
Electronic copy available at: http://ssrn.com/abstract=1324410

A Simple Theory of Scientific Learning∗

E. Glen Weyl†

September, 2007

Abstract

Scientists use diverse evidence to learn about the relative validity of various broad theories. Given
the lack of statistical structure in this scientific learning problem, techniques of model selection and
meta-analysis are not directly useful as quantitative guides. I use five simplifying assumptions to make
the problem tractable by standard statistical methods. Combining Bayesian and frequentist approaches,
I derive simple, intuitive rules for updating beliefs. The theory incorporates trade-offs among seemingly
incomparable dimensions often used to judge models: ex-ante plausibility, precision, empirical accuracy
and general applicability. I establish necessary and sufficient conditions for the consistency of the learning
procedure which provide easy robustness checks for applied analysis and a simple algorithm for choosing
a robustly consistent trade-off between precision and accuracy. I develop the theory in the context of a
motivating application to social preference data collected by Charness and Rabin (2002). In contrast to
the authors’ analysis, I find (for a wide range of prior beliefs and parameter values) that after taking into
account its greater precision, Selfishness is the best model of choice in the simple games they consider.
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In so far as a scientific statement speaks about reality, it must be falsifiable; and in so far as it
is not falsifiable, it does not speak about reality.

– Karl R. Popper, “The Logic of Scientific Discovery”

1 Introduction

Scientists, particularly social scientists, often use their knowledge of general theories to make predictions
or prescribe policies in situations, like the design of international institutions, where collecting new data
about the particular problem is prohibitively expensive or impossible. Careful comparison of the merits of
different theories is therefore crucial. To aid such comparative analysis, scientists draw on diverse sources
of evidence to learn about the relative validity of different theories. Because of the lack of statistical
structure, no formal rules currently exist to provide quantitative guidance to this inference.

In this paper, I begin an attempt at developing such rules. First I provide a mathematical formulation
of this scientific learning problem. A scientist uses her observation of the outcomes of a experiments,
which have a finite number of possible outcomes, to learn about the relative validity of different theories
which make (not necessarily unique) predictions about the outcomes of the experiments. I discuss why
the problem cannot be directly solved through existing methods. I then make five simplifying assumptions
that provide statistical structure to the problem:

1. Bayesian inference: the scientist believes one theory is “true” in the sense of describing the stochastic
process generating experimental outcomes and learns, by Bayesian inference, about the probability
that different theories are true, starting from a prior distribution over the truth of various theories.

2. Independence: each experiment is independent (conditional on the identity of the true theory).

3. Theoretical imperfection: even the true theory may make errors with probability independent of the
identity of the theory.

4. Uniformity: conditional on an error occurring, the outcome of the experiment is uniformly distributed
on the set of all possible outcomes of that experiment.

5. Minimal theoretical structure: conditional on no error, the outcome of the experiment is uniformly
distributed on the outcomes predicted by the true theory.

I then use standard statistical techniques to provide a solution. First, I use Bayesian learning theory
to derive a simple rule for updating beliefs. The resulting rule formalizes the trade-off between commonly
cited criteria for judging theories: ex-ante plausibility, empirical accuracy, precision of predictions and
broadness of applicability. Second, I apply frequentist methods (such as maximum likelihood estimation)
to calibrate the crucial parameter of this learning rule, the rate at which errors occur, which controls
the trade-off between precision and accuracy. I then fully embed the Bayesian learning within a classical
framework to provide necessary and sufficient conditions for long-term consistency of the learning process
in terms of the choice of this parameter. As long as the error rate is not chosen by the scientist very far
from its true value, the learning process is consistent. These results provide a simple algorithm for choosing
an error parameter that is consistent given a range of possible values for this error parameter.
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The simplifying assumptions I make limit the applicability of the theory to contexts where there is
no natural notion of distance between outcomes of experiments. In the appendix, I outline a strategy for
relaxing these assumptions (and thereby complicating the theory) to make it more broadly applicable. The
theory developed here may be viewed primarily as providing intuition for a more complete theory I am
working to develop. Nonetheless, the theory in its current form is useful for some important applications.
To make the exposition more concrete, I develop it in the context of a simple motivating application that
conforms well to the assumptions of the theory.

I consider data collected by Charness and Rabin (2002), who ran a set simple experiments to determine
which of several theories of social preferences were best able to explain behavior of subjects in a wide
range of simple two-player, sequential binary choice games. Because many of the theories are consistent
with both choices for one or both players in a particular game, the authors have no natural strategy for
comparing the performance of the theories. Is a theory that makes a unique prediction 90% of the time
but only explains 50% of behavior better or worse than a theory that makes a unique prediction 50%
of the time but explains 90% of observed behavior? My focus on the trade-off between precision and
accuracy makes their data a particularly natural application of my theory. When applied to this problem,
the update rule can rationalize either an interpretation of their data as supporting Selfishness or Social
Welfare (i.e. altruistic) preferences as the best theory of choice in the simple games they consider. The
theory’s primary contribution is to supply quantitative estimates of the range of prior beliefs and error
rate choices supporting each interpretation. I find that the prior beliefs and parameter values needed to
support the authors’ interpretation of the data as supporting Social Welfare over Selfishness are extreme
and probably implausible to most economists.

The paper following this introduction is organized into eight sections and four appendices. Section
2 discusses existing statistical approaches related to the scientific learning problem. Section 3 outlines
the Charness-Rabin data and the problems with the way it was analyzed. This section motivates the
development of the theory which follows. Section 4 formally develops the scientific learning problem. It
then explains and motivates the assumptions I use to simplify the problem in the context of the Charness-
Rabin application. It then derives and interprets basic formulae that can be used to apply the model.
Section 5 is therefore dedicated to techniques for choosing the error parameter. I discuss a rule of thumb
estimator loosely related to the method of moments, a maximum likelihood approach to estimation and a
pseudo-Bayesian technique. Section 6 presents the results of applying the theory to analyze the Charness-
Rabin data.

Because the error parameter is of such crucial importance, one may be concerned about the robustness
of analysis to misspecification of this parameter. Section 7 therefore develops the core theoretical results of
the paper by imbedding the subjective learning of the scientist in an objective probability framework. This
yields conditions under which the learning rule implied by the theory is consistent despite misspecification
of the error parameter. The learning rule always consistently learns the truth when alternatives are overly
precise (subsets), but may be inconsistent if misspecified when alternatives are vaguer than (supersets
of) the true theory. The error parameter conditions the trade-off between speed of consistency against
subsets and inconsistency against supersets. This in turn provides a simple algorithm for choosing a
robustly consistent error parameter, namely choosing the smallest error parameter that is guaranteed to be
consistent given a range of possible values for the parameter. I show that the values of the error parameter
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which support the Charness-Rabin interpretation of their data has substantial risk of inconsistency under
reasonable conditions.

Section 8 returns to the criteria of plausibility, accuracy, precision and general applicability, discussing
their importance in detail. These four criteria were drawn from the intersection of a recent methodology
paper by Gabaix and Laibson (2007) and a classic treatise on induction by Carnap (1950) and I therefore
refer to these criteria as the Carnap-Gabaix-Laibson Criteria. I argue that any reasonable theory of
scientific learning should, as the theory developed here does, incorporate trade-offs among these criteria.
Section 9 concludes by discussing directions for further research.

Appendix A addresses the fact that Charness and Rabin may have formulated versions of the social
preference theories that were overly vague, as the analytic techniques they used did not penalize such
vagueness. I therefore consider a simple “precision-augmentation” of the theories that makes them more
falsifiable and therefore put them on a more even playing field with Selfishness. This check confirms my
initial results. Appendix B provides a proof for one lemma in Section 7. Appendix C provides a proof of
the primary theorem in Section 7. Appendix D, as discussed above, begins work towards extending the
theory to make it more broadly applicable.

2 Related literatures

Three broad literatures in statistics and economics address aspects of the problem of scientific learning.
The first, on model selection, shares with my analysis an emphasis on quantitative standards for selecting
the best models of certain phenomena. The second, on meta-analysis, shares my emphasis on combining
evidence from disparate sources. The third, on the game theory of empirical tests, shares my focus on
formalizing standards from the philosophy of science. This section briefly discusses each of these literatures,
as well as a paper from epidemiology that has a similar aim to this one, with an emphasis on their relation
to my theory and the reasons why they are not directly applicable to scientific learning. Section 4, which
formulates the problem formally, further reinforces this distinction.

The two approaches to model selection most related to my theory here are the Bayesian approach and
the Statistical Learning Theory of Vapnik and Chervonekis. The Bayesian approach, summarized well in
Gelman and Rubin (1995), compares theories which embed a full probability distribution over outcomes
that could be realized. For reasons discussed below, this full Bayesian approach is cumbersome and overly
demanding on applied analysts without substantial simplifying assumptions. Nonetheless the spirit of the
model here is basically Bayesian and can be seen as supplying those simplifying structure necessary to
make the Bayesian approach operational.

The Statistical Learning Theory of Vladimir Vapnik and Alexey Chervonenkis , summarized nicely
in Vapnik (1995), is much more oriented than the Bayesian approach towards handling theories which
specify only predictions, not full probability distributions over possible outcomes. It is also designed to
be computationally tractable. However, it provides very loose bounds, rather than quantitatively precise
posteriors, about the merits of various models. It therefore is not useful, particular in the small samples
I consider, for providing precise estimates of how much weight show be put on various theories in a small
set. Nonetheless, its focus on falsifiability and its rejection of simplistic notions of degrees of freedom in
favor of measures of parsimony were a major inspiration for this work.

Other less theoretical model selection techniques are much farther from being applicable to the scientific
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learning problem. For example, re-sampling techniques such as the bootstrap, jackknife and cross-validation
described in Efron (1982) require a much more structured setting than afforded by the scientific learning
problem to be valid. Strict degree-of-freedom based approaches, such as the AIC of Akaike (1974), do not
speak the problem of theories that are inherently vague and, even when they do, can be very misleading
when degrees of freedom capture very different things in different models being compared. While likelihood
clearly plays a role in the model below, as in any Bayesian model, scientific learning often faces situations
where the amount of independent information is far too small to ignore residual uncertainty about the
correct theory. Therefore simple maximum likelihood estimation, while trivial given the model developed
below, is usually inappropriate. Techniques based on information theoretic criteria, most prominently
those that choose models with minimum description length such that suggested by Rissanen (1978), are
widely believed to only be applicable in situations, usually in computer science, where description length is
easily understood, measured and is closely related to the plausibility of a model. In economics and science
more generally none of these criteria seem to hold.

The oft-cited Popperian view, as developed in Popper (1959), that among equally accurate models, the
most falsifiable one should be favored has simply never been formalized and does not provide guidance on
how falsifiability should be traded off against empirical accuracy. My theory can be viewed as an attempt
to formalize Popper’s persuasive philosophical reasoning.

All currently existing meta-analysis approaches are suited to inference for simple, clearly defined param-
eters and therefore require much more structure than the scientific learning problem contains. However,
as I develop the theory further, these ideas from meta-analysis are likely to be very useful in correctly
weighting across different experiments and different dimensions within a particular experiment. My inde-
pendence assumption and general use of constant error rates abstracts away from such problems; however
in including errors driven by statistical uncertainty in my application to the Charness-Rabin data, I am
implicitly drawing on standard meta-analytic techniques. As I begin to develop the theory in the context
of metric experiment spaces (see Appendix D), the connection to meta-analysis will become more explicit.
For a survey of classical meta-analytic and quantitative review techniques see Rosenthal (1984) and for a
more Bayesian approach see Eddy and Shachter (1990).

The literature in economic theory proper, most related to this paper is on the empirical testing of
strategic experts. It considers whether an expert’s claim to empirical knowledge can be verified if that
expert is strategic. A brief survey of this work is provided in a recent paper by ?. They, like I, are interested
in various strategies for empirically testing broad, vague theories based on ideas from the philosophy of
science and methodological theory. However, they assume that theories are produced strategically. While
this creates an important and interesting game theoretic problem, I think that my (classical) approach of
seeing alternative theories as coherent hypotheses which should be tested on their merits, rather than as
manipulable ploys for prestige, fits better with the way most scientists do and should interpret theories.
Furthermore, none of the “tests” in the literature incorporate trade-offs among all of the criteria listed
above, none of them formalize degrees of precision and none lead to posterior distributions over beliefs
in various theories. Therefore, their models are not useful for applied meta-analysis of different theories.
They are game theory fundamentally, not statistics.

A final paper closely related to mine develops a quite different methodology for addressing a similar
question to the scientific learning problem I formulate here. However, Katz and Singer (2007) take an
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entirely qualitative approach to the problem and their analysis is therefore more suited to situations where
quantification is much more difficult than those my theory is appropriate for. Furthermore they primarily
focus on the issue of the relevance and possible manipulation of data, rather than on the trade-off between
precision and accuracy. While I think these issues are quite important, particularly in applying the more
serious metric version of the theory, my primary contribution is in the trade-offs among the four listed
criteria, not in how various evidence should be weighted. I therefore view their paper, like meta-analysis,
as an eventual compliment to my work, rather than as a substitute.

3 Charness and Rabin (2002) data and analysis

In order to make the basic assumptions and mechanism of the theory as transparent as possible, I develop
it in the context of a motivating example. Because of the simple structure of the Charness-Rabin data
it is a particularly good fit with the assumptions of my theory and is easy to explain. Furthermore, it
exemplifies in a simple way the problem of precision-accuracy trade-off that the theory addresses.

In their 2002 paper “Understanding Social Preferences with Simple Tests”, Gary Charness and Matthew
Rabin tried to overcome confounds existing in many experiments to test which models of social preferences
are most consistent with a “broad range” of experimental data. Towards this end they devised twenty nine
simple games designed to distinguish sharply between various theories. The paper addresses a number of
issues, including the role of reciprocity and the dynamics of a few three-player games the authors consider.
However, a primary focus is on using results from the twenty seven two player, binary choice games to
distinguish among four theories of social preferences. All of these games had a very simple structure:

1. First player A chooses between a known payoff profile and giving player B a chance to play.

2. Conditional on being allowed by player A to play, player B faces the choice between two known payoff
profiles.

3. In a few of the games, player A has no choice but to let player B play.

The authors provide simple parameterizations of the four theories of social preferences:

1. Standard selfishness: individuals act to maximize their payoff and are indifferent among alternatives
which all achieve maximal payoff.

2. Difference aversion: individuals put (strictly) positive weight on the other individual’s welfare when
the other individual is earning a lower payoff (than oneself), but a negative weight on the other
individual’s welfare when the other individual is earning a higher payoff.

3. Social welfare: individuals put positive weight on the other individual’s payoff always, but puts higher
weight on the other player’s payoff when the other player is behind than when the other is ahead.

4. Competitive: individuals always put negative weight on the other individual’s welfare, but put higher
negative weight on the other’s payoff when the other is ahead than when she is behind.
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The authors then used two basic strategies to analyze the data. The first was to assume all subjects have
the same preferences, which they implement with errors, the rate of which is proportional to the utility cost
of this error. The authors then calibrate the various different models and compare how well they organize
the data. Such an analysis suffers from two major problems. First, if preferences are heterogeneous in
the population so that different behaviors are not driven errors but by different utility functions then this
analytical strategy is unlikely to give sensible results. A causal survey of their data does not seem to
indicate that the stakes of experiments are strongly negatively related to the rate of errors off of theories
with good fit, as would be necessary to support this procedure. Second, it seems to me unlikely that
readers of the paper, or even the authors, take very seriously the estimated parameter values coming out
the calibration or believe that these particular parameter values represent a reasonable alterative model
to selfishness. Finally, this procedure has no way to quantify or take into account the greater degrees of
freedom the social preference theories have.

The second strategy, upon which my analysis builds, is to calculate which actions in each experiment
are consistent with each preference model for some parameter value. Because this sometimes depends
on the expected actions of the other player, Charness and Rabin have two versions of this analysis, one
allowing players to hold any beliefs about the other players likely actions and the other assuming players
have correct beliefs. Because this “correct beliefs” version offers much sharper analytical possibilities, I
focus on it here1.

Charness and Rabin go on to calculate two measures of the “fit” of a theory. First, they ask what
fraction of decisions are consistent with the predictions of the theory for some parameter value. Second,
they ask what fraction of decisions are consistent with the predictions of the theory when those predictions
are unique (i.e. independent of the parameter value). Both of these approaches suffer from the same
problem: they entirely ignore the value of a theory being falsifiable. Suppose that one theory, call it the
“vague theory”, predicts a unique outcome in one experiment and in all other experiments is consistent with
any outcome. Further imagine that in the one experiment where it predicts uniquely, 90% of subjects act
according to its prediction. Consider a second theory, call it the “precise theory”, that predicts uniquely on
every experiment and about 70% of subjects act in accordance with its predictions. It would seem clear that
the second model should be judged better: it gives precise predictions that consistently are not falsified, a
performance that would be extremely unlikely if there were not “something to” this model. On the other
hand the first model might well have gotten that one experiment right by chance. Yet in both of Charness
and Rabin’s measures, the first theory would perform better. In fact, their analysis exactly follows this
path: they conclude the “social welfare” model out-preforms selifshness2. However, selfishness is falsifiable
(makes a unique prediction) much more often in their experiments than social welfare preferences, so it is
difficult to interpret their conclusions.

This situation is one concrete and relatively simple example of a general problem: how should a scientist
combine many tests of different, potentially vague theories to learn about their general validity? In the

1Thus, in this context, the assumptions “all subjects are perfectly rational” and “all subjects have rational expectations
about the proportion of partners choosing each strategy” can be seen as identifying assumptions for my empirical analysis.
The issue of additional identifying (maintained) assumptions used to allow the model to be applied is an important one.

2The authors begin their paper with the claim that “Participants in experiments frequently choose actions that do not
maximize their material payoffs when their actions affect others’ payoffs.” They later state, when considering the fraction of
behavior explained by each theory, that “the proportion of explained by social-welfare preferences is significantly higher the
proportions explained by the other three theories.” Finally, in comparing the performance of theories when their predictions
are unique the authors again argue “we see that social-welfare preferences substantially outperform the other models.”
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section that follows I formulate this problem formally, discuss why it cannot directly be solving through
existing statistical methods and propose five assumptions that make the problem tractable.

4 The problem of scientific learning and a simple solution

4.1 The problem

Charness and Rabin collected data about choices in a set of simple two player, binary choice games. While
one could use every choice made by every participant, I will focus on the choices made by a majority
of participants in any particular role, in particular game and view this as being the outcome of the
experiment. From this perspective, the behavior of a majority of participants in any role in a game may
have two outcomes. Therefore, it is certainly reasonable in this setting (and many other settings) to assume
that outcomes of experiments are discrete.

Definition 1. An experiment is a finite set Θ.

The experiments they chose to run are elements of several, increasingly large sets: the set of all two
player binary choice games, the set of all two player discrete choice games, the set of all experimental
games, the set of all human strategic interactions, etc. To interpret or learn from the Charness-Rabin
data, it is useful to identify a set of situations from which the games they consider might reasonably be
randomly drawn. That is, I will view their experiments of being representative of some class of situations3.
In this case, a reasonable class would be the set of all two player, binary choice games where the first player
chooses either to take a certain payoff or to allow the second player to move and, conditional on moving,
the second player faces a binary choice with known payoffs.

Definition 2. The studied phenomenon is a (generally infinite) set of experiments Γ.

Of course, Charness and Rabin do not observe the outcomes of all such games; rather they observe the
outcomes of only the finite number of experiments that they ran.

Definition 3. The observation Ξ is a finite subset of Γ.

The purpose Charness and Rabin had in mind when collecting their data was to test various different
theories of social preferences. These theories are not full probabilistic models of the set of all possible
outcomes, but rather are ways of generating predictions, in any given experiment, as to what the outcome
of that experiment will be. These predictions are not necessarily unique: sometimes, for example, Social
Welfare preferences are consistent with both choices a participant might make. More generally, a theory
might be consistent with some strict but non-singleton subset of the possible outcomes of an experiment.

Definition 4. A theory is a mapping Θ 7→ λ(Θ) ⊆ Θ, called the set of outcomes predicted by λ for Θ.
Let the theory space Λ be the set of all possible theories satisfying this definition.

In order to learn from an experiment, one of course needs to observe its outcome as well as the set of
possible outcomes. In the Charness-Rabin application, I identify the outcome of any experiment as the
choice in that role made by the majority of subjects.

3The performance of various theories in binary choice situations should be viewed itself as one of many “experiments” for
learning about human behavior.
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Definition 5. A world is a mapping ω : Γ 7→ ω(Θ) ∈ Θ. Let Ω be the set of all possible worlds and some
ω? ∈ Ω be called the true world. ω?(Θ) is called the outcome of Θ.

These definitions together provide a formulation of the problem of scientific learning. A scientist
observes the outcomes of all experiments in the observation {ω?(Θ)}Θ∈Ξ and wants to learn which theory
in Λ is the best theory (call it λ?). This formulation allows a more precise statement of what makes the
scientific learning problem different from other statistical problems. There are four differences, which I list
in increasing order of importance.

1. First, we naturally think of the sample size |Ξ| as being quite small. This means that asymptotic
approximations (if any were valid) would be unappealing. But more importantly it means that,
realistically, even after observing Ξ different scientists will still have substantial disagreement about
which theory is best. Therefore simple hypothesis testing is not likely to be appealing. This of course
is not a problem for Bayesian methods.

2. More significant, the space Γ from which the experiments are drawn has very little structure. There
are no “natural” parametric distributions over it. This poses a particular problem, again, for fre-
quentist approaches.

3. Even more substantially, the “parameter space” in this problem, Λ is enormously largely and more
importantly has very little structure. It is therefore difficult to think about how a scientist could
have a prior distribution that is non-dogmatic over this space. Confidence sets in Λ are probably not
terribly appealing either.

4. Finally and most importantly, there is no “obvious” way to think about the joint distribution of
(λ?, ω?). Theories in this model do not specify a distribution over Ω, but rather make deterministic
predictions about the value of ω? at particular points in Γ. Therefore work is needed in order to
transform this inference problem into a proper statistical question.

Because of these problems, none of the traditional statistical approaches discussed in Section 2 can be
applied directly to the problem. In order to provide the structure necessary to make the problem tractable
by traditional statistical methods, I will make a series of five assumptions, motivating and interpreting
them in the context of the Charness-Rabin application.

4.2 Five simplifying assumptions

To begin, one must ask what is meant by learning which theory is best. A way to formally understand this
is to view one theory as being “true”, in the sense of providing a good description of the stochastic process
generating observed data. Then the scientist’s goal is to learn about which of the theories tested is this
true4 theory. From a Bayesian perspective, such learning requires that the learning agent, henceforth the
scientist, has a prior distribution over which theory is true. While Bayesians would argue this assumption
is always (axiomatically) justified, as a cautious pseudo-Bayesian I would argue that it is particularly
reasonable here as scientists usually have a fairly good sense (devote a lot of time to thinking about) the a

4In section 7, I discuss how theories close to the true theory will be consistently learned using the learning rule developed
below. Thus we might interpret this sentence as reading “which of the theories test is closest to this true theory.”
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priori plausibility of different theories. However, note that these priors will usually be dogmatic5, for the
reasons discussed above; in fact, the scientist will usually only have a few theories in the support of her
priors. For example, in the Charness-Rabin application there are only four theories considered.

Assumption 1. The scientist believes that one theory λ? ∈ Λ is the true theory but is uncertain as to
its identity. The plausibility distribution π : λ 7→ π(λ) ∈ [0, 1] is a probability distribution over Λ that
represents the scientist’s priors over the different theories being the true theory.

What the scientist learns from the observation about the true theory, as well as the true world, will
depends on her beliefs about the joint distribution of the true theory and the true world. One way
to substantially simplify this problem is to assume that the scientist believes that each experiment is
independent, conditional on the identity true theory. This assumption is somewhat unrealistic as some
experiments may be very similar to one another so that even conditional on the value of the true theory their
outcomes may be correlated. While this is an important concern and an enriched version of the theory6

would provide a means for handling this problem, as a baseline I will assume independence. Letting P be
the probability distribution of the scientist, this assumption can be written formally as:

Assumption 2. P
[
ω?(Θ1) = θ1, . . . , ω

?(ΘN ) = θN

∣∣λ? = λ
]

=
∏N

i=1 P
[
ω?(Θi) = θi

∣∣λ? = λ
]

for all

{Θi}N
i=1 ⊆ Γ and all N ∈ N such that Θi 6= Θj for i 6= j.

While this simplifies calculations across experiments somewhat, it still does not specify what it means
for a theory to be the “true theory”. One might be tempted to think that if a theory is true, it should always
be consistent with realized outcomes. This seems somewhat unrealistic and overly ambitious, however, at
least in the social sciences. Even good economic models (and scientific theories more generally) are not
consistent with all available evidence and even in the cases when they are they usually provide only good
approximations of the empirical outcomes. Furthermore, assuming that the true theory is always consistent
with available evidence would lead to a strong preference for vague theories which fit available evidence by
luck. A simple way to capture the inherent limits on the accuracy of a theory is to assume that, in any
experiment, there is some chance that the true theory will be make an error.

Assumption 3. The scientist believes that even the true theory λ may be imperfect in the sense that it
makes errors with some probability Θ 7→ σ(Θ) ∈ [0, 1] that may depend on the experiment but is independent
of the identity of the true theory.

The scientist might believe that the probability of such an error depends on the identity of the true
theory. By assuming away such dependence, I focus the theory below on learning about the identity of the
true theory for scientists that can only have a rough sense of the correct error rate, rather than focusing
on theory-conditional error rates precisely and then learning the correct theory7.

5Therefore they should not be viewed as the scientist’s “true” or full priors over theories. Rather they represent a simple
way of giving statistical structure to the problem of comparing theories.

6Again, one has to trade off getting things “right” against allowing too much flexibility or demanding too much from
applied modelers. I will later discuss where, in this application, this assumption becomes strained.

7An alternative approach, which builds on suggestions I received from Paul Milgrom and Wolfgang Pesendorfer, would
be to obtain an estimate of the error parameter conditional on each theory through maximum likelihood estimation (as I do
below) and then update beliefs with each theory using its “most competitive” (MLE) estimate of the error parameter. A nice
feature of this approach is that it theoretically simple and very internally consistent. It should be easy to show that in the
long-run the theory-specific estimate by MLE for the true theory converges to the true theory-specific error rate and that,

9



Now I need to define exactly what I mean by the true theory “making an error”. A simple assumption,
very loosely justified by Laplacian maximum entropy arguments8, is that, when the true theory makes an
error, the outcome is uniformly distributed on the set of all possible outcomes9.

Assumption 4. The scientist believes that with probability σ(Θ), regardless of the true theory, ω?(Θ) is
uniformly distributed on Θ.

The crucial substance of this assumption is that all outcomes are equally close to one another. Suppose
that, rather than discrete choice experiments, we were analyzing models that predict inflation. Conditional
on a model that predicts 1% inflation being correct we might think it reasonable that 1.5% inflation would
be realized. But we would not think 7% inflation would be likely. On the other hand, in a some discrete
settings where any pair of outcomes has roughly equal similarity (vacuously true in binary choice), it is
a reasonable approximation. In Appendix D, discuss how the basic structure of the model here can be
extended to more realistic spaces with metrics.

Finally, if the theory does not make an error, which occurs with probability 1− σ(Θ), then we should
expect the outcome to be among those predicted by the theory. But this does not immediately imply a
distribution over outcomes predicted by the theory, unless the theory makes a unique prediction. Again,
the simplest way deal with this is to assume, in the spirit of maximum entropy, that the entire content of
the theory is its predictions and therefore that the distribution of the outcome if the true theory does not
make an error is the restriction of the distribution under error to the set of predictions of the theory. Given
assumption 5, this implies that if there is no error by the true theory on a particular experiment, then the
outcome of that experiment is uniformly distributed on the outcomes predicted by the true theory.

Assumption 5. The scientist believes that with probability 1 − σ(Θ), ω?(Θ) is distributed uniformly on
λ?(Θ).

Assumptions 3 and 5 together imply that

given this correct estimate, the scientist will consistently learn the identity of the true theory. Furthermore, given that the
procedure I roughly envision being one of learning about the identity of the true theory and then learning about the error rate
given that theory, this approach would seem somewhat more internally consistent than the one advocated here.
However, this approach seems somewhat less satisfying in application than in theory. First it would be very difficult to preform
robustness checks, like those below, on this procedure. Given that two stages of long-run convergence are needed to justify its
consistency, I am doubtful that its small sample properties would be desirable. Furthermore, I think it takes too seriously the
the notion that the scientist is trying to find the theory that most closely matches the stochastic process generating outcomes.
The goal of the scientist learning the true theory may not be to literally use it as a probabilistic model to predict on the next
experiment. Instead, she may use standard Bayesian model selection criteria and use the output of scientific learning to obtain
priors. In this setting, theory-specific error rates seem odd. However, given the simplicity of this alterative approach it offers
an easy way to develop a working theory in the metric experiment context I begin to develop in Appendix D. Thus if the
mathematical challenges of robustness results become overly difficult there, this is an alternative that is probably preferable
to the approach developed here without robustness results.

8For classic philosophical defence see Carnap (1950), Laplace (1814) orLaplace (1812). For the classic modern treatment of
the maximum entropy approach see Jaynes (1957) and for a more recent summary and defense of the methodology see Jaynes
(1982).

9This corresponds roughly to the idea of a uninform “prior” in experiments: in the absence of knowing which theory is
correct, every outcome of the experiment is equally plausible. In the Charness-Rabin application, this assumption is quite
compelling as it is not clear what, other than theories of choice, would make one outcome more likely than another. In other
applications, some outcomes may be more plausible than others for reasons orthogonal to which theory is correct. In such
instances, it is easy to modify the model to put such an “ex-ante shape” on the experiment space. However, one should be
cautious about introducing this extra degree of freedom, as it may somewhat increase the demands on analysts and reduce
transparency.

10



P
[
ω?(Θ) = θ

∣∣λ? = λ
]

=

{
σ(Θ)
|Θ| θ /∈ λ(Θ)

1−σ(Θ)
|λ(Θ)| + σ(Θ)

|Θ| θ ∈ λ(Θ)
(1)

Together with Assumptions 1 and 2 these completely define the scientists joint probability distribution
over ω? and λ?.

4.3 Basic solution

Having set up the basic probabilistic structure of the model, I can now solve for Bayesian update rule
(Bayes Factors). To motivate the learning rule, consider the scientist’s posterior beliefs after observing the
outcome of all experiments in Ξ. By assumption 1 and Bayes’s Rule:

P
[
λ? = λ|

{
ω?(Θ)

}
Θ∈Ξ

]
=

P
[{

ω?(Θ)
}

Θ∈Ξ

∣∣∣λ? = λ
]
π[λ]

P
[{

ω?(Θ)
}

Θ∈Ξ

]
From now on I will use the short hand that P [·|Ξ] ≡ P [·|

{
ω?(Θ)

}
Θ∈Ξ

] and P [Ξ|·] ≡ P [
{
ω?(Θ)

}
Θ∈Ξ

|·].
For any two theories λ, λ′ ∈ Λ:

P
[
λ? = λ|Ξ

]
P
[
λ? = λ′|Ξ

] =
P
[
Ξ
∣∣∣λ? = λ

]
P
[
Ξ
∣∣λ? = λ′

] π(λ)
π(λ′)

Assumption 1 takes plausibility (priors) as given, so the interesting term above is the Bayes Factor,
which I will sometime refer to as the learning rule. Using assumption 2 and equation 1 allows us to
re-express the learning rule in its error form:

P
[
Ξ
∣∣λ? = λ

]
P
[
Ξ
∣∣λ? = λ′

] =
∏
Θ∈Ξ

P
[
ω?(Θ)|λ? = λ

]
P
[
ω?(Θ)|λ? = λ′

] =
∏
Θ∈Ξ

σ(Θ)
|Θ| + 1−σ(Θ)

|λ(Θ)| 1ω?(Θ)∈λ(Θ)

σ(Θ)
|Θ| + 1−σ(Θ)

|λ′(Θ)| 1ω?(Θ)∈λ′(Θ)

(2)

If we let the informativeness of an experiment µ : Γ → R+ ∪ {∞} be defined by µ(Θ) = 1−σ(Θ)
σ(Θ) , then

we can rewrite expression 2 in its informativeness form:

∏
Θ∈Ξ

1 + µ(Θ) |Θ|
|λ(Θ)|1ω?(Θ)∈λ(Θ)

1 + µ(Θ) |Θ|
|λ′(Θ)|1ω?(Θ)∈λ′(Θ)

(3)

4.4 Interpretation

To better understand the learning rule, I will focus on the case when σ(Θ) ≡ σ̄ or equivalently µ(Θ) ≡ µ̄.
To interpret the preceding expressions, it is useful to consider the extreme cases when µ̄ → 0 (σ̄ → 1) and
µ̄ →∞ (σ̄ → 0).

In the first case, note learning will occur towards λ over λ′ if and only if:

∏
Θ∈Ξ

1 + µ̄ |Θ|
|λ(Θ)|1ω?(Θ)∈λ(Θ)

1 + µ̄ |Θ|
|λ′(Θ)|1ω?(Θ)∈λ′(Θ)

> 1

This is equivalent to
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∑
Θ∈Ξ

Log
[
1 + µ̄

|Θ|
|λ(Θ)|

1ω?(Θ)∈λ(Θ)

]
−
∑
Θ∈Ξ

Log
[
1 + µ̄

|Θ|
|λ′(Θ)|

1ω?(Θ)∈λ′(Θ)

]
> 0

In the limit as µ̄ → 0 a first-order Taylor approximation of Log[1+x] about x = 0 allows this expression
to be simplified to

µ̄
∑
Θ∈Ξ

|Θ|
|λ(Θ)|

1ω?(Θ)∈λ(Θ) − µ̄
∑
Θ∈Ξ

|Θ|
|λ′(Θ)|

1ω?(Θ)∈λ′(Θ) > 0

We can define precision10 of a theory in an experiment to be ρ(λ, Θ) ≡ |Θ|
|λ(Θ)| . This seems like a

reasonable definition, as this is the inverse of the fraction of possible outcomes that the theory predicts
may occur and is therefore a measure of how precise the theory’s prediction is in that experiment. Then
the above expression becomes:

∑
Θ∈Ξ

ρ(λ, Θ)1ω?(Θ)∈λ(Θ) >
∑
Θ∈Ξ

ρ(λ′,Θ)1ω?(Θ)∈λ′(Θ)

We can call this expression the sum of correct precisions of a theory in an observation ν(λ, Ξ) ≡∑
Θ∈Ξ ρ(λ, Θ)1ω?(Θ)∈λ(Θ). Thus for µ̄ → 0, the scientist learns towards whichever theory has the greatest

sum of correct precisions. This can be seen as placing the maximal weight possible on precision over
accuracy: even theories which are highly empirically inaccurate may be updated in favor of, as long as
they occasionally produce a correct prediction that is highly precise. µ̄ → 0 is the same as σ̄ → 1, so this
result is intuitive: if one believes that even the best theories are likely to fail to predict well often, then
accuracy will not be very important.

On the other hand, consider the case when µ̄ →∞ (or σ̄ → 0). In this case the learning rule becomes

∏
Θ∈Ξ

ρ(λ, Θ)1ω?(Θ)∈λ(Θ)

ρ(λ′,Θ)1ω?(Θ)∈λ′(Θ)

so that a single inaccuracy causes the probability that a theory is the true theory to go to 0. Conditional
on both theories being perfectly accurate, the rule updates in favor of the one with the greater product of
precisions. But for a rule that disqualifies entirely any theory that is not perfectly accurate, precision is
obviously of secondary importance. Thus as µ̄ →∞ maximal weight is placed on accuracy. If one lives in
a world where the correct theory never makes mistakes, accuracy should be crucially important in judging
which theory is correct11. µ̄ can thus be viewed as a parameter governing the accuracy-precision trade-off,
as well as the speed of learning from any particular experiment. Greater values of µ̄ imply that accuracy
is more important and quicker learning; lower values of µ̄ place a greater weight on precision and slower
learning.

10Note that if we relax assumption 5 (that is, even when an error is made the distribution over outcomes is not flat) and
maintain all other assumptions, then the relevant notion of precision will be the inverse ex-ante probability of the theory’s
predictions. Thus perhaps falsifiability is a better word than precision, as really what matters is the likelihood with which,
under the “ex-ante” error distribution, the theory would be falsified.

11Perhaps this should be viewed as true in the physical sciences, where as Einstein famously argued, a single experiment is
sufficient to disprove a theory.
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5 Choice of the error rate

Having developed the basic structure of the model, I can now apply it to the Charness-Rabin data that
motivated it. To operationalize the model I still need a strategy for choosing the error function. The
constant error rate assumption seems quite reasonable in this context and has the advantage, as I will
highlight below, of allowing the data to tell us something about an appropriate value for this parameter.
However, in the Charness-Rabin application it has one important weakness. I interpret the outcome of
an binary choice game to be the action taken by a majority of participants playing that game. However,
this majority is a sample, not a population, majority. Therefore some correction for statistical errors (in
addition to fundamental errors of the true theory) is important.

In particular suppose we observe that x subjects make choice 1 in some experiment and y ≤ x subjects
make choice 2. The standard statistical asymptotic estimate of the probability this outcome would have
been obtained if it is in fact the case that the majority of the population would tend to choose choice 2 is:

p̃(x, y) ≡ 1− Φ

(
(x + y)

(
x

x+y −
1
2

)√
(x + y − 1)xy

)
where Φ is the standard normal CDF. Thus if we assume that the outcome of the experiment is the

population majority, then if there is a constant error of σ̄ the observed error rate will be (well estimated
by):

σ̄ + 2(1− σ̄)p̃(Θ) (4)

where p(Θ) ≡ p(x, y) for the appropriate x and y corresponding to experiment Θ. This model of the
error rate finds reasonable support in the data: the correlation between errors made by the selfishness
model (for example) and the value of p̃ is .56.

Nonetheless, one is still left with the problem of choosing the base error rate σ̄. If the number of
experiments in the observation is very small, one is essentially forced to choose an arbitrary value for this
parameter that seems reasonable. However, when, as in the Charness-Rabin data, the observation has at
least moderate size, 47 to be precise, one can learn something from the data not only about the identity
of the true theory, but also about what may be reasonable values of σ̄.

There are several strategies one might use for this purpose. All of these should be regarded as hacks
with limited theoretical justification12. Finding more satisfactory ways of choosing this parameter is an
important area for future research. In order to make this section applicable beyond the Charness-Rabin
example, I assume in most of the development that σ̄ is a true constant. I then show how each technique,
modified slightly, can be applied to the Charness-Rabin example.

5.1 A rule of thumb

Suppose that one knew which theory is true and was simply attempting to learn about the value of σ̄.
Suppose that the true theory λ? makes an error on experiment Θ. Conditional on making an error, there

12Because σ̄ can be viewed roughly as a nuisance parameter similar to the population variance in standard statistical models,
these approaches have a close resemblance to empirical Bayes methods. These techniques use classical methods to choose values
for nuisance parameters in models which are primarily Bayesian in their style of inference. For an overview of empirical Bayes
methods, see Chapter 4 of Lehmann and Casella (1998).
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is a probability |Θ|−|λ?(Θ)|
|Θ| that the realized outcome will be outside the theory’s predictions. So as long as

Θ 6= λ?(Θ) a simple, natural and unbiased estimator13 is 1ω?(Θ)/∈λ?(Θ)|Θ|
|Θ|−|λ?(Θ)| .

This estimate has the important problem that it is always 0 or greater than 1. However, if the size of the
observation is relatively large, one can to use an estimate like this and an appeal to the law of large numbers
to obtain an estimator of σ̄. In addition, one can invokes standard arguments for generalized least squares14

by weighting each term inversely by its standard deviation which is proportional15 to
√

|Θ|
|Θ|−|λ?(Θ)| − σ̄. Of

course this depends on the value of σ̄, but that problem can easily be overcome by using a constant prior
estimate in the place of a true value of σ̄, approximating σ̄ by 1 or 0 or using a two-stage procedure where
one of the preceding hacks is used to estimate σ̄ and then the estimate of sigma is used to estimate the
variance of each experiment’s contribution to the estimation of σ̄. Regardless one needs to use some σ̃ to
estimate the error rate. The theory-specific rule of thumb estimator is then given by:

σ̂RoT,λ? ≡ min

(
1∑

Θ∈Ξ

√
|Θ|−|λ?(Θ)|

|Θ|−
[
|Θ|−|λ?(Θ)|

]
σ̃

∑
Θ∈Ξ

1ω?(Θ)/∈λ?(Θ)|Θ|√[
|Θ| − |λ?(Θ)|

](
|Θ| −

[
|Θ| − |λ?(Θ)|

]
σ̃
) , 1

)
(5)

where the minimum operator is necessary to prevent estimate being above one, though this obviously
introduced some bias into the estimator. A larger problem is that this estimator, by construction, assumes
one already knows the true theory. To obtain a useful estimator, one can take a weighted average of this
σ̂RoT,λ’s obtained for different theories. A natural way to do this is to weight according to the scientist’s
(prior) plausibility distribution:

σ̂RoT ≡
∑

λ∈supp(π)

σ̂RoT,λπ(λ) (6)

where supp(π) denotes the support of the scientist’s plausibility distribution. Another version16 of
this estimator might be derived from a two-step procedure where the scientist first calculates σ̂RoT using
equation 6, updates using the resultant learning rule and then recalculates σ̂RoT using in place of π her
posterior distribution over the true theory.

This procedure must be modified slightly17 to take into account non-constant error rates before it can
13A more consistent and satisfying approach here would be a method of moments estimator.
14Which are not particularly well-justified here given non-normality. But for a rule of thumb they likely produce a better

estimate than giving equal weight to all observations.
15To see this, note that the expectation of the estimate is σ̄. The second moment of the estimate is:(

|Θ|
|Θ| − |λ?(Θ)|

)2 |Θ| − |λ?(Θ)|
|Θ| σ̄

So the variance is σ̄
( |Θ|
|Θ|−|λ?(Θ)| − σ̄

)
. Because the σ̄ term appears in the weighting of all observations, it can be dropped,

yielding the expression in the text.
16I have not thought about whether there is any theoretical justification at all for either of these procedures. It would be

interesting to know whether any consistency, approximate unbiasedness, etc. properties hold.
17The error rate in this context is not σ but, for a particular experiment, σ̄ + 2(1 − σ̄)p̃(Θ). The unbiased, theory-specific

estimator or σ̄ based on a single experiment derived above was s(Θ) ≡ 1ω?(Θ)/∈λ?(Θ)

1− 1
ρ(λ?,Θ)

. Solving σ̄+2(1− σ̄)p̃(Θ) = s(Θ) for σ̄, the

equivalent unbiased, theory-specific estimator based on a single experiment is s′(Θ) ≡ s(Θ)−2p̃(Θ)
1−2p̃(Θ)

. The variance is proportional

to 1[
1−2p̃(Θ)

]2 . Here whenever Θ 6= λ?(Θ), |Θ| = 2 and |λ?(Θ)| = 1, so the only inverse standard deviation weighting comes

14



be applied to the Charness-Rabin data. The theory specific rule of thumb estimator for the Charness-Rabin
application is:

σ̂CR
RoT,λ? ≡ max

[
min

(
2∑

Θ∈Ξ:Θ 6=λ?(Θ)

[
1− 2p̃(Θ)

] ∑
Θ∈Ξ:Θ6=λ?(Θ)

1ω?(Θ)/∈λ?(Θ) − p̃(Θ), 1
)

, 0

]

Rule of thumb estimates based on each of the Charness-Rabin theories are collected in Table 2 at the
end of this section.

5.2 Maximum likelihood estimation

Another alternative, with perhaps a bit potential theoretical justification, is maximum likelihood estima-
tion. In this simple context, direct maximum likelihood estimation is computationally trivial. Again,
beginning with the assumption of constant error rate σ̄, the theory-specific maximum likelihood estimator
is simply:

σ̂MLE,λ? ≡ argmaxσ∈[0,1]

∑
Θ∈Ξ

log
(

σ

|Θ|
+

(1− σ)1ω?(Θ)∈λ?(Θ)

|λ?(Θ)|

)
To combine across theories we can use one of the simple weighting procedures discussed above:

σ̂MLE ≡
∑

λ∈supp(π)

[
argmaxσ∈[0,1]

∑
Θ∈Ξ

log
(

σ

|Θ|
+

(1− σ)1ω?(Θ)∈λ(Θ)

|λ(Θ)|

)]
π(λ) (7)

Adapting this estimator to the Charness-Rabin context is even more straightforward than for the rule
of thumb estimator. The theory-specific estimator is given by:

σ̂CR
MLE,λ? ≡ argmaxσ∈[0,1]

∑
Θ∈Ξ

log
(

σ + (1− σ)p̃(Θ)
|Θ|

+
(1− σ)

[
1− p̃(Θ)

]
1ω?(Θ)∈λ?(Θ)

|λ?(Θ)|

)
Again, see Table 2 at the end of the section at the end of this section for numerical estimates in the

Charness-Rabin application. An alternative, richer maximum likelihood estimator, which I call the full
maximum likelihood estimator, explicitly incorporates uncertainty about the true theory into the likelihood
maximization.

σ̂FMLE ≡ argmaxσ∈[0,1]

∑
λ∈supp(π)

( ∏
Θ∈Ξ

σ

|Θ|
+

(1− σ)1ω?(Θ)∈λ(Θ)

|λ(Θ)|

)
π(λ) (8)

While theoretically somewhat more satisfying, this estimator has quite terrible computational properties
as it destroys the product structure generated by independence conditional on the true theory. However
if the observation is fairly small it is not computationally intractable. In particular, we can again modify
this estimator slightly and apply it to the Charness-Rabin context.

from the noise introduced by statistical sampling error. Also, it allows me to simplify the general expression for s(Θ) to
2 · 1ω?(Θ)/∈λ?(Θ). Also, the maximum operator added here takes care of the possibility (needed to adapt the estimator to the
Charness-Rabin context) that the (unconstrained) estimator may go below 0. Again this may introduce bias.
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Plausibility vector (S, SW, DA, C) σ̂CR
FMLE

(.25,.25,.25,.25) .12
(.8,.1,.1,0) .13

(.15,.5,.25,.1) .1
(.1,.1,.70,.1) .059

(.05,.05,.85,.05) 0

Table 1: Full maximum likelihood estimate of σ̄ for Charness-Rabin data given various priors

σ̂CR
FMLE ≡ argmaxσ∈[0,1]

∑
λ∈supp(π)

( ∏
Θ∈Ξ

σ + (1− σ)p̃(Θ)
|Θ|

+
(1− σ)

[
1− p̃(Θ)

]
1ω?(Θ)∈λ(Θ)

|λ(Θ)|

)
π(λ)

Table 1 shows the full maximum likelihood estimate of the error rate for various values of the plausibility
function.

5.3 Pseudo-Bayesian learning

A third alternative, which seems to me complex and likely unproductive, is to embed the uncertainty about
the informativeness directly into the model, by endowing the scientist with priors over the the value of this
parameter and solving for learning process jointly over theories and errors. I think there are three basic
problems with this apparently elegant solution:

1. Intractability: I suspect that the expressions that will emerge for updating on theories will become
sufficiently complicated/computationally intensive so as to deter applied analysis, particular when
the model is extended to metric experiment spaces as outline in Appendix D.

2. Transparency: The introduction of a full Bayesian model is likely to obscure the analyst’s choices
and how they affect the analysis, rather than illuminate them and so should probably be avoided.
Importantly, the robustness checks (based on choice of the error parameter) discussed in the following
section are inapplicable to the full Bayesian approach.

3. Wrong focus: I fear that building a more complete Bayesian model for the choice of the error pa-
rameter is likely to obscure the model’s focus on learning about theories taking the error rate as a
parameter and shift the focus to learning about error rates, which (while an interesting problem) is
simply not the scientific learning problem as developed above.

A somewhat more palatable alternative than full Bayesian learning which avoids some of these problems
is to imagine that Bayesian learning is taking place for the error rate separately from that taking place for
the beliefs about the true theory. One could have the scientist learn in a Bayesian manner about the value
of the error rate conditional on knowing the true theory18. Then an expectation19 could be taken over the

18It might even be feasible, if one wishes to take a further step towards full Bayesianism, to have the scientist do full Bayesian
learning and use this to get an estimate for the error parameter, but then revert to the “known-error parameter” formulas
derived above for final estimates update rule.

19An alternative to simply taking an expectation of the error parameter, which corresponds to a Bayesian point estimate
based on a mean-squared error loss function, would be to allow for a more general loss function in constructing a Bayesian
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Theory σ̂CR
RoT,λ? σ̂CR

MLE,λ? σ̂CR
PB,λ?

Selfishness .18 .13 .18
Social Welfare 0 0 .1

Difference Aversion .38 .37 .43
Competitive .59 .49 .52

Table 2: Theory-specific estimates of σ̄ by various methods for the Charness-Rabin data

value of the error in the resultant posterior distribution and the expected error value would be used as a
theory-specific estimate of the error rate. Formally, this theory-specific estimator for a uniform prior over
error rates is given by

σ̂PB,λ? ≡

∫ 1
0 σ
∏

Θ∈Ξ
σ
|Θ| + (1−σ)1ω?(Θ)∈λ?(Θ)

|λ?(Θ)| dσ∫ 1
0

∏
Θ∈Ξ

σ
|Θ| + (1−σ)1ω?(Θ)∈λ?(Θ)

|λ?(Θ)| dσ
(9)

Again this can be slightly modified to apply to the Charness-Rabin context:

σ̂CR
PB,λ? ≡

∫ 1
0 σ
∏

Θ∈Ξ
σ+(1−σ)p̃(Θ)

|Θ| + (1−σ)[1−p̃(Θ)]1ω?(Θ)∈λ?(Θ)

|λ?(Θ)| dσ∫ 1
0

∏
Θ∈Ξ

σ+(1−σ)p̃(Θ)
|Θ| + (1−σ)[1−p̃(Θ)]1ω?(Θ)∈λ?(Θ)

|λ?(Θ)| dσ

Table 2 summarizes all of the theory-specific estimators. The three estimators yield fairly similar results
to one another for each theory. Selfishness seems to yield an error estimate of somewhere in the mid-teens,
Social Welfare yields an estimate of (or near) 0, Difference Aversion yields an estimate near forty and
Competitive preferences yield a an estimate in the fifties. Unsurprisingly, the pseudo-Bayesian method
appears to tilt the estimate away from extreme (low) values relative to the maximum likelihood estimator.
These estimates provide some evidence that, at least in this context, the weighting across theories to
choose combine these theory-specific estimates, rather than the method of estimation, makes a more
important difference in determining an appropriate error parameter value. This should provide at least
some reassurance about robustness problems across methods of estimation. More difficult are robustness
problems across various methods of weighting different theory-specific estimates. These problems are the
focus of section 7.

6 Some results

Before discussing in detail issues of robustness, it is useful to consider the results of the learning rule in this
context for various values of the error parameter in the range shown in Table 2. Table 3 shows the relative
value of the Bayes Factors for the theories, given different choices of σ̄. Selfishness is normalized to 1. The
results reveal both something substantive about how the Charness-Rabin data should be interpreted and
methodologically about the properties of the model.

On the substantive side, Table 6 shows the sense in which the data generally supports selfishness as
the best model, but also shows the range of parameter values for which the data may be interpreted as

point estimate of σ̄. For example, one might try to explicitly take into account the trade off between consistency against
supersets and speed of consistency against subsets discussed below. I will not attempt to develop this approach here, as my
goal in this paper is more to pose and provide some simple ideas than to solve the problem of correct error parameter choice.
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σ̄ µ̄ Selfish Social welfare Difference aversion Competitive
.001 999 1 39 1.5 · 10−7 4.1 · 10−12

.01 99 1 2.9 2.9 · 10−7 1.2 · 10−10

.022 45 1 1 5.2 · 10−7 7.2 · 10−10

.059 16 1 .23 1.8 · 10−6 1.6 · 10−8

.1 9 1 .11 4.7 · 10−6 1.3 · 10−7

.13 6.7 1 .075 8.4 · 10−6 4 · 10−7

.18 5.3 1 .058 1.4 · 10−5 1.1 · 10−6

.21 3.8 1 .044 3.0 · 10−5 4.2 · 10−6

.25 3 1 .04 5.4 · 10−5 1.1 · 10−5

.37 1.7 1 .037 2.5 · 10−4 1.2 · 10−4

.43 1.3 1 .04 5.3 · 10−4 3.3 · 10−4

.49 1.1 1 .046 1.1 · 10−3 8.5 · 10−4

.52 .92 1 .05 .0016 .0013

.59 .69 1 .065 .0037 .0037

Table 3: Relative values of updates in favor of various theories, selfishness normalized to 1

supporting social welfare preferences. For an error rate of .25 the model updates twenty-five times as
heavily in favor of selfishness as social welfare preferences, meaning that a flat prior would imply posterior
probabilities of approximately .96 on selfishness, .038 on social welfare preferences and a negligible weight
on the two other models. In fact, for all values of σ̄C above .022, the model interprets the data as providing
evidence in favor of the selfishness model. On the other error rates significantly below .02, such as .001,
the model views the data providing strong evidence in favor of social welfare preferences. This should
be intuitive, given the discussion above about σ̄ as a measure of the accuracy-precision trade-off. Social
welfare preferences are never falsified in the data, while selfishness is on several occasions. Therefore placing
high value on accuracy over precision by choosing a low value of the error parameter makes the evidence
weigh against selfishness. The model therefore shows how the Charness-Rabin interpretation of the data
is internally consistent. If one believes for prior reasons that a good model of social preferences should
virtually always be consistent with behavior, even if this requires some vagueness, or that social welfare
preferences are a good model (and therefore should form the basis of the error calibration), then the data
can be viewed as a confirming both views.

However, I suspect many economists, who continued to use selfishness as their primary model of choice
even in simple experiments, interpreted the data effectively using a parameter value above .02, as supporting
selfishness. This interpretation seems reasonable (given a wide range of prior beliefs) for a few reasons.
First note that in this context an error parameter of .02 or below corresponds to the belief that a good
model of binary choices like these would only incorrectly predict the population average behavior one in a
hundred times. Particularly given that the data used makes the somewhat heroic assumption that subjects
correctly anticipate the distribution of their partner’s play, this seems a very high degree of accuracy to
demand. Second recall that for the weighted maximum likelihood estimation procedure a prior of at least
.85 on social welfare preferences is required to achieve an error parameter below .02. For full maximum
likelihood estimation a weight of at least .7 is necessary. While there is nothing wrong with these (or any
other) priors, I doubt it is a prior held widely in the economics community.

On a methodological level, the results reveal several things about the model. First, perhaps the the-
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ory’s most attractive feature is that it connects the appropriate weight in the precision-accuracy trade-off
(something quite nebulous) quantitatively to the rate at which good theories make mistakes, which seems
a bit easier to judge and calibrate, in the ways discussed in the previous section. Second, the theory yields
some non-obvious insights which are not overly sensitive to the choice of σ̄.

1. Difference Aversion clearly does worse than Selfishness regardless of the value of σ̄ , where it preformed
roughly even with selfishness in Charness and Rabin’s measures. This effect arises because Difference
Aversion, like Social Welfare preferences, is vaguer than Selfishness.

2. Both Difference Aversion and Competitive preferences are overwhelmingly rejected, regardless of the
value of σ̄ chosen.

3. For values of σ̄ at or above .13, the relative learning in favor of Selfishness over Social Welfare
preferences is not terribly sensitive to the value of σ̄, ranging only within a factor of two.

However, this exercise also shows some important weaknesses in the model. First the magnitude of
the update rate differences seems perhaps too large. Even if the observed phenomena we are trying to
model are choices by individuals in simple experiments, the model may imply too much learning from
this small data set. This is fundamentally driven by my assumption that each experiment conveys a piece
of independent information. All of the experiments involved binary choices and many were qualitatively
similar to one another. They therefore should not be viewed as fully independent pieces of information.
Finding a more satisfactory way to deal with this problem is an important avenue for future research.

Perhaps more importantly, the analysis demonstrates some dimensions along which the results of an
analysis based on the theory are quite sensitive to the choice of the error parameter. In particular, as
discussed above, two sorts of interpretations of the data are possible for different values of the error
parameter. This leads to a natural question of whether the learning procedure outlined above is robust to
incorrect choice of the error parameter. Will a scientist living in a world where the true value of the error
parameter is σ̄? consistently learn the identity of the true theory if she assumes that the value of the error
parameter is σ̄? Is the answer the same for all values of σ̄? On a somewhat different note, what if (as
seems likely) none of the theories considered by Charness and Rabin is the “true theory”? Then will the
learning rule lead the scientist to believe in a model which is “close” to the true model in some reasonable
sense? Understanding such robustness properties would make the results and differentia interpretations
discussed above easier to understand.

7 Robustness

Questions about the potential consequences of “incorrect” choices of the error parameter cannot be ad-
dressed within a subjective Bayesian probability framework, because a Bayesian scientists cannot consider
the possibility that he is incorrect. Because I find answers to such questions informative20 about the model

20From a Bayesian perspective, the objective probability distribution may be viewed as the beliefs of another, skeptical
scientist. Therefore all the results of this section have a Bayesian interpretation in terms of the beliefs of different scientists
about the convergence of beliefs. Some additional work would have to be done in order to take into account the fact that the
other scientist is herself uncertain about the identity of the true theory and to deal with the selection of the observation from
the studied phenomenon, but the basic results should carry over into this Bayesian interpretation.
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developed above, I devote the core of this section to proving some results within an objective probability
setting in which the scientist’s subjective learning is embedded. To do this, a fair amount of technical
machinery is necessary and much of this will not be relevant to most readers. Therefore this section is
divided into two subsections. In the first, I provide a brief summary of the results, showing how they can
easily be used for robustness checks and error parameter selection in applied analysis and in particular how
they are useful in the Charness-Rabin application. In the second, I develop a formal objective probability
framework and prove one of the results referred to in the first subsection. The remaining proofs appear in
the appendices.

7.1 A non-technical summary

The primary goal of this section is to ask whether a scientist who incorrectly chooses the constant error
rate parameter σ̄ will consistently learn the identity of the true theory. I answer this question in three
steps:

1. First in Lemma 1, I show that, regardless of the error parameter chosen by the scientist, the learning
rule is consistent against theories that are subsets of the true theory, in the sense that their predictions
are always subsets of the predictions of the true theory. I also show that the smaller σ̄ is, the faster
is the asymptotic rate of consistency.
Intuitively a scientist can always distinguish the truth from a subset theory as the subset theory will
make errors at a higher rate than the true theory. Given that the scientist will eventually learn the
error rate estimate given any theory, the simple rule “reject any theory that does not have the lowest
estimated error rate” is consistent against subsets. Therefore it is not surprising that the Bayesian
update rule is also consistent against subsets. Furthermore the lower the error rate used by the
scientist, the more inaccuracy is penalized. Given that subset theories will always be less accurate,
it is not surprising that using smaller σ̄ leads to faster consistency against subset theories.

2. Second in Lemma 2, I show that so long as σ̄ is not too small relative to the true error rate σ̄? the
learning rule is consistent against supersets of the true theory. I discuss what I mean quantitatively
by “too small” below; however, the intuition behind this result is simple. Suppose that on a particu-
lar experiment with say five possible outcomes the true theory predicts uniquely and an alternative
superset theory predicts all five outcomes. If the scientist believes the error rate is near zero, then
she will view the true theory as predicting its unique outcome with probability near one and view
the alternative as predicting that the outcome is distributed uniformly on the five possible outcomes.
However, if the true error rate is close to 1, then the true distribution over outcomes given the true
theory is close to uniform over all possible outcomes. Thus, given the scientist’s overly aggressive
choice of the error parameter, the distribution over outcomes expected by the scientist if the alter-
native is true will be more similar to the actual distribution of outcomes than will the distribution
over outcomes the scientist expects given that the true theory is true. Thus a scientist who chooses
too small of an error parameter, relative to the true error rate, will be inconsistent against superset
theories.

3. Finally in Theorem 1, I argue that supersets and subsets are the hardest theories to distinguish from
the truth. Intuitively, any alternative that is not a superset or subset of the true theory can be
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changed to make it a superset or subset in a way that will only make it more likely that the scientist
learns this theory. Combining this with the first two results establishes that the learning rule is
consistent if and only if σ̄ is not too small relative to σ̄?. This provides an answer to the question of
the robustness of learning with an incorrect error parameter.

These results reinforce the notion that σ̄ mediates the trade-off between precision and accuracy. Low
values of σ̄ risk inconsistency if there are vague alternative theories, favoring accuracy over precision. High
values of σ̄ lead to only slow consistency against subset theories, favoring precision over accuracy. The
result also has a bit of the flavor of the distinction between Type I and Type II error. Choosing σ̄ too low
may lead to Type I error as it may causes the scientist to reject theories, even if they are true, in favor
of vague alternatives. Choosing σ̄ too high leads to Type II error, as the scientist fails to quickly reject
inaccurate subset theories.

In addition to its applied uses, which I will discuss below, the results supply some general insight in
learning about competing theories, at least in this model. It shows that there is, in some sense, greater
danger that scientists with incorrect parameters will reject true theories that are very precise than those
that are vague. If the true theory is very vague, its competitors will mostly be (approximate) subsets.
Because these subsets theories will consistently make too many errors, it will be easy to learn, in the long
run, that they are false. On the other hand if a true theory is very precise, its competitors will tend to be
(approximate) supersets. Because discriminating against superset theories requires a careful weighing of
precision and accuracy, rather than a simple comparison of empirical consistency, scientists who interpret
data assuming that true theories must be very accurate will be at risk of learning a false theory21.

In applications, what matters most is quantitatively how strongly the possibility of inconsistency against
supersets bites. How much smaller can σ̄ be than the true error rate σ̄? while the scientist is still consistent?
The most general answer is given by the somewhat messy expression 13 in the next subsection. However it
turns out22 that the hardest superset theory to distinguish from the truth is the maximally vague theory
and that this is hardest to distinguish from the truth when the truth becomes maximally vague. Thus if
one cannot put ex-ante lower bounds on the precision of theories, the expression upper-bounding σ̄? given
σ̄ that ensures consistency simplifies to

σ̄? < − 1− σ̄

log(σ̄)
≡ ϕ(σ̄) (10)

In practice, this expression is quite close to the value of the expression 13 derived in the following
subsection, as demonstrated in Table 2. Figure 1 shows expression as a function of σ̄ for several ranges of
values of σ̄. It shows that for most values of σ̄, particularly very small values, expression is much larger
than σ̄. For example, expression is greater than .1 for values of σ̄ as low as .00005. This provides some

21Note, however, that by construction the distribution over outcomes induced by the theory learned will be closer in relative
entropy (given the scientist’s error rate) to the true theory given the correct error rate. While this might seem to make the
results above seem a bit silly, note that the procedure outlined in this paper involves some learning about both the theory
and the error rate and much of the learning about the error rate depends on the choice of the true theory. Furthermore, the
procedure here should not be interpreted too literally as learning the full probability distribution over future outcomes, even
though this is the literal content of Assumption 1. Often social scientist use theories to identify a reasonable set of potential
outcomes or to interpret data. Some scientists applying a model may not have a clear sense of the estimated error parameter
and only know which theory has been found most probably correct. Thus learning which theory is true remains of central
importance.

22The proof of this result depend on an inequality proved by Mihai Manea, as noted in Appendix B
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Figure 1: Values of expression 7.1 for different ranges of σ̄.

reassurance that, even using this conservative bound, the risk of inconsistency is not too severe.
Returning to the Charness-Rabin data shows how Theorem 1 can be useful in applied analysis. The

motivation I gave above for developing the robustness result embodied in Theorem 1 was that it might help
determine why different values of σ̄ lead to learning in favor of different theories. In the Charness-Rabin
data natural lower bounds exist for the precision of theories. In particular, given that all of their data is
from binary choices, the only way a theory can be a super set of another on a particular experiment is
that one theory has a precision of 2 and the super set has a precision of 1 on that experiment. Using the
formula 13 in the following subsection shows that in the Charness-Rabin context the relevant bound is

σ̄? < 2
(

1− log(1 + µ̄)
log(1 + 2̄µ)

)
≡ ϕCR(µ̄) (11)

Table 2 reproduces the results displayed in Table 1, but adds the value of expression 11 and 7.1, to
show that they don’t differ dramatically. Recall that the theory-specific estimates of the error parameter
based on Selfishness ranged from .13 to .18, for Social Welfare preferences from 0 to .1, for Difference
Aversion from .37 to .43 and for Competitive preferences from .49 to .59. Table 2 therefore indicates
that values of the error parameter much below .25 are likely to lead to learning rules inconsistent against
estimates of that parameter derived from at least one of the theories considered. Values of the error
parameter below .022 (the level of this parameter at which the pro-Social Welfare preferences interpretation
of the data begins to become valid) are inconsistent against the parameter values estimated based on both
Competitive and Difference Averse preferences. They even get close to being inconsistent against the
estimates based on Selfishness. This does not provide a fully satisfactory answer to the question of why
these two interpretations exist for the values of the error parameter where they do. One would expect,
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σ̄ µ̄ ϕCR(µ̄) ϕ(σ̄) Selfish Social welfare Difference aversion Competitive
.001 999 .18 .14 1 39 1.5 · 10−7 4.1 · 10−12

.01 99 .26 .21 1 2.9 2.9 · 10−7 1.2 · 10−10

.022 45 .3 .26 1 1 5.2 · 10−7 7.2 · 10−10

.059 16 .4 .33 1 .23 1.8 · 10−6 1.6 · 10−8

.1 9 .44 .39 1 .11 4.7 · 10−6 1.3 · 10−7

.13 6.7 .47 .43 1 .075 8.4 · 10−6 4 · 10−7

.18 5.3 .52 .48 1 .058 1.4 · 10−5 1.1 · 10−6

.21 3.8 .54 .51 1 .044 3.0 · 10−5 4.2 · 10−6

.25 3 .58 .54 1 .04 5.4 · 10−5 1.1 · 10−5

.37 1.7 .66 .63 1 .037 2.5 · 10−4 1.2 · 10−4

.43 1.3 .7 .68 1 .04 5.3 · 10−4 3.3 · 10−4

.49 1.1 .73 .71 1 .046 1.1 · 10−3 8.5 · 10−4

.52 .92 .75 .73 1 .05 .0016 .0013

.59 .69 .79 .78 1 .065 .0037 .0037

Table 4: Relative values of updates in favor of various theories, selfishness normalized to 1; values of
expressions 11 and 7.1 are added

from a theoretical perspective23, that if Selfishness is the true theory then the values of the error parameter
leading to the learning in favor Social Welfare preferences should be inconsistent if the true value of the
error parameter is that from estimates based on Selfishness being the true theory. However, I think Table
2 does show that the values of σ̄ giving rise to the pro-Social Welfare preferences interpretation are quite
low and lead to substantial risk of inconsistency against reasonable values of the error parameter. Given
that Selfishness is a much more precise theory than Social Welfare preferences in the current context, and
therefore if Selfishness is the true theory, Social Welfare preferences may be seen roughly as a superset
theory, this provides at least a partial explanation of the two possible interpretations of the data that are
possible in the learning model developed here. Furthermore, Table 2 shows that the more precise value of
ϕCR is in practice quite similar to that of ϕ, despite the strong ex-ante lower bounds on precision possible
here.

The analysis here suggests a general principle to help ensure the robustness of analysis using the theory
developed here. Suppose that one settles on using some estimate of σ̂. And suppose that, after the
resultant analysis, updating occurs that most favors some theory λ̃. Suppose, too, that there is some
other theory, λ′, which, while perhaps not a strict subset of λ̃, does tend to be more precise than λ̃ in
most experiments in the observation. Then it seems reasonable to consider whether σ̂ is consistent against
reasonable σ̂·,λ′ ’s. If not, one might worry that the updating that occurred was a pathological result of
an incorrectly chosen estimate of the error parameter. While this should not automatically lead one to
change the chosen parameter, it provides a potential general way to use Theorem 1 to preform robustness
checks24 in applied analysis.

23Two answers to this puzzle immediately suggest themselves. The first is that Selfishness is likely not the true theory,
but simply the theory closest in relative entropy terms (given the true error parameter) to the true theory, along the lines of
Theorem 2. It might well be that the risk of inconsistency is greater when the theory closest to the true theory, rather than
learning the true theory itself. Another possibility is that there is simply measurement error in the estimates of σ̄? based on
Selfishness being the true theory.

24There is another potentially useful check. Suppose is there is a vaguer theory than the one updated in favor of, call the
vaguer theory λ′ and the one updated in favor of λ. And suppose its σ̂·,λ′ is such that even if the true informativeness σ̂·,λ the
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For analysis on the fly, this robustness check can be reduced to a quick and easy procedure25 for
choosing a reasonable value of σ̄. Suppose one arrives, say through calibrations as above, at some range
of reasonable values for σ̄, [σ̄′, σ̄′′]. Then using σ̄ = ˆ̄σRobust ≡ ϕ−1(σ̄′′) has the nice property that it is the
smallest value of σ̄ which ensures consistency so long as σ̄? ∈ [σ̄′, σ̄′′]. If one considers the reasonable range
of values of σ̄ to be values arising from some calibration, given some theory considered by Charness and
Rabin, then the relevant range is [0, .52]. In this case ˆ̄σRobust using ϕ is approximately .23 and using ϕCR

is approximately .18. If one excludes the values based on Competitive preferences then the relevant range
is [0, .43] and the values using ϕ and ϕCR are approximately .13 and .1 respectively. All of these values are
in the range that strongly supports the pro-Selfishness interpretation of the data.

One problem in interpreting the model laid out here is that it seems unlikely that the true theory has
yet been identified by scientists. New economic models are constantly proposed and most economists see
themselves as learning about the relative merit of theories that are increasingly good approximations to
the truth. This naturally leads to the question of whether a scientist will learn something sensible even
if her priors (plausibility function) are not absolutely continuous with respect to the true theory, so long
as she uses the correct error parameter. In what follows, I also show that in this case the scientist will
always consistently learn a theory (or theories if there are many equally close) that are maximally close in
expected relative entropy to the truth.

7.2 Formal results

In this subsection set up the necessary formal framework and prove the results outlined above.

Assumption 6. There (objectively) exists a true measure Q, a true theory λ?? ∈ Λ and a true error
parameter σ̄?. Under Q the distribution of ω? is the distribution of ω? under P for a scientist placing
plausibility of 1 on λ? and having error parameter σ̄?.

Q corresponds to the true probability generating process that the scientist believes she is learning. In
what follows I will consider what a scientist who has the wrong error parameter value or whose plausibility
is not absolutely continuous with respect to the true theory.

To prove results about consistency, it is useful26 to make assumptions not just about the distribution
of experimental outcomes, but also about how the observation is drawn from the studied phenomenon.
I will assume that the observation is drawn independently and identically from the studied phenomenon
under some probability distribution. It is because of this assumption that it was important, as discussed
in section 2, that one identifies the studied phenomenon with a class of situations of which the observed
data is at least roughly representative.

Definition 6. An increasing infinite sequence of observations (IISO) is a sequence of observations {Ξn}∞n=1

such that there exists a sequence of experiments {Θi}∞i=1 for which Ξn =
⋃n

i=1 Θi.

Assumption 7. Γ is uncountably infinite. There exists a non-atomic probability distribution ν over Γ
such that under Q the observation Ξ is drawn iid from ν in the sense that Ξ ∈ {Ξn}∞n=1, an IISO, for

update rule implied by σ̂·,λ′ is still consistent against distinguishable super sets. Then it is probably worth checkin if instead
of the chosen informativeness, µ̂RoT,λ′ is used whether the basic conclusions of the analysis change much.

25This algorithm is based in a conversation I had with Xavier Gabaix and I am grateful to him for it.
26It may not be necessary if one places enough regularity conditions on the observation.
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which the corresponding sequence of experiments is drawn independently and identically from ν. ν and Γ
are such that all expectations taken below exist27.

The assumption that ν is non-atomic means that the probability of the same experiment being drawn
twice from Γ is 0, eliminating the problem of drawing the same experiment twice. I will now define formally
the concepts referred to in the summary above.

Definition 7. Two theories, λ and λ′, are said to be distinguishable (written λ � λ′) under Q if ν
(
{Θ ∈

Γ : λ(Θ) 6= λ′(Θ)}
)

> 0.

Definition 8. λ ⊆ (⊇)λ′, read λ is a subset(superset) of λ′, if λ(Θ) ⊆ (⊇)λ′(Θ),∀Θ ∈ Γ.

In the argument that follows I will make heavy use of a version of a well known theorem in information
theory due to Kelly (1956).

Theorem (Kelly 1956). Let {vi}∞i=1 and {ui}∞i=1 be infinite sequences of i.i.d. (within, not across,
sequences) random variables under some measure Q. Suppose that EQ

[
log(vi)

]
> EQ

[
log(ui)

]
. Then for

any r ∈ R, limn→∞ Q
[∏n

i=1
vi
ui

> r
]

= 1.

Intuitively, if the expected logarithmic growth rate of one random variable is greater than the expected
logarithmic growth rate of another, the law of large numbers ensures that the first will, with probability
1, become arbitrarily large relative to the second.

Definition 9. An error parameter σ̄ is said to be consistent against a set of theories Λ′ ⊆ Λ\{λ??} if

1. For any measure P defined by obedience of Assumptions 1-6, use of parameter σ̄′ and a plausibility
function whose support is Λ′ ∪ λ?

2. For an IISO {Ξn}∞n=1 that is drawn i.i.d. under Q

3. For any ε > 0

lim
n→∞

Q
[
P [λ? = λ??|Ξn] ≤ 1− ε

]
= 0

This is a natural definition of consistency of an error parameter in this context against a set of theories
Λ′: the parameter is consistent against a set of false theories if any scientist using that parameter will
become arbitrarily confident of the true theory if she only considers competing theories in Λ′. The following
definition provides the equivalent natural definition of the rate of consistency.

Definition 10. Consider two error parameters σ̄ and σ̄′ that are consistent against some Λ′. σ̄ is said to
be consistent more quickly than σ̄′ against Λ′ if

1. For any measure P and P ′ defined by obedience of Assumptions 1-6, use of parameter σ̄ and σ̄′

respectively and a plausibility function with support Λ′ ∪ λ?

2. For an IISO {Ξn}∞n=1 that is drawn i.i.d. under Q

27|Θ| < M for all Θ ∈ Γ and some M ∈ R is sufficient to insure this, for example.
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3. For any r ∈ R

lim
n→∞

Q

[
P ′[λ? ∈ Λ′|Ξn]
P [λ? ∈ Λ′|Ξn]

> r

]
= 1

One error parameter is consistent more quickly than another against a set of alternatives Λ′ if, asymp-
totically, the probability assigned by a scientist using the first parameter to all theories in Λ′ becomes
arbitrarily small relative to probability assigned by a scientist using the second parameter to these theo-
ries. Note that this definition of rate of consistency is very much a partial (or even null) ordering even for
a given Λ′. With these definitions, I can now state formally the first result mentioned above.

Lemma 1. If under ν, Λ′ ⊆ {λ ∈ Λ : λ � λ?? ∧ λ ⊆ λ??} is a finite set of distinguishable subsets of the
true theory then

1. Any σ̄ ∈ [0, 1) is consistent under ν against Λ′

2. If 0 ≤ σ̄ < σ̄′ < 1 then σ̄ is consistent more quickly under ν than σ̄′ against Λ′

Proof. The proof has two steps.

1. First, I show that in any experiment the expected logarithm of the scientist’s Bayes Factor for the
true theory is greater than the scientist’s Bayes Factor for any strict subset and that the expected
logarithmic growth difference between these two Bayes Factors is larger for a scientist using σ̄ than
for one using σ̄′.

2. Second, I use this result, in conjunction with Kelly’s Theorem and the fact that all elements of Λ′

are distinguishable subsets of λ?, to establish the two parts of the lemma.

First consider the expected logarithm of the (informativeness form of the) Bayes Factor of the true
theory for a scientist using σ̄ on an experiment where λ??(Θ) 6= λ′(Θ)(

1−
[
1− 1

ρ(λ?,Θ)

]
σ̄?

)
log
(

1 + µ̄ρ(λ??,Θ)
)

where µ̄ ≡ 1−σ̄
σ̄ . The expected logarithm of the scientist’s Bayes Factor for a subset theory λ′ is(

ρ(λ??,Θ)
ρ(λ′,Θ)

−
[
ρ(λ??,Θ)− 1

ρ(λ′,Θ)

]
σ̄?

)
log
(

1 + µ̄ρ(λ′,Θ)
)

Simplifying the difference between these two expressions yields

(
σ̄?

|Θ|
+

1− σ̄?

|λ??(Θ)|

)[
|λ??(Θ)| log

(
1 + µ̄

|Θ|
|λ??(Θ)|

)
− |λ′(Θ)| log

(
1 + µ̄

|Θ|
|λ′(Θ)|

)]
Suppose that x > x′ > 0 and y > 0. Then note that

x log
(

1 +
y

x

)
> x′ log

(
1 +

y

x′

)
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because

log
(

1 +
y

x

)
= log

(
x′

x

[
1 +

y

x′

]
+

x′ − x

x

)
>

x′

x
log
(

1 +
y

x′

)
+

x− x′

x
log(1)

by concavity of the logarithm and Jensen’s Inequality. Thus for positive y and x, x log
(
1 + y

x

)
is

increasing in x and therefore, given that µ̄ > 0 because σ̄ < 1,

(
σ̄?

|Θ|
+

1− σ̄?

|λ??(Θ)|

)[
|λ??(Θ)| log

(
1 + µ̄

|Θ|
|λ??(Θ)|

)
− |λ′(Θ)| log

(
1 + µ̄

|Θ|
|λ′(Θ)|

)]
> 0

as |λ??(Θ)| > |λ′(Θ)| by the assumption that λ′ ⊂ λ?? and λ??(Θ) 6= λ′(Θ).
If x > x′, then x log

(
1 + y

x

)
− x′ log

(
1 + y

x′

)
is increasing in y as its derivative

1
1 + y

x

− 1
1 + y

x′
> 0

Intuitively, Jensen’s inequality bites stronger for larger y as the “risk” between 1+ y
x′ and 1 grows with

y. Thus

(
σ̄?

|Θ|
+

1− σ̄?

|λ??(Θ)|

)[
|λ??(Θ)| log

(
1 + µ̄

|Θ|
|λ??(Θ)|

)
− |λ′(Θ)| log

(
1 + µ̄

|Θ|
|λ′(Θ)|

)]
is strictly increasing in µ̄ and therefore strictly decreasing in σ̄ as λ′(Θ) ⊆ (⊂)λ??(Θ). This completes

step 1.
Now note that the scientist’s Bayes Factor for the true theory is the product of its Bayes factor on each

of the experiments. Given that each of the experiments in the observation is drawn i.i.d. from ν under Q,
all we need show in order to apply Kelly’s Theorem is that the expected logarithm of the scientist’s Bayes
Factor for the true theory is greater than the expected logarithm of the Bayes Factor for any λ′ ∈ Λ′. Let
β(λ, σ̄, Θ) be the Bayes Factor of a scientist with error parameter σ̄ for theory λ on experiment Θ. Then

EQ

(
log
[
β(λ??, σ̄, Θ)

])
> EQ

(
log
[
β(λ′, σ̄, Θ)

])
because I showed above that log

[
β(λ??, σ̄, Θ)

]
≥ log

[
β(λ′, σ̄, Θ)

]
(as anytime λ??(Θ) = λ′(Θ) clearly

the expected logarithm of the Bayes Factors are equal) with strict inequality on a set of positive measure
under ν. So by Kelly’s Theorem for any λ′ ∈ Λ, any r ∈ R and any IISO {Ξn}∞n=1 drawn i.i.d. from ν

lim
n→∞

Q

[ ∏
Θ∈Ξn

β(λ??, σ̄, Θ)
β(λ′, σ̄, Θ)

> r

]
= 1 (12)

This, together with the finiteness of Λ′, implies that

∀r ∈ R,∀ε > 0,∃N? ∈ N : ∀λ′ ∈ Λ′,∀N > N?, Q

[ ∏
Θ∈ΞN

β(λ??, σ̄, Θ)
β(λ′, σ̄, Θ)

> r

]
> 1− ε

Now note that
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P [λ? = λ??|Ξ]
P [λ? 6= λ??|Ξ]

=
π(λ??)

∏
Θ∈Ξ β(λ??, σ̄, Θ)∑

λ′∈Λ′ π(λ′)
∏

Θ∈Ξ β(λ′, σ̄, Θ)

where π is the scientist’s plausibility function. By the assumption that λ?? ∈ supp(π) we have that
π(λ??)∑
λ∈Λ′ π(λ) > 0. So for any ε > 0 , if r? ≡ (1−ε)π(λ??)

ε
∑

λ∈Λ′ π(λ) then if ∀λ′ ∈ Λ′,
∏

Θ∈Ξ
β(λ??,σ̄,Θ)
β(λ′,σ̄,Θ) > r?, then

P [λ? = λ??|Ξ]
P [λ? 6= λ??|Ξ]

=
π(λ??)

∏
Θ∈Ξ β(λ??, σ̄, Θ)∑

λ′∈Λ′ π(λ′)
∏

Θ∈Ξ β(λ′, σ̄, Θ)
>

1− ε

ε

and so P [λ? = λ??|Ξ] > 1−ε. Plugging r? in for r in 12 establishes consistency. Applying the reasoning
in step 2 in precisely the same way, starting with the ratio of the two different scientist’s plausibility values
on the false theories, proves the second half of the lemma.

The proof relies crucially on Jensen’s Inequality. Subset theories concentrate their probability more
tightly than the true theory does. Because the logarithm is concave, this means that the expected logarithm
of their Bayes Factor is smaller than the expected logarithm of the Bayes Factor of the true theory,
regardless of the error parameter chosen. However, the smaller the error parameter chosen, the greater
the stakes (informativeness) on any particular experiment, so the more harmful it is for a subset theory to
concentrate its probability too densely.

Now I need to establish the second results discussed above, namely conditions under which an error
rate σ̄ is consistent against supersets of the true theory. The next Lemma supplies these conditions.

Lemma 2. If

1. Under ν, Λ′ ⊆ {λ ∈ Λ : λ � λ?? ∧ λ ⊇ λ??} is a finite set of distinguishable supersets of the true
theory

2. ∃ρ?? > 1, ρ′ ≥ 1 : ∀λ′ ∈ Λ′ and for all but finitely many Θ ∈ Γ : λ′(Θ) 6= λ??(Θ), ρ(λ′,Θ) ≥
ρ′ ∧ ρ(λ??,Θ) ≥ ρ??

3.
σ̄? <

log(1 + µ̄ρ??)− log(1 + µ̄ρ′)(
1− 1

ρ??

)
log(1 + µ̄ρ??)−

(
1− 1

ρ′

)
log(1 + µ̄ρ′)

(13)

then σ̄ is consistent against Λ′.
Conversely if

1. ∃λ′ ∈ Λ′ that is a superset of the true theory

2. ∃ infinitely many Θ ∈ Γ : σ̄? >
log
[
1+µ̄ρ(λ??,Θ)

]
−log

[
1+µ̄ρ(λ′,Θ)

](
1− 1

ρ(λ??,Θ)

)
log
[
1+µ̄ρ(λ??,Θ)

]
−
(
1− 1

ρ(λ′,Θ)

)
log
[
1+µ̄ρ(λ′,Θ)

]
then for some ν under which λ′ is distinguishable from λ??, σ̄ is inconsistent against Λ′.

Proof. See Appendix B.

Lemma 2 is a bit cumbersome and deserves some interpretation. As is proved in Appendix B,
log(1+µ̄ρ??)−log(1+µ̄ρ′)(

1− 1
ρ??

)
log(1+µ̄ρ??)−

(
1− 1

ρ′

)
log(1+µ̄ρ′)

is decreasing in µ̄, ρ′ and ρ??. Therefore Lemma 2 states that, in order
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to ensure consistency, µ̄ must be chosen sufficiently small (σ̄ chosen sufficiently large) relative to the true
error rate σ̄ and the vagueness of both the true theory and its competitors. If no lower bound can be placed
on the precision of the true and competitor theories except the trivial lower bound of 1, then expression
13 simplifies to expression 11 as proved in Appendix B.

Combining the two lemmas with an argument that superset and subset theories are the strongest
competitors with the true theory proves the following theorem, which is the primary theoretical result of
this paper.

Theorem 1. If

1. Under ν, Λ′ is a finite set of theories distinguishable from the true theory

2. ∃ρ?? > 1, ρ′ ≥ 1 : ∀λ′ ∈ Λ′ and for all but finitely many Θ ∈ Γ : |λ′(Θ)| > |λ??(Θ)|, ρ(λ′,Θ) ≥
ρ′ ∧ ρ(λ??,Θ) ≥ ρ??

3. σ̄? < log(1+µ̄ρ??)−log(1+µ̄ρ′)(
1− 1

ρ??

)
log(1+µ̄ρ??)−

(
1− 1

ρ′

)
log(1+µ̄ρ′)

then σ̄ is consistent against Λ′.
As an approximate converse, if

1. ∃λ′ ∈ Λ′ that is a superset of the true theory

2. ∃ infinitely many Θ ∈ Γ : σ̄? >
log
[
1+µ̄ρ(λ??,Θ)

]
−log

[
1+µ̄ρ(λ′,Θ)

](
1− 1

ρ(λ??,Θ)

)
log
[
1+µ̄ρ(λ??,Θ)

]
−
(
1− 1

ρ(λ′,Θ)

)
log
[
1+µ̄ρ(λ′,Θ)

]
then for some ν for which λ′ is distinguishable from λ??, σ̄ is inconsistent against Λ′.

Proof. See Appendix C.

The basic idea behind the proof is simple. Supersets and subsets are the theories that are most difficult
to distinguish from the truth. Any theory which is not a superset or a subset of the truth will be dominated
by theory of the same cardinality which is (or by the truth itself). Thus the theorem can be seen as a
corollary of Lemmas 1 and 2.

Now I turn to the question of what a scientist will learn if her priors are not absolutely continuous with
respect to the true theory. To answer this question I will assume28 that the scientist uses the correct error
rate, but for generality I will now allow σ?(Θ) to depend on the experiment Θ. Note that this is a slight
modification of Assumption 7.

Assumption 7’. There (objectively) exists a true measure Q, a true theory λ?? ∈ Λ and an error function
σ? : Γ → (0, 1). Under Q the distribution of ω? is the distribution of ω? under P for a scientist placing
plausibility of 1 on λ? and having error function σ?(·). The scientist uses σ?(·).

The theorem below depends heavily on the notion of relative entropy (also known as Kullback-Leibler
divergence):

28Understanding what results when both the scientist has the wrong error parameter and her plausibility is not absolutely
continuous with respect to the truth would be interesting, but is not something I have yet found a simple way of formulating,
much less solving.

29



Definition 11. The relative entropy of a theory λ′ from another theory λ in an experiment Θ is

REΘ(λ′||λ) ≡
∑
θ∈Θ

P
[
ω?(Θ) = θ|λ? = λ] log

(
P
[
ω?(Θ) = θ|λ? = λ′]

P
[
ω?(Θ) = θ|λ? = λ]

)
Definition 12. The average relative entropy of a theory λ′ from another theory λ is

REΘ(λ′||λ) ≡ EQ

[∑
θ∈Θ

P
[
ω?(Θ) = θ|λ? = λ] log

(
P
[
ω?(Θ) = θ|λ? = λ′]

P
[
ω?(Θ) = θ|λ? = λ]

)]

Theorem 2. For any measure P defined by obedience of Assumptions 1-7 and use of a finite support π as
the plausibility function, any IISO {Ξn}∞n=1 that is drawn i.i.d. under Q and any ε > 0

lim
n→∞

Q
(
P
[
λ? ∈ Λ?(π)|Ξn

]
≤ 1− ε

)
= 0

where

Λ?(π) ≡ argminλ∈supp(π)REΘ(λ||λ??)

In words, the scientist will always consistently learn a theory (or theories if there are many equally
close) that are maximally close in expected relative entropy to the truth29.

Proof. By construction the expected logarithm of the Bayes Factor of any theory in Λ?(π) is greater than
the expected logarithm of the Bayes Factor of any theory outside Λ?(π). Thus the result follows from the
reasoning in Lemma 1.

The primary value of this result is that it allows the theory above to be interpreted as process of learning
the theory closest, in some sense, to the true theory, rather than as a process of learning the actually true
theory. An important weakness of the result, however, is that it provides little intuitive sense of what
closeness in terms of expected relative entropy means. For example, is the relative entropy of a theory
that is a subset missing one outcome greater than that of a superset with one extra outcome? Some result
addressing this problem would be a useful direction for further research.

8 Carnap-Gabaix-Laibson criteria

In a recent paper, “Seven Properties of a Good Model”, Gabaix and Laibson (2007) compiled a list
of principles that philosophers of science, as well as economists and other scientists, generally agree are
desirable properties of models. These criteria for judging models can roughly be divided into two categories,
with some of the criteria having aspects in both categories. Some of the properties primarily address the

29Note that in this setting if the scientist’s priors only support one theory, the scientist will learn that theory. If the the
support of the scientist’s priors contain several theories, the scientist will learn the best of these, in the sense discussed here.
Thus, at least in a vague, qualitative manner my results accord with those from the literature on strategic testing of experts;
? establish that when experts (theories) are tested comparatively, the tester (scientist) can eventually distinguish true experts
from false experts. This contrasts with earlier results by Sandroni (2003) and Olszewski and Sandroni (2007) that showed the
general impossibility of determining whether a single potential expert did in fact have knowledge of an underlying stochastic
process.
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usefulness of a model: how easy is it to work with, does it speak to relevant issues and is it helpful in
guiding decisions. Other properties are primarily about the truth value of a model: is it likely to provide
a correct description of the stochastic process, as best as we can know it, underlying events we observe. It
is this second group of properties that I focus on understanding and trading-off here.

I have therefore refined30 the Gabaix-Laibson properties into a set of four criteria. These criteria also
coincide with four “requirements” of a good “explicatum” (theory) identified by the great philosopher of
science Rudolph Carnap in his classic work The Logical Foundations of Probability31. I therefore refer to
the properties as the Carnap-Gabaix-Laibson criteria.

Because these properties seem intuitively to do a good job capturing the dimensions along which
scientists (should) judge the truth value of a model, any reasonable theory of scientific learning should
incorporate them. After discussing briefly each criterion, I will argue that the theory developed above
incorporates it and that it makes precise trade-offs among them.

Criterion 1. Ex-ante plausibility32: Do the assumptions and mechanisms through which the model gen-
erates its predictions seem plausible from an ex-ante perspective, before observing how well they explain
particular phenomena? While this is certainly the most subjective33 of the criteria, it is an essential one:
priors will always be an input into34 a reasonable model of belief formation.

Clearly, the ex-ante plausibility of various models figures directly into the theory developed above
through the plausibility function.

Criterion 2. Precision35: Does the model make predictions that can be falsified? Are the predictions
30The principles of a good model that they include, which I omit, are “Tractability” and “Conceptual Insighftulness”. I also

compress their notions of “Falsifiability” and “Predictive Precision” into a single criterion, as I see the distinction between
these two as being one between positivity and degree of positivity. This distinction does not play an important role judging
models.

31Interestingly, Carnap (1950), like I, advocates a view of probability in understanding scientific models that relies heavily
on uniform distributions. He advocates this view on the basis of a Laplacian (maximum entropy) argument about symmetry.
While I find this to be a reasonable justification for my assumptions above, I do not think it should be taken literally, given
the problems with this view, and thus do not include it in the main text of the paper. In some ways, however, this paper can
be seen as working out many of Carnap’s ideas in more detail, as well as Popper’s. His book offers a sort of philosophical
defence of the approach taken here.

32Gabaix and Laibson refer to this as parsimony. I refer to it as plausibility, despite the substantial equivalence of the two,
as it fits better with the probabilistic interpretation I make. Carnap describes it as “The explicatum should be as simple as
possible.”

33It certainly seems necessary that any theory of scientific learning will take priors as an input somewhere. However, it
is worth noting that, in some sense not formally expressible with models we currently have, our priors about the validity of
certain models are not always well-formed. For example, the primary value of the Von Neumann-Morganstern Theorem was to
make it easier to judge the plausibility of the assumptions on which expected utility rests. What exactly this means, and what
exactly the role of theoretical papers that “transform models” to make their plausibility “easier to judge”, is an interesting
topic for future meta-theoretical research.
Another interesting issue along these lines is that of “parsimony”. Many models are explicitly (by calibration of some
parameter) or implicitly (by making one or more of a class of well-defined possible assumptions) drawn from a broader class
of potential models. It is often easy to judge the plausibility of this broader class of models, but difficult to directly judge
the plausibility of the particular sub-model. A simple approach to dealing with this difficulty is to imagine that the prior on
sub-models is uniformly distributed across all sub-models and therefore that the prior of the sub-model is 1

T
times the prior

of the super-model, where T is the number of sub-models. While this simple solution is likely reasonable in cases when the
number of possible sub-models are finite and when all sub-models are (like experimental outcomes below) “equally close to one
another”. However, this is probably not a very satisfactory approach when there is a continuum of possible models or when
some models are “very similar” while others are “very different”. In this case, there may be a way of “clustering together”
several sub-theories that are similar into groups and then using this as a method for constructing sub-models over which the
uniform distribution hack is more persuasive. I hope to work out this idea in a future paper.

34Or output from, if one uses the theory to back priors out, beginning with posteriors.
35Carnap writes, “The characterization of the explicatum, that is, the rules of its use (for instance, in the form of a definition),
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sufficiently precise that falsification of the model is not just theoretically possible but actually probable if the
theory is incorrect? Theories that are falsifiable and make precise predictions are likely to be disproved if
they are not reasonable models of reality. Therefore a precise model may be a good one, even if it is often
incorrect, as the few instances in which it is born out provide strong evidence in its favor.

Precision is clearly defined in the theory and plays a central role in the learning rules derived.

Criterion 3. General applicability36: Does the model make predictions about a broad range of phenomena?
The more distinct phenomena a model makes predictions about the more independent opportunities there
are for testing the theory.

If we view a theory that is not applicable to a particular situation as making no prediction and therefore
being maximally vague, then the generally applicability criterion naturally arises in the model. Suppose
that one model makes predictions in a much broader range of settings than another theory. Then if we
consider the union of all settings in which the two theories make predictions to the observation, then a
theory which makes predictions more often will be much more precise than a theory which fails to do so.
In a sense, general applicability can be seen, therefore, as a form of precision (or both can be seen as ways
of achieving falsifiability).

Criterion 4. Empirical accuracy37: Are the predictions of the model broadly born out by empirical study?
Models, however plausible, precise or general, that are inconsistent with data do not provide accurate
descriptions of reality and should be rejected.

Empirical accuracy clearly plays a key role in the theory developed above.
Any model of scientific learning should incorporate, in some reasonable fashion, all of these elements.

Clearly the theory developed above passes this basic test. Furthermore the model should make explicit
it how it treats trade-offs among these various desirable feature. If possible it should provide a strategy
that is not entirely subjective for determining the way in which these trade-offs are made and where this
is not possible it should at least provide a method for checking the robustness of the models conclusions
to the relative “weight” put on these various criteria. The trade-off between precision and accuracy in the
model is set by the choice of the error parameter, which in turn I provide some techniques for choosing and
checking the robustness of. However, the theory largely fails with respect to independently choosing the
speed of updating, which conditions the trade-off between priors and the other attributes, and with respect
to the weight given to general applicability. To adequately address the question of how fast updating should
occur, a better model would be necessary of correlations across experiments. I hope that a similar analysis
might also clarify the value of general applicability and how this should be traded off against other criteria.
For example, some economists might argue that neuro-science data is very “correlated” in terms of errors,
as are more economic questions, so that the performance of economic models on economic data is likely to
provide more information about performance on future economic questions than is neuro-scientific data.

is to be given in an exact form, so as to introduce the explicatum into a well-connected system of scientific concepts.”
36Carnap writes, “The explicatum is to be a fruitful concept, that is, useful for the formulation of many universal statements

(empirical laws in the case of a nonlogical concept, logical theorems in the case of a logical concept).”
37Carnap writes, “ The explicatum is to be similar to the explicandum in such a way that, in most cases in which the

explicandum has so far been used, the explicatum can be used; however, close similarity is not required, and considerable
differences are permitted.” Note that Carnap’s emphasis on allowing imperfect accuracy is closely tied to my notion of
theoretical imperfection.
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Trying to find a reasonable way of addressing such concerns would be an important step in improving the
realism of the model here.

A theory of scientific learning should also provide baseline standards that put relatively few demands
on analyst using the model to provide non-obvious probabilistic structure. Along the same lines, analysis
using the model should be transparent and difficult to manipulate. The simplifying assumptions needed
to achieve the last two goals will doubtless increase the “variance” of analysis using the model around the
true conclusions that should be drawn. Nonetheless, I would argue that this added variance is worthwhile
to reduce or eliminate incentives for analysts to strain the interpretation of models in non-transparent ways
so as to arrive at results supporting their favorite model, as well as to limit debate about non-substantive
issues. Throughout the development of the theory I have emphasized my efforts to achieve this.

Finally, a good theory of scientific learning should be tractable for applied researchers, easy enough to
be used, as standard econometrics is, for common analysis, not merely in abstract theoretical inquiry or
debate. By developing the theory in the context of a simple application, I have tried to show how it can
easily be applied.

9 Conclusion

In this paper I provide (as far as I know) the first mathematical formulation of the general problem of
scientific learning. I make five assumptions that give structure to the problem, allowing me to derive a
simple, easily applicable solution. I apply the theory to analyze data on social preferences collected by
Charness and Rabin (2002) and show that, in contrast to their conclusions, my theory suggests that their
data supports Selfishness as the best theory of choice in simple games. I also prove some consistency
results about the learning procedure inherent to the theory and showed how these results can be used
as robustness checks, and as an algorithm for error parameter selection, in applied analysis. Finally, I
discussed the ways in which the theory succeeds in incorporating some features that any to the scientific
learning problem should.

The work here has numerous limitations that leave large areas for further inquiry. On the theoretical
side many more robustness questions about the properties of the learning rule would be useful. The
techniques I specify for choosing the error parameter are not fully satisfactory and improving on these
would is important. Work on relaxing some of the models assumptions, particularly Independence and
Uniformity would be helpful. The most important direction for future research, which I begin to explore in
Appendix D, is the development of a theory, that is applicable to metric experiment spaces. In some sense
the theory presented here can be seen as building intuition in a simple context for a more complex and
mathematically dense metric theory to come. However, the current model likely has some applications to
discrete settings beyond the Charness-Rabin data I discuss. In fact, because the Charness-Rabin example
is so simple (every experiment is binary choice) a more sophisticated application would be important not
just for the potential substantive insights it could yield, but also because it might act as a better test of
the validity of the theory developed above.
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σ̄C µ̄C Consistent if σ̄A < Selfish Social welfare Difference aversion Competitive
.13 6.7 .47 1 1.5 · 10−7 5.4 · 10−6 4 · 10−7

.2 4 .54 1 1.2 · 10−6 2.7 · 10−5 3.3 · 10−6

.39 1.6 .67 1 8.5 · 10−5 6 · 10−4 1.2 · 10−4

.44 1.3 .7 1 2.1 · 10−4 .0012 3.9 · 10−4

.49 1 .73 1 5.1 · 10−4 .0023 8.4 · 10−4

.53 .89 .76 1 9.9 · 10−4 .0037 .0016

Table 5: Relative values of updates in favor of various (precision-augmented) theories, selfishness normalized
to 1.

A Precision-augmented Charness-Rabin analysis

In the analysis above of the Charness-Rabin data, one might worry that Charness and Rabin’s formulation
of the social preference models was “calibrated” to an analytical frame that disregarded precision, so that
to provide a fair test of these theories, one should formulate more precise versions of the theories and run
these against selfishness. It is to this task that this appendix is devoted.

I formulate the more precise version of each theory as allowing the weight on non-selfish effects to range
from being one quarter as important as the player’s own payoff to being two-thirds as important. I also
preserve the inequalities in preference parameters Charness and Rabin assume. In the Social Welfare model
this corresponds to putting a relative weight of between 1

4 and 2
3 on the other player’s payoff, allowing this

weight to differ between the cases when the other player is earning a higher or lower payoff and assuming
that the weight is higher when the other player is behind than when she is ahead. In the Difference
Aversion model this corresponds to putting a relative (negative) weight of between 1

4 and 2
3 on difference

between the two players’ payoffs, allowing this weight to differ between cases when my partner is ahead
and I am ahead and insisting that the weight be a larger negative number when my partner is ahead than
when I am ahead. In the Competitive model, it corresponds to putting a relative (negative) weight of
between 1

4 and 2
3 on the other player’s payoff, allowing this weight to differ between the case when I or my

partner is ahead, insisting that the negative weight be greater when I am behind and adjusting scale to
avoid discontinuities at the point when our payoffs are equal. I use Selfishness without any changes.

After adding this additional structure, all of the theories of social preferences are much more precise,
but also much less accurate. Theory-specific maximum likelihood estimates of error parameters are now
.13, .53, .41, .49 for, respectively, the selfishness, social welfare, difference aversion and competitive models.
Thus the uniform prior, “focal” value of the error parameter is .39. Table 8 provides information analogous
to tables 7 for this case.

Table 8 reveals a few interesting things. First, making Social Welfare preference more precise makes it
much less accurate, causing it to do worse for all parameter values shown. Second, Difference Aversion does
slightly better, especially for high error rates and now consistently out preforms Social Welfare preferences,
even though it still substantially lags selfishness. This may provide some rationale for why Difference
Aversion, which Charness and Rabin largely dismiss, was a popular model of social preferences: for a
“reasonable range” of parameter values it captures social preferences in a reasonably precise and not
entirely accurate manner. However, the analysis indicates that the data supports Selfishness strongly as
the best model.
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B Proof of Lemma 2

First I establish the forward direction of the Lemma and then I turn to the (approximate) converse. I
prove in three steps:

1. First, I show that if, in a particular experiment,

σ̄? <
log
[
1 + µ̄ρ(λ??,Θ)

]
− log

[
1 + µ̄ρ(λ′,Θ)

](
1− 1

ρ(λ??,Θ)

)
log
[
1 + µ̄ρ(λ??,Θ)

]
−
(
1− 1

ρ(λ′,Θ)

)
log
[
1 + µ̄ρ(λ′,Θ)

]
and λ′(Θ) 6= λ??(Θ) then EQ

(
log
[
β(λ??,Θ)|Θ

])
> EQ

(
log
[
β(λ′,Θ)|Θ

])
.

2. Second, I show that this bound (the RHS of the above expression) is increasing in both ρ(λ??,Θ)
and ρ(λ′,Θ), so that if the hypotheses of the lemma (which lower bound precision) hold, then,
unconditionally, because λ′ � λ??, EQ

(
log
[
β(λ??,Θ)

])
> EQ

(
log
[
β(λ′,Θ)

])
.

3. Finally, I invoke the argument from the proof of Lemma 1 to use this to establish consistency.

Recall from the proof of Lemma 1 that the expected logarithm of the Bayes Factor of the true theory
on a particular experiment Θ is (

1− σ̄? +
σ̄?

ρ(λ?,Θ)

)
log
[
1 + µ̄ρ(λ??,Θ)

]
For λ′ satisfying λ′(Θ) ⊃ λ?? this is given by(

1− σ̄? +
σ̄?

ρ(λ′,Θ)

)
log
[
1 + µ̄ρ(λ′,Θ)

]
The first expression is greater than the second iff

(1−σ̄?)
(

log
[
1+µ̄ρ(λ??,Θ)

]
−log

[
1+µ̄ρ(λ′,Θ)

])
> σ̄?

(
1

ρ(λ′,Θ)
log
[
1+µ̄ρ(λ′,Θ)

]
− 1

ρ(λ?,Θ)
log
[
1+µ̄ρ(λ??,Θ)

])
⇐⇒

log
[
1+µ̄ρ(λ??,Θ)

]
−log

[
1+µ̄ρ(λ′,Θ)

]
> σ̄?

[(
1− 1

ρ(λ??,Θ)

)
log
[
1+µ̄ρ(λ??,Θ)

]
−
(

1− 1
ρ(λ′,Θ)

)
log
[
1+µ̄ρ(λ′,Θ)

]]

Note that by the assumption that λ′(Θ) ⊃ λ??(Θ) we have that ρ(λ??,Θ) > ρ(λ′,Θ) so that the above
expression will hold iff and only if

σ̄? <
log
[
1 + µ̄ρ(λ??,Θ)

]
− log

[
1 + µ̄ρ(λ′,Θ)

](
1− 1

ρ(λ??,Θ)

)
log
[
1 + µ̄ρ(λ??,Θ)

]
−
(
1− 1

ρ(λ′,Θ)

)
log
[
1 + µ̄ρ(λ′,Θ)

] (14)

which establishes step 1.
Next I want to show that the RHS of inequality 14 is increasing in both ρ(λ??,Θ) and ρ(λ′,Θ) given

that ρ(λ??,Θ) > ρ(λ′,Θ). For aesthetic reasons I will abbreviate ρ(λ??,Θ) as ρ1 and ρ(λ′,Θ) as ρ2. To see
that the right hand side of the expression above in ρ1, take the derivative which yields
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ρ2

(
µ̄ρ1[ρ1 + ρ2 − 2ρ1ρ2] log[1 + µ̄ρ2] + ρ2

[
2µ̄ρ1(ρ1 − 1) + (1 + µ̄ρ1)

(
log[1 + µ̄ρ1]− log[1 + µ̄ρ2]

)]
log[1 + µ̄ρ1]

)
(1 + µ̄ρ1)

[
(ρ1 − 1)ρ2 log(1 + µ̄ρ1)− ρ1(ρ2 − 1) log(1 + µ̄ρ2)

]2
Recalling that ρ1 > ρ2 ≥ 1 and µ̄ > 0, clearly (1+ µ̄ρ1) and ρ2 are positive, so the sign of the expression

is the same as the sign of

(1 + µ̄ρ1)ρ2 log(1 + µ̄ρ1)
(
log[1 + µ̄ρ2]− log[1 + µ̄ρ1]

)
+ µ̄ρ1(ρ1 − ρ2) log(1 + µ̄ρ2)

Clearly this expression is 0 when ρ1 = ρ2. I now want to show that for ρ1 6= ρ2, ρ1, ρ2 ≥ 1 we have
this expression strictly positive. I am extremely grateful to Mihai Manea for the proof of this fact, which
I now present. Let ea ≡ 1 + µ̄ρ1 and eb ≡ 1 + µ̄ρ2. Then proving that the above expression is positive for
ρ1 6= ρ2, ρ1, ρ2 ≥ 1 is equivalent to proving that the following expression is strictly positive when a 6= b

and a, b ≥ 0:

ea
(
eb − 1

)
a(b− a) +

(
ea − 1

)(
ea − eb

)
b

I show this in two cases. First suppose that ρ2 > ρ1. Then the above expression being strictly positive
is equivalent to the following inequality:

eb−a − 1
b− a

· ea − 1
a

<
eb − 1

b

or equivalently

ln
(

eb−a − 1
b− a

)
+ ln

(
ea − 1

a

)
< ln

(
eb − 1

b

)
Now let f(x) ≡ ln

(
ex−1

x

)
when x 6= 0 and f(0) ≡ 0. f is continuous38, twice continuously differen-

tiable39 and convex40. I want to show that f(b−a)+f(a) < f(b) = f(b)+f(0). But b > a so by convexity
of f , this holds by Jensen’s Inequality:

f(b− a) + f(a) = f

(
b− a

b
· 0 +

a

b
· b
)

+ f

(
b− a

b
· b +

a

b
· 0
)

<

(
b− a

b
+

a

b

)[
f(b) + f(0)

]
= f(b) + f(0)

In the other case, when ρ1 < ρ2, I need to show that f(b − a) + f(a) > f(b). But f is always weakly
positive, so f(b− a) + f(a) > f(a) > f(b) as a, b ≥ 0 and a > b in this case.

38limx→0 f(x) = 0 as it is well known that limx→0
ex−1

x
= 1.

39This requires multiple tedious applications of L’Hôpital’s rule and so is omitted here, but is available upon request.
40To see this, note that

f ′′(x) =
1

x2
+

1

2− 2 cosh(x)

being positive suffices to show convexity given twice continuous diffentiability. Because cosh(x) ≥ 1 the second term is always
negative, so it suffices to show that 2 cosh(x)−2−x2 ≥ 0. When x = 0 both this expression and its derivative 2 sinh(x)−2x are
0. The second derivative of the expression is 2 cosh−2 which is positive, thus 2 cosh(x)− 2− x2 ≥ 0 is convex and minimized
at 0 and therefore positive.
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Therefore the RHS of expression 14 is increasing in ρ1. Because the expression is symmetric in ρ1 = ρ2

it also suffices to show the expression is increasing in ρ2 (given that ρ1 > ρ2 ≥ 1). Thus if we can bound
ρ1 below by ρ?? and we can bound ρ2 below by ρ′,∀Θ ∈ Γ then

σ̄? <
log
[
1 + µ̄ρ??

]
− log

[
1 + µ̄ρ′

](
1− 1

ρ??

)
log
[
1 + µ̄ρ??

]
−
(
1− 1

ρ′

)
log
[
1 + µ̄ρ′

] (15)

implies that for all experiments where λ′(Θ) 6= λ??(Θ) we have EQ

(
log
[
β(λ??,Θ)|Θ

])
> EQ

(
log
[
β(λ′,Θ)|Θ

])
.

Because for any λ′ ∈ Λ′ we have by assumption that λ′ ⊇ λ?? and λ′ � λ?? the argument that established
Lemma 1 implies that (given that inequality 15 is violated only at a finite, and therefore zero-probability
given that ν is non-atomic, set in Γ), unconditionally, EQ

(
log
[
β(λ??,Θ)

])
> EQ

(
log
[
β(λ′,Θ)

])
. Again

by the argument that established Lemma 1 this suffices to establish consistency and prove the forward
direction of Lemma 2.

To show that this formula simplifies to expression 7.1 when no ex-ante lower bounds other than 1 can
be placed on the precision of the true and competitor theory, note that in this case it is appropriate first
to take a limit as ρ′ and then ρ?? goes to 1, as ρ′ < ρ??. When ρ′ = 1, expression 13 simplifies to

log
(
1 + µ̄ρ??

)
− log(1 + µ̄)(

1− 1
ρ??

)
log
(
1 + µ̄ρ??

)
This expression is clearly an indeterminate form (0

0) as ρ?? → 1. By L’Hôpital’s rule, the value of the
limit is

lim
ρ??→1

µ̄
1+µ̄ρ??

µ̄
1+µ̄ρ?? −

µ̄
1+µ̄ρ??−log

(
1+µ̄ρ??

)
ρ??2

=
µ̄

1+µ̄
µ̄

1+µ̄ −
µ̄

1+µ̄ + log(1 + µ̄)
=

1−σ̄
σ̄
1
σ̄

log
(
1 + 1−σ̄

σ̄

) = − 1− σ̄

log(σ̄)

Now consider the converse and assume its hypotheses. Then by the reasoning above, ∃λ′ ∈ Λ′, and
infinitely many Θ′ ∈ Γ :

EQ

(
log
[
β(λ??,Θ)|Θ

])
< EQ

(
log
[
β(λ′,Θ)|Θ

])
So clearly if ν places a probability mass of 1 on this set (which is possible even while remaining non-

atomic as it is an infinite set), the reasoning in the proof of Lemma 1 establishes that for any r ∈ R:

lim
n→∞

Q

[
P [λ? = λ′|Ξn]
P [λ? = λ??|Ξn]

> r

]
= 1

So clearly consistency cannot hold.

C Proof of Theorem 1

The converse is an immediate consequence of Lemma 2.
To establish the first claim, I prove, in the proof Lemmas 1 and 2, in two steps. First I show that for

any theory λ′ ∈ Λ′, the expected logarithm of that theory’s Bayes Factor for any experiment for which
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that theory is not identical to the truth is strictly less than the expected logarithm of the true theory’s
Bayes Factor. Then I invoke the argument used to establish Lemma 1 to prove consistency.

Consider a theory λ′ ∈ Λ′ and an experiment Θ for which λ′(Θ) 6= λ??(Θ). Such an experiment exists
as λ′ is distinguishable from λ??. If λ′(Θ) ⊃ λ??(Θ) or if λ′(Θ) ⊂ λ??(Θ) then, given the hypotheses of the
theorem,

EQ

(
log
[
β(λ??, σ̄, Θ)

])
> EQ

(
log
[
β(λ′, σ̄, Θ)

])
(16)

by the arguments used to establish Lemmas 1 and 2. I want to show that inequality 16 holds even if
λ′(Θ) is neither a superset nor a subset of λ??. There are three cases to consider:

1. |λ′(Θ)| = |λ??(Θ)|: Recall that the expected logarithm of the Bayes Factor of the true theory is

(
1− σ̄? +

σ̄?

ρ(λ?,Θ)

)
log
(
1 + µ̄ρ(λ??,Θ)

)
On the other hand, the expected logarithm of the Bayes Factor of λ′ is

(
|λ′(Θ) ∩ λ??(Θ)|

|λ??(Θ)|
[1− σ̄?] +

σ̄?

ρ(λ?,Θ)

)
log
(
1 + µ̄ρ(λ??,Θ)

)
as ρ(λ′,Θ) = ρ(λ??,Θ) because |λ′(Θ)| = |λ??(Θ)|. But clearly

(
1− σ̄? +

σ̄?

ρ(λ?,Θ)

)
log
(
1+ µ̄ρ(λ??,Θ)

)
>

(
|λ′(Θ) ∩ λ??(Θ)|

|λ??(Θ)|
[1− σ̄?]+

σ̄?

ρ(λ?,Θ)

)
log
(
1+ µ̄ρ(λ??,Θ)

)
as σ̄? < 1 |λ′(Θ)∩λ??(Θ)|

|λ??(Θ)| < 1 by construction. Thus inequality 16 holds in this case.

2. |λ′(Θ)| > |λ??(Θ)|: Consider some theory λ̃ : λ̃(Θ) ⊃ λ??(Θ) and |λ̃(Θ)| = |λ′(Θ)|. Recall from the
proof of Lemma 2 that the expected logarithm of the Bayes Factor for λ̃ is

(
1− σ̄? +

σ̄?

ρ(λ̃, Θ)

)
log
(
1 + µ̄ρ(λ̃, Θ)

)
On the other hand, the expected logarithm of the Bayes Factor for λ′ is

(
|λ′(Θ) ∩ λ??(Θ)|

|λ??(Θ)|
[1− σ̄?] +

σ̄?

ρ(λ̃, Θ)

)
log
(
1 + µ̄ρ(λ̃, Θ)

)
as ρ(λ̃, Θ) = ρ(λ′,Θ) given that, by construction, |λ̃(Θ)| = |λ′(Θ)|. By the same reasoning as in case
1 above, this second expression is less than the first. But because, by construction, λ̃(Θ) ⊃ λ??(Θ),
the proof of Lemma 2 combined with our reasoning here implies that:

EQ

(
log
[
β(λ??, σ̄, Θ)

])
> EQ

(
log
[
β(λ̃, σ̄, Θ)

])
> EQ

(
log
[
β(λ′, σ̄, Θ)

])
establishing inequality 16.
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3. |λ′(Θ)| < |λ??(Θ)|: Consider some theory λ̃ : λ̃(Θ) ⊂ λ??(Θ) and |λ̃(Θ)| = |λ′(Θ)|. Recall from the
proof of Lemma 1 that the expected logarithm of the Bayes Factor for λ̃ is

(
ρ(λ??,Θ)
ρ(λ̃, Θ)

[1− σ̄?] +
σ̄?

ρ(λ̃, Θ)

)
log
(
1 + µ̄ρ(λ̃, Θ)

)
On the other hand, the expected logarithm of the Bayes Factor for λ′ is

(
ρ(λ??,Θ)
ρ(λ̃, Θ)

|λ′(Θ) ∩ λ??(Θ)|
|λ̃(Θ) ∩ λ??(Θ)|

[1− σ̄?] +
σ̄?

ρ(λ̃, Θ)

)
log
(
1 + µ̄ρ(λ̃, Θ)

)
as ρ(λ̃, Θ) = ρ(λ′,Θ) given that, by construction, |λ̃(Θ)| = |λ′(Θ)|. Now note that |λ′(Θ)∩λ??(Θ)|

|λ̃(Θ)∩λ??(Θ)| < 1

by the assumption that λ′(Θ) is not a subset of λ??(Θ), while λ̃(Θ) is. Also, clearly ρ(λ??,Θ)

ρ(λ̃,Θ)
> 0 so

the first expression is great than the second. Again by Lemma 1 and this reasoning

EQ

(
log
[
β(λ??, σ̄, Θ)

])
> EQ

(
log
[
β(λ̃, σ̄, Θ)

])
> EQ

(
log
[
β(λ′, σ̄, Θ)

])
establishing inequality 16 in this case as well.

Thus inequality 16 holds so long as λ′(Θ) 6= λ??(Θ). But by exactly the same reasoning as in the proof
of Lemma 1 establishes the forward direction of the Theorem.

D Towards a theory with metric experiment spaces

The basic problem in a continuous metric experiment space is that there is essentially zero probability that
the realized outcome will be exactly that predicted by a theory. Even if the space is discretized it is not
reasonable to see an inflation rate of 3% as a complete falsification of a theory which predicts an inflation
of 2%. Thus we require a theory of partial falsification which allows the confirmation or rejection of a
model based on an experimental outcome to be essentially continuous in the outcome.

One “natural” way to extend the model discussed above to a metric space would be to imagine that
emanating from each value in the space predict by the theory there is a Gaussian distribution centered at
that point and that the probability distribution “predicted” by a theory is thus a mixture of Gaussians,
where the common variance of the Gaussians is the analog of the error parameter. This model would be
nice, because we have simple computational ways of dealing with mixture of Gaussian models. To see the
problem with this model, imagine that there is a theory whose predictions are indexed by a continuous
parameter ν ∈ [0, 1]. Suppose that the theory’s prediction for ν = 0 is 0, for ν = 1 is 1 but for ν ∈ (0, 1) the
prediction is always in the interval [.5, .50001]. How would one translate this into a mixture of Gaussian
model? Would we place a probability weight of .8 essentially on a Gaussian with mean of “the interval”
[.5, .50001]? How much weight would be placed on the Gaussian centered at 0? How much on the Gaussian
centered at 1? There is no reasonable economic sense in which, simply because all parameter values except
0 and 1 generate predictions in [.5, .50001] that 0 and 1 are not equal predictions of the model. Furthermore,
despite the fact that each value of ν ∈ (0, 1) may give a distinct prediction at the sixth decimal place,
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observationally this is nearly equivalent to all of the predictions being .5. Thus the mixture of Gaussians
model, despite its initial appeal, is not the right formalization for the idea underlying it.

Instead I want a theory where each prediction of a model has equal probability weight on it and
probability weights die off at the same rate around these predictions. I want a maximum of Gaussians,
not a mixture of Gaussians. That is the probability weight put on any particular point by a theory should
be related to the distance between that point at the nearest point in the space predicted by the theory.
This theory can be developed by mimicking the definitions and assumptions used in the development of
the simple theory in Section 3, making the relevant changes where necessary.

Definition′ 1. An experiment Θ is a (weak) subset of Rn.

For simplicity, I assume that there is an upper bound on the dimensionality of an experiment and that
experiments have outcomes that can be viewed as subsets of real space. Note that the simple model can
obvious be seen as a special case.

Definition′ 2. The studied phenomenon is a (generally quite infinite) set of experiments Γ.

Definition′ 3. The observation Ξ is a finite subset of Γ.

Definition′ 4. A theory is a mapping λ : Γ → 2Rn
such that λ(Θ) ⊆ Θ,∀Θ ∈ Γ. λ(Θ) is called the set of

outcomes predicted by λ. Let the theory space Λ be the set of all possible theories satisfying this definition.

Assumption′ 1. The scientist believes that one theory λ? ∈ Λ is the true theory but is uncertain as to its
identity. The plausibility distribution π : Λ → [0, 1] be a probability distribution over Λ that represents the
scientist’s priors over the different theories being the true theory.

Definition′ 5. A world is a mapping ω : Γ → Rn such that ω(Θ) ∈ Θ,∀Θ ∈ Γ. Let Ω be the set of all
possible worlds.

Assumption′ 2. P
[
ω?(Θ1) = θ1, . . . , ω

?(ΘN ) = θN

∣∣λ? = λ
]

=
∏N

i=1 P
[
ω?(Θi) = θi

∣∣λ? = λ
]

for all

{Θi}N
i=1 ⊆ Γ and all N ∈ N such that Θi 6= Θj for i 6= j.

These are exactly as in the simple theory of Section 3, except for some slight simplifications of domains
made possible by the assumption that all Θ ⊆ Rn. Note, however, that Λ is all the more infinite now
that each Θ may be an uncountable set. The major differences in this setting emerge in the probabilistic
structure.

Assumption′ 3. For any θ ∈ Θ:

P
[
ω?(Θ) = θ|λ? = λ

]
=

φ
(
D
[
λ(Θ), θ

]
;σ[λ, Θ]

)
dχ(θ; Θ)∫

z∈Θ φ
(
D
[
λ(Θ), z

]
;σ[λ, Θ]

)
dχ(z; Θ)

where D : 2Rn × Rn → R+ is a metric of distance between subsets of Rn and points in Rn and χ(z; Θ)
a probability distribution over Θ called the prior shape of Θ . φ satisfies the following properties:

1. φ(·, σ) > 0 everywhere and is strictly decreasing ∀σ ∈ (0,∞)

2.
∫∞
y=0 φ(y;σ)dy exists and is finite
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3. φ(·;σ) is absolutely continuous ∀σ ∈ (0,∞)

4. φ(x;σ)
φ(x′;σ) is strictly decreasing in σ,∀0 ≤ x < x′

5. limσ→0
φ(0,σ)∫

y∈Θ φ
(
d(x,y);σ

)
dy

= ∞

6. limσ→∞
φ(x;σ)
φ(x′;σ) = 1,∀x, x′ ∈ R+

Assumption′ 3 embodies the basic logic above about extending the model to a metric space. It states
that the probability weight put on any particular outcome should be a decreasing function of the “distance”
between the predictions of the true theory and the that outcome. The assumptions about the shape of φ

ensure that it has full support (no outcome entirely disqualifies a theory), is integrable (which ensures that
the definition makes sense) and is non-atomic. φ(·;σ) is parameterized by σ (which in turn may depend on
the experiment and the true theory). This is analogous to the error parameter in the simple theory; here
it is a rough measure of the variance of the distribution. For example, a normal PDF with mean 0 and
variance σ would satisfy all the definitions above; one can think of this as a focal example. The properties
assumed about this parametrization are meant to capture the notion that σ roughly represents the spread
of the distribution: as it gets larger, the relative weight put on points farther away becomes larger; as it
goes to infinity, the implied distribution is flat over the space; as it goes to 0 the implied distribution is
atomic at points 0 distance from the true theory’s predictions.

While this establishes a few properties about φ that suggest a reasonable class of parameterizations,
D, χ and σ still have little structure. These are provided by the following assumptions.

Assumption′ 4. Two possible assumptions might be used here:

1. ∀Θ ∈ Γ, Θ is compact and χ(·; Θ) is the uniform distribution over Θ.

2. ∀Θ ∈ Γ, Θ = Rm for some m ≤ n (not necessarily the same for every experiment) and χ(·; Θ) is a
multivariate normal distribution over Θ.

The two versions of the assumption correspond to two different perspectives on the distribution over
outcomes implied by a fully vague theory (one that makes no predictions). The first corresponds to
the assumption that there is some compact set of possible values that the experimental outcome might
take on and that any of these is equally likely. The second corresponds to the assumption that the
(multidimensional) experimental outcome may take on any value, but that its ex-ante mean (vector) and
covariance matrix (roughly) are known. Both versions of the assumption then correspond to the view that
the scientist, in the absence of a theory, has no further knowledge (maximum entropy) about the outcome
than what is assumed. I think it is likely that in most applications, the second version of assumption 4
will be more useful, as moments are often easier to consider than outer bounds and the resulting space is
probably more plausible.

Assumption′ 5. σ(λ, Θ) ≡ σ(Θ)

This is the same theory-independent error assumption in Section 3, though σ now parameterizes the
distribution differently.
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Assumption′ 6. D[X, y] ≡ infx∈X d(x, y), where d is some metric on Rn. A convenient metric is the
Euclidean norm.

Thus D is the Hausdorff extension of the Euclidean metric in the special case when one of the sets (y
here) is singleton. Note that the assumption of using the Euclidean metric is not terribly restrictive, as in
an application the dimensions may be re-scaled in a reasonable way before applying the theory. Assuming
it, however, does provide sufficient structure to allow computations and theoretical investigation.

Given these assumptions, the Bayes Factor for a theory on an experiment Θ will be

β
[
ω?(Θ);λ, Θ, σ

]
=

φ
(

infy∈λ(Θ) d
[
ω?(Θ), y

]
;σ
)
dχ
(
ω?[Θ]; Θ

)∫
z∈Θ φ

[
infy∈λ(Θ) d(z, y);σ

]
dχ(z; Θ)

This essentially has the same precision-accuracy form as earlier φ
(

infy∈λ(Θ) d
[
ω?(Θ), y

])
;σ
)

(up to
affine transformations) measures the accuracy of theory λ in experiment Θ when the outcome is ω?(Θ)
and 1∫

z∈Θ φ
[

infy∈λ(Θ) d(z,y);σ
]
dz

measures the precision of the theory on Θ. For small values of σ, when the

distribution collapses towards a point mass, accuracy becomes extremely important, the probability of
anything that is not exactly a prediction of the theory goes to 0. For large values of σ precision becomes
important because (at least over a large range) the implied distribution is essentially flat, so (conditional
on being inside this flat region, that is not totally falsified) what matters is that the integral over the whole
space is not too large. Note, though, that when one makes the Gaussian assumption about the prior shape
of the space, both precision and accuracy will depend on where the theory’s predictions like, not just their
shape. Theories that predict things with very low ex-ante probability (far from the center of the normal
distribution of the prior space) will be very precise even if they are consistent with a (spatially) wide range
of outcomes. They will particularly do well when competing against theories which make no predictions
and thus have the same probability distribution as the prior space. Thus one might consider referring now
to “falsifiability” rather than “precision”, as this captures the fact that precision here is really about the
ex-ante probability that the model will be falsified if not (approximately) correct.

Let ρ(λ, Θ;σ) ≡ 1∫
z∈Θ φ

(
infy∈λ(Θ) d(z,y);σ

)
dχ(z;Θ)

. I would like to prove some results analogous to those in

the simple model. For example, I want to say that a theory λ is more precise than a theory λ′ given a
parameter value σ if ρ(λ, Θ;σ) ≥ ρ(λ′,Θ;σ). Then I can use this to define the idea of a super and subset
from before. To establish robustness against subsets for any value of σ̄ regardless of the value of σ̄? I would
need to show:

EQ

[
log
(
β[x;λ??,Θ, σ̄]

)]
− EQ

[
log
(
β[x;λ′,Θ, σ̄]

)]
for all λ′ < λ?? and for all σ̄?, σ̄ ∈ R++. I have tried a number of examples and this appears to be

true, but I am not sure how to approach proving it...I am sure that there are some standard methods used
in relative entropy and likelihood problems like this. It would also be useful to have some measure of the
range of parameter values for which consistency against supersets is ensured.

If these results can be proved, and I can develop some reasonable computational methods for computing
the Bayes Factor, I think this will make a pretty reasonable model. However, even after solving these
problems a few important challenges will remain
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1. As discussed earlier, it will be crucial to find some way to relax independence without removing too
much structure from the theory.

2. I will need to find a reasonable way to weight re-scale the dimensions from applications to use them
with the Euclidean metric.

3. An important problem will be choosing χ, the prior shape of the space, in a plausible manner. In
some ways this choice of prior shape faces some of the difficulties that choosing priors in Bayesian
models does. However, I am hopeful that some rough guidelines could be developed.

4. It seems natural (both computationally and intuitively) to parameterize φ as a normal distribution,
at least when Θ = Rm. However, in some applications when Θ is compact, it may be more reasonable
to use a parabolic or (α, β) distribution for φ. I hope to develop some guidelines for thinking about
this, and hopefully prove some robustness results about choices of φ.

5. Finally, it seems particularly important to allow σ(Θ) to depend, in a disciplined way, on the partic-
ular experiment Θ. While this is essentially covered by item 2 above, I view that as being primarily
about scaling different dimensions relative to one another in a particular experiment, rather than
allowing more or less error across different experiments. For this purpose it is important to get a
sense of how much “weight” to put on any particular experiment. Finding some principled way of
doing this, possibly building off the statistically-based hacks I used in the Charness-Rabin application
or possibly departing significantly from them, will be crucial

While all of these challenges taken together are quite substantial, I am hopeful that I will be able to
draw heavily on past work to overcome them. In proving the formal results, I believe there are standard
relative entropy methods and results in statistics that will help solve some of these problems. On the
computational side, I am optimistic that, given the simple structure of the problem as laid out here,
techniques can be developed to make the analysis tractable. Finally, in the more fundamental challenges
enumerated in the above list, a cursory review of the meta-statistical literature seems to suggest that there
are many techniques used there that could be productively adapted to solve many if not most of these
problems. While much work remains to be done, I do not think, at least at this stage, that the problem is
intractable.
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