ 3). Prices decrease relatively
slowly at the beginning and end of the interval, progressing somewhat more rapidly in the
middle.

6.2 Noncommitment

We now turn to the non-commitment case, and define the limiting functions v(x) and p(x)
exactly as before, but without commitment and hence with a sequence of indifferent types
{v∆T∆

, . . . , v∆1} maximizing the payoff of a seller without commitment

Proposition 5. Let buyers’ values be uniformly distributed.
[5.1] For n ≥ 6, the limiting function v describing the path of indifferent buyers induced

by a seller who cannot commit to prices is well-defined, and equal to

v (x) = x
3

n+1 , (7)

while the corresponding price function is given by

p (x) =
n− 1

n
x

3
n+1 . (8)

[5.2] For n ≤ 5, the functions v and p both converge to v(x) = 1 and p(x) = 1 on
[0, 1). Hence, losing prices are set and no sales made throughout the interval, with all trade
collapsing into the last instant.

When n < 6 (and in the limit as ∆ gets small), all of the action occurs at the very end
of the horizon. The seller sets the choke price until the last instant, at which point the price
p and the marginal buyer v cascade in chunks to nonzero terminal values. For larger values
of n, marginal valuations and prices both decline as time passes (v and p both increase in
x). Both functions are concave, so that the seller moves through buyers and prices more
rapidly as the endpoint approaches. Marginal valuations and prices are both increasing in
the number of buyers, and both are smaller than their counterparts without commitment.

Figure 1 illustrates these results. While Proposition 5 calculates the type of the marginal
buyer and the price as a function of the time remaining, we make Figure 1 more intuitive
by translating these into functions that give marginal valuations and prices as a function
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of the time that has elapsed. Notice that the function v initially picks out marginal buyers
whose types are arbitrarily close to 1, while the prices that make these buyers indifferent
are quite a bit lower. Notice also that there is some arbitrariness in the price path under
noncommitment and few buyers. The price over the interval [0, 1) must be high enough that
there are no sales, and many price paths will have this effect.
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Figure 1. Limiting (as ∆→ 0) marginal valuations v and prices p, as a function of the
time that has elapsed.
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Combining (7)–(8), we find that when n ≥ 6, a buyer of valuation v purchases the object
(if a competitor does not snatch it first) at price24

p(v) =
n− 1

n
v.

The price is thus a linear function of the buyer’s valuation. As the number of buyers increases,
the seller gains from the fact that the likelihood of a high-valuation buyer increases, but also
from the fact that increased competition among buyers pushes each buyer to pay a price
closer to his valuation.

6.3 Multiple units

Prices in our model invariably decline over time. It is not too hard to think of circumstances
in which the successive prices named by a seller increase rather than decrease. Who hasn’t
at some point delayed buying a plane ticket, only to find the price higher than it was?

The obvious setting for price to increase is a model with more than one unit for sale.
Letting k be the number of units, we assume n ≥ k + 5, which suffices to ensure that the
seller’s price eventually declines to zero. Let pkn(v) be the price paid by a buyer of valuation
v, in the limiting case of arbitrarily short time periods, when there are k objects and n buyers.
Let πkn be the seller’s payoff when selling k objects to n buyers. Arguments analogous to
those of the case k = 1 give25

pkn(v) =
n− k
n

v (9)

πkn = k
n− k
n+ 1

. (10)

24As a check on this result, we can then calculate that the seller’s expected payoff when facing n buyers is∫ 1

0

p(v)nvn−1dv =
∫ 1

0

(n− 1)vndv =
n− 1
n+ 1

= πD(n),

in keeping with Proposition 3.2. In this calculation, p(v) is the price paid by a buyer of type v and nvn−1

is the density of the highest bidders’ valuation, obtained by noting there are n candidates for the highest
bidder and for each valuation v the probability that it is higher than the other valuations is vn−1.

25The derivations are much more complicated with multiple objects and do not yield closed-form solutions
for the functions v(x) and p(x). The Supplementary Appendix sketches the arguments. To provide some
insight into these functions, one can verify both that πkn is the expected value of a k + 1st price auction
with n bidders, and that πkn and pkn satisfy the recursion

πkn =
∫ 1

0

nvn−1[pkn(v) + vπk−1,n−1]dv,

where vπk−1,n−1 is the continuation value of selling k− 1 objects to n− 1 buyers with valuations distributed
on [0, v].
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A buyer of valuation v thus pays more for the object when facing more competitors, but
pays less when there are more objects for sale. The seller’s payoff is increasing in the number
of buyers, and is increasing in the number of objects as long as there are at least twice as
many buyers as objects. If the seller has too many objects for sale, she would be better off
destroying some of them before offering the remainder for sale to the buyers. Notice that the
seller could do just as well by withholding the surplus objects from the market, but would
then face an irresistible urge to sell the reserved objects once her intended sales quota had
been met. Destroying the objects beforehand provides the requisite commitment to limit
sales.

Suppose now that the seller begins with k objects and n buyers, and consider the limiting
case of vanishingly small period lengths ∆. The price drops until some buyer of type v buys
the first object at price n−k

n
v. At this point, the price jumps upward to (n−1)−(k−1)

n−1
v = n−k

n−1
v,

as the seller now continues with the optimal strategy given one less object and one less buyer,
with the remaining buyers’ valuations distributed on [0, v]. The price continues to fall until
another buyer of type v′ purchases at n−k

n−1
v′, at which point the price jumps to n−k

n−2
. This

continues until a single object is left, to be eventually sold to a buyer of type v′′ at price
n−k

n−(k−1)
v′′.

Figure 2 illustrates these dynamics. The seller begins with two objects and lets the price
fall, decreasing the indifferent buyer type, until the first purchase occurs. The price now
jumps upward as the seller switches to the appropriate single-object price path, while the
identity of the indifferent buyer continues to decline from the valuation of the buyer who
purchased.
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Figure 2: Prices and marginal valuations for n = 7 (with a sale at time t = .6)
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The price jumps in this progression are reminiscent of the frenzies in Bulow and Klemperer
[7]. Each sale in their model raises the possibility of a frenzy, in which additional buyers
purchase at the price of the most recent sale, or even a price increase, in the event that
more buyers than there are remaining objects attempt to purchase at the most recent sale
price. The revenue earned by our seller (for sufficiently large n) matches that of Bulow and
Klemperer’s. Bulow and Klemperer work directly in continuous time and impose conditions
directly on the path of prices set by the seller, including that price must decline continuously
to zero in the absence of a sale, that a sale must be followed by repeated opportunities for
additional buyers to purchase at the sale price, and that the price must jump upward if these
opportunities for additional purchases lead to excess demand for the good. The result is one
of the many continuous-time price paths that maximize the seller’s revenue. Our analysis
begins in discrete time and places no restrictions beyond sequential rationality on the seller’s
prices, in the process selecting one of the optimal continuous-time price paths as the limit
of the optimal pricing scheme with very short, discrete pricing periods.

7 Discussion

More buyers or more prices? Section 2 illustrated our results via an example with a
discrete set of buyer valuations, while our analysis is conducted for the case of a continuum
of valuations. Connecting these two requires us to recognize an order-of-limits question.
In particular, the essence of the example is that the seller is unable to commit to price v2

in a final period, after having screened out type v3 buyers. With two buyers, the seller
optimally resolved this conflict by holding the line at a reserve price of 2 while imperfectly
screening buyers, while with three buyers the seller sacrifices the reserve price in order to
more effectively screen.

If the number of buyers were sufficiently large, the seller in our example could commit
to setting price v2 after having learned that there are no v3 buyers.26 This phenomenon is
general. For any valuation drawn from a finite set, there is a sufficiently large number of
buyers for which that allocation will be the static monopoly price, conditional on having
learned there are no higher-valuation buyers. Hence, numerous buyers banish commitment
problems.

How do we reconcile this with our observation that commitment problems are pervasive
with a continuum of valuations, no matter how numerous the buyers? The closer are the
valuations in the previous paragraph’s finite set, the larger the number of buyers required
to make commitment feasible. Suppose then we think of a series of finite models to which
we add every more possible buyer valuations and ever more buyers. If the number of buyers
grows rapidly relative to the set of valuations, then commitment problems will vanish. If the
set of possible valuations grows rapidly relative to the number of buyers, we obtain our model

26A sufficiently large n will reverse the inequality in (2).
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in which commitment problems are endemic. Which is the relevant case? This may depend
on the setting, though some intuition can be gained by asking whether sellers are more likely
to fret over having too few buyers, or over having too few possible buyer valuations.

Generalizations. We have already mentioned that our results would survive the intro-
duction of sufficiently mild discounting. In addition, it would make for more difficult compu-
tations but raise no new conceptual issues to expand the analysis to the class of “scalable”
distributions of buyer values F (v) = vα (cf. footnote 22).

What is the difficulty in extending the analysis beyond the set of scalable distributions?
The proof of Proposition 3 adduces an induction argument, asking how the seller’s behavior
changes as the number of periods increases. After formulating the problem, the first observa-
tion is that every additional period translates into another uniquely defined, nontrivial price
offer on the part of the seller. We show that this is the case by considering the first- and
second-order conditions for the seller’s maximization problem of choosing a price in the first
period, finding that the solution is interior. When the distribution of buyer types is uniform,
we can obtain a recursive but explicit characterization of the seller’s maximization problem
that can be differentiated to obtain the required result. Without a scalable distribution,
we could at best hope to replace this step with an envelope argument. The argument is
straightforward to write and appears to work flawlessly, until we ask how we can be assured
we have the requisite absolute continuity to appeal to the envelope theorem. Once we rec-
ognize such difficulties, there appears to be little hope for general or analytical solutions for
more general cases. Observe that, compared to the literature on durable goods, there is an
additional state variable in our environment, namely the number of periods to go.

Unknown number of buyers. We have assumed that our seller knows how many buyers
she faces. What if this is not the case? The obvious alternative is to consider a model in which
the number of sellers is determined by a Poisson process.27 In this case, the seller’s optimal
strategy always entails a positive terminal price. As the price falls without a purchase in our
model, the seller draws the inference that all of the buyers happen to have low valuations,
while remaining convinced of the number of buyers. The importance of price discrimination
remains unaltered, and (when there are sufficiently many buyers) the seller’s decision to
sacrifice the reserve price in the interests of price discrimination remains unaltered.

As the price falls without a purchase in a model with a Poisson-distributed number of
buyers, the seller draws the inference not only that the buyers have low valuations, but also
that there are simply not many buyers there. Eventually, the seller becomes very pessimistic
about the number of buyers, and a reasoning analogous to the one applying to the case of a

27The Poisson process allows especially convenient calculations, allowing the problem to take on a recursive
structure much like that induced by the uniform distribution of valuations in our fixed-number-of-buyers
model.
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low, but known number of buyers implies here as well that the optimal continuation path of
play entails a positive terminal price.

A Appendix: Proofs

A.1 Proof of Proposition 2

For any v ∈ (0, 1], let RK
v denote the lowest revenue among all equilibria of a Dutch auction

in which the K prices {vk/K, k = 0, . . . , K − 1} are quoted in descending order, with n
buyers whose valuations are independently drawn from the distribution F (·)/F (v) on [0, v].
(If multiple bidders accept the same price, the unit is randomly allocated among them.)
Observe that, fixing v, as K →∞, the revenue and buyers’ strategies in this K-price Dutch
auction converge to the revenue RD

v and equilibrium strategies of the standard Dutch auction
with no reserve price.28

Given v and K, let vKvk denote the buyer type that is indifferent between accepting and
rejecting the price vk/K. Convergence implies that for any ε > 0, there exists Kε such that
for all K > Kε and all k = 0, . . . , K, we have

|RK
v −RD

v | < ε (11)

|vk/K − pD(vKvk)| < ε, (12)

where pD(vKvk) is the price at which vKvk is indifferent between accepting and rejecting in the
standard Dutch auction. Further, since RK

v is a continuous function of v and v ∈ [0, 1], a
compact set, we may choose Kε independently of v.

Let RT
v denote the lowest revenue among all equilibria in our pricing game with T periods

to go, and residual demand on [0, v] with distribution F (·)/F (v). Since RT
v is increasing in

T (since waiting one more period is always an option), Rv = limT→∞R
T
v is well-defined.

Assume, for the sake of contradiction, that RD
1 − R1 > 2ε. Then because RD

v and Rv

are continuous functions of v with RR
0 = R0 = 0, (11) ensures that we can find an infinite

sequence of values of K ≥ Kε, with a corresponding value vK1k, for some k = 1, . . . , K, such
that

RvK
1k
< RK

vK
1k
− ε and RvK

1,k−1
> RK

vK
1,k−1
− ε. (13)

Since both revenues are less than ε when v ≤ ε, we have vK1k ≥ ε. (We can always ensure
that both inequalities are strict, at least for a subsequence of the original sequence, by

28This follows from Athey [1, Theorem 6, proof]: incentive compatibility implies that equilibrium strategies
are increasing in types, so that any sequence of such strategies, indexed by K, must have a convergent
subsequence, and its limit must be an equilibrium of the standard Dutch auction. But the latter admits a
unique equilibrium.
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considering a slightly lower or larger value of ε if need be.) Pick some K ≥ K ε
2
. Given this

K and corresponding vK1k, (13) ensures that we can pick T large enough so that

RT
vK
1k
< RK

vK
1k
− ε

2
and RT−1

vK
1,k−1
≥ RK

vK
1,k−1
− ε

2
. (14)

Observe that a strategy available to the seller, given vK1k and T periods to go, is to offer the
price that makes type vK1,k−1 indifferent between accepting and rejecting. Lemma 1 below
shows that this price is at least as large as the corresponding price in the standard Dutch
auction (since his utility is lower in the continuation than it would be in the standard Dutch
auction). That is (using K ≥ K ε

2
and (12) as well as the second inequality in (14) for the

second inequality below),

RT
vK
1k
≥ (1− F n(vKvK

1k,k−1))pD(vK1k) + F n(vKvK
1k,k−1)RT−1

vK
1,k−1

≥ (1− F n(vKvK
1k,k−1))(k/K − ε

2
) + F n(vKvK

1k,k−1)(RK
vK
1,k−1
− ε

2
) = RK

vK
1k
− ε

2
,

contradicting the first inequality in (14).

A.2 Proof of Lemma 1

Let q : [0, 1] → [0, 1] be a measurable function representing the allocation from some
incentive-compatible mechanism, so that q(v) can be interpreted as the probability that
a buyer of valuation v receives the object. From Border [6], we know that feasibility requires

∀v :

∫ 1

v

q (s) f(s)ds ≤ 1− F (v)n

n
,

or equivalently,

∀v :

∫ 1

v

(
q (s)− F (s)n−1) f(s)ds ≤ 0.

From Myerson [22], the expected utility of the highest type given q can be written as∫ 1

0
q (s) ds, and so the difference between his expected utility given q and given the efficient

auction is then ∫ 1

0

(
q (s)− F (s)n−1) ds ≤ 0.

Let θ(s) = q(s)− F (s)n−1 and consider then the problem

max
θ

∫ 1

0

θ (s) ds such that ∀v :

∫ 1

v

θ (s) f (s) ds ≤ 0.
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Our task is to show that θ(s) = q(s)− F (s)n−1 ≡ 0 solves this problem.
Because θ is measurable, it can be approximated by step functions, and so we are led

to consider the discrete problem, for K ∈ N, and some nonincreasing positive sequence
{fk : k = 0, . . . , K},

max
{ak}Kk=0

K∑
k=0

ak such that ∀j = 0, . . . , K :
K∑
k=j

akfk ≤ 0.

We claim that ak = 0 ∀k is a solution to this program. Suppose that {ak : k = 0, . . . , K} is
a solution, and that for some j,

∑K
k=j akfk < 0. Then we may as well assume that aj−1 = 0.

If indeed aj−1 > 0, then by increasing aj and lowering aj−1 by some small ε > 0, all the
constraints remain satisfied, and the objective function cannot decrease. By induction, we
may as well assume that ak = 0 for all k = 0, . . . , j − 1. This, however, implies that∑K

k=0 akfk < 0, which is impossible at an optimum, as it would then be feasible to increase
a0 and so increase the objective without violating the constraints. It follows that, at any
optimum

∑K
k=j akfk = 0 for all j, and so setting ak = 0 for all k is a solution to the finite

program. It follows that setting θ = 0 is a solution to the infinite program, so that the
efficient auction maximizes the highest type’s expected utility.

A.3 Proof of Proposition 3

The proof is organized in three steps. Step 1 fixes ∆ (and hence the number of periods T∆)
and uses an induction argument on the number of remaining periods to show that, with t
periods to go and beliefs about buyers’ types that are uniform over [0, vt+1],

(i) the equilibrium is unique,

(ii) the seller’s payoff equals µtvt+1 for some µt that is independent of vt+1, and

(iii) the period-t price is such that buyers accept if and only if their evaluation
exceeds that of an indifferent type vt given by some γtvt+1, where γt ∈ (0, 1) is
independent of vt+1.

To show this, we use the seller’s first-order conditions to determine a recursion (and initial
values) that characterize the sequences γt and µt. We show that these define a unique
sequence, with the property that γt < 1 for all t. We then show that these values achieve a
maximum of the seller’s objective function.

Step 2 studies the sequence vt, leading to a characterization of the limiting price (lim∆→0 v∆1)
and payoff (lim∆→0 µT∆

), giving statements (3.1) and (3.2) of Proposition 3. Step 3 estab-
lishes that the terminal price lim∆→0 v∆1 is decreasing in n.

25



A.3.1 Step 1: The Induction Argument

A.3.1a The Last Period

We fix a value of ∆ throughout this subsection, and suppress the corresponding notation.
Consider the last period (t = 1) and let the seller’s posterior belief be that the buyers’
valuations are uniformly distributed on [0, v2]. Then the seller chooses p1 = v1 to maximize(

1−
(
v1

v2

)n)
v1 =

((
1−

(
v1

v2

)n)
v1

v2

)
v2,

so indeed v1 = γ1v2 is linear in v2, where γ1 maximizes

(1− γn1 ) γ1, and hence γ1 = (n+ 1)−1/n .

The value of the problem, V1 (v2), is then

V1 (v1) = µ1v2, where µ1 =
n

n+ 1
γ1,

and so V1 is indeed linear in v2 as well. This solution is obviously unique.

A.3.1b The Induction Step

Now fix t and assume that for any τ < t periods to go, and for every uniform distribution of
buyer valuations on [0, vτ+1], the equilibrium is unique and characterized by values µτ and
γτ < 1 such that the seller sets a price accepted by all buyers with types above γτvτ+1, for
an expected continuation revenue of µτvτ+1. Consider the game with t periods to go, and
beliefs that are uniform over [0, vt+1].

The buyer’s indifference condition. To characterize the buyers’ reaction to the seller’s
prices, suppose that type vt is indifferent between accepting price pt and rejecting in order
to accept pt−1. If buyer vt accepts, his payoff is

n−1∑
j=0

1

j + 1

(
n− 1

j

)(
1−

(
vt
vt+1

))j (
vt
vt+1

)n−1−j

(vt − pt) =
1− (vt/vt+1)n

n (1− (vt/vt+1))
(vt − pt) .

The first term in the summation is the probability that he is awarded the good if j other
buyers accept the posted price, the binomial expression is the probability that j such buyers
accept this price, and vt − pt is the resulting payoff. By waiting one more period instead,
buyer vt gets(

vt
vt+1

)n−1 n−1∑
j=0

1

j + 1

(
n− 1

j

)(
1−

(
vt−1

vt

))j (
vt−1

vt

)n−1−j

(vt − pt−1)

=

(
vt
vt+1

)n−1
1− (vt−1/vt)

n

n (1− (vt−1/vt))
(vt − pt−1) .

26



Letting γt = vt/vt+1, and setting these expressions equal, we obtain the indifference condition

1− γnt
1− γt

(vt − pt) = γn−1
t

1− γnt−1

1− γt−1

(vt − pt−1) .

Hence

1− γnt
1− γt

(vt − pt) = γn−1
t

1− γnt−1

1− γt−1

(vt − vt−1) + γn−1
t

1− γnt−1

1− γt−1

(vt−1 − pt−1)

= γn−1
t

1− γnt−1

1− γt−1

(1− γt−1) vt + γn−1
t

[
γn−1
t−1

1− γnt−2

1− γt−2

(vt−1 − pt−2)

]
= γn−1

t

(
1− γnt−1

)
vt + γn−1

t γn−1
t−1

(
1− γnt−2

)
vt−1 + · · · .

That is,

1− γnt
1− γt

(vt − pt) =
t−1∑
τ=1

(1− γnτ )

(
t∏

l=τ+1

γn−1
l

)
vτ+1. (15)

The seller’s maximization problem. The seller’s value Vt+1 in period t is given by

Vt+1 (vt+1) = max
vt

[(
1−

(
vt
vt+1

)n)
pt +

(
vt
vt+1

)n
Vt (vt)

]
where pt is given by (15). We can use (15) to rewrite this as

Vt+1 (vt+1) = max
γt

[(1− γnt ) (pt − vt) + (1− γnt ) vt + γnt Vt (vt)]

= max
γt

[
− (1− γt)

t−1∑
τ=1

(1− γnτ )

(
t∏

l=τ+1

γn−1
l

)
vτ+1 + (1− γnt ) vt + γnt Vt (vt)

]
.

Dividing by vt+1, we have

Vt+1(vt+1)

vt+1

= max
γt

[
− (1− γt)

t−1∑
τ=1

(1− γnτ )

(
t∏

l=τ+1

γn−1
l

)
vτ+1

vt+1

+ (1− γnt )
vt
vt+1

+ γnt µt−1
vt
vt+1

]

= max
γt

[
− (1− γt)

t−1∑
τ=1

(1− γnτ )

(
t∏

l=τ+1

γnl

)
+ γt (1− γnt ) + γn+1

t µt−1

]

= max
γt

[
− (1− γt)

(
γnt −

t∏
τ=1

γnτ

)
+ γt (1− γnt ) + γn+1

t µt−1

]

= max
γt

[
(1− γt)

t∏
τ=1

γnτ + γt
(
1− γn−1

t

)
+ γn+1

t µt−1

]
, (16)

which is an expression that is independent of vt+1, and we may thus define µt = Vt+1(vt+1)
vt+1

.
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The seller’s maximization. The first and second derivatives of the seller’s objective (16)
are

(nγn−1
t − (n+ 1)γnt )

t−1∏
τ=1

γnτ + 1− nγn−1
t + (n+ 1)γnt µt−1 (17)

and

((n− 1)nγn−2
t − n(n+ 1)γn−1

t )
t−1∏
τ=1

γnτ − (n− 1)nγn−2
t + n(n+ 1)γn−1

t µt−1,

respectively. The second derivative can be rewritten as

n

γt

(
(nγn−1

t − (n+ 1)γnt )
t−1∏
τ=1

γnτ − nγn−1
t + (n+ 1)γnt µt−1

)
− nγn−2

t

t−1∏
τ=1

γnτ + nγn−2
t .

When the first derivative equals zero, the terms in parentheses in this second derivative equal
negative one, giving a second derivative of

n(−γ−1
t − γn−2

t

t−1∏
τ=1

γnτ + γn−2
t ),

which is negative if γt ∈ (0, 1]. Hence, whenever the first derivative has an interior solution,
the second (evaluated at that solution) is negative. This in turn ensures that if the first-order
condition induced by (17) has an interior solution, that solution is unique and is a global
maximizer.

Uniqueness. We must now show that the first-order condition induced by (17) has a
unique, interior solution. Hence, we must show that (17) determines a sequence {γt} with
each γt ∈ (0, 1). Let ρt =

∏t
τ=1 γτ , so γt = ρt/ρt−1. We can then rewrite the first-order

condition (17) as

(n+ 1)
(
ρnt−1 − µt−1

)( ρt
ρt−1

)n
+ n

(
1− ρnt−1

)( ρt
ρt−1

)n−1

= 1. (18)

We can rewrite the seller’s maximization problem given by (16) to get

µt =

(
1− ρt

ρt−1

)
ρnt +

ρt
ρt−1

(
1−

(
ρt
ρt−1

)n−1
)

+ (
ρt
ρt−1

)n+1µt−1,

or
µt

ρn+1
t

=
1

ρt
− 1

ρt−1

+
1

ρtρt−1

(
1

ρn−1
t

− 1

ρn−1
t−1

)
+
µt−1

ρn+1
t−1

,
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that is,
µt

ρn+1
t

− 1

ρt
=

1

ρtρt−1

(
1

ρn−1
t

− 1

ρn−1
t−1

)
+
µt−1

ρn+1
t−1

− 1

ρt−1

. (19)

Now let qt = ρ−1
t and ξt = µtq

n+1
t − qt. Then we can rewrite (18) and (19) as

(n+ 1) ξt−1 = n
(
qnt−1 − 1

)
qt − qnt qt−1 (20)

and
ξt = ξt−1 + qtqt−1

(
qn−1
t − qn−1

t−1

)
. (21)

We then combine (20) and (21) to get

n (qnt − 1) qt+1 − qnt+1qt = n
(
qnt−1 − 1

)
qt − qnt qt−1 + (n+ 1) qtqt−1

(
qn−1
t − qn−1

t−1

)
or rearranging,

qnt+1 − n
qnt − 1

qt
qt+1 + n

(
qn−1
t qt−1 − 1

)
− qnt−1 = 0, (22)

which holds for t ≥ 1 provided we adopt the convention q0 = 1 and recall that q1 = (n+ 1)1/n.
Observe now that the sequence {γt} is in (0, 1) if and only if the sequence {qt} is strictly

increasing. The following lemma establishes that this is the case:

Lemma 2. Consider the polynomial P defined by

P (x) = xn − nq
n
t − 1

qt
x+ n

(
qn−1
t qt−1 − 1

)
− qnt−1. (23)

For each qt−1 < qt with qt > 1, P admits a unique real root strictly larger than qt.

Proof. Assume throughout that qt−1 < qt. The polynomial P has two real roots if n is even,
and three if n is odd. To see this, observe that for n even, it is a convex function that is
negative for x = qt, since

P (qt) = qnt − n
qnt − 1

qt
qt + n

(
qn−1
t qt−1 − 1

)
− qnt−1 ≤ 0

⇔ qnt − qnt−1 ≤ nqn−1
t (qt − qt−1) ,

which is the case since the function x 7→ xn is convex for n ≥ 2. Observe that this also
establishes that P admits a real root larger than qt. If n is odd, then P is concave on R−
and convex on R+. Further, P (0) = n

(
qn−1
t qt−1 − 1

)
− qnt−1 ≥ 0, and (as noted) P (qt) ≤ 0.

So, in all cases, P uniquely admits a real root x that is strictly larger than qt.

This establishes the desired properties (i)–(iii), completing the first step of the proof.
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A.3.2 Step 2: Characterizing vt

We now investigate the sequence of indifferent buyers {vt}, leading to the demonstration
of Proposition 3.1 and 3.2. The heart of the argument is contained in the following three
lemmas. Let x(qt, qt−1) denote the unique root larger than qt solving (23).

Lemma 3.
(3.1) The root x(qt, qt−1) is contained in (qt, qt + (qt − qt−1)).
(3.2) For qt−1 < qt, x(qt, qt−1) is strictly decreasing in qt−1, and holding qt/qt−1 fixed, the

ratio x(qt, qt−1)/qt is an increasing function of qt.

Recall that qt = vt

v1
. Hence, Lemma 3.1 indicates that as the seller moves up the interval of

possible buyer valuations (i.e., moves earlier in the sequence of periods (T∆, T∆ − 1, . . . , 1)),
she slices off smaller and smaller intervals of buyer valuations to which to sell: vt − vt−1

is decreasing in t. Intuitively, the seller discriminates more finely among higher-valuation
buyers. Lemma 3.2 assembles some technical results to be used in proving Lemma 4.

Proof. For (3.1), let qt−1 = q(1 − α), for some α ∈ (0, 1) and q ≥ 1, qt = q and consider
P (q(1 + α)). Now,

P (q(1 + α)) = (1 + α)nqn − (1− α)nqn + nα(1− 2qn) > 0,

because
(1 + α)n − (1− α)n > 2nα,

as the left-hand side is convex in α with derivative equal to 2n at α = 0. Therefore, it must
be that q(1 + α) > x and so x− qt ≤ qt − qt−1.

The first part of (3.2) is immediate, since dP/dqt−1 > 0. As for the second part, observe
that we can rewrite (22) as

rnt − r−nt−1 − n(rt − r−1
t−1)− n

qnt
(1− rt) = 0,

where rt = qt+1/qt for all t. Fixing rt−1, it follows that rt is increasing in qt, since the
left-hand side is increasing in rt (note that rt > 1) and decreasing in qt.

Lemma 4. Consider a sequence ut with q0 = u0, q1 ≥ u1, and for every t ≥ 2, ut+1 ≤
x(ut, ut−1). Then qt ≥ ut for all t.

Proof. The proof is by induction on t. Observe that, for t = 1, by construction both q1 ≥ u1

and q1/q0 ≥ u1/u0. Assume now that, for some t ≥ 1, both qτ ≥ uτ and qτ/qτ−1 ≥ uτ/uτ−1

for all τ ≤ t. It follows that

qt+1

qt
=
x(qt, qt−1)

qt
≥
x(ut,

ut

qt
qt−1)

ut
≥ x(ut, ut−1)

ut
≥ ut+1

ut
.
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The first inequality follows from the second part of Lemma 3.2, given that ut ≤ qt. The
second inequality follows from the facts that ut

qt
qt−1 ≤ ut−1 (by the induction hypothesis)

and x(qt, qt−1) is decreasing in its second argument (the first part of Lemma 3.2). The final
inequality follows the fact that x(ut, ut−1) is an upper bound on ut+1. Since q0 = u0, the
conclusion that qt+1 ≥ ut+1 follows from this inequality and the induction hypothesis.

Lemma 5. Consider the sequence {ut}∞t=0 defined by ut = (1 +n(t− 1)t/2)1/n, for all t ≥ 0.
The sequence ut diverges and, for all t ≥ 1 and all n ≥ 6, ut ≤ qt.

Proof. Divergence is immediate from the definition of ut. We can calculate that u0 = 1 = q0

and u1 = 1 < (n+ 1)
1
n = q1. The result then follows from Lemma 4 and the fact that, every

t ≥ 2, ut+1 ≤ x(ut, ut−1). This last inequality is established via a tedious calculation. Details
are presented in the Supplementary Appendix.

Establishing statements (3.1) and (3.2) of Proposition 3 is now straightforward. Recall
that, in an optimal auction with zero reserve price, the expected revenue is given by

πDn =
n− 1

n+ 1
.

This value is therefore an upper bound on the expected revenue that the seller can hope
for in the dynamic game as ∆ → 0, if lim∆→0 v∆1 = 0, or equivalently limt→∞ qt = ∞.
For n ≥ 6, it follows from Lemma 4 that limt→∞ qt = ∞ and hence lim∆→0 v∆1 = 0. The
best the seller can hope for, as ∆ → 0, is therefore πDn . Because qt − qt−1 is decreasing in
t (Lemma 3.1), it is bounded, and therefore lim∆→0 maxt≤T∆

v∆t − v∆,t−1 = 0, and so also
lim∆→0 maxt≤T∆

p∆t − p∆,t−1 = 0, where p∆t is the price charged with t periods to go in the
game with period ∆ and hence T∆ stages. It then follows from Proposition 1 in Chwe [10]
that the expected revenue converges to πDn . This gives the second conclusion of Proposition
3.

What if n < 6? We can explicitly compute the first terms of µt for n ∈ {2, . . . , 5}, and
observe that µt > πDn for t = 1 if n = 2, 3, t = 4 if n = 4, and t = 36 if n = 5. Since
one feasible strategy for the seller is to set pτ = 1 until period t = 1 (if n = 2, 3), t = 4 (if
n = 4) or t = 36 (if n = 5) and then obtain value µt, the seller’s optimal strategy must give a
payoff exceeding πDn , and hence lim∆→0 µT∆

> πDn . The preceding argument establishes that
a necessary condition for such a limiting payoff is that lim∆→0 v∆1 > 0. This establishes the
first part of Proposition 3.

A.3.3 Step 3: Declining Terminal Prices

We prove here that lim∆→0 v∆1 is decreasing in n. In particular, lim∆→0 v∆1 is then lower
than the last price quoted in an optimal auction with commitment, as the reserve price
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(which is the limit of the lowest price in the dynamic game with commitment) equals 1/2,
which is lim∆→0 v∆1 when n = 1.

The result is proved in several steps. First, recall that v1 = γ1v2, where γ1 = (n + 1)−n.
Now consider the following auction, parameterized by v. First, the auctioneer continuously
lowers the price until the indifferent type is v. At this stage, if the unit is still not accepted,
he offers the price w = γ1v, i.e. the monopoly price on the residual demand. If it is also
rejected, the auction is over. We may compute the revenue from such an auction by first
computing the probability q(x) that a buyer of type x wins the object. This equals 0 if
x < w, (vn − wn)/(n(v − w)) if x ∈ [w, v), and xn−1 for x ≥ v. The price that type x
accepts is as usual p(x) = q(x)−

∫ x
0
q(t)dt/q(x), and expected revenue Rn(w), which equals∫ 1

0
p(x)dF n(x), is then

Rn(w) =
n− 1

n+ 1
− (n((n+ 1)1/n − 1)w − 1)wn,

which is a function of w that is increasing up to ((n+1)1+1/n−n−1)−1, and then decreasing.
Consider n = 2, . . . , 5. We first claim that, given w = lim∆→0 v∆1, the revenue Rn(w)

exceeds the limiting revenue from the equilibrium of the dynamic game (as ∆→ 0). Indeed,
consider the two allocations corresponding to each mechanism, the auction described above,
and the allocation from the limit. In both cases, buyers’ types below w do not get the unit;
types in [w, v) get it only if there is no type above v, with the same probability in both cases
(v = lim∆→0 v∆2, since the price in the last period is the monopoly price on the residual
demand). So the difference originates from types above v. However, for such types, the
auction described above achieves an efficient allocation, while this is not necessarily true in
the other case. Since with a uniform distribution, the virtual valuation is strictly increasing
in types, it follows that Rn(w) exceeds the revenue from the limit of the dynamic game, and
hence from the dynamic game, independently of the length of the horizon (since the seller’s
payoff increases with T ).

By considering the first terms of the sequences µt (recall that it is a non-decreasing
sequence) we obtain that lim∆→0 µT∆

> 4/10 for n = 2, lim∆→0 µT∆
> .515 for n = 3, and

lim∆→0 µT∆
> .6019 for n = 4. Yet Rn(w) exceeds those values only if w > 4/10 (for n = 2),

w > .32 (for n = 3) and w > .24 (for n = 4). Since the sequence 1/qt is decreasing, with
limt→∞ 1/qt = lim∆→0 v∆1, it is now easy to verify that, after computing the first few terms,
limt→0 1/qt is less than .4 for n = 3, less than .32 for n = 4 and less than .2 for n = 5. It
follows that lim∆→0 v∆1 is decreasing in n for n = 2, 3, 4, 5. Since this limit is 0 for n ≥ 6,
the same holds for all n ≥ 2, and clearly also the conclusion also holds for n = 1 vs n = 2 (in
the latter case, the only price accepted with positive probability is 1/2, while in the latter
case, by computing the first few terms, it is verified that lim∆→0 v∆1 < 1/2.)
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A.4 Proof of Proposition 4

A.4.1 The Seller’s Payoff with Commitment

We first express the seller’s payoff in terms of the indifferent buyers’ valuations. Fix a period
length ∆ and hence number of periods T∆, and then suppress ∆ in the notation. The seller’s
payoff with commitment can be written as

Π = (1− vnT ) pT +
(
vnT − vnT−1

)
pT−1 + · · ·+ (vn2 − vn1 ) p1, (24)

where

vnt+1 − vnt
vt+1 − vt

(vt − pt) =
vnt − vnt−1

vt − vt−1

(vt − pt−1)

= vnt − vnt−1 +
vnt − vnt−1

vt − vt−1

(vt−1 − pt−1)

= vnt − vnt−2 +
vnt−1 − vnt−2

vt−1 − vt−2

(vt−2 − pt−2)

· · ·
= vnt − vn1 ,

so that (
vnt+1 − vnt

)
pt =

(
vnt+1 − vnt

)
vt − (vt+1 − vt) (vnt − vn1 ) . (25)

Substituting (25) into (24), we have

Π = (1− vnT ) vT +
(
vnT − vnT−1

)
vT−1 + · · ·+ (vn2 − vn1 ) v1

− (1− vT ) (vnT − vn1 )− (vT−1 − vT )
(
vnT−1 − vn1

)
− · · · − (v3 − v2) (vn2 − vn1 )

= vT − (1− vT−1) vnT − (vT − vT−2) vnT−1 − · · · − (v3 − v1) vn2 + (1− v2 − v1) vn1 .

We can think of the seller as choosing the identities of the indifferent buyers in order to
maximize this payoff. Taking derivatives with respect to these valuations (and setting vT+1 =
1), we obtain the first-order conditions

nvn−1
t =

vnt+1 − vnt−1

vt+1 − vt−1

(t = 2, . . . , T ) , (26)

nvn−1
1 (1− v2 − v1) = vn2 − vn1 . (27)

The first formula can be re-written as

σnt − nσt = σ−nt−1 − nσ−1
t−1,

where σt = vt+1/vt.
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A.4.2 Two Preliminary Inequalities

This section collects two useful technical results.

Lemma 6. Let h (x) = xn − nx. Then, for n ≥ 2,

h (2− x) ≥ h (x) (x ∈ [0, 1]) , and lim
x↑1

h−1 ◦ h (x)− 1

x− 1
= −1, (28)

where h−1 is the inverse of h : [0,∞)→ R.

Proof. Because the function y 7→ yn is convex,

(1 + y)n − (1− y)n ≥ 2ny

for y ∈ [0, 1], so that, for x = 1− y,

(2− x)n − n (2− x) ≥ xn − nx,

i.e. h (2− x) ≥ h (x). Now, observe that the limit is simply the derivative of h−1 ◦ h (x) at
1. Because h′ (1) = 0,

h (1− ε)− h (1) =
h′′ (1)

2
ε2 + o

(
ε3
)
, h (1 + δ)− h (1) =

h′′ (1)

2
δ2 + o

(
δ3
)
,

and so, if h (1− ε) = h (1 + δ)→ h (1), it follows that ε/δ → 1, so that (h−1 ◦ h)
′
(1) = 1.

Lemma 7. For all n ≥ 2, there exists K such that, for all t ≥ 1,

h

((
1 +

1

t+K

)− 3
n+1

)
≥ h

((
1 +

1

t+ 1 +K

) 3
n+1

)
. (29)

Proof. For n = 2, it is easy to verify that the two sides are equal, independently of the value
of K. Consider n > 2. Taking a Taylor expansion, we have that

h
(

(1 + y)−
3

n+1

)
− h

((
1 +

y

1 + y

) 3
n+1

)
=

3n (n− 1) (n− 2) (2n− 1)

5
y5 + o

(
y6
)
,

so that there exists ȳ such that, for all y ∈ [0, ȳ],

h
(

(1 + y)−
3

n+1

)
≥ h

((
1 +

y

1 + y

) 3
n+1

)
.

Letting K = ȳ−1 − 1, the result follows.
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A.4.3 Properties of the Commitment Solution

We now use these inequalities to characterize the sequence {vt}∞t=1 of indifferent buyer types.29

Fix v1 ∈ (0, 1) and σ1 > 1 and consider the sequence {vt}∞t=1 defined by v1, σ1 and

σnt − nσt = σ−nt−1 − nσ−1
t−1, i.e. h (σt) = h

(
σ−1
t−1

)
,

for h (x) = xn − nx. Observe that, since h is decreasing on [0, 1], and increasing on [1,∞),
σt ≥ 1 for all t. Further, because h (x) ≥ h (x−1) for all x ≥ 1, it is strictly decreasing in t,
with limit given by 1.

Lemma 8. 1. For all n, the sequence {vt} is concave, with

lim
t→∞

vt+1 − vt
vt − vt−1

= 1.

2. For all n, there exists K such that

σt ≥
(

1 +
1

t+K

) 3
n+1

.

3. For all n, and m ∈ N,
limt→∞

vmt
vt
≥ m

3
n+1 .

We use Lemma 8.2 in the proof of Lemma 8.3, and use Lemmas 8.1 and Lemma 8.3 in
Section A.4.3.

Proof. First, observe that

vt+1 − vt ≤ vt − vt−1 ⇔ σt ≤ 2− σ−1
t−1

for σt = vt+1/vt. Now
h (σt) = h

(
σ−1
t−1

)
≤ h

(
2− σ−1

t−1

)
,

where the last inequality follows from (28), given that σ−1
t−1 ≤ 1. Since h is increasing for

x ≥ 1, and both σt and 2 − σ−1
t−1 ≥ 1, it follows that indeed σt ≤ 2 − σ−1

t−1, so that the
sequence vt is concave. Further, since

vt+1 − vt
vt − vt−1

=
σt − 1

1− σ−1
t−1

=
h−1 ◦ h

(
σ−1
t−1

)
− 1

1− σ−1
t−1

,

29For a fixed ∆, on the first T∆ terms in the infinite sequence we study will be relevant, but the entire
infinite sequence will come into play as ∆→ 0.
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and limt σt = 1, it follows from limx↑1 (h−1 ◦ h (x)− 1) / (1− x) = 1 that limt (vt+1 − vt) / (vt − vt−1) =
1.

Given σ1, fix K such that both σ1 ≥
(
1 + 1

1+K

) 3
n+1 and (29) is satisfied. Let

νt =

(
1 +

1

t+K

) 3
n+1

.

By induction, we show that σt ≥ νt. By definition of K, σ1 ≥ ν1. Suppose now that
σt−1 ≥ νt−1. Since h is decreasing on [0, 1], and given (29),

h (σt) = h
(
σ−1
t−1

)
≥ h

(
ν−1
t−1

)
≥ h (νt) ,

and since h is increasing on [1,∞) ,
σt ≥ νt.

Observe that
vmt
vt

= Πmt−1
τ=t στ ≥ Πmt−1

τ=t vτ =

(
mt+K

t+K

) 3
n+1

,

so that
limt

vmt
vt
≥ m

3
n+1 .

Lemma 8 tells us about the sequence {vt}∞t=1 given a value v1. We must next identify
the appropriate value v1. One strategy available to the seller is to set a price with t periods
to go equal to 1+t/T

2
, causing v1 to converge to 1

2
as ∆ gets small (and hence T∆ large). It

follows from standard results (Athey [1]) that her revenue then converges to the revenue of
the optimal auction. Conversely, her revenue converges to the revenue of the optimal auction
only if p1 = v1 converges to 1/2 as ∆ gets small, allowing us to take v1 = 1

2
. It follows from

the first order conditions (26)–(27) that v2 then converges to v1, so that asymptotically the
entire sequence {vt}∞t=1 is contained with [0, 1].

A.4.3. The Limit ∆→ 0

We now consider the limit ∆→ 0. Consider the sequence of functions v∆ (x) on [0, 1] defined
as follows. For any period length ∆, define the step function

v∆ (x) = v∆t for all x ∈
[
t− 1

T∆

,
t

T∆

)
, v∆ (1) = 1.

Pick a subsequence of functions {v∆ (x)} that converges on the rationals, to some limit
function. Because each sequence is non-decreasing, so must be the limit, and let x 7→ v (x)
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denote the right-continuous extension of this limit. Since the sequence {vt} is concave
(Lemma 8.1), the function v must be concave, and it is therefore continuous on (0, 1), and
admits left- and right-derivatives everywhere on (0, 1).

Because the sequence σt defined by a value of σ1 and the recursion h (σt) = h
(
σ−1
t−1

)
is increasing in σ1, and given that vT∆

= 1, it follows that the value of σ1 solving the
commitment problem for fixed v1 is decreasing in v1. Since lim∆→0 v1 = 1/2, σ1 is bounded
above in ∆, so that, since for a fixed σ1,

lim
t→∞

vt+1 − vt
vt − vt−1

= 1,

it follows also that, for all values k > 0 such that kT ∈ N,

lim
T→∞

vkT+1 − vkT
vkT − vkT−1

= 1.

It follows that the left- and right derivatives of v agree everywhere, so that v is differentiable
on (0, 1). Therefore, considering the equation

nv (x)n−1 (v (x+ δ)− v (x− δ)) = (v (x+ δ)n − v (x− δ)n) ,

we might use a Taylor expansion to the third degree as δ → 0, to obtain

n (n− 1) v (x)n−3 v′ (x)

[
v (x) v′′ (x) +

(n− 2)

3
v′ (x)2

]
δ3 + o

(
δ4
)
.

Because limt→∞
vmt

vt
≥ m

3
n+1 for all m (Lemma 8.3), v′ (x) > 0. Hence it must be that

v (x) v′′ (x) +
(n− 2)

3
v′ (x)2 = 0.

This differential equation has as general solution

v (x) = K1 (x+K2)
3

n+1 ,

for constants K1, K2, and our boundary conditions v (1) = 1/2, v (1) = 1 allow us to identify
these constants, giving (5):

v (x) =
1

2

((
2

n+1
3 − 1

)
x+ 1

) 3
n+1

.

Since

vnt+1 − vnt
vt+1 − vt

(vt − pt) = vnt − vn1 ,

and limε→0
v(x+ε)n−v(x)n

v(x+ε)−v(x)
= nv(x)n−1, it follows that nv(x)n−1(v(x) − p(x)) = v(x)n − v(0)n,

and the expression (6) for p(x) follows.
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A.5. Proof of Proposition 5

Our characterization of the non-commitment solution builds on our proof of Proposition
3. We first derive an asymptotic estimate of the sequence qt/qt+1 (introduced in the proof
of Proposition 3 just before equation (20)). The polynomial (22) that defines qt can be
rewritten as

qnt+1 − qnt−1 =
n

qt
(qnt (qt+1 − qt−1)− (qt+1 − qt)).

Since the sequence qt diverges, we may ignore the second term from the right-hand side, and
so, defining st = qt/qt+1 (i.e., in terms of the notation of Section A.3.2, st = r−1

t ), we have,
for large t,

s−nt − snt−1 − n(s−1
t − st−1) ≈ 0.

As we also know that st → 1, we let st = 1− εt, and, so using Taylor expansions to the third
order,

3ε2
t + (n+ 4)ε3

t − 3ε2
t−1 + (n− 2)ε3

t−1 ≈ 0.

Since εt → 0, this implies that λt ≡ εt/εt−1 → 1. Rewriting this equation, we have

3(εt − εt−1)(1 + λt)εt−1 + ((n+ 4)λ2
t + (n− 2)λ−1

t )εtε
2
t−1 = 0,

so, approximately,

εt − εt−1 +
n+ 1

3
εt−1εt = 0.

If we let µt = (n+ 1)εt/3, this gives

µt−1 − µt = µtµt−1,

or
1/µt − 1/µt−1 = 1,

so we obtain that µt = (t + C)−1, for a constant C (possibly infinite). That is, for large t,
either εt = 0 or εt = 3

n+1
t−1. However, recall that we already know (cf. Lemma 4) that

qt
qt+1

≤ ut
ut+1

=

(
1− nt

1 + nt(t+1)
2

)1/n

< 1− n

t
,

and so the possibility that εt = 0 could be ruled out. We conclude that st = 1 − 3
(n+1)t

asymptotically.30

30Observe that we made approximations sequentially in the process of deriving this solution. If we plug
in our solution into the recursion involving st and st−1, we find that the second approximation is of the
order o(t−3), and the term that was ignored in the initial polynomial is of the same order, so the order
of approximations is irrelevant. Also, observe that, since the term that is being ignored is of order o(t−3),
yet the slope of the function st 7→ s−nt − snt−1 − n(s−1

t − st−1) at 1 is equal to o(t−1), the impact of the
approximation is of the order o(t−2), so that even the cumulative impact of the approximations is negligible,
justifying the approximation.
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It also follows that

lim
t

qt+1 − qt
qt − qt−1

= lim
t

s−1
t − 1

1− st−1

= lim
t

t− 1
= 1.

Therefore, if we define, as in the case with commitment, the sequence of functions v∆ (x) on
[0, 1] as the step function

v∆ (x) = vt for all x ∈
[
t− 1

T∆

,
t

T∆

)
, v∆(1) (1) = 1,

and, following what has been done with commitment, we pick a subsequence of functions{
vT (x)

}
that converges on the rationals, to some limit function (which, because each se-

quence is non-decreasing, is non-decreasing as well, as well as concave since the sequence qt
is), and we let x 7→ v (x) denote the right-continuous extension of this limit, it follows that
the left- and right-derivatives coincide everywhere on (0, 1). Now,

v′(x) = lim
∆→0

vt+1 − vt
∆

= lim
∆→0

T
qt − qt−1

qT
= lim

∆→0

T

t

qt
qT
t
qt − qt−1

qt
=

3

n+ 1

v(x)

x
,

with boundary condition v(1) = 1. This gives v(x) = x
3

n+1 , or (7). Since

vnt+1 − vnt
vt+1 − vt

(vt − pt) = vnt − vn0 ,

the solution (8) for p(x) follows.
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Managing Strategic Buyers

B Supplementary Appendix: Not for Publication

B.1 Calculations, Section 2

In performing the calculations behind the example in Section 2, it is helpful to define the
seller’s payoff not in terms of the prices set in each period, but the type of buyer who
purchases in each period. Hence, let Π(3, 2, 1) be the payoff to a pricing scheme that induces
type v3 buyers to purchase in the first period, type v2 buyers to purchase in the second,
and type v1 to purchase in the third. We use an “x” to denote a period in which no buyers
purchase, so that Π(x, x, 3) is the payoff of waiting until the final period and then selling to
buyers of type v3. We can assume that all buyers of type higher than that indicated in a
period purchase if they have not already done so, so that Π(x, 2, 1) is the payoff of selling to
no buyers in the first period, to buyers v2 and v3 in the second, and to buyers of type v1 in
the final period. In each case, the corresponding prices are the solution to the problem of
maximizing the seller’s payoff subject to the pattern of buyer purchases.

For the case of one buyer, we have

Π1(x, x, 3) = (1− (ρ0 + ρ1 + ρ2))v3

Π1(x, x, 2) = (1− (ρ0 + ρ1))v2

Π1(x, x, 1) = (1− (ρ0))v1.

There are many other strategies available to the seller, but all of them give payoffs equivalent
to one of these. It will be useful to define the following, which we can then calculate:

∆32 = (1− (ρ0 + ρ1 + ρ2))v3 − (1− (ρ0 + ρ1))v2 = −.0036

∆21 = (1− (ρ0 + ρ1))v2 − (1− (ρ0))v1 = .00369.

With one buyer, the optimal strategy is to thus sell to buyer types v2 and v3 at price v2.
Now suppose there are n > 1 buyers. In the example, we concentrate on the cases n = 2
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and n = 3. We need to consider the following possible payoffs:

Πn(x, x, 3)

Πn(x, x, 2)

Πn(x, x, 1)

Πn(x, 2, 1)

Πn(x, 3, 1)

Πn(x, 3, 2)

Πn(3, 2, 1)

Πn(x, 32, 2),

where Πn(x, 32, 2) is the payoff from a pricing sequence that induces some v3 buyers to
purchase in the second period and some to delay purchase to the final period, at which point
type v2 and v3 buyers purchase. Some of these strategies are obviously suboptimal. For
example, Πn(3, 2, 1) ≥ Πn(x, x, 1), as it can only improve the seller’s payoff to sell to higher
buyer types (at higher prices) before offering the object for sale at price v1. Similarly, we
have Πn(3, 2, 1) ≥ Πn(x, 2, 1) and Πn(x, 32, 2) ≥ Πn(x, x, 2). Similar reasoning appears to
give , Πn(3, 2, 1) ≥ Πn(x, 3, 1), and we will proceed as if this is the case, though it is not
completely obvious and we will verify it at the end of the calculations.

Now consider Π(x, 3, 2). This calls for type v3 buyers to purchase in the second period
and type v2 buyers to purchase at price v2 in the final period. The difficulty here is that
this strategy is not sequentially rational. If the object is not sold in the second period, then
the buyers in the third period are known to be of types v0, v1, or v2. The seller can now set
price v2 and sell to only type v2 buyers, or set price v1 and sell to both v1 and v2 buyers. We
can calculate (

1−
(

ρ0 + ρ1

ρ0 + ρ1 + ρ2

)2
)
v2 <

(
1−

(
ρ0

ρ0 + ρ1 + ρ2

)2
)
v1(

1−
(

ρ0 + ρ1

ρ0 + ρ1 + ρ2

)3
)
v2 <

(
1−

(
ρ0

ρ0 + ρ1 + ρ2

)3
)
v1.

This ensures that when there are either two of three buyers, once it has been revealed that
there are no v3 buyers, then the static monopoly price is v1 rather than v2. As a result, there
is no way for the seller to first sell to type v3 buyers in the penultimate period and then sell
at price v2 to type v2 buyers in the final period.

What the seller can do is set a price in the second period that makes type v3 buyers
indifferent between accepting and rejecting, with these buyers mixing in their accept/reject
decisions in such a way as to make price v2 in the final period just optimal for the seller.
Intuitively, just enough type v3 buyers now slip through to the final period to make v2 the
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static monopoly price. Let ρ3(n) the the probability that a buyer is type v3 and purchases in
the second period (under this pricing strategy, and when there are n buyers), and ρ

3
(n) the

probability that the buyer is type v3 and waits until the final period to purchase. Clearly,
ρ

3
(n) + ρ3(n) = ρ3. The condition that the seller be just willing to set price v2 in the final

period is equivalent to1−

(
ρ0 + ρ1

ρ0 + ρ1 + ρ2 + ρ
3
(2)

)2
 v2 =

1−

(
ρ0

ρ0 + ρ1 + ρ2 + ρ
3
(2)

)2
 v1 (30)

1−

(
ρ0 + ρ1

ρ0 + ρ1 + ρ2 + ρ
3
(3)

)3
 v2 =

1−

(
ρ0

ρ0 + ρ1 + ρ2 + ρ
3
(2)

)3
 v1. (31)

Combining these arguments, we can restrict attention to payoffs Πn(x, x, 3), Πn(x, 32, 2),
and Πn(3, 2, 1). Our task is to show that given the values we have chosen, we have

Π2(x, 32, 2) > Π2(x, x, 3) Π3(3, 2, 1) > Π3(x, x, 3)

Π2(x, 32, 2) > Π2(3, 2, 1) Π3(3, 2, 1) > Π3(x, 32, 2).

A preliminary result is helpful. First, it will simplify subsequent notation to let

αn =
(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n

ρ2

βn =
(ρ0 + ρ1)n − ρn0

ρ1

.

We will then calculate Πn(x, 3, 2) ignoring the fact that commitment constraints render this
strategy unattainable (or, equivalently, assuming temporarily that the seller can commit).
We have

Πn(x, 3, 2) = [1− (ρ0 + ρ1 + ρ2)n]p+

[
(ρ0 + ρ1 + ρ2)n

(
1−

(
ρ0 + ρ1

ρ0 + ρ1 + ρ2

)n)]
v2

= [1− (ρ0 + ρ1 + ρ2)n]p+ [(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n]v2,

where p is a price that makes v3 buyers indifferent between purchasing now and waiting a
period to purchase, or

(v3 − p)
1− (ρ0 + ρ1 + ρ2)n

1− (ρ0 + ρ1 + ρ2)
= (ρ0 + ρ1 + ρ2)n−1

1−
(

ρ0+ρ1

ρ0+ρ1+ρ2

)n
1− ρ0+ρ1

ρ0+ρ1+ρ2

(v3 − v2)

and hence

(v3 − p)
1− (ρ0 + ρ1 + ρ2)n

1− (ρ0 + ρ1 + ρ2)
=

(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n

ρ2

(v3 − v2)

= αn(v3 − v2)
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Using this for the second inequality in the following, we now calculate

Πn(x, x, 3)− Πn(x, 3, 2) = [1− (ρ0 + ρ1 + ρ2)n](v3 − p)− [(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n]v2

= [1− (ρ0 + ρ1 + ρ2)n]

(
1− (ρ0 + ρ1 + ρ2)

1− (ρ0 + ρ1 + ρ2)n
αn(v3 − v2)

)
− [(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n]v2

= αn[(1− (ρ0 + ρ1 + ρ2))v3 − (1− (ρ0 + ρ1 + ρ2))v2 − ρ2v2]

= αn∆32.

We next calculate

Πn(3, 2, 1) = [1− (ρ0 + ρ1 + ρ2)n]p3 + (ρ0 + ρ1 + ρ2)n
(

1−
(

ρ0 + ρ1

ρ0 + ρ1 + ρ2

)n)
p2

+ (ρ0 + ρ1 + ρ2)n
(

ρ0 + ρ1

ρ0 + ρ1 + ρ2

)n(
1−

(
ρ0

ρ0 + ρ1

)n)
v1

= [1− (ρ0 + ρ1 + ρ2)n]p3 + [(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n]p2 + [(ρ0 + ρ1)n − ρn0 ]v1,

where p3 is the price at which v3 buyers purchase in the first period and p2 the price at which
v2 buyers purchase in the second, and hence

(v3 − p3)
1− (ρ0 + ρ1 + ρ2)n

1− (ρ0 + ρ1 + ρ2)
= (ρ0 + ρ1 + ρ2)n−1

1−
(

ρ0+ρ1

ρ0+ρ1+ρ2

)n
1− ρ0+ρ1

ρ0+ρ1+ρ2

(v3 − p2)

=
(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n

ρ2

(v3 − p2)

= αn(v3 − p2)

and

(v2 − p2)

1−
(

ρ0+ρ1

ρ0+ρ1+ρ2

)n
1− ρ0+ρ1

ρ0+ρ1+ρ2

 =

(
ρ0 + ρ1

ρ0 + ρ1 + ρ2

)n−1 1−
(

ρ0

ρ0+ρ1

)n
1− ρ0

ρ0+ρ1

(v2 − v1)

or
(v2 − p2)αn = βn(v2 − v2).

We will find it helpful to solve this for

p2 = v2 − (v2 − v1)
βn

αn
.
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Now we calculate

Πn(x, x, 3)− πn(3, 2, 1) = [1− (ρ0 + ρ1 + ρ2)n](v3 − p3)

− [(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n]p2 − [(ρ0 + ρ1)n − ρn0 ]v1

= [1− (ρ0 + ρ1 + ρ2)n]αn
1− (ρ0 + ρ1 + ρ2)

1− (ρ0 + ρ1 + ρ2)n
(v3 − p2)

− [(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n]p2 − ((ρ0 + ρ1)n − ρn0 )v1

= αn[1− (ρ0 + ρ1 + ρ2)]v3 − αn(1− (ρ0 + ρ1 + ρ2) + ρ2)p2 − βnρ1v1

= αn[1− (ρ0 + ρ1 + ρ2)]v3 − αn(1− (ρ0 + ρ1))p2 − βnρ1v1

= αn[1− (ρ0 + ρ1 + ρ2)]v3 − αn(1− (ρ0 + ρ1))

(
v2 − (v2 − v1)

βn

αn

)
− βnρ1v1

= αn∆32 + αn(1− (ρ0 + ρ1))

(
(v2 − v1)

βn

αn

)
− βnρ1v1

= αn∆32 + βn∆21.

The inequalities we need to show are thus:

Π3(x, x, 3)− Π3(3, 2, 1) = α3∆32 + β3∆21 < 0 (32)

Π3(x, 32, 2)− π3(3, 2, 1) = Π3(x, 32, 2)− Π3(x, 3, 2)

+ Π3(x, 3, 2)− Π3(x, x, 3) + Π3(x, x, 3)− Π3(3, 2, 1)

= Π3(x, 32, 2)− Π3(x, 3, 2)− α3∆32 + α3∆32 + β3∆21

= Π3(x, 32, 2)− Π3(x, 3, 2) + β3∆21 < 0 (33)

Π2(x, 32, 2)− π2(3, 2, 1) = Π2(x, 32, 2)− Π2(x, 3, 2) + β2∆21 > 0 (34)

Π2(x, 32, 2)− Π2(x, x, 3) = Π2(x, 32, 2)− Π2(x, 3, 2) + Π2(x, 3, 2)− Π2(x, x, 3)

= Π2(x, 32, 2)− Π2(x, 3, 2) + β2∆21 − α2∆32 − β2∆21

= Π2(x, 32, 2)− Π2(x, 3, 2)− α2∆32 > 0. (35)

Attention thus turns to calculating Πn(x, 32, 2)− Πn(x, 3, 2). We have

Πn(x, 32, 2) = [1− (ρ0 + ρ1 + ρ2 + ρ
3
(n))n]p+ [(ρ0 + ρ1 + ρ2 + ρ

3
)n − (ρ) + ρ1)n]v2,

where the price p is now set so that

(v3 − p)
1− (ρ0 + ρ1 + ρ2 + ρ

3
(n))n

1− (ρ0 + ρ1 + ρ2 + ρ
3
(n))

=
(ρ0 + ρ1 + ρ2 + ρ

3
(n))n − (ρ0 + ρ1)n

ρ2 + ρ
3
(n)

(v3 − v2)

and hence

p = v3 − (v3 − v2)
(ρ0 + ρ1 + ρ2 + ρ

3
(n))n − (ρ0 + ρ1)n

ρ2 + ρ
3
(n)

1− (ρ0 + ρ1 + ρ2 + ρ
3
(n))

1− (ρ0 + ρ1 + ρ2 + ρ
3
(n))n

.
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We can thus write

Πn(x, 32, 2) = [1− (ρ0 + ρ1 + ρ2 + ρ
3
(n))n]v3

− (v3 − v2)
(ρ0 + ρ1 + ρ2 + ρ

3
(n))n − (ρ0 + ρ1)n

ρ2 + ρ
3
(n)

(1− (ρ0 + ρ1 + ρ2 + ρ
3
(n))

+ [(ρ0 + ρ1 + ρ2 + ρ
3
)n − (ρ) + ρ1)n]v2

When ρ
3
(n) = 0, we have

Πn(x, 3, 2) = [1− (ρ0 + ρ1 + ρ2)n]v3

− (v3 − v2)
(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n

ρ2

(1− (ρ0 + ρ1 + ρ2)

+ [(ρ0 + ρ1 + ρ2)n − (ρ) + ρ1)n]v2

Our interest is now in the difference

Πn(x, 32, 2)− Πn(x, 3, 2)

= [(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1 + ρ2 + ρ
3
(n))n]v3

− (v3 − v2)

[
(ρ0 + ρ1 + ρ2 + ρ

3
(n))n − (ρ0 + ρ1)n

ρ2 + ρ
3
(n)

(1− (ρ0 + ρ1 + ρ2 + ρ
3
(n)))

−(ρ0 + ρ1 + ρ2)n − (ρ0 + p+ 1)n

ρ2

(1− (ρ0 + ρ1 + ρ2)))

]
+ v2[(ρ0 + ρ1 + ρ2 + ρ

3
(n))n − (ρ0 + ρ1 + ρ2)n]

= (v3 − v2)
[
(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1 + ρ2 + ρ

3
(n))n

−
(ρ0 + ρ1 + ρ2 + ρ

3
(n))n − (ρ0 + ρ1)n

ρ2 + ρ
3
(n)

(1− (ρ0 + ρ1 + ρ2 + ρ
3
(n)))

+
(ρ0 + ρ1 + ρ2)n − (ρ0 + ρ1)n

ρ2

(1− (ρ0 + ρ1 + ρ2))

]
.

Our calculation then proceeds as follows. First, we fix the values of v1, v2, v3, and ρ0,
ρ1, ρ2 and ρ3 as specified in Section 2. Next, we calculate ρ

3
(2) and ρ

3
(3) as the solutions

to (30)–(31). These solutions must be calculated numerically, giving

ρ
3
(2) = .0495908

ρ
3
(3) = .0337164.

We can then verify that for each of these values, the left side of the appropriate equation in
(30)–(31) exceeds the right side (with the difference on the order of 10−8). We then consider
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the slightly smaller values

ρ′
3
(2) = .0495907

ρ′
3
(3) = .03371639,

verifying that now the left side of the appropriate equation in (30)–(31) falls short of the
right side, again with a difference on the order of 10−8. The actual values of ρ

3
(2) and ρ

3
(3)

thus fall within the intervals defined by these two pairs. We now verify numerically that,
throughout this interval, the inequalities (32)–(35) hold.

Finally, we return to our commitment to verify the seemingly intuitive inequality that,
for n = 2, 3,

Πn(3, 2, 1)− Πn(x, 3, 1) = Πn(3, 2, 1)− Πn(x, x, 3) + Πn(x, x, 3)− Πn(x, 3, 1)

= −(αn∆32 + βn∆21) + Πn(x, x, 3)− Πn(x, 3, 1) > 0.

We have
Π3(x, 3, 1) = [1− (ρ0 + ρ1 + ρ2)n]p+ [(ρ0 + ρ1 + ρ2)n − (ρ0)n]v1

where the price p now satisfies

(v3 − p)
1− (ρ0 + ρ1 + ρ2)n

1− (ρ0 + ρ1 + ρ2)
= (ρ0 + ρ1 + ρ2)n−1

1−
(

ρ0

ρ0+ρ1+ρ2

)n
1− ρ0

ρ0+ρ1+ρ2

 (v3 − v1)

and hence

v3 − p =
1− (ρ0 + ρ1 + ρ2)

1− (ρ0 + ρ1 + ρ2)n
(ρ0 + ρ1 + ρ2)n − ρn0

ρ1 + ρ2

(v3 − v1)

This allows us to obtain

Πn(x, x, 3)− Πn(x, 3, 1) =

[
(1− (ρ0 + ρ1 + ρ2))

v3 − v1

ρ1 + ρ2

− v1

]
[(ρ0 + ρ1 + ρ2)n − (ρ0)n]

= [(1− (ρ0 + ρ1 + ρ2))v3 − (1− ρ0)v1]
(ρ0 + ρ1 + ρ2)n − (ρ0)n

ρ0 + ρ1

= ∆31
(ρ0 + ρ1 + ρ2)n − (ρ0)n

ρ0 + ρ1

.

Putting these pieces together, we have

Πn(3, 2, 1)− Πn(x, 3, 1) = −αn∆32 − βn∆21 +
(ρ0 + ρ1 + ρ2)n − (ρ0)n

ρ0 + ρ1

∆31.

We again verify this numerically.
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B.2 Committing to Lower Prices

This section provides an example in which the seller cannot commit to charging a low enough
price in the second stage, and an example in which the seller cannot commit to charging
high enough price.

B.2.1 The Model

Assume that there are two buyers and two periods. Buyers have one of three possible
valuations, v1, v2, or v3 = 1, with v1 < v2 < 1. A buyer has valuation vi with probability ρi,
where

ρ1 =
1

8
ρ2 =

1

4
ρ3 =

5

8
.

Conditional on all buyers being of type v1 or v2 in the last period, the seller’s choice is
obviously between charging v1 or v2. She chooses the latter, higher price if and only if

∆ =

(
1−

(
ρ1

ρ1 + ρ2

)n)
v2 − v1 > 0.

There are four obvious pure strategies in the two-period game: selling to type v3 first, and
then to type v2; selling to type v3, and then to v1; selling to types v3 and v2 first, and then
to v1; and finally, selling to no one first, and then to type v3. The seller could also wait and
sell to some larger subset of types in the second period, but it is clear that this is worse than
some strategy in which type v3 accepts in the first period. (Of course, the latter strategy
may not satisfy sequential rationality). We consider these strategies are in turn.

Selling to type v3, and then to type v2. Denote the price charged in the first period
by p32 (the second price is v2), and the expected payoff by V32. The price p32 must satisfy

1− (ρ1 + ρ2)n

1− (ρ1 + ρ2)
(v3 − p32) = (ρ1 + ρ2)n−1 1− (ρ1/(ρ1 + ρ2))n

1− ρ1/(ρ1 + ρ2)
(v3 − v2),

and the payoff V32 must satisfy

V32 = (1− (ρ1 + ρ2)n)p32 + (ρ1 + ρ2)n
(

1−
(

ρ1

ρ1 + ρ2

)n)
v2.

Solving, we find that

V32 = (1− ρn1 )v3 −
1− ρ1

ρ2

((ρ1 + ρ2)n − ρn1 )(v3 − v2).
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Selling to type v3, and then to type v1. Denote the price charged in the first period
by p31 (the second price is v1), and the expected payoff by V31. The price p31 must satisfy

1− (ρ1 + ρ2)n

1− (ρ1 + ρ2)
(v3 − p31) = (ρ1 + ρ2)n−1(v3 − v1),

and the payoff V31 must satisfy

V31 = (1− (ρ1 + ρ2)n)p32 + (ρ1 + ρ2)nv1.

Solving, we find that
V31 = v3 − (ρ1 + ρ2)n−1(v3 − v1).

Selling to type v2, and then to type v1. Denote the price charged in the first period
by p21 (the second price is v1), and the expected payoff by V21. The price p21 must satisfy

1− ρn1
1− ρ1

(v2 − p21) = ρn−1
1 (v2 − v1),

and
V21 = (1− ρn1 )p21 + ρn1v1.

Solving, we find that
V21 = v2 − ρn−1

1 (v2 − v1).

Selling to type v3 in the second period. Clearly, this yields a payoff of V3 = (1− (ρ1 +
ρ2)n)v3.

B.2.2 Case 1: (v1, v2) = (1/8, 1/4). The seller cannot commit to a low
price.

It is easy to check that ∆ = 7/72 > 0—conditional on the buyers not being of type v3, it is
optimal to set the price to v2 in the one-stage game. However, we have that
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64
= V31 >


V32 = 21/32
V21 = 15/64
V3 = 5/8

.

That is, the optimal two-stage strategy is to sell to high types first, and then to all types.
This also dominates all schemes involving mixing (since if type v2 or type v3 is supposed

to randomize in the first period, this lowers the probability of acceptance (relative to the
same type accepting with probability one in the first period), as well as the price paid in the
first period, and it does not affect the price in the second).

But since ∆ > 0, the seller cannot achieve this payoff, since in the second stage, he
cannot help but charge a high price. This is therefore an example in which the seller cannot
commit to charge low enough a price in the second stage.
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B.2.3 Case 2: (v1, v2) = (4/5, 8/9). The seller cannot commit to a
high price.

It is easy to check that ∆ = −4/405 > 0. Conditional on the buyers not being of type v3, it
is optimal to set the price to v1 in the one-stage game. However, we have

539

576
= V32 >


V31 = 37/40
V21 = 79/90
V3 = 5/8

.

This also dominates all schemes involving mixing (for the same reasons as before).
But since ∆ < 0, the seller cannot achieve this payoff, since in the second stage, he cannot

help but charge a low price. This is therefore an example in which the seller cannot commit
to charge high enough a price in the second stage.

B.3 Details, Proof of Lemma 5

Our purpose is to prove that, for all t ≥ 2 and n ≥ 6,

(1 + nt(t+ 1)/2)
1
n ≤ x((1 + n(t− 1)t/2)

1
n , (1 + n(t− 2)(t− 1)/2)

1
n ).

or, equivalently, for all t ≥ 1 and n ≥ 6,

(1 + n(t+ 1)(t+ 2)/2)
1
n ≤ x((1 + nt(t+ 1)/2)

1
n , (1 + n(t− 1)(t− 2)/2)

1
n ).

(At this point, letting x = 1/t and y = 1/n, one can rewrite this inequality as a function
on the unit square and then gain some confidence in its veracity by using a program such
as Mathematica to plot it.) Upon manipulation, this is equivalent to showing that, for all
t ≥ 1, n ≥ 6,

4t (2 + nt (t+ 1))1/n+(2 + nt (t+ 1)) (2 + n (t− 1) t)1/n−nt (t+ 1) (2 + n (t+ 1) (t+ 2))1/n ≤ 0,

or (
1 +

n (t+ 1)

1 + nt(t+1)
2

)1/n

−
(

2

nt (t+ 1)
+ 1

)(
1− nt

1 + nt(t+1)
2

)1/n

− 4

n (t+ 1)
≥ 0. (36)

This will be done in two steps.
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B.3.1 The Case t = 1

In that case, we must show that

gL (n) := n
(

(1 + 3n)1/n − 1
)
≥ 2 (1 + n)1/n + 1 =: gR (n) .

Observe that, for x > 0,

d

dx

(
x ln

(
1 + x−1

))
= ln

(
1 +

1

x

)
− 1

1 + x
≥ 0,

where the last step follows from the standard inequality lnx ≥ (1 + x)−1 applied to 1/x. It
follows that gR is decreasing in n.

Consider now the function gL. Its second derivative with respect to n is

(1 + 3n)
1
n
−2

n3
λ (n) ,

where
λ (n) = (1 + 3n) ln (1 + 3n) ((1 + 3n) ln (1 + 3n)− 6n)− 9 (n− 1)n2.

We claim that λ is negative ∀n ≥ 1. To see this, observe first that

d3λ

dn3
=

−54

(3n+ 1)2

(
1 + 3n+ 9n2 − 2 (1 + 3n) ln (1 + 3n)

)
< 0,

because
1 + 3n+ 9n2 ≥ 2 (1 + 3n) ln (1 + 3n) ,

which is because, from the standard inequality ln
(
1 + 1

x

)
≤ 1√

x2+x
, it follows that ln (1 + 3n) ≤

3n/
√

1 + 3n. Taking squares in the resulting inequality and collecting terms yield the desired
result.

Therefore

d2λ

dn2
= 18

(
1

1 + 3n
+ ln (1 + 3n) + ln2 (1 + 3n)− (1 + 3n)

)
is decreasing, and it is negative for n = 1, so it is negative for all n ≥ 1.

In turn, this implies that

dλ

dn
= 3

(
2 (1 + 3n) ln2 (1 + 3n)− 9n2 − 6n ln (1 + 3n)

)
is decreasing, and it is negative for n = 1, so it is negative for all n ≥ 1. Repeating once
more the argument, this establishes that λ is decreasing, and again it is negative for n = 1,
and therefore for all n ≥ 1.
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We have now established that d2gL/dn
2 ≤ 0 for all n ≥ 1. Thus, dgL/dn is decreasing in

n. However, limn→∞ dg
L/dn = 0, and so dgL/dn ≥ 0. This proves that gL is an increasing

function.
This part of the proof is concluded by observing that gL (6) > gR (6). Since gL is

increasing, while gR is decreasing, the inequality follows for all n ≥ 6.

B.3.2 The General Case, t > 1

B.3.2a A Sufficient Inequality

Recall that

(1 + x)1/n ≥ 1 +
x

n
− n− 1

2n2
x2 +

(n− 1) (2n− 1)

6n3
x3 − (n− 1) (2n− 1) (3n− 1)

24n4
x4

+
(n− 1) (2n− 1) (3n− 1) (4n− 1)

120n5
x5 − (n− 1) (2n− 1) (3n− 1) (4n− 1) (5n− 1)

720n6
x6,

and similarly,

(1− x)1/n ≤ 1− x

n
− n− 1

2n2
x2 − (n− 1) (2n− 1)

6n3
x3 − (n− 1) (2n− 1) (3n− 1)

24n4
x4

−(n− 1) (2n− 1) (3n− 1) (4n− 1)

120n5
x5 − (n− 1) (2n− 1) (3n− 1) (4n− 1) (5n− 1)

720n6
x6.

We now apply these two bounds to the left side of (36), inserting x = n(t+1)

1+
nt(t+1)

2

and x =

nt/
(

1 + nt(t+1)
2

)
respectively. We obtain a rational function whose denominator is positive

(being a square) and whose numerator is twice the following polynomial in n of degree 6:

a6n
6 + a5n

5 + a4n
4 + a3n

3 + a2n
2 + a1n+ a0,

with

a0 = −4t6 + 24t5 − 120t4 + 480t3 − 1440t2 − 2880t− 2880,

a1 = 48t7 + 78t6 + 1330t5 + 670t4 − 7818t3 − 9454t2 − 6166t,

a2 = 12t9 + 24t8 + 852t7 + 890t6 − 9240t5 − 23184t4 − 21588t3 − 13104t2 − 1950t,

a3 = 360t9 + 990t8 − 3030t7 − 12645t6 − 15635t5 − 4805t4 + 3285t3 + 5990t2 + 1730t,

a4 = 60t11 + 240t10 − 930t9 − 5370t8 − 11580t7 − 15376t6

−16824t5 − 19620t4 − 14730t3 − 6960t2 − 1410t,

a5 = −180t11 − 945t10 − 2115t9 − 2610t8 − 168t7 + 5322t6

+11830t5 + 16105t4 + 12093t3 + 4904t2 + 836t,

a6 = 3t (1 + t) (1 + 2t) (−80 + t (1 + t) (−272 + t (1 + t) (−126 + t (1 + t) (8 + 5t (1 + t))))) .

We must show that this polynomial is positive.
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B.3.2b Preliminary Observations

Observe first that a6 is positive for t ≥ 2. Indeed, the last factor is a polynomial of degree 4
in x = t (1 + t), namely

−80− 272x− 126x2 + 8x3 + 5x4.

Since the coefficients change signs only once, Descartes’ rule implies that there is at most one
strictly positive root. Since this polynomial is negative when evaluated at x = 0, and positive
when evaluated at x = 6 (i.e. t = 2), the root must be in (0, 2), and so the polynomial is
positive for all t ≥ 2.

Observe that, by Descartes’ rule, a1 can have at most one strictly positive root. The
coefficient a1 is negative for t = 2 and positive for t = 3, so that the unique root is in (2, 3),
and so a1 is negative for t ≥ 2. Similarly, a2 can have at most one strictly positive root.
The coefficient a2 is negative for t = 3 and positive for t = 4, so the unique root is in (3, 4),
and so a2 > 0 for t ≥ 4. Similarly, a3 can have at most two strictly positive roots. Further,
the signs of a3 at t = 1/2, t = 1 and t = 4 alternate, so that here again, there is no root
for t ≥ 4, and so a3 > 0 for t ≥ 4. By the same method, a4 can have at most one strictly
positive root, and a4 is negative for t = 4 and positive for t = 5, so a4 > 0 for t ≥ 5. Finally,
a5 can have at most one strictly positive root, and it is positive at t = 1 and negative at
t = 2, so it is strictly negative for t ≥ 2.

We need two further facts. First, −a5 > −a0 for t ≥ 2. To see this, let us compute the
difference

a5 − a0 = −180t11 − 945t10 − 2115t9 − 1610t8 − 168t7 + 5326t6 + 11806t5

+16225t4 + 11613t3 + 6344t2 + 3716t+ 2880,

so, again by Descartes rule, there can be at most one positive root of the difference, and the
difference is positive for t = 1 and negative for t = 2, and so this difference is negative for
t ≥ 2.

Second, we claim that −a5/a6 is increasing for t ≥ 4. To see this, observe that the deriva-
tive of the ratio a5/a6 is equal to the ratio of the following numerator, over a denominator
which is positive since it is a square,

−150t17 − 2820t16 − 19500t15 − 363160t14 + 129880t13 + 933852t12 + 2769050t11

+53161174t10 + 6507696t9 + 5494474t8 + 3239750t7 + 2186194t6 + 2877454t6

+3504246t5 + 2839892t4 + 1532112t3 + 550712t2 + 120816t+ 11904,

so it has at most one strictly positive root, and it is positive for t = 3 and negative for t = 4.
So the ratio −a5/a6 is increasing for t ≥ 4 and so always less than its limit, which equals

lim
t→∞
−a5

a6

= 6.
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B.3.2c The Result For n > 6

We are now ready to get our result, at least in the case n > 6 for now. We use the Lagrange-
McLaurin theorem.31 Given some polynomial of degree n, with real coefficients {ai}, let
m = sup {i|ai < 0}, and B = sup {−ai|ai < 0}. Then any real root r of the polynomial
satisfies

r < 1 +

(
B

an

) 1
n−m

.

Given our previous analysis, it follows that, applying the theorem to the polynomial in
n for t ≥ 5, any real root is less than

1− a5

a6

< 7.

This establishes the inequality (*) for the case n > 6 and t ≥ 5. For n > 6 but for each
t = 2, 3, 4, we can compute

1−max

{
−a0

a6

,−a1

a6

,−a2

a6

,−a3

a6

,−a4

a6

,−a5

a6

}
,

which of course is independent of n. It is still less than 7 for both t = 3, 4. In both cases,
the maximum is achieved by −a5/a6. In the case t = 2, the maximum is achieved by −a4/a6,
and in that case the bound on the root is only n < 30. However, we can directly verify that
for t = 2 and each value n = 7, . . . , 30, the polynomial is positive.

B.3.2d The result for n = 6

We are left with proving the result for the case n = 6. Plugging into the polynomial in n,
we obtain the following polynomial in t,

155520t11 + 1321920t10 + 4324320t9 + 8065440t8 − 40593600t7 − 168237440t6

−321927240t5 − 358960440t4 − 234969960t3 − 83572680t2 − 12520920t− 5760.

Once more, by Descartes’ rule, there can be at most one strictly positive root, and since this
polynomial is negative for t = 2, and positive for t = 3, we are done - except for the case
n = 6 and t = 2. Evaluating the original inequality for that one case concludes the proof.

B.4 Multiple Objects

This section derives the price function (9) and payoff function (9). We provide the prelimi-
nary analysis for any number of objects, and then specialize to the case of two objects.

31Riccardo Benedetti and Jean-Jacques Risler, Real algebraic and semi-algebraic sets (Hermann, Paris,
1990), Theorem 1.2.2.).
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The buyer’s indifference condition. As in the single-object argument, we begin by
identifying indifferent buyers. Suppose that there are k units left. Define

φt = k
n−1∑
j=0

(
n−1
j

)
j + 1

γn−1−j
t (1− γt)j +

k−2∑
j=0

(
n− 1

j

)(
1− k

j + 1

)
γn−1−j
t (1− γt)j ,

where, as usual, γt = vt/vt+1. By accepting now, the buyer with valuation vt gets

φt (vt − pt) .

By waiting one period instead, he gets

γn−1
t φt−1 (vt − pt−1) +

k−1∑
j=1

(
n− 1

j

)
(1− γt)j γn−1−j

t Wk−j,tvt,

where Wk−j,t is the normalized expected payoff when only k−j units are left (and the number
of bidders has gone down to n− j) and t periods to go. Indifference requires the two to be
equal. Observe that, defining

φt (vt − pt) = Mtvt+1, (37)

the buyer’s indifference condition becomes

Mtvt+1 = γn−1
t φt−1 (vt − vt−1) +

k−1∑
j=1

(
n− 1

j

)
(1− γt)j γn−1−j

t Wk−j,tvt + γn−1
t Mt−1vt. (38)

The sellers’s maximization problem. The seller’s payoff is

St+1vt+1 = max

{
γnt Stvt +

k−1∑
j=1

(
n

j

)
(1− γt)j γn−jt (jpt + Yk−j,tvt) + k

n∑
j=k

(
n

j

)
(1− γt)j γn−jt pt

}

= max

{
γnt Stvt −

[∑k−1
j=1 j

(
n
j

)
(1− γt)j γn−jt + k

∑n
j=k

(
n
j

)
(1− γt)j γn−jt

]
(vt − pt)

+
∑k−1

j=1

(
n
j

)
(1− γt)j γn−jt (Yk−j,t − j) vt − k

∑n
j=k

(
n
j

)
(1− γt)j γn−jt vt

}
,

where Yk−j,t is the seller’s normalized continuation payoff when only k−j units are left, with
t periods to go. Observe now that

k−1∑
j=1

j

(
n

j

)
(1− γt)j γn−jt + k

n∑
j=k

(
n

j

)
(1− γt)j γn−jt = n (1− γt)φt,
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so we may re-write the seller’s payoff as

St+1 = max

{
γn+1
t St − n (1− γt)

[
γnt φt−1 (1− γt−1) +

∑k−1
j=1

(
n−1
j

)
(1− γt)j γn−jt Wk−j,t + γntMt−1

]
+
∑k−1

j=1

(
n
j

)
(1− γt)j γn+1−j

t (Yk−j,t − j)− k
∑n

j=k

(
n
j

)
(1− γt)j γn+1−j

t

}
,

which is a function to be maximized over γt. This can be written more compactly as

St+1 = max
{
γn+1
t St + h (γt)

}
. (39)

The seller’s maximization. Taking derivatives of (39) with respect to the γt, the seller’s
first-order conditions are

St = −h′ (γt) / ((n+ 1) γnt ) , (40)

and therefore, using (40 in (39),

h′ (γt+1) = γnt+1 (γth
′ (γt)− (n+ 1)h (γt)) . (41)

Writing h as
h (γt) = g (γt)− n (1− γt) γntMt−1 (42)

and using this expression to substitute for h in (41) gives

g′ (γt+1)− n (n− (n+ 1) γt+1) γn−1
t+1 Mt = γnt+1 (γtg

′ (γt)− (n+ 1) g (γt) + nγntMt−1) . (43)

We further have, from the price recursion (38)

Mt = At + γntMt−1, (44)

with

At = γnt φt−1 (1− γt−1) +
k−1∑
j=1

(
n− 1

j

)
(1− γt)j γn−jt Wk−j,t. (45)

Using (45) in (44) to eliminate Mt−1, we solve for

Mt =
g′(γt+1)− γnt+1 (γtg

′(γt)− (n+ 1)g(γt)− nAt)
n2γn−1

t+1 (1− γt+1)
. (46)

Therefore, inserting in (43),

g′(γt+1)− γnt+1 (γtg
′(γt)− (n+ 1)g(γt)− nAt)

γn−1
t+1 (1− γt+1)

− n2At =

γt
g′(γt)− γnt (γt−1g

′(γt−1)− (n+ 1)g(γt−1)− nAt−1)

(1− γt)
.
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The expression γtg
′(γt)− (n+ 1)g(γt)− nAt can be further simplified. Indeed,

γtg
′(γt)− (n+ 1)g(γt)− nAt =

k−1∑
j=1

j(1− γt)j−1γn−jt

((
n− 1

j

)
n(1− γt)Wk−j,t −

(
n

j

)
γtYk−j,t

)

+
k−1∑
j=1

(
n

j

)
j2(1− γt)j−1γn+1−j

t + k
n∑
j=k

(
n

j

)
j(1− γt)j−1γn+1−j

t .

The function v(x). We now let k = 2 and seek the function v(x), giving the identity of
the indifferent buyer given that there are two units for sale and the length of time to the
deadline is x. Given k = 2, we have

Y1,t ≈
n qt−1

qt
−
(
qt−1

qt

)n
n+ 1

, and W1,t ≈
1

n

(
vt
vt+1

)n−1

.

Observe that
1

γ(x)
− 1 ≈ v′(x)

v(x)
.

If we let t+ 1 = x+ ε, t = x and t− 1 = x− ε, we can approximate Y1,t by

1

n

(
(n− 1)

(
1 +

3ε

nx

)−1

−
(

1 +
3ε

nx

)1−n
)
,

(recall that there is one fewer buyer) and W1,t by

1

n− 1

(
1 +

3ε

nx

)1−(n−1)

.

Finally, we can approximate γt as follows:

γt+1 =

(
1 +

v′(x)

v(x)
ε+

(
v′′(x)

v(x)
−
(
v′(x)

v(x)

)2
)
ε2

)−1

,

γt =

(
1 +

v′(x)

v(x)
ε

)−1

,

γt−1 =

(
1 +

v′(x)

v(x)
ε−

(
v′′(x)

v(x)
−
(
v′(x)

v(x)

)2
)
ε2

)−1

,

and do an asymptotic expansion in ε around 0, obtaining

(n2(n+ 1)w(x)4 − 2nw′(x)2 + w(x)2(3 + n(3n+ 1)w′(x)))ε3 + o(ε4) = 0,
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where w(x) = v′(x)/v(x). We also know that v(0) = 0, v(1) = 1. Calculating the valuations
v(x) is thus a matter of solving the ordinary differential equation.

n2(n+ 1)w(x)4 − 2nw′(x)2 + w(x)2(3 + n(3n+ 1)w′(x)) = 0. (47)

The price function p(x) and payoff π. Turning now to the price p(x), from φt (vt − pt) =
Mtvt+1 (cf. (37)), it follows that

pt = vt −
Mt

φt
vt+1 = vt+1

(
γt −

Mt

φt

)
.

We have expression (46) for Mt, and thus attention turns to computing

γt −
Mt

φt
.

Using our approximations W , X and γ, it is straightforward to verify that, in the case k = 2,

lim
ε→0

γt −
Mt

φt
=
n− 2

n
.

This in turn gives the price function

p (x) =
n− 2

n
v (x) .

It is then straightforward that the seller’s payoff is given by 2n−2
n−1

.
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