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Abstract

This paper studies a simple model of experimentation and innovation. Our analysis suggests that
patents may improve the allocation of resources by encouraging rapid experimentation and e¢ cient ex
post transfer of knowledge across �rms. Each �rm receives a private signal on the success probability
of one of many potential research projects and decides when and which project to implement. A suc-
cessful innovation can be copied by other �rms. Symmetric equilibria (where actions do not depend
on the identity of the �rm) always involve delayed and staggered experimentation, whereas the optimal
allocation never involves delays and may involve simultaneous rather than staggered experimentation.
The social cost of insu¢ cient experimentation can be arbitrarily large. Appropriately-designed patents
can implement the socially optimal allocation (in all equilibria). In contrast to patents, subsidies to
experimentation, research, or innovation cannot typically achieve this objective. We also show that when
signal quality di¤ers across �rms, the equilibrium may involve a nonmonotonicity, whereby players with
stronger signals may experiment after those with weaker signals. We show that in this more general
environment patents again encourage experimentation and reduce delays.
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1 Introduction

Most modern societies provide intellectual property rights protection to innovators using a patent

system. The main argument in favor of patents is that they encourage ex ante innovation by

creating ex post monopoly rents (e.g., Arrow, 1962, Kitch, 1977, Reinganum, 1981, Tirole,

1988, Klemperer, 1990, Gilbert and Shapiro, 1990, Romer, 1990, Grossman and Helpman, 1991,

Aghion and Howitt, 1992, Scotchmer, 1999, Gallini and Scotchmer, 2002). In this paper, we

suggest an alternative (and complementary) social bene�t to patents. We show that, under

certain circumstances, patents encourage experimentation by potential innovators while still

allowing socially bene�cial transmission of knowledge across �rms.

We construct a stylized model of experimentation and innovation. In our baseline game

there is a large number of potential projects and N symmetric potential innovators (�rms).

Each �rm receives a private signal on which of these projects is more likely to lead to an innova-

tion and can decide to experiment with any of these projects at any point in time. A successful

innovation is publicly observed and can be copied by any of the other potential innovators (for

example, other �rms can build on the knowledge revealed by the innovation in order to increase

their own probability of success, but in the process capture some of the rents of this �rst in-

novator). The returns from the implementation of a successful innovation are nonincreasing in

the number of �rms implementing it. We provide an explicit characterization of the (subgame

perfect or perfect Bayesian) equilibria of this dynamic game (both in discrete and continuous

time). The symmetric equilibrium always features delayed and staggered experimentation. In

particular, experimentation does not take place immediately and involves one �rm experiment-

ing before others (and the latter �rms free-riding on the former�s experimentation). In contrast,

the optimal allocation never involves delays and may require simultaneous rather than staggered

experimentation. The insu¢ cient equilibrium incentives for experimentation may create a sig-

ni�cant e¢ ciency loss: the ratio of social surplus generated by the equilibrium relative to the

optimal allocation can be arbitrarily small.

We next show that a simple patent system, where a copying �rm has to make a prespeci�ed

payment to the innovator, can implement the optimal allocation. When the optimal allocation

involves simultaneous experimentation, the patent system makes free-riding prohibitively costly

and implements the optimal allocation as the unique equilibrium. When the optimal allocation

involves staggered experimentation, the patent system plays a more subtle role. It permits ex

post transmission of knowledge but still increases experimentation incentives to avoid delays.

The patent system can achieve this because it generates �conditional�transfers. An innovator
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receives a patent payment only when copied by other �rms. Consequently, patents encourage one

�rm to experiment earlier than others, thus achieving rapid experimentation without sacri�cing

useful transfer of knowledge. Moreover, we show that patents can achieve this outcome in all

equilibria. The fact that patents are particularly well designed to play this role is also highlighted

by our result that while an appropriately-designed patent implements the optimal allocation in

all equilibria, subsidies to experimentation, research, or innovation cannot achieve the same

objective.

In our baseline model, both the optimal allocation and the symmetric equilibrium involve

sequential experimentation. Ine¢ ciency results from lack of su¢ cient experimentation or from

delays. The structure of equilibria is richer when the strength (quality) of the signals received by

potential innovators di¤ers and is also private information. In this case, those with su¢ ciently

strong signals will prefer not to copy successful innovations. With two �rms or when the support

of signals is such that no �rm will have su¢ ciently strong signals, the �symmetric�equilibrium

of this extended game (where strategies do not depend on the identity of the player) satis�es

a monotonicity property, so that �rms with stronger signals never act after �rms with weaker

signals. This ensures an e¢ cient pattern of experimentation and e¢ cient ex post transfer of

knowledge. However, when there are more than two �rms and su¢ ciently strong signals are

possible, then the equilibrium may violate monotonicity. Interestingly, when this is the case

patents are again potentially useful (though they cannot restore monotonicity without preventing

(some) ex post transfer of knowledge).

In addition to the literature on patents mentioned above, a number of other works are related

to our paper. First, ours is a simple model of (social) experimentation and shares a number

of common features with recent work in this area (e.g., Bolton and Harris, 1999, 2000, and

Keller, Rady and Cripps, 2005). These papers characterize equilibria of multi-agent two-armed

bandit problems and show that there may be insu¢ cient experimentation. The structure of the

equilibrium is particularly simple in our model and can be characterized explicitly because all

payo¤-relevant uncertainty is revealed after a single successful experimentation. In addition, as

discussed above, there is insu¢ cient experimentation in our model as well, though this also takes

a simple form: either there is free-riding by some �rms reducing the amount of experimentation

or experimentation is delayed. We also show that patent systems can increase experimentation

incentives and implement the optimal allocation.

Second, the structure of equilibria with symmetric �rms is reminiscent to equilibria in war

of attrition games (e.g., Maynard Smith, 1974, Hendricks, Weiss and Wilson, 1988, Haigh and

Cannings, 1989). War of attrition games have been used in the study of market exit by Fudenberg
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and Tirole (1986) and Bulow and Klemperer (1999), research tournaments by Taylor (1995), and

in auctions by Bulow and Klemperer (1994). In our symmetric model, as in symmetric wars

of attrition, players choose the stochastic timing of their actions in such a way as to make

other players indi¤erent and willing to mix over the timing of their own actions. The structure

of equilibria and the optimal allocation is di¤erent, however, and the optimal allocation may

involve either simultaneous experimentation by all players or staggered experimentation similar

to those resulting in asymmetric equilibria. The novel bene�cial role of patents in our model

arises from their ability to implement such asymmetric equilibria.

Finally, the monotonicity property when the quality of signals di¤ers across agents is similar

to results in generalized wars of attrition (e.g., Fudenberg and Tirole, 1986, Bulow and Klem-

perer, 1994, 1999) and is also related to Gul and Lundholm�s (1995) result on the clustering of

actions in herding models. In the context of a standard herding model with endogenous timing,

Gul and Lundholm construct an equilibrium in which agents with stronger signals act earlier

than those with weaker signals, though the speci�cs of our model and analysis di¤ers from these

previous contributions. This is highlighted by the result that this monotonicity property does

not hold in our model when there are more than two �rms and the support of signals includes

su¢ ciently strong signals so that some �rms prefer not to copy successful experimentations.

The rest of the paper is organized as follows. In Section 2 we start with a discrete-time

model with two symmetric �rms. We characterize both asymmetric and symmetric equilibria

in this model and provide explicit solutions when period length tends to zero. This motivates

our continuous-time analysis, which is more tractable. We obtain the continuous-time model as

the limit of the discrete-time model and provide explicit characterization of equilibria in Section

3. Section 4 extends these results to a setup with an arbitrary number of �rms. Section 5

characterizes the optimal allocation and shows that the e¢ ciency gap between the symmetric

equilibrium and the optimal allocation can be arbitrarily large. The analysis in this section

also demonstrates that an appropriately-designed patent system can implement the optimal

allocation (in all equilibria). Section 6 extends the model to an environment in which signal

quality di¤ers across �rms. It establishes the monotonicity property of equilibria when either

there are only two �rms or the support of signal distributions does not include su¢ ciently strong

signals. Section 7 shows how this monotonicity property no longer holds when there are more

than two �rms and su¢ ciently strong signals are possible. Section 8 discusses the optimal

allocation and the role of patents in this extended model. Section 9 concludes.
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2 Two Symmetric Firms: Discrete Time

In this section, we start with a discrete-time model with two symmetric �rms.

2.1 Environment

The economy consists of two research �rms, each maximizing the present discounted value of

pro�ts. Let us denote the time interval between two consecutive periods by � > 0. In what

follows we will take � to be small.

Each �rm can implement (�experiment with�) one ofM potential innovation projects. Let us

represent the set of projects byM = f1; : : : ;Mg. Each �rm receives a private (�positive�) signal
' 2 M indicating the success potential of one of the projects. The unconditional probability

that a project will be successful (when implemented) is small (' 0). Conditional on the positive
signal the success probability of a project is p > 0. We assume that the two �rms always receive

signals about di¤erent projects.1 The success or failure of experimentation by a �rm is publicly

observed. When experimentation is successful, we refer to this as an �innovation�.

At each instant, a �rm can choose one of three possible actions: (1) experiment with a

project (in particular, with the project on which the �rm has received a positive signal); (2)

copy a successful project; (3) wait. Experimentation and copying are irreversible, so that a �rm

cannot then switch to implement a di¤erent project. In the context of research, this captures

the fact that commitment of intellectual and �nancial resources to a speci�c research line or

project is necessary for success. Copying of a successful project can be interpreted more broadly

as using the information revealed by successful innovation or experimentation, so it does not

need to correspond to the second �rm replicating the exact same innovation (or product).2

Payo¤s depend on the success of the project and whether the project is copied. During an

interval of length �, the payo¤ to a �rm that is the only one implementing a successful project

is �1� > 0. In contrast, if a successful project is implemented by both �rms, each receives

�2� > 0.3 The payo¤ to an unsuccessful project is normalized to zero. Both �rms discount the

future at the common rate r > 0 (so that the discount factor per period is e�r�).

Until we introduce heterogeneity in success probabilities, we maintain the following assump-

1This means that signals are not independent. If signals were independent, there would be a positive (but
since M is large, small) probability that the two �rms receive signals about the same project. Assuming that this
event has zero probability simpli�es notation.

2 In line with this interpretation, we could also allow copying to be successful with some probability � 2 (p; 1].
This added generality does not a¤ect any of the main economic insights and we omit it.

3 It will be evident from the analysis below that all of our results can be straightforwardly generalized to the
case where an innovator receives payo¤ ��rst2 � when copied, whereas the copier receives �second2 �. Since this has
no major e¤ect on the main economic insights and just adds notation, we do not pursue this generalization.
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tion.4

Assumption 1

�1 > �2 > p�1:

Let us also de�ne the present discounted value of pro�ts as

�j �
�j
r
for j = 1; 2;

and for future reference, de�ne

� � �2
�1
: (1)

Clearly, � 2 (p; 1) in view of Assumption 1.
Now we are in a position to de�ne strategies in this game. Let a history up to time t (where

t = k� for some integer k) be denoted by ht. The set of histories is denoted by Ht. A strategy
for a �rm is a mapping from its signal, ' 2 M, and the history of the game up to time t, ht, to

the probability of experimentation at a given time interval and the distribution over projects.

Thus the time t strategy can be written as

�t :M�Ht ! [0; 1]�� (M) ,

where [0; 1] denotes the probability of implementing a project (either experimenting or copy-

ing) at time t and � (M) denotes the set of probability distributions over the set of projects,

corresponding to the choice of project when the �rm implements a project. The latter piece of

generality is largely unnecessary (and will be omitted), since there will never be mixing over

projects (a �rm will either copy a successful project or experiment with the project for which

it has received a positive signal). Here �t
�
'; ht

�
= (0; �) corresponds to waiting at time t and

�t
�
'; ht

�
= (1; j) corresponds to implementing project j at time t, which could be experimen-

tation or copying of a successful project. Let us also denote the strategy of �rm i = 1; 2 by

�i =
�
�ti
	1
t=0
.

History up to time t can be summarized by two events at 2 f0; 1g denoting whether the other
�rm has experimented up to time t, mt 2M denoting which project it has chosen in that case,

and st 2 f0; 1g denoting whether this choice was successful. With a slight abuse of notation
we will use both �t

�
'; ht

�
and �t

�
'; at;mt; st

�
to denote time t strategies. Although this is

a game of incomplete information, the only source of asymmetric information is the identity

of the project about which a �rm has received a positive signal and no action other than the

4The structure of equilibria without this assumption is trivial as our analysis in Section 5 shows.
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implementation of a project reveals information about this. In light of this, it is su¢ cient to

focus on subgame perfect equilibria (rather than perfect Bayesian equilibria) in this game. A

subgame perfect equilibrium (or simply equilibrium) is a strategy pro�le (�̂1; �̂2) such that �̂i is

the best response to �̂�i in all histories ht 2 Ht for i = 1; 2.

2.2 Asymmetric Equilibria

Even though �rms are symmetric (in terms of their payo¤s and information), there can be

symmetric and asymmetric equilibria. Our main interest is with symmetric equilibria, where

strategies are independent of the identity of the player. Nevertheless, it is convenient to start

with asymmetric equilibria. These equilibria are somewhat less natural, because, as we will see,

they involve one of the players never experimenting until the other one does.

In an asymmetric equilibrium, one of the �rms, say 1, immediately attempts the project for

which it received a signal. Firm 2 copies �rm 1 in the next time period if the latter is successful

and tries its own project otherwise. In terms of the notation above, this asymmetric equilibrium

would involve

�̂t1 ('1 = j; �) = (1; j) ;

for t = 0;�; 2�; :::. In words, this means that �rm 1 chooses to experiment immediately (if it

has not experimented yet until t) and experiments with the project on which it has received its

signal, j. Firm 2, on the other hand, uses the strategy

�̂t2
�
'2 = j; a

t;mt; st
�
=

8<:
(1; j0) if at = 1, mt = j0 and st = 1;
(1; j) if at = 1, mt = j0 and st = 0;
(0; �) if at = 0;

for t = 0;�; 2�; :::. The crucial feature highlighted by these strategies is that �rm 2 never

experiments until �rm 1 does.

Using the same analysis as in the proof of Proposition 2 below, it is straightforward to verify

that �̂2 is a best response to �̂1 provided that � < �� � r�1 log (� + 1� p). What about �̂1?
Given �̂2, suppose that the game has reached time t (where t = k� for k 2 N). If �rm 1 now

follows �̂1, it will receive expected payo¤

V [t] = p
�
e�rt�1�+ e

�r(t+�)�2
�
;

at time t, since its experimentation will be successful with probability p, yielding a pro�t of �1�

during the �rst period following the success (equivalent to e�rt�1� when discounted to time

t = 0). Then according to �̂2, �rm 2 will copy the successful project and �rm 1 will receive

the present discounted value e�r(t+�)�2 from then on. If, at this point, �rm 1 chooses not
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to experiment, then the game proceeds to time t + �, and according to the strategy pro�le�
�̂t+�1 ; �̂t+�2

�
, it will receive payo¤ equal to

V [t+�] = e�r�V [t] < V [t] :

Therefore this deviation is not pro�table. This discussion establishes the following proposition

(proof in the text). Throughout the paper, when there are two �rms, we use the notation � i
to denote the �rm i0 6= i.

Proposition 1 Suppose that Assumption 1 holds and that � < �� � r�1 log (� + 1� p). Then
there exist two asymmetric equilibria. In each, one �rm, i = 1; 2, tries its project with probability

1 immediately and the other, �rm � i, never tries its project unless it observes the outcomes of
the experimentation of �rm i. Following experimentation by i, �rm � i copies it if successful

and experiments with its own project otherwise.

More formally, the two equilibria involve strategies of the form:

�ti ('i = j; �) = (1; j) ;

�t�i
�
'�i = j; a

t;mt
i; s

t
�
=

8<:
(1; j0) if at = 1, mt

i = j
0 and st = 1;

(1; j) if at = 1, mt
i = j

0 and st = 0;
(0; �) if at = 0;

for i = 1; 2.

2.3 Symmetric Equilibria

Asymmetric equilibria explicitly condition on the identity of the �rm: one of the �rms, with label

i, is treated di¤erently than the �rm with label � i. This has important payo¤ consequences. In
particular, it can be veri�ed easily that �rm � i has strictly greater payo¤s in the equilibrium
of Proposition 1 than �rm i. In addition, as already noted in the previous section, asymmetric

equilibria rely on the understanding by both �rms that one of them will not experiment until the

other one does. In this light, symmetric equilibria, where strategies are not conditioned on �rms�

�labels,� and �rms obtain the same equilibrium payo¤s are more natural. In this subsection,

we study such symmetric equilibria. We focus on the case where the time interval � is strictly

positive but small.

As de�ned above a �rm�s strategy is a mapping from its information set to the probability

of implementing a project. We refer to a strategy as pure if the experimentation probability at

a given time t is either 0 or 1. That is, a pure strategy takes the form

�t :M�Ht ! f0; 1g �M:

Our �rst result shows that for small �, there are no pure-strategy symmetric equilibria.
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Proposition 2 Suppose that Assumption 1 holds and that � < �� � r�1 log (� + 1� p) (where
recall that � � �2=�1). Then there exist no symmetric pure-strategy equilibria.

Proof. Suppose, to obtain a contradiction, that such an equilibrium �� exists. This implies that

there exists some time t0 and history ht0 (with t0 = k� for k 2 N) such that �t0
�
' = j; ht

�
=

(1; j). Then following this history the payo¤ to both �rms is

V [t0 j ��; ��] = e�rt0p�1:

Now consider a deviation by �rm 1 to �0, which involves, after history ht0 , waiting until date

t0+�, copying �rm 2�s project if successful, and experimenting with its own project otherwise.

The payo¤ to this strategy is

V
�
t0 j �0; ��

�
= e�r(t0+�) (p�2 + (1� p)p�1) ;

since �rm 2 experiments with probability 1 at time t0 and is successful with probability p.

Clearly, V [t0 j �0; ��] > V [t0 j ��; ��] and there is a pro�table deviation if

e�r(t0+�) (p�2 + (1� p)p�1) > e�rt0p�1;

or if

� < �� � r�1 log (� + 1� p) :

Here �� > 0 since, from Assumption 1, � � �2=�1 > p. This establishes the existence of a

pro�table deviation and proves the proposition.

Proposition 2 is intuitive. Asymmetric equilibria involve one of the �rms always waiting

for the other one to experiment and receiving higher payo¤. Intuitively, Proposition 2 implies

that in symmetric equilibria both �rms would like to be in the position of the �rm receiving

higher payo¤s and thus delaying their own experimentation in order to bene�t from that of

the other �rm. These incentives imply that no (symmetric) equilibrium can have immediate

experimentation with probability 1 by either �rm.

Proposition 2 also implies that all symmetric equilibria must involve mixed strategies. More-

over, any candidate equilibrium strategy must involve copying of a successful project in view of

Assumption 1 and immediate experimentation when the other �rm has experimented. Therefore,

we can restrict attention to time t strategies of the form

�̂t
�
' = j; at;mt; st

�
=

8<:
(1; j0) if at = 1, mt = j0 and st = 1;
(1; j) if at = 1, mt = j0 and st = 0;

(q(t)�; j) if at = 0;
(2)
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for t = 0;�; 2�; :::, where q(t)� is the probability of experimenting at time t conditional on no

experimentation by either �rm up to time t (all such histories are identical, hence we write q(t)

instead of q(ht)). Clearly, feasibility requires that q(t)� � 1.
Next we derive an explicit characterization of the unique symmetric equilibrium as � ! 0.

In the text, we assume that �rms use a constant probability of experimentation over time,

i.e., q(t) = q for all t (Proposition 3 relaxes this assumption and establishes uniqueness more

generally). We consider a symmetric mixed-strategy equilibrium �� and suppose that the game

has reached time t without experimentation. Let vw [t j �] and ve [t j �] denote the time t
continuation payo¤s to �rm i when �rm � i plays �� and �rm i chooses to wait or to experiment
(and period length is �).5 For a mixed-strategy equilibrium to exist, we need

vw [t j �] = ve [t j �] : (3)

The proof of Proposition 3 below shows that all symmetric equilibria involve mixing after any

history ht (with no experimentation up to t), i.e., equation (3) holds for all such ht. Therefore, it

su¢ ces to characterize �� such that (3) holds. First, consider �rm i�s payo¤s from experimenting:

ve [t j �] = q�p�1 + (1� q�)p�2; (4)

since in this case �rm i is successful with probability p and receives continuation value �1 if

�rm � i has also experimented during the same time interval (probability q�), and it receives
�2 otherwise (probability 1� q�).

Similarly, its payo¤ from waiting is

vw [t j �] = e�r�
�
q�(p�2 + (1� p)p�1) + (1� q�)vw [t+� j �]

�
; (5)

where �rm i receives no payo¤ today and with probability q�, �rm � i experiments, in which
case �rm i copies if the experimentation is successful and experiments with its own project

otherwise, with expected continuation return p�2 + (1 � p)p�1. With probability 1 � q�,
�rm � i does not experiment, and �rm i then receives vw [t+� j �]. Adding and subtracting
vw [t+� j �] from the left-hand side of (5) and rearranging, we obtain

vw [t+� j �]
�
1� (1� q�) e�r�

�
� (vw [t+� j �]� vw [t j �]) = e�r�q�(p�2 + (1� p) p�1) :

Dividing both sides by � and taking the limit as �! 0 yields

lim
�!0

vw [t+� j �]�
1

r + q
lim
�!0

�
vw [t+� j �]� vw [t j �]

�

�
=

q

r + q
[p�2 + (1� p) p�1] : (6)

5Here we use v, since V denotes the value discounted back to t = 0.
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From equation (4), we see that ve [t j �] does not depend on t. Since equation (3) holds for
all ht (thus for all t), we have vw [t j �] = ve [t j �] and vw [t+� j �] = ve [t+� j �], implying
that vw [t+� j �] = vw [t j �]. Therefore, the second term on the left-hand side of (6) must be

equal to zero. Moreover, taking the limit as �! 0 in (4), we obtain

lim
�!0

vw [t+� j �] = lim
�!0

ve [t j �] = p�2:

Combined with (6), this yields

q(t) = q� � r�

1� p for all t, (7)

where recall, from (1), that � � �2=�1.
The next proposition relaxes the assumption that q(t) is constant for all t and shows that

this is indeed the unique symmetric equilibrium.

Proposition 3 Suppose that Assumption 1 holds and � ! 0. Then there exists a unique

symmetric equilibrium. In this equilibrium, both �rms use the mixed strategy �̂ as given in (2)

with q (t) = q� as in (7).

Proof. We �rst show that any symmetric equilibrium must involve mixing after any history ht 2
Ht along which there has been no experimentation. The argument in the proof of Proposition 2
establishes that after any such history ht, there cannot be experimentation with probability 1.

We next show that there is positive probability of experimentation at time t = 0. First note that

the equilibrium-path value to a �rm, V �, (discounted back to time t = 0), satis�es V � � p�2,
since each �rm can guarantee this by experimenting at time t = 0. This implies that in any

equilibrium there must exist some time T such that after time T there is positive probability

of experimentation and innovation. Now to obtain a contradiction, suppose that T > 0. By

the argument preceding the proposition, lim�!0 Ve [T j �] = e�rT p�2, and therefore, in any

mixed-strategy equilibrium, V � [T j �]! e�rT p�2. However, for T > 0 this is strictly less than

V � � p�2, yielding a contradiction and establishing the desired result. The same argument also
establishes that there cannot exist any time interval (T; T 0), with T 0 > T , along which there is

no mixing.

Hence, along any history ht where there has not been an experimentation, both �rms must

be indi¤erent between waiting and experimenting. This implies that (3) must hold for all t. Let

q(t)� denote the probability of experimentation at time t. Firm i�s payo¤ for experimenting at

time t is given by an expression similar to equation (4),

ve [t j �] = q(t)�p�1 + (1� q(t)�)p�2: (8)
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We next show that the probability of experimentation q(t) in a symmetric equilibrium is

a continuous function of t. Suppose that q(t) is not continuous at some �t � 0. If q(�t) <

q(�t+) (where q(�t+) � limt#�t q (t)), it then follows from (8) and Assumption 1 that ve [�t j �] <
ve [�t+ j �]. This implies that �rm i has an incentive to delay experimentation at time �t. But this
contradicts the fact that the symmetric equilibrium must involve mixing at all such t. Similarly,

if q(�t) > q(�t+), we have ve [�t j �] > ve [�t+ j �], implying that �rm i will experiment with

probability 1 at time �t, again yielding a contradiction. This establishes that q(t) is a continuous

function of t.

A derivation similar to that preceding the proposition then shows that equation (6) holds

when q is replaced by q(t). In particular,

lim
�!0

vw [t+� j �]�
1

r + q(t)
lim
�!0

�
vw [t+� j �]� vw [t j �]

�

�
=

q(t)

r + q(t)
[p�2 + (1� p) p�1] :

(9)

Since vw [t j �] = ve [t j �] and vw [t+� j �] = ve [t+� j �], we can write the second term on

the left-hand side of equation (9) as

lim
�!0

�
vw [t+� j �]� vw [t j �]

�

�
= lim

�!0

�
ve [t+� j �]� ve [t j �]

�

�
= lim

�!0

�
q(t+�)� q(t)

�
�p(�1 ��2)

= 0;

where the second equality follows from equation (8) and the third equality holds by the continuity

of the experimentation probability q(t). Substituting for

lim
�!0

vw [t+� j �] = lim
�!0

ve [t j �] = p�2;

in equation (9) and solving for q(t) yields q(t) = q� as in (7), completing the proof.

Proposition 3 characterizes the unique mixed strategy equilibrium when period length � is

small. The analysis is in discrete time. The limit where � ! 0, which Proposition 3 shows is

well behaved, should also correspond to the (symmetric) equilibrium of the same model set up

directly in continuous time. We establish this in the next section and subsequently work directly

with the continuous-time model, which is both more economical and slightly more tractable.

3 Two Symmetric Firms: Continuous Time

The model is identical to that introduced in the previous section, except that time is continuous

and we work directly with �ow rates of experimentation. Strategies and equilibria are de�ned

11



similarly and Assumption 1 still applies. This implies that in any equilibrium a �rm that has

not experimented yet will copy a successful innovation. Using this observation, we can represent

strategies by a function � : R+ ! �R+ (where �R+ � R+ [ f+1g) specifying the �ow rate of

experimentation at each date until there is experimentation by one of the players. Waiting with

probability 1 at time t corresponds to � (t) = 0, while experimenting with probability 1 at some

time t corresponds to � (t) = +1. The �ow rate of experimentation � induces a stochastic

distribution of �stopping time,� which we denote by � . The stopping time � designates the

probability distribution that experimentation will happen at any time t 2 �R+ conditional on the
other player not having experimented until then. A pure strategy simply speci�es � 2 �R+. For
example, the strategy of experimenting immediately is � = 0, whereas that of waiting for the

other �rm�s experimentation is represented by � = +1. The � notation is convenient to use for
the next two propositions, while in characterizing the structure of equilibria we need to use �

(thus justifying the introduction of both notations).6

Proposition 4 Suppose Assumption 1 holds. Then there exist two asymmetric equilibria. In

each equilibrium, � i = 0 and ��i = +1 for i = 1; 2.

Proof. The proof follows from the same argument as in subsection 2.2 and is omitted.

Our next result is the parallel of Proposition 2 and shows that there are no symmetric

pure-strategy equilibria in the continuous-time model.

Proposition 5 Suppose Assumption 1 holds. Then there exist no symmetric pure-strategy equi-

libria.

Proof. Suppose, to obtain a contradiction, that a symmetric pure-strategy equilibrium exists.

Then �� = t 2 R+ for i = 1; 2, yielding payo¤

V (��; ��) = e�rtp�1

to both players. Now consider a deviation � 0 > t for one of the �rms, which involves waiting for

a time interval � and copying a successful innovation if there is such an innovation during this

time interval. As �! 0, this strategy gives the deviating �rm payo¤ equal to

V
�
� 0; ��

�
= lim

�#0
e�r(t+�) [p�2 + (1� p)p�1] :

6Here we can be more formal and follow Simon and Stinchcombe�s (1989) formal model of continuous-time
games with jumps. This amounts to de�ning an extended strategy space, where stopping times are de�ned for all
t 2 �R+ and also for t+ for any t 2 R+. In other words, strategies will be piecewise continuous and right continuous
functions of time, so that a jump immediately following some time t 2 R+ is well de�ned. Throughout, we do
allow such jumps, but do not introduce the additional notation, since this is not necessary for any of the main
economic insights or proofs.
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Assumption 1 implies that V (� 0; ��) > V (��; ��), establishing the result.

As in the discrete-time model, we will next show that there exists a (unique) symmetric

mixed-strategy equilibrium. In what follows, instead of working with the stopping time � , it is

more convenient to work directly with � (t), which designates the �ow rate of experimentation

at time t. The next lemma shows that symmetric equilibria must involve mixing on all t 2 R+
and will be used in the characterization of mixed-strategy equilibria.

Lemma 1 The support of mixed strategy equilibria is R+.

Proof. The proof comprises three steps.

First, we show that t = 0 belongs to the support of mixing time (so that there is no time

interval with zero probability of experimentation). Suppose, to obtain a contradiction, that

t1 = infft: �(t) > 0g > 0. Then with the same argument as in the proof of Proposition 3 (in

particular because experimenting after t1 is in the support of the mixed-strategy equilibrium),

equilibrium payo¤s must be

V1 = e
�rt1p�2:

Now consider deviation where �rm i chooses � (0) = +1. This has payo¤

V0 = p�2 > V1

for any t1 > 0, yielding a contradiction.

Second, we show that there does not exist T < 1 such that the support of the stopping

time � (induced by �) is within [0; T ]. Suppose not, then it implies that there exists t 2 [0; T ]
such that � (t) = +1 and let t1 = infft: �(t) = +1g. This implies that the payo¤ to both
�rms once the game reaches time t1 without experimentation (which has positive probability

since t1 = infft: �(t) = +1g) is

V (� = t1) = e
�rt1p�2

(where V (� = t), or V (t), denotes present discounted value as a function of experimentation

time; this is di¤erent than V [t], which referred to the value at time t in subsection 2.2). Now

consider a deviation by �rm i to strategy � 0, which involves waiting for � > 0 after the game

has reached t1 and copying a successful project by �rm � i (if there is such a success). This has
payo¤

V
�
� 0
�
= e�r(t+�) [p�2 + (1� p)p�1]

since �rm � i is still � (t1) = +1 and will thus experiment with probability 1 at t1. Assumption

1 implies that V (� 0) is strictly greater than V (� = t1) for � su¢ ciently small.

13



Finally, we show that � (t) > 0 for all t. Again suppose, to obtain a contradiction, that there

exist t1 and t2 > t1 such that �(t) = 0 for t 2 (t1; t2). Then, with the same argument as in
the �rst part, the payo¤ from the candidate equilibrium strategy � to �rm i conditional on no

experimentation until t1 is

V (�) = e�rt2p�2:

However, deviating and choosing � 0 = t1 yields

V
�
� 0 = t1

�
= e�rt1p�2 > V (�) :

This contradiction completes the proof of the lemma.

Lemma 1 implies that in all symmetric equilibria there will be mixing at all times (until there

is experimentation). Using this observation, Proposition 6 characterizes a unique symmetric

equilibrium. Let us illustrate the reasoning here by assuming that �rms use a constant �ow rate

of experimentation (the proof of Proposition 6 relaxes this assumption). In particular, suppose

that �rm � i innovates at the �ow rate � for all t 2 R+. Then the value of innovating at time t
(i.e., choosing � = t) for �rm i is

V (t) =

Z t

0
�e��ze�rz [p�2 + (1� p) p�1] dz + e��te�rtp�2: (10)

This expression uses the fact that when �rm � i is experimenting at the �ow rate �, the timing
of its experimentation has an exponential distribution, with density �e��t. Then the �rst term

in (10) is the expected discounted value from the experimentation of �rm � i between 0 and

t (again taking into account that following an experimentation, a successful innovation will be

copied, with continuation value p�2 + (1� p) p�1). The second term is the probability that

�rm � i does not experiment until t, which, given the exponential distribution, is equal to e��t,
multiplied by the expected discounted value to �rm i when it is the �rst to experiment at time

t (given by e�rtp�2).

Lemma 1 implies that V (t) must be constant in t for all t 2 R+. Therefore, its derivative
V 0 (t) must be equal to zero for all t in any symmetric equilibrium implying that

V 0 (t) = �e��te�rt [p�2 + (1� p) p�1]� (r + �) e��te�rtp�2 = 0; (11)

for all t. This equation has a unique solution:

�� � r�

1� p for all t. (12)

The next proposition shows that this result also holds when both �rms can use time-varying

experimentation rates.
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Proposition 6 Suppose Assumption 1 holds. Then there exists a unique symmetric equilibrium.

This equilibrium involves both �rms using a constant �ow rate of experimentation �� as given by

(12). Firm � i, �rm i immediately copies a successful innovation by �rm � i and experiments
if �rm � i experiments unsuccessfully.

Proof. Suppose that �rm � i experiments at the �ow rate � (t) at time t 2 R+. Let us de�ne

m(t) �
Z t

0
�(z)dz: (13)

Then the equivalent of (10) is

V (t) =

Z t

0
� (z) e�m(z)e�rz [p�2 + (1� p) p�1] dz + e�m(t)e�rtp�2: (14)

Here
R t2
t1
�(z)e�m(z)dz is the probability that �rm � i (using strategy �) will experiment be-

tween times t1 and t2, and e�m(t) = 1 �
R t
0 � (z) e

�m(z)dz is the probability that � i has not

experimented before time t. Thus the �rst term is the expected discounted value from the

experimentation of �rm � i between 0 and t (discounted and multiplied by the probability of

this event). The second term is again the probability that �rm � i does not experiment until t
multiplied by the expected discounted value to �rm i when it is the �rst to experiment at time

t (given by e�rtp�2).

Lemma 1 implies that V (t) must be constant in t for all t 2 R+. Since V (t) is di¤erentiable
in t, this implies that its derivative V 0 (t) must be equal to zero for all t. Therefore,

V 0 (t) = � (t) e�m(t)e�rt [p�2 + (1� p) p�1]�
�
r +m0(t)

�
e�m(t)e�rtp�2

= 0 for all t.

Moreover, note that m (t) is di¤erentiable and m0(t) = �(t). Therefore, this equation is equiva-

lent to

� (t) [p�2 + (1� p) p�1] = (r + �(t)) p�2 for all t. (15)

The unique solution to (15) is (12), establishing the uniqueness of the symmetric equilibrium

without restricting strategies to constant �ow rates.

This proposition contains exactly the same economics as Proposition 3 derived in the previous

section. The �ow rate of innovation �� in (12) is also clearly identical to q� in (7). This establishes

formally that the limit of the discrete-time model and the continuous-time model give the same

economic and mathematical answers. In what follows, we will use the continuous-time model,

since it is more tractable and necessitates less notation.
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4 Multiple Firms

Let us now suppose that there are N �rms, each of which receives a positive signal about one

of the projects. The probability that the project that has received a positive signal will succeed

is still p and each �rm receives a signal about a di¤erent project. Let �n denote the �ow payo¤

from a project that is implemented by n other �rms and de�ne

�n �
�n
r
:

Once again, � � �2=�1 as speci�ed in (1) and Assumption 1 holds, so that � > p.
The following proposition is established using similar arguments to those in the previous two

sections and its proof is omitted.

Proposition 7 Suppose that Assumption 1 holds and that there are N � 2 �rms. Then there
exist no symmetric pure-strategy equilibria. Moreover the support of the mixed-strategy equilibria

is R+.

It is also straightforward to show that there exist asymmetric pure-strategy equilibria. For

example, when �N=�1 > p, it is an equilibrium for �rm 1 to experiment and the remaining

N � 1 to copy if this �rm is successful. If it is unsuccessful, then �rm 2 experiments and so on.

As in the previous two sections, symmetric equilibria are of greater interest. To characterize

the structure of symmetric equilibria, let us �rst suppose that

�n = �2 for all n � 2 (16)

and also to simplify the discussion, focus on symmetric equilibria with constant �ow rates.

In particular, let the rate of experimentation when there are n � 2 �rms be �n. Consider a

subgame starting at time t0 with n �rms that have not yet experimented (and all previous,

N � n, experiments have been unsuccessful). Then the continuation value of �rm i (from time

t0 onwards) when it chooses to experiment with probability 1 at time t0 + t is

vn (t) =

Z t0+t

t0

�n (n� 1) e��n(n�1)(z�t0)e�r(z�t0) [p�2 + (1� p) vn�1] dz + e��n(n�1)te�rtp�2;

(17)

where vn�1 is the maximum value that the �rm can obtain when there are n � 1 �rms that
have not yet experimented (where we again use v since this expression refers to the continuation

value from time t0 onwards). Intuitively, �n (n� 1) e��n(n�1)(z�t0) is the density at which one
of the n�1 other �rms mixing at the rate �n will experiment at time z 2 (t0; t0 + t). When this
happens, it is successful with probability p and will be copied by all other �rms, and each will
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receive a value of e�r(z�t0)�2 (discounted back to t0). If it is is unsuccessful (probability 1� p),
the number of remaining �rms is n � 1, and this gives a value of vn�1. If no �rm experiments

until time t, �rm i chooses to experiment at this point and receives e�rtp�2. The probability of

this event is 1 �
R t0+t
t0

�n (n� 1) e��n(n�1)(z�t0)dz = e��n(n�1)t. As usual, in a mixed strategy
equilibrium, vn (t) needs to be independent of t and moreover, it is clearly di¤erentiable in t. So

its derivative must be equal to zero. This implies

�n (n� 1) [p�2 + (1� p) vn�1] = (�n (n� 1) + r) p�2: (18)

Proposition 7 implies that there has to be mixing in all histories, thus

vn = p�2 for all n � 2: (19)

Intuitively, mixing implies that the �rm is indi¤erent between experimentation and waiting, and

thus its continuation payo¤ must be the same as the payo¤ from experimenting immediately,

which is p�2. Combining (18) and (19) yields

�n =
r�2

(1� p) (n� 1)�1
: (20)

This derivation implies that in the economy with N �rms, each �rm starts mixing at the

�ow rate �N . Following an unsuccessful experimentation, they increase their �ow rate of exper-

imentation to �N�1, and so on.

The derivation leading up to (20) easily generalizes when we relax (16). To demonstrate

this, let us relax (16) and instead strengthen Assumption 1 to:

Assumption 2

�n > p�1 for all n.

The value of experimenting at time t (starting with n �rms) is now given by a generalization

of (17):

vn (t) =

Z t0+t

t0

�n (n� 1) e��n(n�1)(z�t0)e�r(z�t0) [p�n + (1� p) vn�1] dz + e��n(n�1)te�rtp�n:

Again di¤erentiating this expression with respect to t and setting the derivative equal to zero

gives the equivalent indi¤erence condition to (18) as

�n (n� 1) [p�n + (1� p) vn�1] = (�n (n� 1) + r) p�n: (21)

for n = 2; :::; N . In addition, we still have

Vn = p�n for all n � 2:
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Combining this with (21), we obtain

�n =
r�n

(1� p) (n� 1)�n�1
for n = 2; :::; N; (22)

and let us adopt the convention that �1 = +1.
This derivation establishes the following proposition.

Proposition 8 Suppose that Assumption 2 holds. Then there exists a unique symmetric equi-

librium. In this equilibrium, when there are n = 1; 2; :::; N �rms that have not yet experimented,

each experiments at the constant �ow rate �n as given by (22). A successful innovation is im-

mediately copied by all remaining �rms. An unsuccessful experimentation starting with n � 3

�rms is followed by all remaining �rms experimenting at the �ow rate �n�1.

An interesting feature of Proposition 8 is that after an unsuccessful experimentation, the

probability of further experimentation may decline. Whether this is the case or not depends on

how fast �n decreases in n.

5 Patents and Optimal Allocations

The analysis so far has established that both in discrete and continuous time, symmetric equi-

libria involve mixed strategies, potential delays, and also staggered experimentation (meaning

that with probability 1, one of the �rms will experiment before others). Asymmetric equilibria

avoid delays, but also feature staggered experimentation. Moreover, they are less natural, be-

cause they involve one of the �rms never acting (experimenting) until the other one does and

also because they give potentially very di¤erent payo¤s to di¤erent �rms. In this section, we

�rst establish the ine¢ ciency of (symmetric) equilibria. We then suggest that an appropriately-

designed patent system can implement optimal allocations. While all of the results in the section

hold for N � 2 �rms, we focus on the case with two �rms to simplify notation.

5.1 Welfare

It is straightforward to see that symmetric equilibria are Pareto suboptimal. Suppose that there

exists a social planner that can decide the experimentation time for each �rm. Suppose also

that the social planner would like to maximize the sum of the present discounted values of the

two �rms. Clearly, in practice an optimal allocation (and thus the objective function of the

social planner) may also take into account the implications of these innovations on consumers.

However, we have not so far speci�ed how consumer welfare is a¤ected by the replication of
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successful innovations versus new innovations. Therefore, in what follows, we focus on opti-

mal allocations from the viewpoint of �rms. This would also be the optimal allocation taking

consumer welfare into account when consumer surpluses from a new innovation and from a suc-

cessful innovation implemented by two �rms are proportional to �1 and 2�2, respectively. If we

take the di¤erential consumer surpluses created by these innovations into account, this would

only a¤ect the thresholds provided below, and for completeness, we also indicate what these

alternative thresholds would be (see, in particular, footnote 7).

The social planner could adopt one of two strategies:

1. Staggered experimentation: this would involve having one of the �rms experiment at t = 0;

if it is successful, then the other �rm would copy the innovation, and otherwise the other

�rm would experiment immediately. Denote the surplus generated by this strategy by SP1 .

2. Simultaneous experimentation: this would involve having both �rms experiment immedi-

ately at t = 0. Denote the surplus generated by this strategy by SP2 .

It is clear that no other strategy could be optimal for the planner. Moreover, both in discrete

time as �! 0 and in continuous time, SP1 and S
P
2 have simple expressions. In particular,

SP1 = 2p�2 + (1� p) p�1: (23)

Intuitively, one of the �rms experiments �rst and is successful with probability p. When this

happens, the other �rm copies a successful innovation, with total payo¤ 2�2. With the com-

plementary probability, 1 � p, the �rst �rm is unsuccessful, and the second �rm experiments

independently, with expected payo¤p�1. Both in continuous time and in discrete time as�! 0,

these payo¤s occur immediately after the �rst experimentation and thus are not discounted.

The alternative is to have both �rms experiment immediately, which generates expected

surplus

SP2 = 2p�1: (24)

The comparison of SP1 and S
P
2 implies that simultaneous experimentation by both �rms is

optimal when 2� < 1 + p. In contrast, when 2� > 1 + p, the optimal allocation involves one of

the �rms experimenting �rst, and the second �rm copying successful innovations. This is stated

in the next proposition (proof in the text).7

Proposition 9 Suppose that

2� � 1 + p; (25)

7 If consumer surpluses from a new innovation and from the two �rms implementing the same project were,
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then the optimal allocation involves staggered experimentation, that is, experimentation by one

�rm and copying of successful innovations. If (25) does not hold, then the optimal allocation

involves immediate experimentation by both �rms. When 2� = 1+ p, both staggered experimen-

tation and immediate experimentation are socially optimal.

Let us now compare this to the equilibria characterized so far. Clearly, asymmetric equilibria

are identical to the �rst strategy of the planner and thus generate surplus SP1 (recall subsection

2.2.). In contrast, the (unique) symmetric equilibrium generates social surplus

SE =

Z 1

0
2��e�(2�

�+r)t [2p�2 + (1� p) p�1] dt (26)

=
2��

2�� + r
[2p�2 + (1� p) p�1] ;

where �� is the (constant) equilibrium �ow rate of experimentation given by (12). The �rst line

of (26) applies because the time of �rst experimentation corresponds to the �rst realization of

one of two random variables, both with an exponential distribution with parameter �� and time

is discounted at the rate r. If the �rst experimentation is successful, which has probability p,

surplus is equal to 2�2, and otherwise (with probability 1�p), the second �rm also experiments,
with expected payo¤p�1. The second line is obtained by solving the integral and substituting for

(23). It is also straightforward to verify that the second line of (26) applies in the discrete-time

model with �! 0 (since (12) is identical to (7)).

A straightforward comparison shows that SE is always (strictly) less than SP1 . Therefore, the

unique symmetric equilibrium is always ine¢ cient. Moreover, this ine¢ ciency can be quanti�ed

in a simple manner. Let SP = max
�
SP1 ; S

P
2

	
and consider the ratio of equilibrium social surplus

to the social surplus in the optimal allocation as a measure of ine¢ ciency:

s � SE

SP
:

Naturally, the lower is s the more ine¢ cient is the equilibrium.

Clearly, s < 1, so that the equilibrium is always ine¢ cient as stated above. More speci�cally,

let us �rst suppose that (25) holds. Then, the source of ine¢ ciency is delayed experimentation.

respectively, C1 and 2C2, then we would have

SP1 = 2p (�2 + C2) + (1� p) p (�1 + C1)
SP2 = 2p (�1 + C1) :

Denoting 
 � (�2 + C2) = (�1 + C1), it is then clear that condition (25) would be replaced by 2
 � 1 + p and
the rest of the analysis would remain unchanged. As noted in the beginning of this section, if C2 = ��2 and
C1 = ��1, then this condition would be identical to (25).
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In this case,

s =
SE

SP1

=
2��

2�� + r
=

2�

2� + 1� p;

where the last equality simply uses (12). It is clear that s is minimized, for given p, as � =

(1 + p) =2 (its lower bound given (25)). In that case, we have

s =
1 + p

2
:

In addition, as p # 0, s can be as low as 1/2.
Next consider the case where (25) does not hold. Then

s =
SE

SP2

=
2��

2�� + r

2p�2 + (1� p) p�1
2p�1

= �;

where the last equality again uses (12) and the de�nition of � from (1). Since this expression

applies when � < 1+ p, � can be arbitrarily small as long as p is small (to satisfy the constraint

that � > p), and thus in this case s # 0. In both cases, the source of ine¢ ciency of the symmetric
equilibrium is because it generates insu¢ cient incentives for experimentation. In the �rst case

this exhibits itself as delayed experimentation, and in the second, as lack of experimentation by

one of the �rms.

This discussion establishes (proof in the text).8

Proposition 10 1. Asymmetric equilibria are Pareto optimal and maximize social surplus

when (25) holds, but fail to maximize social surplus when (25) does not hold.

2. The unique symmetric equilibrium is always Pareto suboptimal and never maximizes social

surplus. When (25) holds, this equilibrium involves delayed experimentation, and when

(25) does not hold, there is insu¢ cient experimentation.

3. When (25) holds, the relative surplus in the equilibrium compared to the surplus in the

optimal allocation, s, can be as small as 1/2. When (25) does not hold, the symmetric

equilibrium can be arbitrarily ine¢ cient. In particular, s # 0 as p # 0 and � # 0.
8Naturally, if we take into account consumer surpluses as discussed in footnote 7 and it is not the case that

C2 = ��2 and C1 = ��1, then equilibrium social surplus relative to social surplus in the optimal allocation can
be even lower because of the misalignment between �rm pro�ts and consumer surpluses resulting from di¤erent
types of successful research projects.
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5.2 Patents

The previous subsection established the ine¢ ciency of the symmetric equilibrium resulting from

delayed and insu¢ cient experimentation. In this subsection, we discuss how patents can solve

or ameliorate this problem. Our main argument is that a patent system provides incentives for

greater experimentation or for experimentation without delay.

We model a simple patent system, whereby a patent is granted to any �rm that undertakes a

successful innovation. If a �rm copies a patented innovation, it has to make a payment � to the

holder of the patent. We discuss the relationship between this payment and licensing fees in the

next subsection. An appropriately-designed patent system (i.e., the appropriate level of �) can

achieve two objectives simultaneously. First, it can allow �rms to copy others when it is socially

bene�cial for the knowledge created by innovations to spread to others (and prevent it when it

is not bene�cial). Second, it can provide compensation to innovators, so that incentives to free-

ride on others are weakened. In particular, when staggered experimentation is optimal, a patent

system can simultaneously provide incentives to one �rm to innovate early and to the other �rm

to copy an existing innovation. When � is chosen appropriately, the patent system provides

incentives for the ex post transfer of knowledge. However, more crucially, it also encourages

innovation because an innovation that is copied becomes more pro�table than copying another

innovation and paying the patent fee. The key here is that the incentives provided by the

patent system are �conditional�on whether the other �rm has experimented or not, and thus

induce an �asymmetric� response from the two �rms. This makes innovation relatively more

pro�table when the other �rm copies and less pro�table when the other �rm innovates. This

incentive structure encourages one of the �rms to be the innovator precisely when the other �rm

is copying. Consequently, the resulting equilibria resemble asymmetric equilibria. Moreover,

these asymmetric incentives imply that, when the patent system is designed appropriately, a

symmetric equilibrium no longer exists. It is less pro�table for a �rm to innovate when the

other �rm is also innovating, because innovation no longer brings patent revenues. Conversely,

it is not pro�table for a �rm to wait when the other �rm waits, because there is no innovation

to copy in that case.

Our main result in this subsection formalizes these ideas. We state this result in the following

proposition and then provide most of the proof, which is intuitive, in the text.

Proposition 11 Consider the model with two �rms. Suppose that Assumption 1 holds. Then:
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1. When (25) holds, a patent system with

� 2
�
(1� p)�1

2
;�2 � p�1

�
(which is feasible in view of (25)), implements the optimal allocation, which involves stag-

gered experimentation, in all equilibria. That is, in all equilibria one �rm experiments �rst,

and the other one copies a successful innovation and experiments immediately following

an unsuccessful experimentation.

2. When (25) does not hold, then the optimal allocation, which involves simultaneous exper-

imentation, is implemented as the unique equilibrium by a patent system with

� > �2 � p�1:

That is, there exists a unique equilibrium in which both �rms immediately experiment.

Let us start with the �rst claim in Proposition 11. Observe that since � < �2 � p�1, the
equilibrium involves copying of a successful innovation by a �rm that has not acted yet. However,

incentives for delaying to copy are weaker because copying now has an additional cost �, and

innovation has an additional bene�t � if the other �rm is imitating. Suppose that �rm � i will
innovate at some date T > 0 (provided that �rm i has not done so until then). Then the payo¤s

to �rm i when it chooses experimentation and waiting are

experiment now = p (�2 + �)

wait = e�rT (p (�2 � �) + (1� p) p�1) :

It is clear that for any T > 0, experimenting is a strict best response, since

p (�2 + �) � p (�2 � �) + (1� p) p�1

since � � (1�p)�1
2 . So experimenting immediately against a �rm that is waiting is optimal. To

show that all equilibria implement the optimal allocation, we also need to show that both �rms

experimenting immediately is not an equilibrium. Suppose they did so. Then the payo¤ to each

�rm, as a function of whether they experiment or wait, would be

experiment now = p�1

wait = p (�2 � �) + (1� p) p�1:

Waiting is a strict best response since

p (�2 � �) + (1� p) p�1 > p�1
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which holds in view of the fact that � < �2 � p�1. This argument makes it intuitive that
patents induce an equilibrium structure without delay: waiting is (strictly) optimal when the

other �rm is experimenting immediately and experimenting immediately is (strictly) optimal

when the other �rm is waiting. However, to establish this formally, we need to prove that there

are no mixed strategy equilibria. This is done in the next lemma.

Lemma 2 When equation (25) holds, there does not exist any equilibrium with mixing.

Proof. Let us write the expected present discounted value of experimenting at time t for �rm

i when �rm � i experiments at the �ow rate � (t) as in (14) in the proof of Proposition 6

except that we now take patent payments into account and use equation (25) so that copying a

successful innovation is still pro�table. This expression is

V (t) =

Z t

0
� (z) e�m(z)e�rz [p (�2 � �) + (1� p) p�1] dz + e�m(t)e�rtp (�2 + �) ;

where m (t) is given by (13) in the proof of Proposition 6. This expression must be constant for

all t in the support of the mixed-strategy equilibrium. The argument in the proof of Proposition

6 establishes that � (t) must satisfy

� (t) [p (�2 � �) + (1� p) p�1] = (r + � (t)) p (�2 + �) :

It can be veri�ed easily that if (25) holds this equation cannot be satis�ed for any � (t) 2 R+
(for any t). Therefore, there does not exist any equilibrium with mixing.

Let us next turn to the second claim in the proposition. Suppose that (25) is not satis�ed and

let � > �2� p�1. Then it is not pro�table for a �rm to copy a successful innovation. Therefore,

both �rms have a unique optimal strategy which is to experiment immediately, which coincides

with the optimal allocation characterized in Proposition 9.

The preceding discussion and Proposition 11 show how an appropriately-designed patent

system can be useful by providing stronger incentives for experimentation. When simultaneous

experimentation by all parties is socially bene�cial, a patent system can easily achieve this by

making copying (or �free-riding�) unpro�table. On the other hand, when ex post transfer of

knowledge is socially bene�cial, the patent system can instead ensure this while also preventing

delays in all equilibria. It is important to emphasize that, in the latter case, the patent system

provides such incentives selectively, so that only one of the �rms engages in experimentation

and the other �rm potentially bene�ts from the innovation of the �rst �rm. In contrast to

patents, simple subsidies to research could not achieve this objective. This is stated in the next

proposition and highlights the particular utility of a patent system in this environment.
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Proposition 12 Suppose equation (25) holds. Consider a direct subsidy w > 0 given to a �rm

that experiments. There exists no w � 0 such that all equilibria with subsidies correspond to the
optimal allocation.

Proof. This is straightforward to see. If w � �2�p�1, there exists an equilibrium in which both
�rms experiment immediately and if w < �2 � p�1, the symmetric mixed-strategy equilibrium
with delayed experimentation survives.

It is clear that the same argument applies to subsidies to successful innovation or any com-

bination of subsidies to innovation and experimentation.

5.3 Patents and License Fees

The analysis in the previous subsection assumed that a �rm can copy a successful innovation

and in return it has to make some pre-speci�ed payment � to the original innovator. In practice

patents often provide exclusive rights to the innovator, who is then allowed to license its product

or discovery to other �rms. With this interpretation, the payment � would need to be negotiated

between the innovator and the (potential) copying �rm rather than determined in advance.

While licensing is an important aspect of the patent system in practice, it is not essential for

the theoretical insights we would like to emphasize.

To illustrate this, let us suppose that the copying �rm is developing a di¤erent but highly

substitutable product to the �rst innovation. Suppose further that the patent system gives

exclusive rights to the innovator but if the second �rm copies a successful innovation, the court

system needs to determine damages. How the court system functions is also part of the patent

system. In particular, suppose that if a �rm copies a successful innovation without licensing

and the innovator brings a lawsuit, it will succeed with probability � 2 (0; 1) and the innovator
will receive damages equal to � (�1 ��2), where � > 0. We ignore legal fees. Given this legal
environment, let us interpret � as a license fee negotiated between the potential copying �rm

and the innovator. For simplicity, suppose that this negotiation can be represented by a take-

it-or-leave-it o¤er by the innovator (this has no e¤ect on the conclusions of this subsection). If

the two �rms agree to licensing, their joint surplus is 2�2. If they disagree, then the outside

option of the copying �rm is max fp�1; �2 � �� (�1 ��2)g, where the max operator takes care
of the fact that the best alternative for the �copying��rm may be to experiment if there is no

explicit licensing agreement. Without licensing, the innovator will receive an expected return

of �2 + �� (�1 ��2) if �2 � �� (�1 ��2) � p�1 and �1 otherwise. This implies that the
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negotiated licensing fee, as a function of the parameters of the legal system, will be

� (�; �) =

8<:
�� (�1 ��2) if p�1 < �2 � �� (�1 ��2) ;
�2 � p�1 if p�1 � �2 � �� (�1 ��2) and 2�2 > �1;

1 otherwise,

where 1 denotes a prohibitively expensive licensing fee, such that no copying takes place.

Clearly, by choosing � and �, it can be ensured that � (�; �) is greater than �2� p�1 when (25)
does not hold and is between (1� p)�1=2 and �2 � p�1 when it holds. This illustrates how an
appropriately-designed legal enforcement system can ensure that equilibrium licensing fees play

exactly the same role as the pre-speci�ed patent fees did in Proposition 11.

6 Model with Heterogeneous Information

In this and the next two sections, we relax the assumption that all �rms receive signals with

identical precision. Instead, now signal quality di¤ers stochastically across �rms. We continue

to assume that each �rm receives a positive signal about a single project. But the information

content of these signals di¤ers. We parameterize signal quality by the probability with which the

indicated project is successful and denote it by p (or by pi for �rm i). Throughout this and the

next two sections, we assume that p is drawn from a distribution represented by the cumulative

distribution function G (p). We also assume that G has strictly positive and continuous density

g (p) over its support [a; b] � [0; 1]. The realization of p for each �rm is independent of the

realizations for others and is private information.

We continue to de�ne � � �2=�1 as in (1). We also focus on the equivalent of symmetric

equilibria where strategies do not depend on �rm identity. Asymmetric equilibria are discussed

brie�y in Section 8.

In this section, we will establish a monotonicity property showing that in equilibrium �rms

with higher p (stronger signals) experiment earlier (no later) than �rms with lower p. This result

turns out to be true under two scenarios: when there are two �rms or when there are multiple

�rms but the upper support, b, of G is not �too large�. In the next section, we show how this

monotonicity result does not generalize to an environment in which there are multiple �rms and

b > �.

6.1 Two Firms

The following lemma is straightforward and follows from the de�nition of � in (1). It will play

an important role in the analysis that follows (proof omitted).
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Lemma 3 Suppose that �rm � i has innovated successfully. If pi > �, �rm i prefers to experi-

ment with its own project. If pi < �, �rm i prefers to copy the successful project.

As a �rst step towards characterizing the equilibrium with two �rms, let us suppose that p

has support [a; b] � [0; �]. Under this assumption, we will prove that there exists a symmetric

equilibrium represented by a strictly decreasing function �(p) with �(b) = 0 which maps signals

to time of experimentation provided that the other player has not yet experimented. The

following proposition formalizes this idea and is proved by using a series of lemmas.

Proposition 13 Suppose that the support of G is [a; b] � [0; �]. De�ne

�(p) =
1

r�

�
logG(b) (1� b)� logG(p) (1� p) +

Z b

p
logG(z)dz

�
: (27)

Then the unique symmetric equilibrium takes the following form:

1. each �rm copies a successful innovation and immediately experiments if the other �rm

experiments unsuccessfully;

2. �rm i with signal quality pi experiments at time � (pi) given by (27) unless �rm � i has
experimented before time � (pi).

Proof. The proof uses the following lemmas.

Lemma 4 �(p) cannot be locally constant. That is, there exists no interval P = [�p; �p+ �] with

� > 0 such that �(p) = t for all p 2 P .

Proof. Suppose, to obtain a contradiction, that the equilibrium involves �(p) = t for all p 2 P .
Then, let pi 2 P . Firm i�s (time t) payo¤ after the game has reached (without experimentation)

time t is

v (t j pi) = pi [(G (�p+ �)�G (�p))�1 + (1�G (�p+ �) +G (�p))�2] ;

since with probability G (�p+ �) � G (�p) �rm � i has p 2 P and thus also experiments at time

t. In this case, �rm i, when successful, is not copied and receives �1. With the complementary

probability, it is copied and receives �2. Now consider the deviation �(pi) = t+ � for � > 0 and

arbitrarily small. The payo¤ to this is

vd (t j pi) = e�r� [(G (�p+ �)�G (�p)) (��2 + (1� �) pi�1) + (1�G (�p+ �) +G (p1)) pi�2] ;

where � � E [p j p 2 P ] is the expected probability of success of a �rm with type in the set P .

Since �2 > pi�1, we have ��2 + (1� �) pi�1 > pi�1. Moreover, by the assumption that G has
strictly positive density, G (�p+ �) � G (�p) > 0. Thus for � su¢ ciently small, the deviation is

pro�table. This contradiction establishes the lemma.
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Lemma 5 �(p) is continuous in [a; b].

Proof. Suppose � (p) is discontinuous at �p. Assume without loss of generality that � (�p+) �
lim�#0 � (�p+ �) > � (�p�) � lim�"0 � (�p+ �). Then �rms with signal p = �p+� for su¢ ciently small

� > 0 can experiment at time � (�p�) + � for � < � (�p+)� � (�p�) and increase their payo¤ since
r > 0.

Lemma 6 �(p) is strictly monotone on [a; b].

Proof. Suppose, to obtain a contradiction, that there exist q1 > q2 such that �(q1) = �(q2) = �� .

Suppose that � i follows the equilibrium strategy characterized by �(p) and consider �rm i�s

expected pro�t when pi = q and it chooses to experiment at time t. This can be written as

V (q; t) =

Z
p2P tbefore

e�r�(p) (p�2 + (1� p) q�1) dG(p) + e�rtq�2
Z
p2P tafter

dG(p); (28)

where P tbefore = fp: �(p) � tg and P tafter = fp: �(p) > tg. Notice that V (q; t) is linear in q.
For �(p) to characterize a symmetric equilibrium strategy and given our assumption that

�(q1) = �(q2) = �� , we have

V (q1; ��) � V
�
q1; t

0� and V (q2; ��) � V �q2; t0� (29)

for all t0 2 R+.
Now take q = �q1 + (1 � �)q2 for some � 2 (0; 1). By the linearity of V (q; t), this implies

that for any t 6= �� , we have

V (�q1 + (1� �)q2; t) = �V (q1; t) + (1� �)V (q2; t)

� �V (q1; � (q1)) + (1� �)V (q2; � (q2))

= V (�q1 + (1� �)q2; ��) ;

where the middle inequality exploits (29). This string of inequalities implies that

� (�q1 + (1� �)q2) = �� for � 2 [0; 1]. Therefore, � must be constant between q1 and q2. But
this contradicts Lemma 4, establishing the current lemma.

The three lemmas together establish that � is continuous and strictly monotone. This implies

that � is invertible, with inverse ��1 (t). Moreover, � (b) = 0, since otherwise a �rm with signal

b�� could experiment earlier and increase its payo¤. Now consider the maximization problem of
�rm i with signal q. This can be written as an optimization problem where the �rm in question
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chooses the threshold signal p = ��1 (t) rather than choosing the time of experimentation t. In

particular, this maximization problem can be written as

max
p2[a;b]

Z b

p
e�r�(p�i) (p�i�2 + (1� p�i)q�1) dG (p�i) + e�r�(p)G (p) q�2; (30)

where the �rst term is the expected return when the �rm � i has signal quality p�i 2 [p; b] and
the second term is the expected return when p�i < p, so that �rm � i will necessarily copy from
i�s successful innovation.

Next, suppose that � is di¤erentiable (we will show below that � must be di¤erentiable).

Then the objective function (30) is also di¤erentiable and the �rst-order optimality condition

can be written (after a slight rearrangement) as

r� 0(p) =
g (p)

G (p)

�
1� p

q
� (1� p)��1

�
:

In a symmetric equilibrium, the function � (p) must be a best response to itself, which here

corresponds to p = q. Therefore, when di¤erentiable, � (p) is a solution to

r� 0(p) = � g (p)
G (p)

(1� p)��1: (31)

Integrating this expression, then using integration by parts and the boundary condition �(b) = 0,

we obtain the unique solution (when � (p) is di¤erentiable) as

� (p) =
1

r�

Z b

p
(1� z) g (z)

G (z)
dz

=
1

r�

�
logG(b) (1� b)� logG(p) (1� p) +

Z b

p
logG(z)dz

�
:

To complete the proof, we need to establish that this is the unique solution. Lemmas 5 and

6 imply that � (p) must be continuous and strictly monotone. The result follows if we prove that

� (p) is also di¤erentiable. Recall that a monotone function is di¤erentiable almost everywhere,

i.e., it can can have at most a countable number of points of non-di¤erentiability (see, for

example, Folland, 1999, p. 101, Theorem 3.23). Take �p to be a point of non-di¤erentiability.

Then there exists some su¢ ciently small � > 0 such that � (p) is di¤erentiable on (�p� �; �p) and
on (�p; �p+ �). Then (31) holds on both of these intervals. Integrating it over these intervals, we

obtain

� (p) = � (�p� �)� 1

r�

Z p

�p��
(1� z) g (z)

G (z)
dz for p 2 (�p� �; �p) , and

� (p) = � (�p)� 1

r�

Z p

�p
(1� z) g (z)

G (z)
dz for p 2 (�p; �p+ �) :
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Now taking the limit � ! 0 on both intervals, we have either (i) � (�p+) 6= � (�p�); or (ii)
� (�p+) = � (�p�). The �rst of these two possibilities contradicts continuity, so (ii) must apply.
But then � (�p) is given by (27) and is thus di¤erentiable. This argument establishes that � (p)

is di¤erentiable everywhere and proves the uniqueness of equilibrium.

A particularly simple example to Proposition 13 is obtained when G is uniform over [a; b]

for 0 < a < b � �. In that case

� (p) =
1

r�
[p� log p� b+ log b] for all p 2 [a; b] : (32)

An interesting feature of symmetric equilibria in this case is evident from (32): for a arbitrarily

close to 0, experimentation may be delayed for arbitrarily long time. It can be veri�ed from (27)

that this is a general feature (for types arbitrarily close to to the lower support a, � logG (p) is
arbitrarily large).

Proposition 13 characterizes the unique equilibrium when both �rms have p � �. The com-
plete characterization of equilibrium is provided in the next proposition. An important impli-

cation of this equilibrium characterization is the monotonicity property of symmetric equilibria

mentioned in the Introduction (we will see in Section 8 that this is typically not the property

of asymmetric equilibria). Firms with higher signal quality never experiment after �rms with

lower signal quality.

Proposition 14 Let the support of G be [a; b] � [0; 1] and de�ne �b � minf�; bg and

��(p) � 1

r�G
�
�b
� "logG(�b) �1� �b�� logG(p) (1� p) + Z �b

p
logG(z)dz

#
: (33)

Then the unique symmetric equilibrium involves:

� (p) =

�
0 if p � �
�� (p) if p 2 [a; �) :

That is, �rms with p � � experiment immediately and �rms with p 2 [a; �) experiment at

time �� (p) unless there has been an experimentation at t < �� (p). If there is experimentation

at t < �� (p), then a �rm with p 2 [a; �) copies it if the previous attempt was successful and
experiments immediately if it was unsuccessful.

Proof. The proof consists of three steps.

The �rst step of the proof is to show that �rms with p � � will always experiment before

�rms with p 2 [a; �). The proof is by a single-crossing argument. First, recall that the value
of experimenting at time t for a �rm with p 2 [a; �) is given by (28). De�ning P tafter^�+ = fp:
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�(p) > t and p � �g and P tafter^�� = fp: �(p) > t and p < �g, the value of experimenting for a
�rm with q 2 [a; �) can be rewritten as

V (q; t) = q�2

(Z
p2P tbefore

e�r�(p)
�
p

q
+
1� p
�

�
dG(p) + e�rt

"
1

�

Z
p2P tafter^�+

dG(p) +

Z
p2P tafter^��

dG(p)

#)
;

(34)

which exploits the fact that when p 2 P tbefore or when p 2 P tafter^�+, there will be no copying,
and when p 2 P tafter^��, the innovation (which takes place again with probability q) will be
copied, for a payo¤ of �2 = ��1.

Next, turning to �rms with p = q0 � �, �rst recall that these �rms prefer not to copy

prior successful experimentation (from Lemma 3). Therefore, their corresponding value can be

written as

~V (q0; t) = q0�2

(
1

�

Z
p2P tbefore

e�r�(p)dG(p) + e�rt

"
1

�

Z
p2P tafter^�+

dG(p) +

Z
p2P tafter^��

dG(p)

#)
;

(35)

Note also that when the experimentation time is reduced, say from t to t0 < t, the �rst

integral gives us the cost of such a change and the second expression (e�rt times the square

bracketed term) gives the gain. Now the comparison of (34) to (35) establishes the single-

crossing property, meaning that at any t a reduction to t0 < t is always strictly more valuable

for q0 � � than for q 2 [a; �). First, the gains, given by the expression in (34) and (35) are
identical. Second, the term in parenthesis in the �rst integral in (34) is a convex combination

of 1=q > 1=� and 1=�, and thus is strictly greater than 1=�, so that the cost is always strictly

greater for q 2 [a; �) than for q0 � �. From this strict single-crossing argument it follows that

there exists some T such that � (p) � T for all p � � and � (p) > T for all p 2 [a; �).
The next step of the proof establishes that all �rms with p � � will experiment immediately,

that is, � (p) = 0 for all p � �. To show this, �rst note that all terms in (35) are multiplied by
q0 � �, so the optimal set of solutions for any �rm with p � � must be identical. Moreover, since
� (p) > T for all p 2 [a; �), P tafter^�� is identical for all t 2 [0; T ], and t > 0 is costly because
r > 0. Therefore, the unique optimal strategy for all p � � is to experiment immediately.

Therefore, � (p) = 0 for all p � �.
The �nal step is to combine the equilibrium behavior of �rms with p � � with those of

p 2 [a; �). First suppose that b � �. Then the characterization in Proposition 13 applies

exactly. Next suppose that b > �, so that some �rms might have signals p � �. The previous
step of the proof has established that these �rms will experiment immediately. Subsequently,

�rms with p 2 [a; �) will copy a successful innovation at time t = 0 or experiment if there is an
unsuccessful experimentation at t = 0. If there is no experimentation at t = 0, then equilibrium
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behavior (of �rms with p 2 [a; �)) is given by Proposition 13 except that the upper support is
now � and the relevant distribution is G (p) conditional on p 2 [a; �), thus all terms are divided
by G (�). This completes the proof of the proposition.

6.2 Multiple Firms

The previous subsection established that when there are two �rms, the equilibrium satis�es the

monotonicity property whereby �rms with stronger signals always experiment earlier than those

with weaker signals. The same result generalizes to the case where there are N > 2 �rms as

long as the support of G (p) does not include �very strong�signals. In particular, let

�N �
�N
�1
: (36)

Monotonicity then requires that the support of G is [a; b] � [0; �N ]. In the next section, we will
see that monotonicity no longer holds when [a; b] 6� [0; �N ].

Proposition 15 Suppose that there are N � 2 �rms and the support of G is [a; b] � [0; �N ],

where �N is de�ned in (36). Then there exists a unique symmetric equilibrium. This equilibrium

takes the following form:

� a �rm with signal p experiments at time �n (p) if there has been N �n unsuccessful experi-
mentations before, where �n (p) is strictly decreasing and continuous for n = 0; 1; :::; N�2.

� all �rms copy immediately if there is a successful innovation.

Proof. The proof is similar to that of Proposition 13. It involves establishing the equivalents of

Lemmas 4-6 in the continuation game in which there have been n = 0; 1; :::; N � 2 unsuccessful
experiments for each. Then we solve for �2 (p) using an identical argument to that of Proposition

13. Given �2 (p), we can then solve recursively for �n (p) for each n = 3; :::; N � 2. The details
are identical to the arguments in Proposition 13 and are omitted.

7 Nonmonotonicity

Equilibria characterized in the previous section involve ine¢ cient delay as in the model with

�rms with symmetric signals. Nevertheless, there is a monotonicity property, whereby �rms

with stronger signals experiment earlier than �rms with weaker signals. In this section, we

show that monotonicity does not always apply. In particular, when there are N > 2 �rms

and the support of G satis�es [a; b] 6� [0; �], any symmetric equilibrium necessarily involves

nonmonotonicity with positive probability.
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The main result of this section is provided in the next proposition, which establishes that

monotonicity no longer holds in this case.

Proposition 16 Suppose that there are N � 3 �rms and the support of G satis�es [a; b] 6� [0; �].
Then:

1. There does not exist a symmetric equilibrium in which all �rms with p � � experiment at
t = 0.

2. In any symmetric equilibrium, there is positive probability that a �rm with p > � will

experiment earlier than a �rm with p0 > p.

Proof. (Part 1) Suppose that N = 3, and that �2 = �3. Suppose, to obtain a contradiction,

that there exists a symmetric equilibrium where all �rms with p � � experiment at t = 0.

Consider �rm i with pi > �. Let �0 be the probability that none of the other two �rms have

p � �, �1 be the probability that one of the other two �rms has p � � and �2 be the probability
that both �rms have p � �. Let us also de�ne � = E [p j p � �]. Since pi > �, by hypothesis,
�rm i experiments at time t = 0. Its expected payo¤ is

V (pi; 0) = �0pi�2 + �1pi

�
�

�
�1
2
+
�2
2

�
+ (1� �)�2

�
+ �2pi�1:

Intuitively, when none of the other two �rms have p � �, when successful, the �rm is copied

immediately, receiving payo¤ �2. When both of the other two �rms have p � �, there is no

copying, so when successful, �rm i receives �1. When one of the other two �rms has p � �, then
this other �rm also experiments at time t = 0 and is successful with probability � = E [p j p � �].
In that case, in a symmetric equilibrium the third �rm copies each one of the two successful

innovations with probability 1/2. With the complementary probability, 1 � �, the other �rm
with p � � is unsuccessful, and the third �rm necessarily copies �rm i.

Now consider the deviation to wait a short interval � > 0 before innovation. This will have

payo¤

lim
�#0
V (pi; �) = �0pi�2 + �1pi (��1 + (1� �)�2) + �2pi�1

> V (pi; 0) :

The �rst line of the previous expression follows since, with this deviation, when there is one

other �rm with p � �, the third �rm necessarily will copy the �rst innovator. The inequality

follows since �1 > �2, establishing that there cannot be an equilibrium in which all �rms with
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p � � experiment at time t = 0. This argument generalizes, with a little modi�cation, to cases
in which N > 3 and �ns di¤er.

(Part 2) Part 1 implies that any symmetric equilibrium must involve mixing over the time

of experimentation by �rms with p � �. By the same argument following from (35) in the

proof of Proposition 14, all �rms with p � � will have the same set of experimentation times

that maximize their expected payo¤s, so must use the same mixed strategies in any symmetric

equilibrium. Therefore, there is a positive probability that any one of them will experiment �rst,

establishing the claim in Part 2.

The next proposition characterizes the form of the mixed strategy equilibrium when the

monotonicity property no longer holds. To simplify the exposition, we focus on an economy in

which N = 3 and G is uniform on [0; 1]. The characterization result in this proposition can be

(relatively straightforwardly) extended to N > 3. We also conjecture that it can be extended

to any distribution G, though this is less trivial.

Proposition 17 Consider an economy with N = 3 �rms, �2 = �3 and G uniform over [0; 1].

Then, the following characterizes the unique symmetric equilibrium.

� Firms with p � � experiment at the �ow rate �(t) as long as no other �rm has experi-

mented until t. They experiment immediately following another (successful or unsuccessful)

experiment. There exists T <1 such that

e�
R T
0 �(t)dt = 0:

That is, all �rms with p � � will have necessarily experimented within the interval [0; T ]
(or equivalently, limt!T � (t) = +1).

� Firms with p < � immediately copy a successful innovation and experiment according to

a �ow rate �2 (t) following an unsuccessful experimentation and at the rate �3 (t) if there

has been no experimentation until time T .

Proof. From Proposition 16, �rms with p � � must mix over experimentation times on some
subset of R+. Let us de�ne �(t) as the probability that �rm � i that has not experimented until
time t has p�i � �. The assumption that G is uniform over [0; 1] implies that �(0) = 1� �.

Now consider the problem of �rm i with pi � �. If there has yet been no experimentation
and this �rm experiments at time t, its payo¤ (discounted to time t = 0) is

V (pi; t) = pie
�rt[�1�(t)

2 +�2(1� �(t)2)];
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since � (t)2 is the probability with which both other �rms have p � � and will thus not copy.

With the complementary probability, its innovation will be copied. Alternately, if it delays

experimentation by some small amount dt > 0, then its payo¤ is:

V (pi; t+ dt) = pie
�r(t+dt)

h
2�p�(t)�(t)dt�1 + (1� 2�(t)�(t)dt)[�1�(t+ dt)2 +�2(1� �(t+ dt)2)]

+ 2�(t)�(t)(1� �p)dt[�1�(t+ dt) + �2(1� �(t+ dt))]
i
;

where �p � E[pjp > �] and we use the fact that other �rms with p � � experiment at the rate
�(t). In a mixed-strategy equilibrium, these two expressions must be equal (as dt! 0). Setting

these equal and rearranging, we obtain

d(�2(t))

dt
+ 2�(t)�(t)(1� �(t))[�p+ �(t)]� r�2(t) = �2r

�1 ��2
: (37)

In addition, the evolution of beliefs � (t) given the uniform distribution and �ow rate of experi-

mentation at � (t) can be obtained as

�(t) =
e�

R t
0 �(�)d� (1� �)

e�
R t
0 �(�)d� (1� �) + �

: (38)

Now let us de�ne

f(t) � e�
R t
0 �(�)d(�)(1� �): (39)

Using (39), (38) can be rewritten as

�(t) =
f(t)

f(t) + �
;

which in turn implies

f(t) =
��(t)

1� �(t) :

Moreover (39) also implies that

�(t) = �f
0(t)

f(t)
= � �0(t)

(1� �(t))�(t) : (40)

Substituting these into (37), we obtain the following di¤erential equation for the evolution of

�(t):

2�(t)�0(t) + 2�(t)�(t)(1� �(t))[�p+ �(t)]� r�2(t) = r

��1 � 1
:

Further substituting �(t) from (40), we obtain

�0(t) = � r

2�p(��1 � 1)
(1 +

�
��1 � 1

�
�2(t)):
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This di¤erential equation satis�es the Lipschitz condition and therefore it has a unique solution,

which takes the form

�(t) =
1p

��1 � 1
tan

0@q��1 � 1
24� r

2�p
�
��1 � 1

� t+ arctan
�
�(0)

p
��1 � 1

�
p
��1 � 1

351A ;
with boundary condition �(0) = 1� �. Given this solution, the �ow rate of experimentation for
�rms with p � �, � (t), is obtained from (40) as

�(t) = c1c2(1 + tan(c1(�c2t+ c3))2)
�
� 1

�c1 + tan(c1(�c2t+ c3))
+

1

tan(c1(�c2t+ c3))

�
;

where

c1 �
q
��1 � 1, c2 � �

r

2�p
�
��1 � 1

� , and c3 � arctan
�
�(0)

p
��1 � 1

�
p
��1 � 1

:

It can then be veri�ed that

lim
t!T

� (t) =1;

where T = c3=c2. It can also be veri�ed that for all t 2 [0; T ], where �rms with p � � are

experimenting at positive �ow rates, �rms with p < � strictly prefer to wait. The equilibrium

behavior of these �rms after an unsuccessful experimentation or after time T is reached is

given by an analysis analogous to Proposition 14 and again involves mixing. Combining these

observations gives the form of the equilibrium described in the proposition.

Notice also that Proposition 17 implies that nonmonotonicity in this case a¤ects the alloca-

tion of resources mainly by inducing delay (only �rms with p � � act during the time interval
[0; T ]), because following a single unsuccessful experimentation in [0; T ], other �rms with p � �
experiment immediately and these �rms would have preferred not to copy a successful innova-

tion.

8 Patents, Heterogeneity, and Nonmonotonicity

In this section, we discuss the optimal allocation with heterogeneity, its comparison to equilib-

rium, and the role of patents in the economy with heterogeneity.

8.1 Welfare

Consider a social planner that is interested in maximizing total surplus (as in Section 5). What

the social planner can achieve will depend on her information and on the set of instruments

that she has access to. For example, if the social planner observes the signal quality, p, for each

�rm, then she can achieve a much better allocation than the equilibrium characterized above.
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However, it is more plausible to limit the social planner to the same information structure. In

that case, the social planner will have to choose either the same equilibrium allocation as in

the symmetric equilibria characterized in the previous two sections, or she will implement an

asymmetric equilibrium, where one of the �rms is instructed to experiment �rst regardless of its

p (this cannot be conditioned on p since p is private information).9

More speci�cally, let us focus on the economy with two �rms and suppose that the support

of G is [a; b] � [0; �]. In this case, without eliciting information about the realization of �rm

types, the p�s, the planner has three strategies.

1. Staggered asymmetric experimentation: in this case, the social planner would instruct one

of the �rms to experiment immediately and then have the other �rm copy if there is a

successful innovation. Since the social planner does not know the p�s, she has to pick the

experimenting �rm randomly. We denote the social surplus generated by this strategy by

SP1 .

2. Staggered equilibrium experimentation: alternatively, the social planner could let the �rms

play the symmetric equilibrium of the previous two sections, whereby a �rm of type p will

experiment at time � (p) unless there has previously been an experimentation by the other

�rm. We denote the social surplus generated by this strategy by SE , since this is the same

as the equilibrium outcome.10

3. Simultaneous experimentation: in this case, the social planner would instruct both �rms

to experiment immediately. We denote the social surplus generated by this strategy by

SP2 .

The social surpluses from these di¤erent strategies are given as follows. In the case of

staggered asymmetric experimentation, we have

SP1 =

Z b

a

�
p12�2 + (1� p1)

�Z b

a
p2dG (p2)

�
�1

�
dG (p1) :

9Yet another alternative is to specify exactly the instruments available to the planner and characterize the
solution to a mechanism design problem by the planner. However, if these instruments allow messages and include
payments conditional on messages, the planner can easily elicit the necessary information from the �rms.
10Without eliciting information about �rm types and without using additional instruments, the social planner

cannot implement another monotone staggered experimentation allocation. For example, she could announce
that if there is no innovation until some time t > 0, one of the �rms will be randomly forced to experiment. But
such schemes will not preserve monotonicity, since at time t, it may be the �rm with lower p that may be picked
for experimentation. In the next subsection, we discuss how she can implement better allocations using patent
payments.
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In contrast, the expected surplus from the unique (mixed-strategy) symmetric equilibrium can

be written as

SE =

Z b

a
e�r�(maxfp1;p2g)

�
max fp1; p2g 2�2 + (1�max fp1; p2g)

Z b

a
min fp1; p2g�1

�
dG (p1) dG (p2) :

Intuitively, this expression follows by observing that in the equilibrium as speci�ed in Proposition

13, the �rm with the stronger signal (higher p) will experiment �rst, so there will be delay until

max fp1; p2g. At that point, this �rm will succeed with probability max fp1; p2g, in which case
the second �rm will copy. If the �rst �rm fails (probability 1 �max fp1; p2g), then the second
�rm experiments and succeeds with probability min fp1; p2g. Since both p1 and p2 are randomly
drawn independently from G, we integrate over G twice to �nd the expected surplus.

The surplus from simultaneous experimentation, on the other hand, takes a simple form and

is given by

SP2 = 2�1

Z b

a
pdG (p) ;

since in this case each �rm is successful and generates payo¤ �1 with probability p distributed

with distribution function G.

In this case, there is no longer any guarantee that max
�
SP1 ; S

P
2

	
> SE . Therefore, the sym-

metric equilibrium may generate a higher expected surplus (relative to allocations in which the

social planner does not have additional instruments). To illustrate this, let us consider a speci�c

example, where p has a uniform distribution over [0; �]. In this case, staggered asymmetric

experimentation gives

SP1 =

Z �

0

Z �

0
2p1�2 + (1� p1)p2�1dp2dp1 = �2

�
1

2
+
3

4
�

�
;

whereas simultaneous experimentation gives

SP2 =

Z �

0
2p�1dp = ��1 = �2:

Comparing simultaneous experimentation and staggered asymmetric experimentation, we can

conclude that SP1 > S
P
2 whenever � > 2=3 and SP1 < S

P
2 whenever � < 2=3, showing that, as

in the case with common signals, either simultaneous or staggered experimentation might be

optimal. Next, we can also compare these surpluses to SE . Since p is uniformly distributed in

[0; �], (27) implies that

�(p) =
1

r�
[p� log p� � + log �] :

As a consequence, maxfp1; p2g has a Beta(2,1) distribution (over [0; �]) while minfp1; p2g is
distributed Beta(1,2). Then evaluating the expression for SE , we �nd that when 0 � � � 2=3,
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SP2 > SE , so simultaneous experimentation gives the highest social surplus. When 2=3 �
� � �� ' 0:895, SP1 > SE , so that staggered asymmetric experimentation gives the highest

social surplus. Finally, when �� � � � 1, SE > SP1 > SP2 , so the symmetric equilibrium

gives higher social surplus than both staggered asymmetric experimentation and simultaneous

experimentation.

Finally, it is also straightforward to see that by choosing G to be highly concentrated around

a particular value �p, we can repeat the same argument as in subsection 5.1 and show that the

symmetric equilibrium can be arbitrarily ine¢ cient relative to the optimal allocation.

8.2 Equilibrium with Patents

Equilibria with patents are also richer in the presence of heterogeneity. Let us again focus on

the case in which there are two �rms. Suppose that there is a patent system identical to the

one discussed in subsection 5.2, whereby a �rm that copies a successful innovation pays � to the

innovator. Let us de�ne

p� � �2 � �
�1

: (41)

It is clear, with a reasoning similar to Lemma 3, that only �rms with p < p� will copy when

the patent system speci�es a payment of �. The next proposition characterizes the structure of

equilibria with patents.

Proposition 18 Suppose that there are two �rms and the patent system speci�es a payment

� > 0 for copying. Let p� be given by (41), the support of G be [a; b] � [0; 1], and de�ne
�b � min fb; p�g and

��� (p) � 1

r(�2 + �)G
�
�b
� "logG ��b� ��1 � 2� � �b�1�� logG (p) (�1 � 2� � p�1) + �1 Z �b

p
logG (z) dz

#
:

(42)

Then the unique symmetric equilibrium involves:

�� (p) =

�
0 if p � p�

��� (p) if p 2 [a; p�) :

That is, �rms with p � p� experiment immediately and �rms with p 2 [a; p�) experiment at time
��� (p) unless there has been an experimentation at t < ��� (p).

Moreover, a higher � tends to reduce delay. In particular:

� for any �0 > � such that b < p� and b < p�0, we have ��0 (p) � �� (p) for all p 2 [a; b], with
strict inequality whenever �� (p) > 0;
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� for any �0 such that b > p�0, there exists p� (�0) 2 [0; p�0) such that �� (p) is decreasing in
� starting at � = �0 for all p 2

h
p� (�0) ; p�

0
i
, with strict inequality whenever ��

0
(p) > 0.

Proof. The proof mimics that of Proposition 14, with the only di¤erence that the maximization

problem of �rm i, with signal pi = q, is now modi�ed from (30) to

max
p2[a;b]

Z b

p
e�r�(p�i) (p�i (�2 � �) + (1� p�i) q�1) dG (p�i) + er�(p)G (p) q (�2 + �) ;

which takes into account that copying has cost � and if �rm i is the �rst innovator, then it will

be copied and will receive �. Repeating the same argument as in Proposition 14 establishes that

the unique equilibrium is given by (42).

To prove the second part of the proposition, �rst suppose that b < p� and b < p�
0
so that

�b = b in both cases. Recall also that �� (p) = ��� (p) > 0 for p 2 [a; p�). p� is decreasing in
�, so that �� (p) = 0 implies that ��

0
(p) = 0 for any �0 > �. We therefore only need to show

that ��� (p) is strictly decreasing for all p 2 [a; p�). Since ��� (p) is di¤erentiable, it is su¢ cient to
show that its derivative with respect to � is negative. This follows by di¤erentiating (42) (with
�b = b). In particular,

d��(p)

d�
= � 1

(�2 + �)

"
��� (p) +

2

rG
�
�b
� �logG ��b�� logG (p)�# < 0;

since logG(�b) > logG(p) and ��� (p) > 0.

Next, suppose that b > p�
0
. In that case �b = p�

0
and d��(p)=d� (in the neighborhood of �0)

will include additional terms because of the e¤ect of � on �b. In particular:

d��
0
(p)

d�
= � 1

(�2 + �0)

�
���

0
(p) +

2

rG (p�0)

�
logG

�
p�

0
�
� logG (p)

��
(43)

� g(p�
0
)

G(p�0)�1

�1 � 2�0 � p�
0
�1

r(�2 + �0)G (p�
0)
+

g(p�
0
)

G(p�0)�1
���

0
(p) :

The �rst line is again strictly negative and so is the �rst expression in the second line. The second

expression in the second line could be positive, however. For given �0, this term is decreasing

in p and tends to 0 as p approaches p�
0
(from (42)). Therefore, there exists p� (�0) such that

for p � p� (�0), it is no larger than the �rst term in the second line. This establishes that for

p 2 [p� (�0) ; p�0), ��0 (p) is again decreasing in �, completing the proof.
An important role of patents in experimentation is highlighted by this result. When � in-

creases, � (p) tends to become �steeper�so that there is less delay and thus �time runs faster�.

In particular, whenever p� < b, � (p) is reduced by an increase in patent payments. When

p� > b, this does not necessarily apply for very low p�s, but is still true for high p�s. Overall, this
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result implies that as in the case with common p�s, patents tend to increase experimentation

incentives and reduce delay. In the limit, when � becomes arbitrarily large, the equilibrium in-

volves simultaneous experimentation. Nevertheless, as discussed in subsection 8.1, simultaneous

experimentation may not be optimal in this case.

Alternatively (and di¤erently from Proposition 18), a patent system can also be chosen such

that the socially bene�cial ex post transfer of knowledge takes place. In particular, suppose

that there has been an innovation and the second �rm has probability of success equal to p. In

this case, social surplus is equal to 2�2 if there is copying, and it is equal to �1 + p�1 if the

second �rm is forced to experiment. This implies that to maximize ex post social welfare, �rms

with p � 2� � 1 should be allowed to copy, whereas �rms with p > 2� � 1 should be induced to
experiment. Clearly, from (41) choosing � = �1��2 achieves this. Naturally, from Proposition

18, this will typically lead to an equilibrium with staggered experimentation. This argument

establishes the following proposition (proof in the text).

Proposition 19 A patent system with � = �1 � �2 induces the socially e¢ cient copying and
experimentation behavior for all p 2 [a; b], but typically induces delayed experimentation.

The juxtaposition of Propositions 18 and 19 implies that when signal quality is heterogeneous

and private information, the patent system can ensure either rapid experimentation or the

socially bene�cial ex post transfer of knowledge (and experimentation by the right types), but

will not typically be able to achieve both objectives simultaneously.

8.3 Patents and Nonmonotonicity

Our last result shows that patent systems cannot prevent the nonmonotonicity identi�ed in the

previous section.

Proposition 20 Consider the economy with N � 3 �rms and the support of G given by [a; b] 6�
[0; �], so that the symmetric equilibrium without patents involves nonmonotonicity. Then for

any patent �, there exists an equilibrium either with no copying or nonmonotonicity. That is,

there exists no patent system such that all equilibria will avoid nonmonotonicity while ensuring

e¢ cient transfer of knowledge.

Proof. Clearly, any patent with � > �1 � �2 will prevent e¢ cient transfer of knowledge. So
suppose that � � �1 ��2. Then let us adopt the same de�nitions of �, �0, �1 and �2 as in the
proof of Proposition 16. Suppose, to obtain a contradiction, that there exists an equilibrium in
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which all �rms with p � � experiment immediately. Then the payo¤ to �rm pi � � when it

does so is

V (pi; 0) = �0pi (�2 + 2�) + �1pi

�
�

�
�1
2
+
�2 + �

2

�
+ (1� �) (�2 + �)

�
+ �2pi�1;

which takes into account the patent payments from the other �rms into account.

Now consider a deviation for �rm i that involves waiting for a short interval � > 0 before

innovation. This will have payo¤

lim
�#0
V (pi; �) = �0pi (�2 + 2�) + �1pi (��1 + (1� �) (�2 + �)) + �2pi�1

> V (pi; 0) ;

since � < �1 � �2. Therefore, whenever � < �1 � �2, the symmetric equilibrium will involve

delay by �rms with p � � and thus potential nonmonotonicity.

9 Conclusion

This paper studied a simple model of experimentation and innovation. Each �rm receives a

private signal on the success probability of one of many potential research projects and decides

when and which project to implement. A successful innovation can be copied by other �rms.

We show that, both in discrete and continuous time, symmetric equilibria, where actions do

not depend on the identity of the �rm, necessarily involve delayed and staggered experimenta-

tion. When the signal quality is the same for all players, the equilibrium is in mixed strategies

(pure-strategy symmetric equilibria do not exist). When signal quality di¤ers across �rms, the

equilibrium is represented by a function � (p) which speci�es the time at which a �rm with signal

quality p experiments. As in the environment with common signal quality, the equilibrium may

involve arbitrarily long delays.

We also show that the social cost of insu¢ cient experimentation incentives can be arbitrarily

large. The optimal allocation may require simultaneous rather than staggered experimentation.

In this case, the e¢ ciency gap between the optimal allocation and the equilibrium can be arbi-

trarily large. Instead, when the optimal allocation also calls for staggered experimentation, the

equilibrium is ine¢ cient because of delays. We show that in this case the ratio of social surplus

in the equilibrium to that in the optimal allocation can be as low as 1/2.

One of the main arguments of the paper is that appropriately-designed patent systems en-

courage experimentation and reduce delays without preventing e¢ cient ex post transfer of knowl-

edge across �rms. Consequently, when signal quality is the same for all �rms, an appropriately-

designed patent system can ensure that the optimal allocation results in all equilibria. Patents
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are particularly well-suited to providing the correct incentives when the optimal allocation also

requires staggered experimentation. In this case, patents can simultaneously encourage one of

the �rms to play the role of a leader in experimentation, while providing incentives to others

to copy successful innovations. Technically, appropriately-designed patents destroy symmetric

equilibria, which are the natural equilibria in the absence of patents but may involve a high

degree of ine¢ ciency. That patents are an attractive instrument in this environment can also be

seen from our result that, while patents can implement the optimal allocation, there exists no

simple subsidy (to experimentation, research, or innovation) that can achieve the same policy

objective.

When signal quality di¤ers across �rms, an additional dimension of e¢ ciency is the sequence

in which �rms with di¤erent signals experiment. We show that when there are only two �rms

or when there is an arbitrary number of �rms but the support of the signal quality distribution

does not include �very strong�signals, the equilibrium has the following monotonicity property :

�rms with stronger signals always experiment earlier (no later) than �rms with weaker signals.

However, this result no longer holds when there are more than two �rms and �very strong�sig-

nals are possible. In this case, we show that the equilibrium necessarily involves some amount

of nonmonotonicity. Patents are again useful in encouraging experimentation in this case and

reduce delays. Nevertheless, interestingly, when the equilibrium without patents involves non-

monotonicity, it is impossible for patents to both ensure e¢ cient ex post transfer of knowledge

and restore monotonicity.

We believe that the role of patents in encouraging socially bene�cial experimentation is

more general than the simple model used in this paper. In particular, throughout the paper we

ignored the consumer side. It is possible that new innovations create bene�ts to consumers that

are disproportionately greater than the use of existing successful innovations (as compared to the

relative pro�tabilities of the same activities). In this case, the social bene�ts of experimentation

are even greater and patents can also be useful in preventing copying of previous successful

innovations. The investigation of the welfare and policy consequences of pursuing successful

lines versus experimenting with new, untried research lines is an interesting and underresearched

area.
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