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ABSTRACT

Three axioms from decision theory are applied to refinements that select con-

nected subsets of the Nash equilibria of games with perfect recall. The first

axiom requires all equilibria in a selected subset to be admissible, i.e. each

player’s strategy is an admissible optimal reply to other players’ strategies.

The second axiom invokes backward induction by requiring a selected subset

to contain a sequential equilibrium. The third axiom requires a refinement to

be immune to embedding a game in a larger game with additional strategies

and players, provided the original players’ strategies and payoffs are preserved,

viz., selected subsets must be the same as those induced by the selected sub-

sets of any larger game in which it is embedded. These axioms are satisfied by

refinements that select subsets that are stable as defined by Mertens (1989).

For a game with two players, perfect information, and generic payoffs, we

prove the converse that the axioms require a selected set to be stable. In

the space of mixed strategies of minimal dimension, the stable set is unique

and consists of all admissible equilibria with the same outcome as the unique

subgame-perfect equilibrium obtained by backward induction. Each other

admissible equilibrium with this outcome is the profile of players’ strategies

in an admissible sequential equilibrium of a larger game in which the original

game is embedded, so the third axiom requires it to be included.
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1. Introduction

Kohlberg and Mertens [12] propose that Nash’s [21, 22] criterion of equilibrium in a non-

cooperative game should be refined by applying principles from decision theory.1 Here we

apply three axioms from decision theory adapted to games with perfect recall. In brief, these

axioms require a refinement that selects connected closed subsets of equilibria to satisfy:

• Admissibility: Players’ strategies are admissible optimal replies.

• Backward Induction: Selected subsets contain sequential equilibria.

• Small Worlds: Selected subsets are not affected by embedding the game within larger

games that preserve players’ strategies and payoffs.

These are among criteria proposed by Kohlberg and Mertens [12] and Mertens [20], although

we invoke a stronger version of small worlds. Our version excludes dependence on outsiders

whose presence and actions enable new pure strategies equivalent to mixed strategies in the

original game. Small worlds excludes framing effects that could occur if a refinement were

sensitive to the wider context in which a game is embedded.

We apply these axioms to the class of games with two players, perfect information, and

generic payoffs. We prove that a refinement must select stable subsets of equilibria as defined

by Mertens [18, 19]. Mertens establishes for general games the converse that a refinement

that selects stable sets satisfies the axioms. Hence the axioms characterize stability as a

solution concept for games with two players, perfect information, and generic payoffs.2 Any

refinement that satisfies admissibility and backward induction but is more restrictive than

stability must therefore violate small worlds, e.g. by restricting the class of larger games in

which a game can be embedded.

Section 2 establishes notation for Section 3, which specifies Axioms A (admissibility), B

(backward induction), and S (small worlds), including a precise definition of embedding a

game in a larger game. The axioms are stated for general games in extensive form with

perfect recall. Section 4 summarizes implications of the axioms for games with two players,

perfect information, and generic payoffs, and provides an example. Section 5 establishes

notation for this class of games and states some useful properties, including a key technical

proposition proved in Appendix A. Section 6 states and proves the main theorem. The

proof is constructive in that each equilibrium in a stable set is shown to be induced by an

admissible sequential equilibrium of a particular larger game in extensive form with perfect

1Also see Kohlberg [11]. Hillas and Kohlberg [10] and van Damme [25] survey subsequent developments.
2In [8] we prove similarly that the axioms imply that a refinement selects stable sets of signaling games

with two players and generic payoffs.
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recall (but with imperfect information and nongeneric payoffs) in which the given game is

embedded. Section 7 provides concluding remarks and another example.

2. Notation

A typical game in extensive form is denoted Γ. Its specification includes a set N of players,

a game tree that has perfect recall for each player, and a real-valued payoff un(z) to each

player n at each node z in the set Z of terminal nodes of the tree. The tree can include

a specified mixed strategy of Nature. As usual, payoffs are assumed to be von Neumann-

Morgenstern utilities. We assume throughout the standard epistemic conditions that the

game is common knowledge and players’ rationality is common knowledge.

2.1. Strategies and Expected Payoffs. In the normal-form representation of the game,

a player’s pure strategy specifies the action chosen at each of his information sets in the

game tree. However, outcomes are not affected by a strategy’s actions at information sets

excluded by his previous actions. Thus it suffices to specify a pure strategy by the terminal

nodes that are not excluded by his actions.

This specification is formalized as follows [4]. A pure strategy of a player does not exclude

a terminal node z from being reached if at each of his information sets that intersect the path

to z it chooses his unique action on that path. Alternatively, the player might randomize

over his pure strategies, or he might use a behavioral strategy that randomizes over actions

at each of his information sets.3 A randomized strategy of either kind induces a probability

distribution over the terminal nodes that are not excluded. Here we take the set Pn ⊂ [0, 1]Z

of these probability distributions as player n’s set of strategies, called his mixed strategies.4 If

pn ∈ Pn then pn(z) is the probability that his actions do not exclude z, and these probabilities

uniquely determine a corresponding behavioral strategy at his information sets that his prior

actions do not exclude.

Player n’s set Pn of mixed strategies is a closed convex polyhedron. Its vertices are obtained

from profiles of pure strategies of the normal form. Let P =
∏

n Pn be the set of profiles of

players’ mixed strategies. Note that P depends only on the game tree and summarizes its

essential features.

3Kuhn [17] shows that these yield the same distributions of outcomes when the game has perfect recall.
A randomization over pure strategies induces a unique behavior at each information set it does not exclude,
and for every behavioral strategy there exist randomizations over pure strategies that, for each profile of
others’ strategies, yields the same probability distribution over terminal nodes.

4Pn is called n’s set of enabling strategies in [4, 8]. Mertens [20, p. 554] introduces the technique of
mapping randomized strategies to their induced probability distributions on terminal nodes. Koller and
Megiddo [14] call them realization plans, and Koller, Megiddo, and von Stengel [15] use them for efficient
computation.
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If p ∈ P then the probability that terminal node z is the outcome of the game is

π(z|p) = p∗(z)
∏

n pn(z), where p∗(z) is the probability that Nature’s actions do not exclude

z, because Nature and the players randomize independently. Hence player n’s expected

payoff is Gn(p) =
∑

z π(z|p)un(z). Thus the extensive-form game Γ is summarized by the

multilinear function G : P → RN that to each profile of players’ mixed strategies assigns

their expected payoffs. This summary specification is called the strategic form of the game.

2.2. Equilibria and Refinements. Adapting Nash’s [21, 22] definition, an equilibrium

of a game in strategic form is a profile p ∈ P of players’ mixed strategies such that each

player’s strategy is an optimal reply to others’ strategies. That is, for each player n, Gn(p) >
Gn(p′n, p−n) for every p′n ∈ Pn. Note that each equilibrium by this definition corresponds to a

family of equivalent equilibria, represented by either behavioral strategies or randomizations

over normal-form pure strategies, that have the same distribution over outcomes.

A refinement is a correspondence that assigns to each game a nonempty collection of

nonempty closed connected subsets of its equilibria. Each selected subset is called a solution.

We assume that solutions are sets because Kohlberg and Mertens [12, pp. 1015, 1019, 1029]

show that there need not exist a single equilibrium that satisfies weaker assumptions than

the axioms invoked here. The technical requirement that a solution is connected excludes

the trivial refinement that always selects the set of all equilibria. If payoffs are generic then

all equilibria in a connected subset yield the same probability distribution over terminal

nodes, and thus the same paths of equilibrium play in the extensive form.5 In this case,

connectedness associates solutions with selections of probability distributions over outcomes.

3. Axioms

This section presents the three axioms. The first two invoke principles of rational deci-

sions by individual players. The third axiom requires that a refinement is not affected by

extraneous features of contexts in which a game is presented.6

3.1. Admissibility. For a game with two players, a player’s strategy is admissible iff it

is not weakly dominated in terms of expected payoffs by another strategy. In this case

admissibility is the same as in decision theory. We consider games with more than two

players, however, so we assume the stronger property that a strategy is an admissible reply.

5Kreps and Wilson [16, Theorem 2]. We use here the stronger characterization in [3] that nongeneric
payoffs lie in a lower dimensional subset.

6The axioms are stated for the strategic form. They have equivalent statements using, instead of players’
polyhedra of mixed strategies, their simplices of randomizations over normal-form pure strategies.



6 SRIHARI GOVINDAN AND ROBERT WILSON

Definition 3.1 (Admissible Reply). A player’s strategy is an admissible reply to a profile

p ∈ P if it is an optimal reply to each profile in some sequence in the interior of P for which

p is a limit point.

An equivalent decision-theoretic specification is obtained by Blume, Brandenburger, and

Dekel [1] and Govindan and Klumpp [2]. They use randomizations over normal-form pure

strategies but their results apply also to the strategic form of a game. A player’s strategy

is an admissible reply to p iff it is a lexicographically optimal reply to a representation of

other players’ strategies by a lexicographic probability system p̂0, p̂1, p̂2, . . ., where p̂0 = p

and the interior of P intersects the convex hull of the profiles p̂k. For a game in extensive

form this condition requires that, at each information set his own strategy does not exclude,

continuation of his strategy is a lexicographically optimal reply to the profile of others’

strategies in the sequence p̂k, p̂k+1, . . . where p̂k is the first profile in the system that does

not exclude that information set from being reached.

Say that a profile p ∈ P of players’ strategies is admissible if each player n’s strategy pn

is an admissible reply to p. When there are more than two players, this is much weaker

than requiring that p results from a perfect equilibrium, which requires that the justifying

sequence in Definition 3.1 is the same for all players.

Axiom A (Admissibility): Each equilibrium in a solution is admissible.

3.2. Backward Induction. The second axiom invokes consistent beliefs and sequential

equilibria as defined by Kreps and Wilson [16, p. 872].

Definition 3.2 (Consistent Beliefs). A player’s belief assigns to each of his information

sets a probability distribution over the nodes at this information set. Players’ beliefs are

consistent with an equilibrium if they are limits of conditional probabilities induced by a

sequence of profiles of completely mixed strategies converging to the equilibrium.

This definition of consistent beliefs appears to depart from standard decision theory be-

cause it invokes perturbed strategies, but Kohlberg and Reny [13] show that consistency of

beliefs can be derived from primitive axioms appropriate for a frequency interpretation of

probabilities. We adhere to Kreps and Wilson [16] definition of sequential equilibrium in

terms of behavioral strategies.

Definition 3.3 (Sequential Equilibrium). An equilibrium in behavioral strategies is sequen-

tial if there exists a profile of consistent beliefs such that, conditional on a player’s belief

at an information set, continuation of his behavioral strategy is an optimal reply to other

players’ strategies.
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Govindan and Klumpp [2, Section 5] observe that a sequential equilibrium can be represented

by a lexicographic probability system. The optimality property in Definition 3.3 is called

sequential rationality. If continuation is required to be optimal only at his information sets

that the player’s own strategy does not exclude then it is called weak sequential rationality

by Reny [23].

The second axiom requires that some equilibrium in a solution is sequential.

Axiom B (Backward Induction): Each solution contains an equilibrium implied by a se-

quential equilibrium.

That is, a solution must contain an equilibrium p such that, for some sequential equilibrium,

each pn(z) is the product of player n’s behavioral probabilities of choosing his actions on the

path to z.

For the games with perfect information and generic payoffs studied later, Axiom B requires

that a solution contains a subgame-perfect equilibrium constructed by backward induction,

which is a special case of a sequential equilibrium. For more general games we interpret

sequential equilibrium as the relevant generalization of backward induction.

3.3. Small Worlds. Equilibria of a game depend only on its strategic form. The analogous

property of a refinement is called invariance. As in decision theory, invariance requires that

it is irrelevant whether a randomization over pure strategies is treated as an additional pure

strategy. Similarly, equilibria are not affected by adding dummy players, i.e. ‘outsiders’

whose actions do not affect strategies and payoffs of ‘insiders’ who are the players in the

given game. The analogous property of a refinement is called ‘small worlds’ by Mertens [20].

This property too is familiar in decision theory where one excludes dependence on payoff-

irrelevant events (Savage [24]). When invariance and small worlds are adopted as axioms,

they require that a refinement is not affected by two particular presentation effects, i.e.

embeddings of the given game in larger games with redundant pure strategies or dummy

players.

The axiom adopted here excludes a refinement from depending on more general presen-

tation effects. We use the same name, small worlds, but consider more general embeddings.

For notational simplicity, we use the strategic form of a game to state the axiom. Thus, as

in Section 2, a game Γ is summarized by a multilinear function G : P → RN that to each

profile of players’ mixed strategies assigns expected payoffs to the players in N .

As mentioned, the purpose of the axiom is to prevent refinements from depending on

wider contexts in which a game is played, provided a context does not alter players’ feasible

strategies and payoffs. By a context we mean here a ‘larger’ game G̃ : P̃ × Po → RN∪ o in
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which game G is embedded, subject to certain restrictions specified below. The larger game

G̃ has outsiders in a set o, in addition to insiders who are the players in N , and there can

be additional moves by Nature. Also, an insider n can have additional pure strategies in G̃

that are not pure strategies in G.

The basic requirement is that an embedding should not alter the game among insiders,

conditional on any specific strategies of outsiders. Restrictions on an embedding should

therefore ensure that outsiders’ strategies are not payoff-relevant for insiders, and that in-

siders’ additional pure strategies are redundant—although translation from a pure strategy

in G̃ to a mixed strategy in G might depend on outsiders’ strategies.7

These restrictions have a technical formulation. There should exist a multilinear map

f : P̃ ×Po → P that is surjective and such that G̃n = Gn ◦f for each insider n. Moreover, to

exclude an embedding from enabling insiders to coordinate their strategies, f should factor

into separate multilinear maps (fn)n∈N , where each component is a map fn : P̃n × Po → Pn

such that fn(·, po) maps P̃n surjectively onto Pn for each mixed strategy po ∈ Po of outsiders.

Admittedly, a statement of the axiom that uses this technical language could contain

unsuspected implications. However, after stating the formal definition, we provide in Propo-

sition 3.5 an equivalent formulation that is more detailed and more transparent, and that

verifies the requisite properties. Also, Proposition 3.6 applies a precise test of whether the

axiom is correctly stated—a refinement that satisfies the axiom should be immune to the

same embeddings that equilibria are.

Definition 3.4 (Embedding). A game G̃ : P̃ × Po → RN∪ o and a collection of multilinear

maps fn : P̃n × Po → Pn, one for each player n ∈ N , embed a game G : P → RN if

(a) for each po ∈ Po, fn(·, po) maps P̃n surjectively onto Pn, and

(b) G̃n = Gn ◦ f , where f = (fn)n∈N .

Condition (a) ensures that embedding has no net effect on an insider’s set of mixed strategies,

conditional on outsiders’ strategies, and condition (b) ensures that there is no net effect on

any insider’s payoffs. Proposition 3.5 below elaborates this interpretation in terms of pure

strategies.

Hereafter, if G̃ embeds G via maps f = (fn) then we say that (G̃, f) embeds G and that G̃

is a metagame for G. We omit description of f for metagames in extensive form that embed

7For example, an insider might condition his choices on which actions he observes an outsider takes, but if
other insiders do not observe this outsider’s actions then this is equivalent to the insider using the outsider’s
actions as a randomization device. More generally, outsiders’ strategies can affect how an insider’s redundant
pure strategies in G̃ are mapped into mixed strategies in G. Proposition 3.5 below states the general form
of this map.
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a game in extensive or strategic form. An elaborate example of a metagame in extensive

form that embeds a game in extensive form is constructed in proving Theorem 6.1.

Invariance uses the special case in which o and Po are singletons and each f maps pure

strategies of G̃ to equivalent pure or mixed strategies of G. Mertens’ small worlds criterion

uses the special case in which P̃ = P and each fn is the projection map to Pn. In these two

cases, P̃ ⊇ P , but embedding allows more general versions that are identified precisely in

Proposition 3.5 below.

A multilinear map fn : P̃n × Po → Pn is completely specified by its values at vertices of

P̃n × Po, which recall are images of pure strategies of the normal form. Let P̃ ◦
n and P ◦

o be

the sets of vertices of P̃n and Po, and let f ◦n be the restriction of fn to P̃ ◦
n × P ◦

o .

Proposition 3.5. G̃ embeds G via a collection of multilinear maps f = (fn)n∈N if and only

if for each player n there exists T̃n ⊆ P̃ ◦
n and a bijection hn : T̃n → P ◦

n such that for each

(p̃◦, p◦o) ∈ P̃ ◦ × P ◦
o and t̃n ∈ T̃n:

(1) f ◦n(t̃n, p
◦
o) = hn(t̃n),

(2) G̃n(p̃◦, p◦o) = Gn(f ◦(p̃◦, p◦o)), where f ◦ = (f ◦n)n∈N .

Property (1) assures that each vertex p◦n ∈ P ◦
n is equivalent to some vertex t̃n = h−1

n (p◦n) ∈ T̃n,

independently of the outsiders’ profile p◦o. Property (2) assures that players’ payoffs from

vertices of G are preserved by the metagame G̃.

Vertices in P̃ ◦
n \ T̃n are redundant because payoffs from profiles in

∏
n T̃n exactly replicate

payoffs from corresponding profiles in
∏

n P ◦
n for the embedded game G. In particular, if

f ◦n(p̃◦n, p
◦
o) = pn /∈ P ◦

n then, conditional on p◦o, the vertex p̃◦n is equivalent for insiders to

the mixed strategy pn in Pn. Thus, conditional on each profile p◦o of outsiders’ vertices,

embedding preserves the strategic form of the game among insiders.

Proof of Proposition. Suppose we have a game G̃ : P̃ × Po → RN∪ o and a collection of

multilinear maps fn : P̃n × Po → Pn, one for each n ∈ N , such that conditions (1) and (2)

of the proposition are satisfied. Then, by condition (1) and multilinearity of fn for each n,

for each fixed po, fn(·, po) is surjective because it maps the convex hull of T̃n onto Pn. Also,

condition (2) and multilinearity of each fn imply that G̃ = G ◦ f . According to Definition

3.4, therefore, (G̃, f) embeds G.

Now suppose that (G̃, f) embeds G. Let po be a profile of completely mixed strategies for

outsiders. Because fn is multilinear it induces a linear mapping fn(·, po) from P̃n to Pn that

is surjective by the definition of embedding. Hence, for each p◦n ∈ P ◦
n there exists a vertex

t̃n(p◦n) in P̃ ◦
n that is mapped to p◦n by this linear map. We claim that fn(t̃n(p◦n), p◦o) = p◦n
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for all p◦o ∈ P ◦
o . Indeed, since po is in the interior of Po, we can express it as a convex

combination
∑

po(p
◦
o)p

◦
o, where for each vertex p◦o, po(p

◦
o) > 0 is the weight on the vertex p◦0.

Then, fn(t̃n(p◦n), po) =
∑

p◦o
fn(t̃n(p◦n), p◦o)po(p

◦
o). Therefore, if fn(t̃n(p◦n), p◦o) 6= p◦n for some

p◦o then fn(t̃n(p◦n), po), which is an average of values at vertices of P ◦
o , cannot be p◦n. Thus,

fn(t̃n(p◦n), p◦o) = p◦n for all p◦o. Let T̃n ⊂ P̃ ◦
n be a collection comprising a different vertex

t̃n(p◦n) for each p◦n ∈ P ◦
n and let hn be the associated bijection. Define f ◦n : P̃ ◦

n × P ◦
o → Pn by

f ◦n(p̃◦n, p
◦
o) = fn(p̃◦n, p◦o). Then conditions (1) and (2) of the proposition are satisfied. ¤

Now we apply the aforementioned test and verify that equilibria are not affected by em-

bedding in a metagame.

Proposition 3.6. If (G̃, f) embeds G then the equilibria of G are the f -images of the

equilibria of G̃.

Proof. Suppose (p̃, po) is an equilibrium of G̃ and let p = f(p̃, po). For any insider n and his

strategy p′n ∈ Pn there exists p̃′n ∈ P̃n such that fn(p̃′n, po) = p′n because fn(·, po) is surjective

by condition (a) of Definition 3.4 an embedding. Using condition (b),

Gn(p′n, p−n) = Gn(f(p̃′n, p̃−n, po)) = G̃n(p̃′n, p̃−n, po) 6 G̃n(p̃, po) = Gn(f(p̃, po)) = Gn(p) ,

where the inequality obtains because (p̃, po) is an equilibrium of G̃. Hence p is an equilibrium

of G.

Conversely, suppose p is an equilibrium of G. For each n, express pn as a convex com-

bination
∑

α(p◦n)p◦n of the vertices p◦n of Pn. For each n, let hn be the bijection given by

Proposition 3.5. Let p̃n be the strategy for insider n in G̃ given by
∑

α(p◦n)h−1(p◦n). Since

fn is multilinear, by condition (1) of Proposition 3.5, fn(p̃n, ·) = pn and thus f(p̃, ·) = p.

Hence, it suffices to show that there exists a strategy profile po for outsiders such that (p̃, po)

is an equilibrium of G̃. By fixing the profile of insiders’ strategies to be p̃ one induces a game

among outsiders. Let po be an equilibrium of this induced game among outsiders. To see

that (p̃, po) is an equilibrium of G̃, observe that for each vertex p̃◦n of an insider n:

G̃n(p̃◦n, p̃−n, po) = Gn(fn(p̃◦n, po), p−n) 6 Gn(p) = Gn(f(p̃, po)) = G̃n(p̃, po) ,

where the first and second equalities use the property f(p̃, ·) = p established above, and the

inequality obtains because p is an equilibrium of G. ¤

A corollary of Proposition 3.6 is that embedding does not introduce correlation among

insiders’ strategies.

Using Definition 3.4 of embedding, the small worlds axiom is the following.
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Axiom S (Small Worlds): If (G̃, f) embeds G then the f -images of the solutions that a

refinement selects for G̃ are the solutions selected for G.

In view of Proposition 3.6, this axiom is an instance of the general principle that a refinement

should inherit invariance properties of equilibria.

3.4. Summary of the Axioms. We study refinements that are independent of embed-

dings in metagames that, for each profile of outsiders’ strategies, preserve the strategic form

of the game among insiders. And, we require that their solutions are closed connected

subsets of admissible equilibria that contain sequential equilibria. In particular, a solution

of a metagame must contain an admissible sequential equilibrium whose image is in the

corresponding solution of the embedded game.

Mertens [18, 19] proves for general games that stable sets of equilibria satisfy Axiom A,

Axiom B, invariance, and his version of small worlds. A modification of his proof extends

this conclusion to Axiom S.

4. Games with Perfect Information

The remainder of this paper applies Axioms A, B, and S to the class of games with two

players, perfect information, and generic payoffs. A game in this class is called a PI game

for simplicity.

In this section we summarize immediate implications of the axioms for PI games, and

describe the main theorem that is stated and proved in Section 6. We also provide a simple

example that illustrates the content of the theorem and the key property that is the focus

of the proof.

4.1. Implications of the Axioms for PI Games. A PI game has special features. It

has a unique sequential equilibrium. This is the subgame-perfect equilibrium obtained by

backward induction, and it uses only pure strategies. Moreover, this equilibrium is included

in the unique essential component [6] of the game’s equilibria. Within this component is the

unique essential component of admissible equilibria.

The theorem in Section 6 shows that a refinement satisfying the axioms selects a unique

solution for each PI game. This solution is the entire component of admissible equilibria that

contains the subgame-perfect equilibrium. In particular, Axiom A requires that a solution

contains only admissible equilibria—which for two-player games are the weakly undominated

strategies—and Axiom B requires that the unique subgame-perfect equilibrium is included

in each solution. A solution must therefore be a connected closed subset of the component

of admissible equilibria that contains the subgame-perfect equilibrium.
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1

2

L C R

Out

In

a b a b a b

5,1

1,5 0,0 6,3 0,2 2,0 0,4

1 1 1

Figure 1. A game Γ with perfect information

Extreme Point Pr(L | In) Pr(C | In) Pr(R | In)
L: 1 0 0
LC: .2 .8 0
CR: 0 .75 .25
R: 0 0 1

Table 1. Extreme points of 2’s behavioral strategies in the component of
admissible equilibria

The remarkable aspect of Theorem 6.1 is that every equilibrium in the component of

admissible equilibria must be included in a solution. This is necessary to account for all

the metagames in which the PI game can be embedded. In other words, the theorem shows

that stability against every perturbation of players’ strategies is equivalent to immunity to

embeddings in metagames, as required by Axiom S.

4.2. An Example. We use an example to illustrate what is required for a proof. Figure

1 shows an example of a PI game Γ. There are two components of its equilibria. One

component is inessential and all its equilibria are inadmissible. On the equilibrium path, 1

chooses In, then 2 chooses C, and then 1 chooses a. This equilibrium path is sustained by

1’s inadmissible strategies that choose b with sufficiently high probability after 2’s choice of

L. Either Axiom A or B excludes a solution from residing in this component.

The other component is essential and its equilibrium path is sustained by admissible

equilibria. It contains the subgame-perfect equilibrium in which 1 chooses Out, anticipating

that after In she would choose a after each choice by 2, which optimally for 2 is to choose

L. This component’s four extreme points are identified by 2’s strategies labeled L, R, CR,

LC in Table 1.
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0,0,0,1 0,3/4,1,0

0

.75

1.0

Prob(R)

LC

R

CR

40/572/3

Figure 2. Graph of 2’s strategies in admissible equilibria over the interval of
perturbations of 1’s strategies between (0,0,0,1) and (0,3/4,1,0).

To illustrate requirements for stability, we show examples of equilibria of nearby games

obtained by perturbing player 1’s strategies. Figure 2 shows the graph of admissible equilibria

over an interval of perturbations, constructed as follows. Represent a behavioral strategy for

player 1 by a vector b1 = [b1(Out), b1(a|In, L), b1(a|In, C), b1(a|In,R)] in the 4-dimensional

unit cube. Each perturbed game is obtained by assuming that for each strategy b1 player

1 might choose, what actually happens is that with arbitrarily small probability ε > 0 her

choice is superseded by implementation of another strategy bx
1 , where x ranges over the

interval 0 6 x 6 1 in Figure 2. To construct the figure we assume that b0
1 = (0, 0, 0, 1) and

b1
1 = (0, 3/4, 1, 0). The figure implies that, besides 2’s choice of L in the subgame-perfect

equilibrium, a stable set must also include each extreme point LC, CR, and R, since each is

the limit of admissible equilibria of perturbed games.

Theorem 6.1 below shows that the axioms imply that indeed all four of 2’s extreme points

and their mixtures must be included in a solution. The method of proof is to show that

if some point in the convex hull of these four extreme points is not included in a proposed

solution, then there exists a metagame (Γ̃, f) in extensive form that embeds Γ and for which

the f -images of admissible sequential equilibria lie outside this proposed solution—thus

Axioms B and S require that the solution includes the entire convex hull.

A key step of the proof modifies the game Γ by adding the redundant strategy for player

1 that is shown in Figure 3. In this expanded game, after player 1 initially rejects Out but

before committing to In, she can choose Reconsider, which implements the strategy that
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1

L C R

Out

b
x

1

a b a b a b

5,1

1,5 0,0 6,3 0,2 2,0 0,4

1 1 1

1

2

L C R

Out

In

a b a b a b

5,1

1,5 0,0 6,3 0,2 2,0 0,4

1 1 1

Reconsider

1 − δ
δ

Figure 3. Game Γ augmented with 1’s redundant strategy Reconsider that
with probabilities 1 − δ and δ implements either Out, or In followed by the
behavioral strategy bx

1

with probability 1 − δ chooses Out and with probability δ chooses In and then implements

the behavioral strategy bx
1 at her information sets that follow player 2’s responses to In. The

information set for player 2 indicates that he cannot know whether 1 chose In or Reconsider.

When δ is sufficiently small, in any equilibrium of the subgame that follows 1’s initial rejection

of Out, player 1 must choose Reconsider with positive probability because it is nearly as

advantageous as Out. The expanded game therefore simulates the effect of perturbing the

strategies of player 1 (other than Out, which is her equilibrium strategy in Γ). The proof

in Section 6 also introduces outsiders whose strategies determine which behavioral strategy

bx
1 is implemented if player 1 chooses Reconsider and the outcome again rejects Out. This

behavioral strategy determines which admissible equilibrium results in the expanded game.

Player 2 is also provided options to reconsider his choices.

5. Notation and Properties of PI Games

In this section we establish notation and properties specific to PI games.

We now use Γ to denote a typical PI game. The set of players is N = {1, 2}. Represent

the game tree as (X,≺), where X is the set of nodes and ≺ is the relation of precedence. As

before, Z ⊂ X is the set of terminal nodes and payoffs are given by a point u in U = RN×Z ,

where un(z) is the payoff to player n ∈ N at terminal node z ∈ Z. We assume throughout

that payoffs are generic, i.e. u ∈ U \U◦ where the excluded set U◦ is a lower-dimensional set

of payoffs derived in [3].

5.1. Derivation of the Strategic Form. For completeness, we first derive the strategic

form from the normal form of the game. Let X0 be the set of nodes where Nature moves.
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Assume that all of Nature’s strategies have positive probability. For each player n, let Xn

be the set of nodes where player n moves. For each node x ∈ Xn, let An(x) be the set of

actions available to player n at x. Assuming actions at all nodes are labeled differently, let

An be the set of all actions of player n. Then the set Sn of n’s normal-form pure strategies

is the set of functions sn : Xn → An such that sn(x) ∈ An(x) for each x ∈ Xn. Let Σn be

the simplex of randomizations over Sn.

For each player n, his pure strategy sn ∈ Sn, and any node y ∈ X, let βn(y, sn) be the

probability that sn does not exclude y, i.e. βn(y, sn) = 1 if sn(x) = a for every (x, a) ≺ y such

that x ∈ Xn and a ∈ An(x), and otherwise βn(y, sn) = 0. Extend βn(y, ·) to a function over

n’s simplex Σn of randomized strategies via βn(y, σn) =
∑

sn∈Sn
βn(y, sn)σn(sn). Similarly,

let β∗(y) be the probability that Nature does not exclude y. Then the probability that

a profile s ∈ S of pure strategies does not exclude y is β(y, s) = β∗(y)β1(y, s1)β2(y, s2).

Because Nature and players move independently, the function β extends similarly to profiles

of randomized strategies via β(y, σ) = β∗(y)β1(y, σ1)β2(y, σ2). Player n’s expected payoff

from a profile s ∈ S of players’ pure strategies is
∑

z∈Z β(z, s)un(z), and from a profile σ ∈ Σ

of randomized strategies it is
∑

z∈Z β(z, σ)un(z).

Define maps ρ = (ρn)n∈N where for each player n, ρn : Σn → [0, 1]Z and ρn(σn) =

(βn(z, σn))z∈Z . Let Pn = ρn(Σn) be the image of ρn and let P =
∏

n Pn. Then Pn is

the set of n’s mixed strategies of the strategic form as defined in Section 2. Given a pro-

file σ ∈ Σ, if pn = ρn(σn) for each player n then player n’s payoff from σ is Gn(p) =∑
z∈Z β∗(z)p1(z)p2(z)un(z) since pn(z) is the probability that n’s strategy does not exclude

z. As in Section 2, the multilinear map G : P → RN is the strategic form of Γ.

5.2. Stable Sets. Recall that for a two-player game a strategy is admissible iff it is not

weakly dominated. Also, because Γ has perfect information and payoffs are generic, there

is a unique subgame-perfect equilibrium s∗, and all equilibria in the same component as s∗

induce the same distribution of outcomes. Therefore, let Σ∗ be the unique component of

admissible equilibria that contains s∗. Every stable set of Γ is contained in Σ∗. Moreover,

Σ∗ is itself stable [5]. Let P ∗ be the image of Σ∗ under ρ, and let P ∗
n be its projection into

Pn.

5.3. Subgames after Deviations. For each node x ∈ X, β(x, σ) is the same, say β∗(x),

for all σ ∈ Σ∗. Let X∗ be the subset of nodes such that β∗(x) > 0, and for each n let

X∗
n = Xn ∩ X∗. Similarly, let Z∗ ⊂ Z be the set of terminal nodes for which β∗(z) > 0.

By genericity, at each node x ∈ X∗
n player n chooses the same action a∗(x) ∈ An(x) in all

equilibria in Σ∗. Therefore, for each z ∈ Z∗ both players choose all their actions on the
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path to z with probability one, i.e. for each player n, p∗n(z) = 1 for all p∗n ∈ P ∗
n and thus

β∗(z) = β∗(z).

Given z /∈ Z∗, let x ∈ X \ X0 be the last node preceding z such that β∗(x) > 0. Then

x ∈ X∗
m for some player m and z follows x by m’s choice of some action a ∈ Am(x), a 6= a∗(x).

In the subgame following a, if player n has no move then by genericity a is an inferior action

for m against all equilibria in P ∗ and thus p∗m(z) = 0 and p∗n(z) = 1 for all z following a—but

if player n does have a move following a then p∗n(z) might differ among equilibria in P ∗.

To summarize the preceding paragraph, for each player n and each p∗n ∈ P ∗
n , p∗n(z) = 1 if

z ∈ Z∗; p∗n(z) = 0 if the last node preceding z /∈ Z∗ that belongs to X∗
m ∪ X∗

n belongs to

X∗
m; and p∗n(z) = 1 if the last node x preceding z that belongs to X∗

m ∪X∗
n belongs to X∗

m

and n has no move following m’s choice a at x that leads to z. Thus the only indeterminacy

is when in the latter case player n has a move after player m chooses the non-equilibrium

action a at x. This motivates the following constructions.

Because Γ has perfect information, each node y ∈ X \ Z initiates a subgame that we

denote Γy. For each player n, let X◦
n be the set of nodes y ∈ X \X∗ such that the immediate

predecessor x of y belongs to X∗
n, and in the subgame Γy that starts at y, player n has some

node where he moves. (Note that y need not belong to Xn: it merely has the property

that its predecessor belongs to X∗
m and the action there leading to y is a non-equilibrium

action.) Let X◦ = X◦
1 ∪X◦

2 . For each y ∈ X◦, let Sy
n, Σy

n, By
n, and P y

n be the sets of n’s pure

strategies, randomizations over pure strategies, behavioral strategies, and mixed strategies

in the subgame Γy, with ρy
n being the map from randomizations over pure strategies to mixed

strategies, and let P y = P y
1 × P y

2 .

Let W y,∗
m be the continuation payoff to player m at her node x ∈ X∗

m preceding y when

she chooses a∗(x) and subsequent play adheres to an equilibrium in P ∗.

By construction, for each y ∈ X◦
n player n does not exclude y in an equilibrium p∗ ∈ P ∗,

and in particular βn(y, p∗n) = 1. Hence, for each p∗n ∈ P ∗
n the projection of p∗n to the set

of z that follow y is a mixed strategy py,∗
n ∈ P y

n of the subgame Γy. Let P y,∗
n ⊂ P y

n be the

collection of n’s mixed strategies for Γy that are projections of n’s mixed strategies in P ∗
n .

Proposition 5.1. P ∗ = P ∗
1×P ∗

2 . Moreover, for each n, the projection from P ∗
n to

∏
y∈X◦

n
P y,∗

n

is a homeomorphism.

Proof. Given (p∗1, p
∗
2) ∈ P ∗

1 × P ∗
2 , observe that for each n, p∗n is an admissible strategy with

the property that p∗n(z) = βn(z, s∗n) for all terminal nodes z that do not succeed a node

y ∈ X◦
n; and in the subgame Γy at each such y, the projection of p∗1 to P y

n is such that player

m’s continuation payoff at her node x immediately preceding y is no more than W y,∗
m by
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leading play into the subgame Γy. Thus, (p∗1, p
∗
2) is an admissible equilibrium inducing the

same outcome as s∗. Also, by definition P ∗
n is a connected set of strategies that includes

s∗. Therefore, (p∗1, p
∗
2) belongs to the connected set of admissible equilibria that contains s∗.

This last set is, by definition, P ∗. Hence, P ∗
1 ×P ∗

2 ⊆ P ∗; the reverse inclusion being obvious,

the first statement is proved.

As for the second statement, since strategies in P ∗
n vary only across terminal nodes that

follow some y ∈ X◦
n, the projection from P ∗

n to
∏

y P y,∗
n is injective. To prove that it is

surjective, take a strategy py
n in P y,∗

n for each y ∈ X◦
n. Construct a strategy p ∈ Pn by letting

pn(z) be py
n(z) if z succeeds y ∈ X◦

n; otherwise let it equal βn(z, s∗n). Clearly pn belongs to

P ∗
n . ¤

5.4. The Pseudo-Manifold Property. We conclude the setup by stating a key technical

property that enables the Hopf extension theorem to be invoked in the proof of Theorem

6.1.

Let Ay ⊂ P y×P y be the closure of the set of pairs (py, qy) of profiles of mixed strategies for

the subgame Γy such that py is in the interior of P y, qy
n ∈ P y,∗

n , and there exist λm, λn ∈ [0, 1)

and a profile ry
n ∈ P y such that:8

(i) qy
m = (1− λm)py

m + λmry
m .

(ii) if λm > 0 then ry
m yields payoff W y,∗

m against qy
n in Γy and there exists a sequence of

ε’s converging to zero such that ry
m is a weakly sequentially rational strategy for m

in Γy against beliefs induced by the corresponding sequence of n’s mixed strategy

(1− ε)qy
n + ε((1− λn)py

n + λnry
n) .

(iii) (1− λn)qy
n + λnry

n is an admissible best reply for n against m’s strategy qy
m .

Let πy : Ay → P y be the projection map to the first factor. Also, let ∂Ay be the inverse

image of ∂P y under πy.

Proposition 5.2. (Ay, ∂Ay) is a pseudo-manifold with boundary and has the same dimen-

sion as P y. Moreover, the projection map πy : (Ay, ∂Ay) → (P y, ∂P y) has degree one.

The proof is in Appendix A.

8An interpretation is that the profile py represents players’ initial beliefs about each other’s strategy after
the deviation at y, and qy is the updated profile obtained by anticipating that with some probabilities λ
they will voluntarily choose strategies ry that are optimal replies to each other’s initial and updated beliefs.
The conditions for m and n are asymmetric because m’s voluntary part ry

m replies optimally mainly to n’s
equilibrium strategy qy

n ∈ P y,∗
n because only with arbitrarily small probability ε will m’s initial deviation at

x be followed by a second deviation by n at y or later in the subgame Γy.
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6. Statement and Proof of the Theorem

Theorem 6.1. Axioms A, B, S imply that the unique solution of the strategic form of

a PI game is the component of admissible equilibria that contains the subgame-perfect

equilibrium.

Proof. Suppose P̄ is a solution in terms of mixed strategies that is selected by a refinement

satisfying the axioms. Then by Axioms A and B, P̄ is contained in P ∗. By Proposition 5.1,

it is sufficient to prove for each pair of collections, one for each player n, of (qy,∗
n )y∈X◦

n
, with

qy,∗
n ∈ P y,∗

n for each y, that there exists q ∈ P̄ whose projection for each n and y ∈ X◦
n is the

given qy,∗
n . For each player n and y ∈ X◦

n, let V y be an arbitrary neighborhood of qy,∗
n in P y

n .

We construct a metagame in which every sequential equilibrium has player n using a mixed

strategy in V y for each y ∈ X◦
n. Since P̄ is a closed set, and V y is an arbitrary neighborhood

of qy,∗
n for each n and y ∈ X◦

n, this proves the theorem.

6.1. Preliminary Constructions. For each player n and each node y ∈ X◦
n, pick a mixed

strategy qy,∗
n ∈ P y,∗

n . Let m be the other player. By admissibility, there exists py,∗
m in

the interior of P y
m against which qy,∗

n is a best reply, and there exists py,∗
n in the interior

of P y
n such that m’s choice of a∗(x) is the only optimal reply in the continuation from x.

Therefore, (py,∗, qy,∗) ∈ Ay \ ∂Ay, where py,∗ = (py,∗
m , py,∗

n ) and qy,∗ = (py,∗
m , qy,∗

n ). Let Uy be

a neighborhood of (py,∗, qy,∗) that is a simplex of the same dimension as P y, is contained in

Ay \ ∂Ay, and has a projection onto the last factor that is contained in V y.

Since πy has degree one, so does its restriction πy
∂Ay : ∂Ay → ∂P y. Define π̃∂Ay : ∂Ay →

∂P y as follows: for each (py, qy) ∈ ∂Ay π̃∂Ay(py, qy) is the unique point on the boundary

that belongs to the line from py through py,∗, i.e. it is the unique point in ∂P y of the form

λpy + (1 − λ)py,∗ with λ 6= 1. π̃∂Ay is the composition of πy with an “antipodal” map

from ∂P y to itself; thus, it is a degree-one mapping as well. Moreover it has no point of

coincidence with πy
∂Ay . (Ay \ (Uy \ ∂Uy), ∂Ay ∪ ∂Uy) is a pseudo-manifold with boundary.

Therefore, we can now construct a map f̃ y
∂Uy from ∂U y to ∂P y with degree one such that,

using the Hopf extension theorem, we can extend the two maps π̃∂Ay and f̃∂Uy to a map

f̃ y from Ay \ (Uy \ ∂Uy) to ∂P y. Finally, we can extend f̃ y to a map from Ay to P y as

follows: map (py,∗, qy,∗) to py,∗ and map all other points in Uy by linear interpolation, i.e.

f̃ y(λ(py,∗, qy,∗)+(1−λ)(py, qy)) = λpy,∗+(1−λ)f̃ y(py, qy) for all λ ∈ [0, 1] and (py, qy) ∈ ∂Uy.

The only point of coincidence between f̃ y and πy is (py,∗, qy,∗). Extend f̃ y to map from P y×P y

to P y, denoting it still by f̃ y. Replacing f̃ y with a small perturbation of it, we can assume
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that the image of f̃ y is contained in the interior of P y and that (py,∗, qy,∗) is still the only

point of coincidence between πy and the restriction of f̃ y to Ay.

Choose α > 0 such that for (py, qy) ∈ P y × P y, the distance between f̃ y(py, qy) and

∂P y is strictly greater than α and, furthermore, ‖f̃ y(py, qy) − py‖ > α if (py, qy) ∈ Ay \
(Uy \ ∂U y). Take simplicial subdivisions Ky

m of P y
m and Ky

n of P y
n such that ∂P y

m and ∂P y
n

are full subcomplexes and the diameter of each multisimplex Ky
m × Ky

n of Ky ≡ Ky
m × Ky

n

is at most α/2. Take subdivisions Ly
m and Ly

n of P y
m and P y

n such that, letting Ly be

the multisimplicial complex Ly
m × Ly

n, for each player j, the j-th coordinate f̃ y
j of f̃ y has

a multisimplicial approximation f y
j from Ly × Ly → Ky

j . (See [6, Appendix B] for the

multisimplicial approximation theorem.) We use f y to denote f y
1 × f y

2 .

We emphasize two properties of the multisimplicial approximation. (1) For each j, no

vertex of Kj is the image of a vertex of L under f y
j . (2) For (py, qy) ∈ Ay, if there exists

a simplex K that contains its image under both πy and f y, then it belongs to Uy (and

hence qy belongs to V y). To see these two claims, observe that, since f y is a multisimplicial

approximation of f̃ y, for any point (py, qy), there exists a multisimplex K̃ that contains its

image under both f̃ y and f y; hence, ‖f y(py, qy)− f̃ y(py, qy)‖ 6 α/2. Now, if a point (py, qy)

that represents a vertex of L gets mapped to a point in ∂P y by f y, then the distance between

f̃ y(py, qy) and ∂P y would be at most α/2, which is impossible, thus proving (1). As for (2), if

py and f y(py, qy) belong to a multisimplex K for (py, qy) ∈ Ay, then ‖py− f y(py, qy)‖ 6 α/2,

implying that ‖f̃ y(py, qy)− py‖ 6 α, which is impossible unless (py, qy) ∈ Uy, proving (2).

Take a further polyhedral subdivision of Ly×Ly and let T y be the set of its full-dimensional

polyhedra. Let γy be the function generated by T y, i.e. a piecewise-linear convex function

that is linear on and only on each polyhedron in T y. The construction of such a function is

specified in [9, Theorem B.2].

Next we construct a family of metagames Γ̃δ in extensive form parameterized by 0 < δ < 1

that embed Γ.

6.2. A Game with Redundant Strategies. First we construct an extensive-form game

Γ(δ, p0), given 0 < δ < 1 and a collection p0 = (py)y∈X◦ of mixed strategy profiles, where

each py ∈ P y. For each player m and each non-equilibrium action a at x that leads to a

node y ∈ X◦
n, just after m chooses a, she has the option of reconsidering her decision. If

m revises her decision, then Nature steps in and with probability 1 − δ implements m’s

equilibrium action a∗(x) at x and the following continuation in the subgame following a∗(x):

For any node x′ ∈ X∗
m, it chooses the prescription given by the subgame-perfect equilibrium;

if x′ ∈ X◦
m, then in the subgame Γx′ , it prescribes the mixture px′

m; and with probability δ
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Nature continues with a, thus leading into Γy, and implements the strategy prescribed by

py
m. If m does not revise her decision, then after n moves she makes choices in Γy as in the

original game.9

If m chooses to play into the subgame or Nature does so, then next player n gets to move,

knowing only that play is now in the subgame Γy, i.e. n knows that at each predecessor

x′ ∈ Xm of x, m chose the subgame-perfect equilibrium action a∗(x′), and then at x, m

chose a, after which possibly she revised her strategy, in which case with probability δ

Nature chose to lead play into Γy.

Player n chooses one of his pure strategies in Sy
n in a sequential process. First, he provi-

sionally chooses some sy
n. Then he too gets to reconsider his choice, that is, he can choose

to implement sy
n or not. If he chooses to persist with sy

n then that strategy is automatically

implemented in Γy. Or if he chooses to revise his choice then for each pure strategy tyn ∈ Sy
n

he can pick a redundant strategy that plays tyn with probability 1 − δ and with probability

δ plays py
n, and in either case this mixture is also automatically implemented. As with m’s

choice and revision, n’s choices and revisions are not observed by m, who observes only which

nodes of the original subgame Γx are reached.

The resulting game Γ(δ, p0) has the same reduced normal form as Γ because for either

player a revision implements a redundant strategy that with probabilities (1− δ, δ) chooses

one of two continuation strategies available in Γ.

6.3. The Game Tree for Metagames. Now we describe the metagame Γ̃δ for each 0 <

δ < 1. The game begins with a collection of seven outsiders oy
0, oy

m,i, and oy
n,i for i = 1, 2, 3

for each player n and each y ∈ X◦
n, all of whom move simultaneously. Outsider oy

0 chooses a

full-dimensional polyhedron T y in T y. For i = 1, 3, the pure-strategy sets of outsiders oy
m,i

and oy
n,i are the vertex sets V y

m and V y
n of Ky

m and Ky
n, respectively. For j = m, n, outsider

oy
j,2’s pure-strategy set is a finite set Sy,δ

j of points in P y
j chosen such that every point in P y

j

is within δ of some point in Sy,δ
j . For j = 1, 2, a pure strategy vy

j of oy
j,1 corresponds to a

point py
j (v

y
n) in P y

j ; hence, a mixed strategy σy
j,1 of oy

j,1 induces a mixed strategy that is a

point py
j (σ

y
j,1) in P y

j . Likewise, a randomized strategy σy
j,2 induces a point qy

j (σ
y
j,2) in P y

j .

For outsiders oy
j,1 and their choices vy

j for j = 1, 2 and y ∈ X◦, let p0(v0) be the collection

of strategies py
j (v

y
j ). After each strategy profile of the outsiders in which these particular

outsiders choose the profile given by the vy
j ’s, there ensues a copy of Γ(δ, p0(v0)). In the

metagame, no insider (a player in N) is informed about choices of outsiders, so an information

9Examples of game trees induced by m’s reconsideration of a deviation from her subgame-perfect strategy
are displayed in Figure 3 and in the lower panel of Figure 4.
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set of an insider is the union of the corresponding information sets in the games Γ(δ, p0(vy)),

where the only difference among them is the parameter p0(v0).

6.4. Payoffs in the Metagames. Each terminal node of Γδ is a copy of a terminal node

of Γ, and the insiders’ payoffs are the same as in Γ. We now describe the payoffs of the

outsiders. Fix y ∈ X◦. Suppose y ∈ X◦
n, payoffs of the y-outsiders are as follows.

The convex function γy is linear over each polyhedron T y in the subdivision and has a

unique linear extension over P y×P y denoted γy
T y . The payoffs of oy

0 depend on the choices of

oy
m,i and oy

n,i for i = 1, 2 as follows. Each profile of mixed strategies of these players induces

a point (py, qy) in P y × P y and the payoff to oy
0 from choosing T y is γy

T y(py, qy).

For j = 1, 2, outsider oy
j,1 wants to mimic oy

j,3: the payoff to oy
j,1 if he chooses vertex vy

j

and oy
j,2 chooses wy

j is 1 if vy
j = wy

j and zero otherwise.

For j = 1, 2, the payoff of oy
j,3 depends on all the other y-outsiders and is defined as

follows. For each pure strategy T y of oy
0, there exists a unique multisimplex Ly × L̃y of

L × L that contains it. For each pure strategy vy
j of oy

j,3 and each vertex w of Ly × Ly,

define uδ
j,2(T

y, vy
j , w) to be 1 if vy

j is the image of w under the j-th coordinate f y
j of f y and

zero otherwise. The function uδ
j,2(T

y, vy
m, ·) extends uniquely to a multilinear function over

P y × P y since Ly × L̃y is full-dimensional. Now when oy
j,2 plays vy

j , oy
0 plays T y, and for

k = 1, 2 and l = 1, 2, oy
k,l plays a mixed strategy σk,l, the payoff of oy

j,2 is uδ
j,2(T

y, vy
j , (p, q))

where for k = 1, 2, py
k = py

k(σk,1) and qy
k = qy

k(σk,2).

Finally, we describe payoffs to the second set of y-outsiders. The ambient space of P y
m

and P y
n is the space RZy , where Zy is the set of terminal nodes of the subgame Γy. Let

ϕy : RZy → R be the function given by ϕy(ry) = −∑
z∈Zy

r2
z . For each r ∈ RZy , let ξ(r; ·) be

the affine approximation to ϕy at r, i.e. for each r′, ξ(r, r′) =
∑

z∈Zy
(−r2

z + 2(rz − r′z)). For

outsider oy
n,2, his payoff depends on the choices of the insiders and player oy

n,1. His payoffs

are uniformly zero unless the play in the game has the following history. The original players

choose all the moves leading to x, player m chooses a leading to y, and then (regardless of

whether he chooses to revise his strategy or not), play leads to the subgame at y. In this case,

if oy
n,2 chooses a pure strategy sδ,y

n,2, his payoffs are defined as follows: when player n chooses

sy
n without revision, his payoff is ξ(sy,δ

n,2, s
y
n). If player n revises his choice to the redundant

strategy that uses tyn, then if oy
n,1 had chosen py

n, his payoff is ξ(sy,δ
n,2, (1 − δ)tyn + δpy

n). Thus

oy
n,2 wants to mimic the actual choice of n, in the sense that if the final strategy of n that

gets implemented is qy
n, then oy

n,2’s best replies are the points in Sy,δ
n that are closest to qy

n

(under the l2 distance) and thus are all within δ of qy
n.
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The payoff to outsider oy
m,2 is more complicated because player m does not choose a

normal-form strategy in Γy. His payoff depends on the choices of oy
n,1, oy

m,1 and the insiders.

His payoffs are uniformly zero unless the play of the game has the following choices: (i) oy
n,1

chooses a vertex vy
n that does not belong to the boundary of P y

n ; (ii) the original players

choose the actions at nodes preceding x that lead to x; m chooses a, which leads to y, and

then either chooses not to revise her choice or Nature’s choice leads back into Γy; (iii) player

n chooses to revise his choice, and Nature implements the py
n-part of the mixture, i.e. the

history has Nature not implementing the tyn part (the part implemented with probability

(1 − δ)). In the exceptional cases satisfying these three conditions, if oy
m,2 chose a pure

strategy sδ
m,2, then his payoff at the terminal node z is ξ(qy

m(sδ
m,2), z)/py

n(vy
n; z)β∗(z), where

β∗(z) is the probability in Γ that Nature does not exclude z and py
n(vy

n; z) is the probability

that py
n(vy

n) does not exclude z in Γy.

The resulting game Γ̃δ is a metagame that embeds the original game Γ. As in Proposition

3.5, the players retain in Γ̃δ equivalent versions of all their strategies and payoffs available in

Γ. Additional strategies obtained upon reconsideration of a choice introduce only redundant

strategies. In particular, Nature’s action after m’s deviation implements m’s redundant

strategy that is a (1−δ, δ) mixture of her subgame-perfect strategy s∗m and this same strategy

up to x that chooses a at x and then follows with py
m(vy

m). Similarly, after n’s reconsideration

rejects his provisional choice of some sy
n, Nature’s action implements his redundant strategy

that is a (1 − δ, δ) mixture of tyn and py
n(vy

n) in the continuation from y. Outsiders’ actions

affect insiders’ payoffs only via effects on the availability of these redundant strategies. Thus,

the players’ have larger sets of strategies in the metagame Γ̃δ than in the original game Γ,

but only because they can opt for redundant strategies determined by outsiders’ actions.

6.5. Equilibrium Strategies of the Outsiders. Axioms B and S require that any solu-

tion of the metagame Γ̃δ contains a sequential equilibrium, say b̃δ represented in behavioral

strategies, whose equivalent profile of mixed strategies has an image in P that is contained

in the solution P̄ . For each n and y ∈ X◦
n, use σδ,y

i to denote the strategy of outsider i.

For j = m,n, the strategies of outsiders (j, 1) and (j, 2) induce points pδ,y
j ≡ pj(σ

δ,y
j,1) and

q̃δ,y
j ≡ qj(σ

δ,y
j,2), respectively. Let pδ,y = (pδ,y

m , pδ,y
n ) and q̃δ,y = (q̃δ,y

m , q̃δ,y
n ). Let αδ,y

m be the

probability that m chooses not to revise her decision to play into the subgame Γy, and let

rδ,y
m ∈ P y

m be the mixed strategy adopted by m after this choice. Let V δ,y
m and V δ,y

n be the

supports of the strategies of outsiders (m, 3) and (n, 3). Because player n observes only the

outcome of m’s consideration of revising her choice of a, from his perspective, m’s mixed
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strategy in the subgame Γy is the induced average

qδ,y
m ≡ (1− βδ,y

m )pδ,y
m + βδ,y

m rδ,y
m ,

where

βδ,y
m = αδ,y

m /[(1− αδ,y
m )δ + αδ,y

m ] .

Similarly, let qδ,y
n be the mixed strategy implemented by n in the subgame Γy.

Lemma 6.2. The equilibrium strategies of the outsiders satisfy the following properties.

(1) For j = m,n, suppose the vertices in V δ,y
j , which is the support of outsider oy

j,3’s

strategies, span a simplex Kδ,y
j of Kj. Then pδ,y

j belongs to Kδ,y
j .

(2) If every polyhedron in the support of σ̃δ,y
0 , which is outsider oy

0’s equilibrium strategy,

contains (pδ,y, q̃δ,y), then for j = 1, 2, the vertices in V δ,y
j span a simplex Kδ,y

j that

does not have a vertex in ∂P y
j ; moreover, in this case, f(pδ,y, q̃δ,y) ∈ Kδ,y

m ×Kδ,y
n .

(3) Every polyhedron in the support σ̃δ,y
0 contains (pδ,y, q̃δ,y).

(4) For j = m,n, q̃δ,y
j is within δ of qδ,y

j .

Proof of Lemma. For j = m,n, outsider oy
j,1 wants to mimic outsider oy

j,3. So, if the vertices

of V δ,y
j span a simplex Kδ,y

j , then the payoff to oy
j,1 from choosing a vertex wy

j is positive if it

belongs to V δ,y
j and zero otherwise. Point (1) follows.

Let L̂ = ((Lm × Ln) × (L̃m × L̃n)) be the unique multisimplex that contains (pδ,y, q̃δ,y)

in its interior. For each polyhedron T y in the support of oy
0’s strategy, there exists now a

full-dimensional multisimplex L̄ of L × L that contains T y. Obviously L̄ has L̂ as a face.

For j = m, n, by construction, his payoff from choosing a strategy wy
j if oy

0 chooses such a

T y and given the strategies of the other outsiders, is positive if it is the image of a vertex of

L̂ under f and zero otherwise. Also, since no vertex in ∂P y
j is the image of a vertex of L, no

such vertex can be a best reply. Therefore, point (2) follows.

For each polyhedron T y of of T y, the payoff from T y is γy
T y(py, qy) and by construction,

γy
T y(py, q̃y) 6 γ(py, q̃y) with the inequality being strict iff (py, q̃y) does not belong to T y,

which proves (3).

Admissibility of oy
n,2’s strategy requires that it be a best reply to qδ,y

n . By construction,

q̃δ,y
n is within δ of qδ,y

n .

As for outsider oy
m,2, his strategy q̃y

m has to be an admissible best reply against the equi-

librium. Let τ̂ be a completely mixed strategy of the others. Observe first that oy
m,2’s choice

of a reply to τ̂ depends only on the following: the insiders adhere to equilibrium play up to

x; at x, m chooses a leading to y and then either Nature or player m leads play to Γy; the
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point that oy
n,1’s strategy induces in P y

n ; the total probability that n revises his strategy in

the subgame Γy; the actual mixed strategy for m that gets implemented in Γy. Specifically,

let (1 − α̂y
m) be the probability under τ̂ of player m opting out of the subgame and let r̂y

m

be the strategy under τ̂ that m employs in Γy if he does not opt out. Let α̂y
n be the total

probability of n revising his choice under τ̂ , and let p̂m = py
m(τ̃ y

om,1
). Also, let βi(x; τ̂) be the

probability that node x is enabled by insider i under the strategy τ̂ , and let W y,δ
n be the set

of vertices of Kn that do not belong to ∂P y
n . The expected payoff of oy

m,2 from a strategy sy,δ
m

is then βm(x; τ̂)βn(x; τ̂) times

∑
z∈Zy

β∗(z)
∑

vy
n∈W y,δ

n

τ̂ y
oy

n,1
(vy

n)α̂y
nδp

y
n(vy

n; z)[(1− α̂y
m)δp̂m(z) + α̂y

mr̂y
m(z)]ξ(sy,δ

m , z)/py
n(vy

n; z)β∗(z) ,

which equals

βm(x; τ̂)βn(x; τ̂)
∑

vy
n∈W y,δ

n

τoy
n,1

(vy
n)α̂y

nδ[(1− α̂y
m)δ + α̂y

m]ξ(sy,δ
m , q̂y

m) ,

where

q̂y
m = [(1− α̂y

m)δp̂m + α̂y
mr̂y

m]/[(1− α̂y
m)δ + α̂y

m]

is the average strategy of m that is implemented in the subgame Γy. By construction, the best

replies for oy
m,2 against τ̂ are those points that are within δ of q̂y

m. Thus if we have a sequence

of such completely mixed strategies τ̂ converging to our equilibrium, then the corresponding

sequence q̂y
m converges to qδ,y

m , which is the strategy of m that gets implemented in Γy under

our equilibrium. Thus q̃δ,y
m is within δ of qδ,y

m . ¤

6.6. Final Step of the Proof. Take a sequence of δ’s converging to zero and a correspond-

ing sequence of sequential equilibria b̃δ in behavioral strategies. By points (1) and (2) of

Lemma 6.2, pδ,y and f y(pδ,y, q̃δ,y) belong to the same multisimplex Kδ,y. Along a subse-

quence, this multisimplex is the same, say Ky. By point (3) of Lemma 6.2, q̃δ,y and qδ,y

have the same limit, say q0,y. Let p0,y be the limit of pδ,y. Then p0,y and f y(p0,y, q0,y) belong

to Ky. If we show that (p0,y, q0,y) belongs to Ay, then (p0,y, q0,y) belongs to Uy, thus q0,y
n

belongs to V y, and the theorem is proved.

Therefore all that remains is to show that (p0,y, q0,y) belongs to Ay. By point (2) of Lemma

6.2, Ky does not have a vertex in ∂P y; therefore, for all δ, including δ = 0, pδ,y belongs to

the interior of P y. Recall that qδ,y
m = (1− βδ,y

m )pδ,y
m + βδ,y

m rδ,y
m . Hence q0,y

m can be expressed as

(1 − β0,y
m )p0,y

m + β0,y
m r0,y

m . Obviously qδ,y
n is a best reply against qδ,y

m . Therefore, q0,y
n is a best

reply against q0,y
m . For all small δ, the strategy for m of letting Nature play yields nearly

the continuation payoff W y,∗
m from choosing a∗(x) at x. Therefore, β0,y

m is positive only if r0,y
m
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yields a payoff of W y,∗
m against q0,y

n . If β0,y
m = 0 then all strategies in P y

n yield no more than

m’s equilibrium continuation payoff W y,∗
m against q0,y

n ; and q0,y is a best reply against p0,y
m ,

which is in the interior of P y
m. Thus (p0,y, q0,y) belongs to Ay and we are done.

Suppose now that β0,y
m is positive. Let bδ,y

m be a sequence of behavioral strategies in Γy

corresponding to the sequence rδ,y
m and let b0,y

m be its limit. For each δ, let b̃δ,ε(δ) be a sequence

of completely mixed behavioral strategies converging to b̃δ (the originally specified sequential

equilibrium in behavioral strategies of Γ̃δ) such that bδ,y
m is a sequentially rational strategy

against the beliefs induced by the sequence.

Let S0,y
n be the set of pure strategies for n in Γy that are best replies against q0,y

m . By

the optimality property of a sequential equilibrium, for each small δ, player n avoids choos-

ing a strategy that is not in S0,y
n both when he makes a provisional choice and then at

the node where he has an option to revise his strategy, where he would strictly prefer to

play one of the duplicates that chooses a strategy in S0,y
n with probability (1 − δ). Since

these duplicates result in implementing the completely mixed strategy pδ,y
n with positive

probability, for all such small δ, the beliefs in Γy can be obtained from replacing the se-

quence b̃δ,ε(δ) with the corresponding sequence of the induced conditional distributions over

the strategies in S0,y
n as well as the duplicates. In terms of mixed strategies of the origi-

nal strategy space, this corresponds to a sequence (1 − ε(δ))q̂
δ,y,ε(δ)
n + ε(δ)pδ,y

n where q̂
δ,y,ε(δ)
n

has its support in S0,y
n and converges to qδ,y

n . Therefore, q̂
δ,y,ε(δ)
n itself can be written as

(1 − λ(ε(δ)))qδ,y
n + λ(ε(δ))r

δ,y,ε(δ)
n , for a suitable sequence of λ(ε(δ)) converging to zero and

where the support of r
δ,y,ε(δ)
n is contained in S0,y

n . Rewriting the sequence, we can express it

as (1− ε̂(δ))qδ,y
n + ε̂(δ)(λ̂(ε̂(δ))r

δ,y,ε̂(δ)
n + (1− λ̂(ε̂(δ), δ))pδ,y

n ) for a sequence of ε̂ converging to

zero and a corresponding sequence of λ̂(ε(δ)). Let λ̂(δ)rδ,y
n +(1− λ̂(δ))pδ,y

n be the limit of the

sequence (λ̂(ε̂(δ), δ)r
δ,y,ε̂(δ)
n +(1−λ̂(ε̂(δ), δ))pδ,y

n ). Then bδ,y
m is sequentially rational against the

beliefs induced by the sequence (1− ε̂)qδ,y
n + ε̂(λ̂(δ)rδ,y

n + (1− λ̂(δ))pδ,y
n ). Taking the limit of

λ(δ), rδ,y
n and pδ,y

n as δ goes to zero, and denoting them by λ, r0,y
n and p0,y

n , respectively, we get

that b0,y
m is sequentially rational against the beliefs induced by (1−ε)q0,y

n +ε(λ̂r0,y
n +(1−λ̂)p0,y

n )

for a sequence of ε’s converging to zero.

It remains to prove that r0,y
n is an admissible best reply against q0,y

m if λ̂ > 0. Observe that

by construction, the support of r0,y
n is contained in S0,y

n , the set of strategies that are best

replies against q0,y
m . Furthermore, q0,y

m , which equals β0,y
m r0,y

m + (1 − β0,y
m )p0,y

m , is completely

mixed, since p0,y
m is completely mixed: indeed, otherwise β0,y

m is zero, which implies that there

exists a continuum of equilibria where player m randomizes at x between his equilibrium
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play and choosing x followed with r0,y
m , which is impossible because Γ is generic. Thus q0,y

m

is completely mixed, so r0,y
n is admissible, and we are done. ¤

7. Concluding Remarks

Axiom S excludes refinements from depending on embeddings in metagames. The motiva-

tion for this axiom is to prevent refinements from being sensitive to presentation effects. Yet

Theorem 6.1 shows that for PI games this axiom requires a solution to contain all admissible

equilibria in the same component as the subgame-perfect equilibrium. Each equilibrium in

this solution is included because it could occur as the insiders’ strategies in a sequential

equilibrium of a metagame in which the PI game is embedded.

One could argue that this conclusion contradicts the motivation for the axiom since,

other than the subgame-perfect equilibrium, the admissible equilibria in the stable set are

included precisely because they are occur as sequential equilibria of a metagame, which is

a particular presentation effect. The implication we see is that the selection of a particular

equilibrium can stem from an associated class of embeddings, but if the PI game is specified

in isolation, without restricting the possible embeddings, then a refinement cannot exclude

any equilibrium in the solution. Sufficiently rich detail about how the game is embedded

might select a unique equilibrium of the game among insiders, but absent such context, one

needs more information to select any proper subset of the solution.

One could also argue that the theorem is uninteresting because all equilibria in the so-

lution of a PI game have the same outcome, namely the outcome of the subgame-perfect

equilibrium. In this view, players’ strategies after one deviates are irrelevant except that they

must sustain players’ incentives to stay on paths of equilibrium play. Our view is that it is

important to understand how rational behavior is conditioned by one player’s interpretation

of the other’s deviation, that is, by the beliefs that sustain the equilibrium in the ensuing

subgame.

To illustrate, we repeat here an example in [7] that invokes only invariance, which is a

weaker restriction than Axiom S. Figure 4 shows at the top a PI game Γ in which players 1

and 2 alternate moves. In the subgame-perfect equilibrium each player chooses down at each

opportunity, which we represent by the pure strategy D, ignoring his subsequent choice were

the player to deviate. There is a single component of the Nash equilibria in which 1 uses D

and 2 uses any mixed strategy for which the probability of D is > 2/3. The component of

admissible equilibria requires further that 2’s probability of a is zero.

Figure 4 shows at the bottom the metagame Γ̃δ in which player 1 can reject D and

then upon reconsideration choose either the redundant strategy x(δ), which is a mixture
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A A

D D d d

1,0 0,2 0,4

a a

A A

D D d d

1,0 0,2

3,0

0,4

a a

x(δ)

3,0

A

0,2 0,4

a a

3,0

A A

1,0 0,2 0,4

a a

3,0

1 − δ

A A

D d d

1,0 0,2 0,4

a a

3,0

A A

D

1,0 0,2 0,4

a a

3,0

0,0

0,0

0,0

1 1

1 1

2 2

22

δ

1/4

3/4

1

Figure 4. Top: A game Γ between players 1 and 2. Bottom: The metagame
obtained by allowing player 1 to commit to the redundant strategy x(δ) after
rejecting D.

(1 − δ, δ/4, 3δ/4) of D, d, a, where 0 < δ < 1, or continue into the subgame by choosing A

and then later d or a if 2 chooses A. The two information sets of player 2 indicate that 2

cannot know whether 1 chose A or x(δ). The reduced normal form of the metagame is the

same as the original, since x(δ) is a redundant strategy.

There is a unique sequential equilibrium in the metagame in which 1 chooses D and

2 randomizes between D and d with probabilities α(δ) and 1 − α(δ), where α(δ) = [8 +

δ]/[12 − 3δ]. This is sustained by 2’s belief at his first information set that the conditional

probability that 1 chose x(δ) given that she rejected D is β(δ) = 2/[2 + δ]. By Bayes’ Rule,

the conditional probability that 1 chose x(δ) given that A occurred is p = 2/3.

A refinement that includes the sequential equilibrium of each metagame Γ̃δ must therefore

include every profile (D; α(δ), 1−α(δ), 0) as δ varies between zero and one. Since α(0) = 2/3

and α(1) = 1 this requires the refinement to select the entire component of admissible

equilibria, which is the stable set.
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This example illustrates that each equilibrium in the stable set is sustained by 2’s belief

derived from a particular hypothesis, namely, embedding in the metagame Γ̃δ for some

particular value of the parameter δ.

Appendix A. Proof of the Pseudo-Manifold Property

This appendix proves Proposition 5.2.

Proposition 5.2: For each player n and node y ∈ X◦
n, (Ay, ∂Ay) is a pseudo-manifold with

boundary and has the same dimension as P y. Moreover, the projection map πy : (Ay, ∂Ay) →
(P y, ∂P y) has degree one.

Proof. Fix y ∈ X◦
n. Fix a pair T = (T y

m, T y
n ) of subsets of pure strategies such that T y

n is

nonempty, while T y
m could be empty, and with the following additional properties: (i) for

each player i, the strategies in Ti span a face of P y
i , say P y

i (T y
i ), and all points on this face

are admissible strategies; (ii) there exist points in P y
n (T y

n ) against which the strategies in T y
m

all give a payoff of W y,∗
m and strategies in Sy

m \ T y
m give no more than W y,∗

m .

If T y
m is empty then let Cn(T ) be the set of points in P y,∗

n ∩ P y
n (T y

n ); by genericity, all

other strategies yield m strictly less than W y,∗
m against every point in the relative interior of

Cn(T ). If T y
m is nonempty then let Cn(T ) be the set of points in Pn(T y

n ) against which all

the strategies in T y
m are optimal in the subgame Γy and yield W y,∗

m . Let T̃ y
n be the vertices

of the maximal face of P y
n (T y

n ) whose interior intersects Cn(T ). Using (ii) above and the

genericity of payoffs, then, there exist points in the interior of P y
n (T y

n ) against which all the

strategies in P y
m yield strictly less than W y,∗

m , and hence T̃ y
n = T y

n if T y
m is empty. Let T̃ y

m be a

minimal subset of T y
m with respect to the following property: for each strategy pn ∈ P y

n (T̃ y
n ),

the probability distribution induced by the strategies in T y
m \ T̃ y

m are affine combinations of

those induced by strategies in T̃ y
m. By genericity of payoffs, the dimension of Cn(T ) is then

cn(T ) = ln(T̃ y
n ) − |T̃ y

m|, where ln(T̃ y
n ) is the dimension of P y

n (T̃ y
n ) and |T̃ y

m| is zero if T y
m is

empty.

If T y
m is empty then let Xn(T y

m) be the set of points in P y
n against which all the strategies

in P y
m yield no more than W y,∗

m . If T y
m is nonempty then let T̄ y

m be the set of strategies sy
m in

Sy
m\T y

m that are equally as good replies as strategies in T y
m against all points in Cn(T ). Since

the strategies in T y
m are admissible, the set Xn(T y

m) consisting of the points qn against which

the strategies in T y
m are equally good replies, yield W y,∗

m , and are at least as good as strategies

in T̄ y
m, has a nonempty intersection with the interior of P y

n . By genericity of payoffs, Xn(T y
m)

has dimension dn(T y
m) ≡ lyn−lym(T y

m)−1, where lyn and lym(T y
m) are respectively the dimensions

of P y
n and Pm(T y

m).
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Let Bn(T ) be the set of points in P y
n of the form λqn + (1 − λ)rn, where qn ∈ Xn(T y

m),

rn ∈ Pn(T y
n ), and λ > 1. Observe that if T y

m is empty then Bn(T ) is P y
n . Indeed, in this case

pick a point rn in the interior of Cn(T ). All strategies in P y
m yield strictly less than W y,∗

m

against rn. Therefore, for each pn ∈ P y
n and each small 0 < λ < 1, these strategies still yield

less than W y,∗
m against (1−λ)rn + λpn; thus pn ∈ Bn(T ). The following lemma characterizes

the nature of the set Bn(T ) when T y
m is nonempty. Here lyn(T y

n ) is the dimension of the face

P y
n (T y

n ).

Lemma A.1. Suppose T y
m is nonempty. Bn(T ) is a nonempty polyhedron of dimension

dn(T y
m) + lyn(T y

n ) − cn(T ). Each maximal face B′
n(T ) of Bn(T ) satisfies exactly one of the

following:

(i) Its relative interior is contained in the relative interior of a maximal proper face of

P y
n .

(ii) There exists a strategy sy
m ∈ T̄ y

m such that sy
m is as good a reply against every

qn ∈ Xn(T y
m) for which (1 − λ)rn + λqn belongs to B′

n(T ) for some λ > 1 and

rn ∈ P y
n (Tny); moreover, in this case, P y

m(T y
m) is a maximal proper face of the smallest

face of P y
m that includes the strategies T y

m and sy
m.

(iii) There exists a maximal proper face of P y
n (T y

n ) such that for each qn ∈ Xn(T y
m),

rn ∈ P y
n (T y

n ) and λ > 1, if λqn + (1− λ)rn belongs to B′
n(T ), then rn belongs to this

face; moreover in this case, letting T ′ be the vertices of this face, Cn(T ) = C(T ′).

Proof of Lemma. Bn(T ) is a subset of the affine space generated by Xn(T ) and P y
n (T y

n ). This

affine space has dimension dn(T )+lyn(T y
n )−cy

n(T ), since the intersection of Xn(T ) and P y
n (T y

n )

is exactly Cn(T ). By admissibility, there exists a point qn ∈ Xn(T ) \ ∂P y
n . There now exist

points pn arbitrarily close to such a qn such that λpn + (1− λ)rn belongs to Xn(T ) for some

0 < λ < 1 and rn ∈ P y
n (T y

n ). Clearly pn has a neighborhood in the affine space generated

by Xn(T ) and P y
n (T y

n ) that is contained entirely in Bn(T ). Hence Bn(T ) is nonempty and

has dimension dn(T ) + lyn(T y
n ) − cn(T ), as asserted. We now show that Bn(T ) is actually a

polyhedron whose maximal faces satisfy the properties of the lemma.

Choose a basis qn,i, i = 0, . . . , dn(T ) for the affine space spanned by Xn(T y
m) such that qn,i

belongs to Xm(T ) \ Cn(T )) for i 6 dn(T ) − cn(T ) − 1 and it belongs to Cn(T ) otherwise.

Choose vectors qn,i for i = dn(T ) + 1, . . . , dn(T ) + ln(T y
n ) − cn(T ) such that the vectors qn,i

for i > dn(T ) − cn(T ) span the affine space generated by P y
n (T y

n ). Let B̄n(T ) be the set

of pairs (λ, µ) ∈ Rdn(T ) × Rlyn(T y
n ) such that λ̄ − µ̄ = 1, λ̄ > 1, where λ̄ =

∑
i λn,i and

µ̄ =
∑

i µn,i. For each (λ, µ) ∈ B̄n(T ), let qn(λ) =
∑

i6dn(T )) λn,iqn,i, rn(µ) =
∑

i µn,irn,i, let

h(λ, µ) = qn(λ)− rn(λ). Let B̃n(T ) be the set of (λ, µ) such that rn(µ) and hn(λ, µ) belong
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to the convex cone spanned by P y
n (T y

n ) and P y
n respectively (which immediately implies that

qn(µ), as a linear combination of rn(λ, µ) and hn(λ, µ) also belongs to the convex cone of

P y
n ); the strategies in T y

m yield W y,∗
m against λ̄−1qn(µ) and other strategies yield no more than

W y,∗
m . Bn(T ) is now the image of B̃n(T ) under h. B̃n(T ) and Bn(T ) are now easily seen to

be polyhedra.

For a maximal proper face B′
n(T ) of Bn(T ), exactly one of the following holds uniformly

for all pn in the interior of B′
n(T ) and for each (λ, µ) in h−1(pn): (i) pn is on the boundary; (ii)

one or more of the strategies in T̄ y
m is a best reply against qn(µ); (iii) rn(µ) belongs to a face of

Pn(T y
n ); or (iv)

∑
i λi = 1. For condition (i), genericity of payoffs implies that the boundary

has to be a maximal proper face. In the case of (ii) the strategies sy
m in T̄ y

m that are now

equally good replies are such that their union with T y
m spans a face of P y

m of which Pm(T y
m) is

a maximal proper face, since otherwise the intersection of the sets where they all yield W y,∗
m

has a dimension that is at least two less than that of Xn(T y
m). As for (iii), suppose Cn(T ′) (

Cn(T ), qn(λ) is in the relative interior of Xn(T y
m), λ̄ ≡ ∑

i λi > 1 and rn(µ) ∈ ∂Pn(T y
n ). Pick

an r∗n in Cn(T ) \ Cn(T ′); q′n ≡ (1 − α)qn(µ) + αr∗n = (1 − α)((λ̄)
−1

(pn + (1 − λ̄)rn) + αr∗n
belongs to Xn(T y

m). Since r∗n /∈ P y
n (T ′

n), we could not have a boundary point in case (iii)

if Cn(T ′) ( Cn(T ). Condition (iv) implies that Bn(T ) = Xn(T y
m). Let X+

n (T y
m) (resp.

X−
n (T y

m)) be the set of points where strategies in Tm are equally good replies, are all better

than strategies in T̄m, and yield at least (resp. no more than) W y,∗
m . The relative interior

of Xn(T y
m) is contained in the relative interior of their union. Moreover, each set intersects

P y
n (T̃ y

n ). For a point p+
n ∈ X+

n (T ), we can choose a point r−n in X−
n (T )∩Pn(T̃n) and then some

convex combination of p+
n and r−n belongs to Xn(T y

m); thus p+
n ∈ Bn(T ). Likewise X−

n (T ) is

contained in Bn(T ) as well. Since the relative interior of Xn(T y
m) is in the relative interior

of their union, we could not have that Bn(T ′) = Xn(T y
m). Thus case (iv) is impossible. ¤

We need one more lemma concerning these sets Bn(T ). Let C ′ be a maximal face of

C(T ). Let Tn be the set of T ′
n such that P y

n (T ′
n) is a maximal proper face of P y

n (T y
n ) and

Cn(T ′) = C ′, where T ′ = (T y
m, T ′

n). Likewise, let Tm be the set of T ′
m’s such that Pm(T y

m) is

a maximal proper face of P y
m(T ′

m) and Cn(T ′) = C ′, where now T ′ = (T ′
m, T y

n ). Let S ′m be

the set of strategies t′m such that the face spanned by T y
m and t′m equals P ′

m(T ′
m) for some

T ′
m ∈ Tm. Let T be the set of T ′ of the form (T ′

m, T y
n ) or (T y

m, T ′
n) for T ′

m ∈ Tm and T ′
n ∈ Tn.

Lemma A.2. Each Bn(T ′) is a full-dimensional subset of Bn(T ); Bn(T ) = ∪T ′∈T Bn(T ′);

and the intersection of Bn(T ′) ∩ Bn(T
′′
) for T ′, T

′′ ∈ T is a proper face of each. Thus, the

Bn(T ′)’s form a polyhedral subdivision of Bn(T ).
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Proof of Lemma. If T ′ = (T ′
m, T y

n ), then dn(T ′) = dn(T ) − 1, cn(T ′) = cn(T ) − 1, and by

the previous lemma, Bn(T ′) and Bn(T ) have the same dimension. If T ′ = (T y
m, T ′

n), then

dn(T ′) = dn(T ), cn(T ′) = cn(T ) - 1, ln(T ′
n) = ln(T y

n )− 1, and again the result follows.

We now show that Bn(T ) = ∪T ′Bn(T ′). Obviously for each T ′ ∈ T , Bn(T ′) is contained in

Bn(T ) and ∪T ′Bn(T ′) ⊆ Bn(T ). To prove the reverse inequality, given pn ∈ Bn(T ) expressed

as λqn + (1 − λ)rn for some λ > 1, qn ∈ Xn(T y
m) and rn ∈ P y

n (T y
n ), suppose there exists

t′m ∈ S ′m such that t′m yields at least W y,∗
m against qn. Then, we claim that pn ∈ Bn(T ′) for

some T ′ = (T ′
m, T y

n ). For this claim, let r∗n be a point in the interior of Cn(T ). Strategies in

S ′m yield strictly less than W y,∗
m against r∗n. For each qn(α) ≡ αr∗n +(1−α)qn, let v(α) be the

highest payoff from strategies t′m ∈ S ′m against qn(α). v(0) < W y,∗
m and v(1) > W y,∗

m . There

now exists 0 < α 6 1 such that v(α) = W y,∗
m . Let t′m be a strategy in S ′m that achieves W y,∗

m

against qn(α); then pn belongs to Bn(T ′
m, T y

n ) where T ′
m is the face spanned by T y

m and t′m.

Thus, it remains to consider the case where for this pn and any expression of pn in the

form λqn + (1 − λ)rn, the payoff from each t′m ∈ S ′m is strictly smaller than W y,∗
m . In this

case, we claim that Tn is nonempty. Indeed, to see this claim, suppose that Tn is empty.

Then, since C ′ is a maximal proper face of Cn(T ), its interior lies in the interior of P y
n (T̃ y

n ).

Expressing pn as λqn + (1 − λ)rn in Bn(T ), by assumption, the payoff from every strategy

in Sy
m is smaller than W y,∗

m against qn. There now exists a point r′n in the interior of P y
n (T̃ y

n )

against which the strategies in T y
m still yield W y,∗

m but some strategy in S ′m yields a higher

payoff. Let qn(α) ≡ αr′n + (1 − α)qn for 0 6 α 6 1 and let v(α) be the highest payoff from

the strategies in S ′m against qα
n . v(0) < W y,∗

m < v(1) and now there exists 0 < α < 1 such

that some strategy in S ′m yields W y,∗
m against qn(α), which by assumption is impossible, since

such a qn(α) is expressible as a convex combination of pn and a point in P y
n (T y

n ). Thus Tn is

nonempty.

Since Tn is nonempty, there exists at least one maximal proper face P y
n (T ′

n) such that

Cn(T ′) = C ′. And, Cn(T ) is not contained in any such face. Choose now r∗n in the interior of

Cn(T ). r∗n does not belong to any P y
n (T ′

n) for T ′
n ∈ Tn. For the given pn, choose an expression

pn = λqn +(1−λ)rn. We can assume without loss of generality that qn is completely mixed,

if necessary by replacing pn with a point that is arbitrarily close to it in Bn(T ) and proving

that this pn now belongs to Bn(T y
m, T ′

n) for some T ′
n ∈ Tn. For each 0 < α < 1, now let

qn(α) = (1− α)r′n + αqn where r′n is some point in the interior of C ′. Since qn is completely

mixed, qn(α) is in the interior of P y
n for all α. Therefore, for each α, there exists a unique

λ(α) > 1 such that rn(α) ≡ λ(a)qn(α) + (1− λ(a))r∗n belongs to the boundary of P y
n . For α

close to zero, qn(α) is very close to r′n, which belongs to the boundary of P y
n (as it belongs to

C ′ which belongs to a face of proper face of P y
n (T y

n )). Therefore, for such α, rn(α) belongs
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to a face Qy
n of P y

n that contains r′n in in its interior (and hence also C ′, by virtue of the fact

that r′n belongs to the interior of C ′). Qy
n is then a proper face of P y

n (T y
n ). And, it cannot

contain r∗n: indeed if it did then qn(α), as a convex combination of rn(α) and r∗n, would

belong to Qy
n as well, which is impossible, since it belongs to the interior of P y

n . Thus, Qy
n

is a proper face of P y
n (T y

n ) that contains C ′ but not Cn(T ). Let T ′
n be any maximal proper

face of P y
n (T y

n ) that contains Qy
n but not Cn(T ). Obviously pn now belongs to Bn(T y

m, T ′
n).

Thus, we have shown that Bn(T ) ⊆ ∪T ′Bn(T ′) and in fact that the two sets are equal.

To show that the intersection of two sets Bn(T ′) is a face of each, it is sufficient to show

that for each Bn(T ′) every maximal proper face of Bn(T ′) either belongs to the boundary of

Bn(T ) or is a maximal proper face of exactly one other Bn(T
′′
). Suppose T ′ = (T ′

m, T y
n ) and

B′ is a maximal proper face of Bn(T ′). By the previous lemma, there are three possibilities.

Under case (i) there, B′ belongs to the boundary of Bn(T ). Under case (ii), let T̂ ′
m be the

vertices of the set spanned by T ′
m and this strategy tym identified under (ii). Then P y

n (T̂ ′
m)

has P y
m(T ′

m) as a maximal proper face and it in turn has P y
m(T y

m) as a maximal proper face.

Therefore there exists a subset T
′′
m of T̂ y

m such that P y
m(T

′′
m) is a maximal proper face of

P y
m(T̂ ′

m) that is different from P y
m(T ′

m) and that still contains P y
m(T y

m) as a maximal proper

face. Let T̂
′

= (T̂ ′
m, T y

n ) and let T
′′

= (T
′′
m, T y

n ). Then, since Cn(T̂ ′) = C ′, there are two

possibilities. Either Cn(T
′′
) = Cn(T ) or Cn(T

′′
) = C ′. In the former case, B′ belongs to

the boundary of Bn(T ). In the latter case, B′ is a maximal proper face of Bn(T
′′
). Case

(iii) implies that for the face Pn(T
′′
) of Pn(T y

n ) such that for every pn ∈ Bn(T ′) expressed as

some λqn + (1− λ)rn, rn ∈ Pn(T
′′
n ), Cn(T

′′
n ) = Cn(T ′) = C ′. Thus, T

′′
n ∈ Tn and B′ is a face

of Bn(T y
m, T

′′
n ). If B′

n is a face of Bn(T y
m, T ′

n), the proof is analogous to the above arguments

and hence omitted. ¤

For each T , let An(T ) ≡ Bn(T ) × Cn(T ). Then An(T ) is a polyhedron of dimension

lyn − lym(T y
m) + ln(T y

n )− 1.

We turn now to an equivalent analysis of Pm. Again fix the sets (T y
m, T y

n ) with the same

properties as above. Let Xm(T y
n ) be the set of points in P y

m against which the strategies in

T y
n are best replies. The dimension of Xm(T y

n ) is dm = lm − ln(T y
n ).

If T y
m is empty, let Am be the set of (pm, pm) such that pm ∈ Xm(T y

n ). Otherwise, let Am(T )

be the set of (pm, qm) ∈ P y
m×Xm(T y

n ) such that there exists λ > 1 such that (1−λ)pm +λqm

belongs to Pm(T y
m). Observe that this λ is unique unless pm (and hence also qm) belongs to

Pm(T y
m). The following is analogous to the previous lemma.

Lemma A.3. The set Am(T ) is a convex polyhedron of dimension lm + lm(T y
m)− lyn(T y

n )+1.

On a maximal proper face A′
m of Am(T ) exactly one of the following inequalities holds
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uniformly for all (pm, qm) in A′
m: (i) pm belongs to a maximal proper face of P y

m; (ii) there

exists sn /∈ T y
n such that sn is a best reply against (pm, qm); moreover, Pn(T y

n ) is a maximal

proper face of P y
n spanned by T y

n and this strategy sn; (iii) there exists a maximal proper

face of P y
m(T y

m) (which is empty if T y
m is a singleton) such that if qm = (1−λ)pm +λrm, then

rm belongs to this face (and if T y
m is a singleton, then qm = pm).

Lemma A.4. (p, q) belongs to Ay iff there exists T as above such that ((pm, qm), (pn, qn)) ∈
Am(T )× An(T ).

Proof of Lemma. Suppose (p, q) belongs to Am(T ) × An(T ) for some T . We will show that

it belongs to Ay. It is sufficient to show this when (p, q) belongs to the interior of Am(T )×
An(T ), since Ay is closed. By this assumption, p belongs to the interior of P y. The support of

qn is in T y
n ; the strategies in T y

n are best replies against qm; and also, there exists rn ∈ Pn(T y
n ),

λn ∈ (0, 1] and q′n ∈ Xn(T y
m) such that q′n = (1− λn)rn + λnpn. Since the support of rn and

qn are contained in T y
n , which are all best replies against qm, point (iii) of the definition of

Ay is satisfied. Thus there remains point (ii). If pm = qm, there is nothing more to prove.

Suppose now that qm = (1− λm)pm + λmrm for some λ > 0 and the support of rm is in T y
m.

Fix a point r′n in the relative interior of Cn(T ) and consider for fixed 0 < δ < 1 (which is to

be specified later), the sequence q(ε) = (1− ε)qn + ε((1− δ)r′n + δq′n). By the construction

of Am(T ), the support of rm is contained in T y
m, and the strategies T y

m are optimal against

qn and r′n, both of which belong to Cn(T ). Also they do equally well against q′n and hence

against qn(ε) for all ε. If sy
n belongs to T̄ y

m, then it does as well as strategies in T y
m against

both qn and r′n but no better against q′n. Finally, if sy
n does not belong to T̄ y

m, then it does

no better than T y
m against qn and strictly worse than those strategies against r′n, and thus

worse against qn(ε) for small ε if δ is sufficiently close to 1. Thus we have shown that (p, q)

belongs to Ay.

Suppose now that (p, q) belongs to Ay. We will show that it belongs to Am(T ) × An(T )

for some T . Again, it is sufficient to assume that p is in the interior of P y and (p, q)

satisfies the conditions (i)-(iii) of the definition of Ay. Let qm = (1− λm)pm + λmrm and let

q′n = (1 − λn)pn + λnrn. Let Tn be the support of qn if λn = 0 and otherwise let it be the

union of the supports of qn and rn. If λm = 0 then letting Tm be the empty set we see that

(p, q) belongs to Am(T )× An(T ).

Suppose now that λm 6= 0. Let Tm be vertices of the face of P y
m that contains rm in its

interior. Since (1 − λn)qn + λnrn is a best reply against (1 − λm)pm + λmrm, which, like

pm is in the interior of P y
m, it is an admissible best reply against that strategy and thus

(pm, qm) ∈ Am(T ). We now have to show that (pn, qn) belongs to An(T ). Let qn(ε) ≡
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(1 − ε)qn + ε((1 − λn)pn + λnrn) be a sequence satisfying condition (ii). Then by weak

sequential rationality, the strategies in T y
m are best replies against qn and thus qn belongs to

Cn(T ). Thus there remains to show that pn belongs to An(T ). To do this we need to show

that there exists a point of the form λ′nr′n + (1 − λ′n)pn against which the strategies in T y
m

yield W y,∗
m and are at least as good replies as those in T̄ y

m. In fact it is sufficient to show

a weaker statement, one obtained by relaxing the requirement that the common payoff to

the strategies in T y
m is W y,∗

m . Indeed, suppose the common payoff is some w < W y,∗
m (the

argument for the other case being analogous) then we can find a point r
′′
n in P y

n (T̃ y
n ) where

the strategies in T y
m ∪ T̄ y

m all yield the same payoff and this payoff is strictly greater than

W y,∗
m ; an average of the original point and r

′′
n now shows that pn ∈ An(T ). Thus, we will

show that there exists a point of the form λ′nr
′
n + (1− λ′n)pn against which the strategies in

T y
m are equally good replies and are at least as good a replies as those in T̄ y

m. Suppose, to

the contrary, that this statement is not true. Then, letting Kn be the convex hull of pn and

P y
n (T y

n ), we see that some strategy r∗m with support contained in T y
m is weakly dominated

by another strategy r̂m whose support is contained in T y
m ∪ T̄ y

m when we restrict n to the

set Kn of strategies. Since all the strategies in T y
m ∪ T̄ y

m yield the same payoff against which

qn, which belongs to the interior of, say, P y
n (T̄ y

n ), the strategies r∗m and r̂m yield the same

payoff against every strategy in P y
n (T̄ y

n ), since otherwise, r∗m would not be dominated by r̂m.

Therefore, by the genericity of the game, the strategies r∗m and r̂m induce the same outcome

against every strategy in P y
n (T̄ y

n ). Consequently, any node x ∈ Xm that is not excluded by

qn nor by either r∗m or r̂m, is enabled by the other as well and the actions prescribed by

behavioral strategies equivalent to these two agree at such a node. If x ∈ Xm is node that

is excluded by qn, then it is enabled by (1 − λn)pn + λnrn, since pn is completely mixed;

therefore, by weak sequential rationality of rm, if x is not excluded by r∗m, then r∗m prescribes

choices at x that are optimal against (1− λn)pn + λnrn. This implies that r∗m is at least as

good a reply as r̂m against qn(ε) for all ε, which implies that it is not dominated by r̂m as

claimed. Thus pn ∈ An(T ). ¤

Lemma A.5. Ay is a pseudo-manifold of dimension lym + lyn.

Proof of Lemma. For each T , the dimension of Am(R) is lm + lm(T y
m) − ln(T y

n ) + 1; that

of An(T ) is ln + ln(T y
n ) − lm(T y

m) − 1, with the convention that lm(∅) = −1. Hence the

dimension of Ay is lym + lyn. We now prove the pseudo-manifold property. To prove this, it

is sufficient to show that for each T , each maximal face A′(T ) of Am(T ) × An(T ) belongs

either to ∂Ay or admits a decomposition into finitely many polyhedra A1(T ), . . . , Ak(T ) of

the same dimension as A′(T ) such that each Ai(T ) is a subset of a maximal proper face of
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exactly one other A(T ′). In fact the only sets A′(T ) that we need to decompose are of the

form Am(T ) × (Bn(T ) × C ′) where C ′ is a maximal proper face of C(T ). By Lemma A.2,

this set can be written as the union Am(T )× (∪T ′Bn(T ′)×C ′); each Am(T )× (Bn(T ′)×C ′)

is a maximal proper face of Am(T ′)× An(T ′).

Now if A′(T ) is a maximal face of A(T ), then either there exists a maximal proper face

A′
m(T ) of Am(T ) such that A′(T ) = A′

m(T ) × An(T ) or there exists a maximal proper face

A′
n(T ) of An(T ) such that A′(T ) = Am(T ) × A′

n(T ). Consider the former case. Here,

by Lemma A.3, for all (pm, qm) ∈ Am(T ) exactly one of the following inequalities hold: (i)

pm ∈ ∂P y
m; (ii) there exists sn /∈ T y

n that is a best reply against qm; (iii) there exists a maximal

proper face of P y
m(T y

m) such that qm is a convex combination of pm and a point on this face.

In case (i), A′(T ) belongs to ∂Ay and is not a face of any other A(T ). In case (ii), letting T ′
n

be the set of pure strategies that belong to the minimal face of P y
n that is spanned by T y

n and

sn, and T ′ = (Tm, T ′
n), we have two possibilities: (a) Cn(T ) = Cn(T ′); (b) Cn(T ) ( Cn(T ′).

In the former case, Bn(T ) is a maximal proper face of Bn(T ′) by property (iii) of Lemma A.1

and hence A′(T ) is a maximal proper face of Am(T ′)× (Bn(T ′)×Cn(T )). In the latter case,

as we saw at the end of the last paragraph, A′(T ) is a face of Am(T ′)× (Bn(T ′)× Cn(T ′)).

In case (iii), letting T ′ = (T ′
m, T y

n ), where P y
m(T ′

m) is the maximal face we again have two

possibilities: (a) Cn(T ) = Cn(T ′); (b) Cn(T ) ( Cn(T ′). Under (a), the strategies in Tm \ T ′
m

belong to T̄ ′
m (the strategies other than those in T ′

m that are best replies against all strategies

in Cn(T ′)). Hence, Bn(T ) is a maximal proper face of Bn(T ′) by property (ii) of Lemma

A.1, and A′(T ) is a maximal proper face of Am(T ′)×An(T ′). Under case (b), the argument

is as under case (ii)(b).

In case A′(T ) = Am(T )×A′
n(T ) there are four possibilities: (i) pn belongs to the boundary

of P y
n ; (ii) there exists a strategy sy

m ∈ T̄ y
m such that sy

m is as good a reply against every qn for

which (1−λ)rn +λqn belongs to B′
n(T ); moreover, in this case, P y

m(T y
m) is a maximal proper

face of the smallest face of P y
m that includes the strategies T y

m and sm; (iii) for all points

pn ≡ λqn + (1− λ)rn, rn belongs to a maximal proper face Pn(T ′
n) and Cn(T ′) = Cn(T ); (iv)

for all (pn, qn) in A′
n, qn belongs to a maximal proper face of Cn(T );

In case (i), A′(T ) belongs to the boundary of Ay since its projection is to the boundary

of P y. In case (ii), let T ′
m be the set of pure strategies that are vertices of the smallest

face of P y
m that is spanned by T y

m and sm. Then A′(T ) is a face of Am(T ′)× An(T ′), where

T ′ = (T ′
m, Tn). In case (iii), A′(T ) is a face of Am(T ′)×An(T ′) where T ′ = (T y

m, T ′
n). In case

(iv), the decomposition mentioned above applies: A′(T ) is the union of subsets A′(T ′) ≡
(Am(T )×Bn(T ′)×C ′

n) for T ′ ∈ T , with each A′(T ′) being a subset of Am(T ′)×An(T ′). ¤

Lemma A.6. The projection πy from Ay to P y has degree one.
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Proof of Lemma. We prove this lemma by showing that there exists an open subset U of

P y such that (πy)−1(p) is a singleton for each p ∈ U . Let b∗ be the backward induction

equilibrium of Γy represented in behavioral strategies. Observe that the payoff to m from

the equilibrium b∗ in Γy is strictly smaller than W y,∗
m , since in the subgame-perfect equilib-

rium of Γ, player m avoids the subgame Γy. By genericity of payoffs, there exists a small

neighborhood V̄ of b∗ such that for each b in the subset V of V̄ consisting of completely

mixed behavioral strategies, b∗ is the unique best reply and b∗m yields strictly less than W y,∗
m

against every point in V . Let U be the subset of P y \∂P y consisting of mixed strategies that

are equivalent to some behavioral strategy in V . Then U is an open subset of the interior

of P y. We claim now that for each p ∈ U , (πy)−1(p) = (p, q), where qm = pm and q∗n is the

mixed strategy that is equivalent to b∗n. To prove this, fix p ∈ U and let q be a point such

that (p, q) ∈ Ay. If qm = pm then obviously qn = q∗n and we are done. Suppose qm 6= pm;

then there exists λ ∈ (0, 1) and rm such that qm = (1 − λ)pm + λrm and rm is a best reply

to qn and yields payoff W y,∗
m . We show in this case that rm = q∗m and qn = q∗n, which would

imply a contradiction because against b∗n, the strategy b∗m does not yield W y,∗
m . To prove this

last point, we show that if rm (resp. qn) does not exclude a node of player m (resp. n) then

the action prescribed by rm (resp. qn) there coincides with the backward induction solution.

The proof of this point is by backward induction on the tree. This is obviously true at all

end-game nodes. So let y′ be a node of one of the players that is not excluded by that player

and such that for all nodes following y′ our induction hypothesis holds. Suppose y′ is a node

of m (the other case is analogous). If y′ is excluded by qn then it is enabled by pn, which

is in the interior of P y
n , and by construction of U , the backward induction choice at y′ is

the response chosen by rm. If y′ is not excluded by qn then, by induction, qn prescribes the

same continuation as q∗n. Thus, the beliefs of player m at y′ are that n’s play is dictated

by some average of q∗n and pn. By construction, the backward induction choice is the best

reply against either of those two strategies for player n. So, the induction hypothesis holds

at y′. ¤

This concludes the proof of the Proposition. ¤
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