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Abstract. This paper studies a simple matching model with a single population where
players, who are identical ex ante but not necessarily so ex post, are randomly matched
and decide whether or not to form a long-term relationship. When two agents are
matched, they observe a relation-specific productivity as well as their respective shares
and decide whether or not to agree to form a long-term relationship. The pair forms a
long-term relation if and only if both the agents in the pair agree to do so; otherwise, they
join the pool of singles, who continuously search for partners. A long-term relationship
is subject to a small probability of break-up, which results in both the players going back
to the pool of singles. Each agent agrees to form a long-term relationship if and only
if his share exceeds his own past average payoff. It is shown that almost all the agents
in the society are engaged in a long-term relationship and play the symmetric efficient
outcome.
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1. Introduction

Many social interactions occur among the same group of agents who voluntarily partic-

ipate in a long-term relationship. Examples abound. Most business relations are repeated

not by force, but by choice. A typical relationship between a worker and an employer is

built upon a long-term relationship which starts with a matching between the two parties

(e.g., Mortensen and Pissarides (1994)).

Extensive investigations of repeated games under various institutional and informational

assumptions have offered us a useful insight on the outcomes of a long-term relationship.

However, the existing literature on repeated games remains silent about how and why a
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long-term relationship is formed among players, and which outcome becomes a pervasive

social norm. This paper provides a social dynamic foundation for a long-term relationship

by formulating and analyzing a decentralized matching model, where the players choose to,

rather than are assumed to, initiate the long-term relationship. Our goal is to understand

the conditions under which a long-term relationship can arise from decentralized social

interactions to become a dominant form of social institution.

We shall examine a simple canonical matching model with a single population where

players are randomly matched and decide whether or not to form a long-term relationship.

When two agents are matched, they observe a relation-specific productivity as well as their

respective shares and decide whether or not to agree to form a long-term relationship. The

pair forms a long-term relation if and only if both the agents in the pair agree to do so;

otherwise, they join the pool of singles, who continuously search for partners. A long-term

relationship is subject to a small probability of break-up, which results in both the players

going back to the pool of singles. The interaction between the matching process and the

long-term relationship is the focus of our analysis.

One might pursue an equilibrium analysis by formulating the long-term relationship as

a repeated game, embedded in a random matching process. We need to endow the agents

with an exceedingly powerful computational capability to calculate one’s best responses

against a profile of other agents’ strategies and a physical environment. However, as we

are interested in the case where the long-term relationship is subject to a small probability

of break-up, we have a large set of equilibria from the repeated game, and the equilibrium

analysis provides little guidance to select a particular equilibrium. Unless the agent knows

the expected gain from the long-term relationship through a commonly known equilibrium

selection rule, it would be impossible to figure out the way in which the players decide to

form a long-term relationship after on observing the relation specific outcome.

Instead, we opt for a model with bounded rationality, in which the players have only

a limited computational capability and may not know the structure of the game, the

distribution of strategies, or the future course of evolution. Each agent in our model uses

a simple rule of thumb that uses the average payoff of the past as the threshold. If the

current match gives a higher payoff than the past average, then the agent is willing to
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initiate the long-term relationship. On the other hand, if it gives a lower payoff than the

past average, then the agent chooses to terminate the partnership.

This principle of decision making is more closely related to the satisficing theory of

Simon (1987)–later elaborated by Rubinstein (1993), Gilboa and Schmeidler (1995), Cho

(1995), Karandikar, Mookherjee, Ray, and Vega-Redondo (1998), Bendor, Mookherjee,

and Ray (2007) and Cho and Matsui (2005)–than to the standard optimizing theory in

the sense that each agent compares what is obtained today with what has been obtained

in the past while making a decision on whether or not to continue the current relationship.

The above decision problem is simple, not only because each agent uses a threshold

strategy as in the standard search theory, but because he uses the past average as a

threshold–which may be called an aspiration level–by ignoring the context under which

the payoff was realized. Being a simple average of his payoffs from the past plays, the

aspiration level coincides with the steady state payoff, if one exists, which ensures an

asymptotic consistency with the stationary distribution of the outcomes of our model. As

we shall prove the existence of a unique steady state, our approach will offer a criterion

for selecting a particular equilibrium outcome from a long-term relationship.

Even though we simplify the decision rule significantly, the model remains highly com-

plex. We have to keep track of the state of a society populated with many players who

can either be single or paired with someone else. As a result, a component of the state is

the cross sectional description of the social interaction, identifying who is in the pool and

who is paired with whom. In a large society, the number of all the possible configurations

of social interactions is very large, and the number of states in our model is even larger. In

addition to the large state space, we have to handle the non-stationarity of the aspiration

level and resulting non-stationarity of the decision to initiate the long run relationship,

both of which arise from the interaction between the aspiration level and the repeated

game outcome. Our task is to characterize the asymptotic properties of a non-stationary

stochastic process of aspiration levels in a high dimensional Euclidean space.

By invoking the stochastic approximation technique (Kushner and Yin (1997)), we can

approximate the sample path of the stochastic process in terms of a trajectory induced
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by an ordinary differential equation (ODE).1 Although this approximation dramatically

simplifies the analysis, the resulting deterministic dynamics is still too complex to handle

because the evolution of the individual aspiration level is affected by the entire profile of

the aspiration vector. Inspired by the model reduction technique developed for the analysis

of complex stochastic network (Meyn (2007)), we characterize the convergence properties

of the aspiration vector by analyzing a lower dimensional vector of aspiration levels. That

is, instead of examining the entire profile of the aspiration vector in the ODE, we focus

on the dynamics of the largest and smallest element of the aspiration vector in the ODE

to infer the asymptotic properties of the entire vector. The model reduction technique

drastically simplifies the analysis, but also renders the characterization result very robust

as the key asymptotic properties depend upon the two extreme elements instead of the

entire profile of aspiration levels.

We demonstrate that if the probability of exogenous break down is small and the econ-

omy has a sufficiently large number of agents, then the proportion of agents who remain

in a partnership with the same agent is close to one. Despite the absence of the central-

ized information processing or matching mechanism, the aspiration level of every agent

converges to the the Pareto efficient symmetric outcome of the component game, which

is a natural focal point outcome (Schelling (1960)). In this sense, the Nash bargaining

solution is derived–as opposed to assumed, as is the case in many existing models–from

the underlying matching process followed by a long-term relationship.

Any attempt to obtain more than the payoff in the symmetric efficient state triggers the

termination of the partnership, dumping both agents into the pool of singles. Despite the

absence of a centralized authority, every agent in the society appears to behave according

to the rule, “Don’t be greedy if you want to have a long-term relationship with your

partner.” The same rule applies to any agent regardless of his history of outcomes, which

can be considered as a social norm.

1The same technique has been widely used in macro and microeconomic models, including Marcet and
Sargent (1989) and Fudenberg and Kreps (1993).



MATCHING, ASPIRATIONS, AND LONG-TERM RELATIONSHIP 5

The long-term relationship with an option to drop out was studied by Ghosh and

Ray (1996), Carmichael and McLeod (1997) and recently, by Fujiwara-Greve and Okuno-

Fujiwara (2009). Ghosh and Ray (1996) constructed a random matching model with an

option of continuing the relationship upon a mutual agreement. They used a concept that

allows the party to make a joint deviation and showed that the only efficient outcome

emerges as a stable outcome. Their equilibrium concept has a flavor of strong equilibrium

(Aumann (1959)) and selects the Pareto efficient outcomes from the model under a certain

conditions. Fujiwara-Greve and Okuno-Fujiwara (2009) applied the standard equilibrium

approach to a similar environment. They focused on a particular type of efficient stable

state; otherwise, they would have gotten a result similar to the folk theorem. Carmichael

and McLeod (1997) constructed a random matching model wherein agents are forced to

form a long-term relation once matched with an option of cheap-talk and gift-giving. They

then applied a weaker version of evolutionarily stable strategy to show that the symmetric

efficient outcome is attained in the repeated prisoners’ dilemma.

The present paper is closely related to Karandikar, Mookherjee, Ray, and Vega-Redondo

(1998) and Cho and Matsui (2005) in terms of both the behavior rule and technique.

Karandikar, Mookherjee, Ray, and Vega-Redondo (1998) and Cho and Matsui (2005)

considered the standard repeated game, but following Simon (1987), they assumed that

the agents are not utility maximizers, but that their actions are guided by the satisfic-

ing behavior. Bendor, Mookherjee, and Ray (2007) extended the analysis of Karandikar,

Mookherjee, Ray, and Vega-Redondo (1998) from the class of repeated 2 × 2 games to

a general class of games, implicitly assuming the existence of a centralized information

processing unit that aggregates the aspiration levels and disseminates the summary sta-

tistics to the individual agents.

In section 2, we formally describe the model where some agents are successfully matched,

while other agents are actively searching for a partner under the assumption that the

strategy space of each agent is continuous. A natural state would be the profile of coalitions

that describes the set of successfully matched pairs along with the actions they are playing

and the group of agent who are yet to be matched. The number of states is significantly

larger than the number of agents, which poses considerable challenge. In addition, the
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evolution of the aspiration vectors contains feedback features as the decision of each agent

is affected by the aspiration, which in turn affects the evolution of aspiration vectors. In

section 3, we address these two challenges. First, we identify the deterministic dynamics

by characterizing the dynamics of the mean of the stochastic process of aspiration vectors

in terms of an ordinary differential equation (ODE). Second, we prove the convergence

property of the ODE by analyzing a lower dimensional dynamics. That is, instead of the

dynamics of the entire profile, we shall focus on the dynamics of the two extreme values–

the highest and lowest aspirations–and show that these two values must converge to a

Pareto efficient pure state. Section 4 concludes the paper.

2. Model

2.1. Environment. Consider an economy populated with a finite number of infinitely

lived agents. Time is discrete: t = 1, 2, . . . . Let I = {1, 2, . . . , n} be the set of agents

where n is an even number greater than or equal to four. Each agent searches for a

partner. This search process is completely random among those who are not matched.

When two agents meet, they work together in that period to realize how much output

the two of them can produce and what the share of each agent will be. They then decide

whether or not to form a partnership. The partnership is formed only if both the agents

agree to do so. If one of them refuses to form a partnership, then they go back to the

pool of search without producing anything in that period, which induces zero payoff, and

wait for another match in the next period. On the other hand, if they agree to form a

partnership, the partnership continues until it breaks up with an exogenous shock, which

occurs with probability 1 − δ ∈ (0, 1) at the end of each period. We call δ < 1 the

continuation probability.

The set of agents in the (random matching) pool at the beginning of period t is denoted

by Ut. The other set U c
t = I \ Ut contains the agents who form a partnership in the

beginning of the period. We suppress the time subscript from Ut and U c
t whenever the

meaning is clear and write U and U c instead. We write the matched pair of agents i and

j as {i, j}. U c is partitioned into a finite number of pairs. Let us write Uc as a partition
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of U c into pairs, i.e.,

Uc = {{i1, j1}, . . . , {ik, jk}},

where is �= is′ , js �= js′ for s �= s′ and is �= js′ hold.

When two agents meet, the total value of their productivity as well as their respective

shares is determined exogenously. Suppose that agents i and j meet. Their prescribed

payoffs are then given by

ui = θiu

uj = θju,

where u is a relation-specific output from the partnership, and θi is player i’s share;

0 ≤ θi ≤ 1 and θi + θj = 1, which reflects their bargaining power. Both θi and u are

stochastically determined. Let νu,θ be the probability distribution over (u, θ1, θ2). Let

V ⊂ R
2 be the set of all feasible (u1, u2) from the partnership. The measure νu,θ induces

a probability distribution over V , which is denoted by ν.

Assumption 2.1. The measure ν has a full support over V , which is a compact convex

set with a non-empty interior. The measure ν has no atom and has a density function fν,

which is symmetric with respect to the 45 degree line, i.e., fν(xi, xj) = fν(xj, xi) for all

(xi, xj) ∈ V , continuously differentiable and concave over V .

All conditions–except for the concavity of fν–are fairly standard regularity conditions.

The symmetry around the 45 degree line is natural, as we treat the bargaining power of

the two partners equally in the ex ante sense. The heterogeneity among players arises only

from their different past experiences.

The concavity of fν is imposed only to address some technical issues in the analysis.

Note that these assumptions imply that fν(x + z, x − z) is (weakly) decreasing in |z|.
The uniform distribution over V satisfies these assumptions, which is common in the

labor market search models (e.g., Mortensen and Pissarides (1994)). In a certain sense,

the uniform distribution poses the worst possible scenario toward achieving any form of

coordination between the two partners, not to mention among n players in a society,

because any pair of utilities is equally likely.
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Let

u∗ = max
(u1,u2)∈V

u1 + u2

2
,

then (u∗, u∗) corresponds to the Nash bargaining solution with the origin as a threat point.

Roughly speaking, our task is to show that the social dynamics let (u1, u2) converge to

the Nash bargaining solution, even if (u1, u2) is uniformly distributed over V initially.

If both i and j decide to keep the pair in period t, then {i, j} ∈ Uc at the beginning of

period t + 1 with probability δ ∈ (0, 1) and i, j ∈ U with probability 1 − δ.

The timing of matches and decisions is illustrated in Figure 1.

�

�

�

�Paired

�

�

�

�Pooled

�

both agreed �

1 − δ

�
one/both disagreed

�δMatched ...
with the same partner

randomly with a new partner
�

�

�

�Pooled

�

�

�

�Paired

Period t Period t + 1

Figure 1: Timing of Matches and Decisions

2.2. Behavior Rule. To complete the formal description of the model, we have to specify

how player i decides to form a partnership with player j after observing ui. It is certainly

an option to model the long-term relationship as a repeated game and to endow each player

with a full set of repeated game strategies to invoke an equilibrium analysis. However, as

we are interested in the case with continuation probability δ < 1 being close to 1, a model

with fully rational players leads to a large set of equilibria without any guidance to select

a particular outcome.
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Instead, we opt for a boundedly rational player who has a very limited computational

capability. The agents of the economy do not know the distribution of outputs and their

respective bargaining powers, nor do they know the strategies of other agents. Instead of

solving the dynamic programming problem as a rational player in a repeated game would

have done, our players use a simple rule of thumb to decide whether or not initiate a

long-term relationship as envisioned by Simon (1987).

In period t with t > 1, whether or not agent i agrees to form a partnership, say, {i, j},
depends upon the payoff ui and his past average payoff,

(2.1) ait =
1
t

t−1∑
k=0

uik.

Following Simon (1987) and Karandikar, Mookherjee, Ray, and Vega-Redondo (1998),

we call ait aspiration of player i at t, or simply, aspiration. Agent i agrees to form a

partnership if uit > ait, or chooses to go back to the pool otherwise.

The formation of a partnership requires mutual agreement. Therefore, players i and j

form a partnership only if both uit > ait and ujt > ajt.

Let vo be the one-shot expected payoff of agent i ∈ U , which is calculated as

vo =
∫

(u′,u′′)∈V
u′ dν(u′, u′′).

Note that vo < u∗.

Note that we assume very little computational capability of the players in their search

for their partners and in deciding whether or not to initiate a long-term relationship.

The agents of the economy do not know the distribution of outputs and their respective

bargaining powers, nor do they know the strategies of other agents. Hence, the agents do

not use dynamic programming to calculate the threshold above which they agree to form

a partnership. Instead, they use a simple rule of thumb. It is instructive to understand

the social outcome that arises under the minimal computational capability of the players

before examining a more elaborate behavior.

3. Analysis

Let at = (ait)i∈I be the profile of average payoffs in period t. Our focus of interest is to

understand the asymptotic properties of at, which is a random vector in R
I . The dynamics
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of at poses a numbers of challenges. First, since agent i has generally been matched with

many different agents in the past, ait is affected by this history in a complex manner.

Second, since the decision of agent i is affected by ait, the feedback from the decision to

the history makes the stochastic process at non-stationary. Third, the evolution of ait is

affected by the entire vector at = (a1,t, . . . , an,t). As we analyze an economy with a large

finite number of agents, we have to keep track of a random vector in a high dimensional

Euclidean space. Indeed, even with the simple decision rule, a state is described as

((ai)i∈I , (ui)i∈I , (U,Uc)),

which is too large to handle as it is.

We first use the stochastic approximation technique, analyzing the dynamics of the

mean of the average payoffs of individual agents instead of the sample path induced by the

stochastic process. Since the average payoffs evolve much more slowly than the present

payoffs and the matching patterns, we shall first investigate the evolution of the mean

from a fixed profile of the average payoffs. Once we characterize the local evolution of the

average payoffs, we can approximate the sample path of the average payoffs in terms of

the trajectory induced by an associated ordinary differential equation (ODE).

We still have to handle different ODE’s for different agents to understand the asymptotic

properties. Instead, we use the model reduction technique (Meyn (2007)) by focusing on

the dynamics of a couple of key variables in order to infer the relevant properties of the

dynamics of at. We construct a simple Lyapunov function to summarize the key features

of the dynamics into a function defined over a lower dimensional Euclidean space to pin

down the stability and the convergence properties of at.

3.1. Preliminaries. In order to make this paper self-contained, we introduce notation

and define concepts needed for later analysis. We draw our material from Kushner and

Yin (1997), which provides a comprehensive introduction to the stochastic approximation

technique.

We write (2.1) in a recursive form

(3.2) ait = ai,t−1 +
1
t

(ui,t−1 − ai,t−1)
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where ui,t−1 is player i’s utility realized in period t − 1. Let at = (a1,t, . . . , an,t). The

following conditions are needed.

A.1 supt,i E|ui,t|2 < ∞
A.2 There are measurable functions Ψi(at) and βi,t such that

Etui,t = Ψi(at) + βi,t

where Et is the expectation conditioned on the information available at the begin-

ning of period t.

A.3 Ψi is continuous.

A.4
∑∞

t=0
|βi,t|

t < ∞ with probability 1.

Define τ0 = 0, and τK =
∑K

t=1 1/t for K ≥ 1. For τ > 0, define m(τ) as the unique K

such that τK ≤ τ < τK+1. Given a discrete time stochastic process {at}∞t=1, we construct

a continuous time stochastic process a0(τ) through a continuous time interpolation:

a0(τ) = aK if τK ≤ τ < τK+1.

Define the (left) shifted process aK(τ) as

aK(τ) = a0(τK + τ).

The classic results of the stochastic approximation consist of two parts: the approximation

and the convergence of {at}. Let us state a basic theorem (Theorem 2.1 in Kushner and

Yin (1997)) adapted for our model. A complete proof for much more general environments

can be found in Kushner and Yin (1997).

Theorem 3.1. Consider an ordinary differential equation (ODE)

ȧi = Ψi(a) ∀i

or more compactly,

(3.3) ȧ = Ψ(a)

where Ψ = (Ψ1, . . . ,Ψn).



12 IN-KOO CHO AND AKIHIKO MATSUI

Suppose that A.1–A.4 hold for (3.2). Then, the sample path of the discrete time sto-

chastic process {at}∞t=1 is approximated by a trajectory of (3.3) for a large t:

(3.4) lim
K→∞

lim
τ→∞

[
aK

i (τ) − aK
i (0) −

∫ τ

0
Ψi(a(s))ds

]
= 0 ∀i

with probability 1 where a(0) = aK(0).

For a large t, the interpolated sample path of at remains close to the trajectory induced

by (3.3). Since (3.3) approximates the stochastic process {at}, we call (3.3) the associated

ODE or simply the ODE.

Among the four assumptions, A.1 and A.4 immediately follow the fact that the under-

lying game has the compact set V of feasible payoff vectors. In Section 3.2 we compute

Ψi and check its continuity. In Section 3.3, we characterize the associated ODE and iden-

tify the neighborhood of the symmetric efficient outcome as the region within which any

absorbing set is confined. Then, we obtain the main convergence result (Theorem 3.8) by

invoking Theorem 3.1.

3.2. Markov Process under a Fixed Aspiration Profile. As the first step to invoke

the stochastic approximation, let us for a moment fix a profile of average payoffs, a =

(ai)i∈I , with

ai ∈ ( min
(ui,uj)∈V

ui, max
(ui,uj)∈V

ui) ∀i.

Although a evolves over time, its speed of change becomes significantly slower than the

speed at which the agents’ decisions to form a partnership as t increases. Our initial task

is to describe the dynamics as a Markov process by considering for a moment that profile

a is fixed.

By fixing a, we essentially eliminate the impact of payoffs in the long-term relationship.

Thus, we are not only able to suppress a but also u from the description of the state.

Hence, the state in the beginning of each period consists of the following two elements:

• the set of agents in the pool, and

• the pairs of agents continued from the previous period.
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A state is, therefore, described as a pair (U ;Uc) where U is a subset of I with an even

number of elements and Uc is a partition of U c into pairs, i.e.,

q = (U ; {{i1, j1}, . . . , {iK , jK}}), ik �= i�, jk �= j�, ik �= i�,

where {ik, jk} (k = 1, . . . ,K) is a pair continued from the previous period. Note that

Uc = ∅ holds if no pair is in the satisfied match from the previous play, and that U = ∅
holds if everyone is matched and satisfied. Let Q be the collection of all the states.

Given a state q, and given i, j ∈ U , let x(ai, aj) be the probability that agents i and j

form a long-term relation, i.e.,

x(ai, aj) = P (ui > ai uj > aj |i, j ∈ U, i and j meet)

=
∫

(ui,uj)∈V
I(ui − ai > 0)I(uj − aj > 0)dν(ui, uj),

where I(·) is an indicator function:

I(ui − ai > 0) =

{
1 if ui − ai > 0,
0 otherwise.

Note that x is symmetric, i.e., x(ai, aj) = x(aj, ai) and monotonically nonincreasing in

both the arguments.

Given an average payoff profile a, let

Q(a) = {q = (U ;Uc) ∈ Q|x(ai, aj) > 0 for all {i, j} ∈ Uc} .

Then the Markov process restricted to Q(a) is ergodic, while all states in Q \ Q(a) are

transient. Let μt(q) be the probability of state q. There is a unique stationary distribution

μ∗(a),

lim
t→∞μt = μ∗(a)

satisfying μ∗(a)(q) = 0 for all q ∈ Q \ Q(a).2 Note that μ∗(a) is continuous in a since ν

has no mass point. This leads to A.3 of Subsection 3.1.

This stationary distribution μ∗(a) determines the unconditional probability zi(a) that

agent i remains in the pool of singles:

(3.5) zi(a) =
∑
i∈U

μ∗(U ;Uc)

2This is because every state, including (I ; ∅), can be reached from (I ; ∅) in one step, and vice versa.
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and zi,t(a) for the unconditional probability that agent i remains in the pool of singles

at t. We can define the probability of his forming a (new) long-term relation with some

agent conditioned on i ∈ U at time t, which is denoted by pi,t(a):

(3.6) pi,t(a) =

∑
j �=i

∑
{i,j}⊂Uq

μt(q)
#Uq − 1

x(ai, aj)

∑
j �=i

∑
{i,j}⊂Uq

μt(q)
#Uq − 1

where q = (Uq;Uc
q ) and #Uq is the number of elements in Uq. We also denote by pi(a)

the corresponding probability under the stationary distribution μ∗. Notice that pi,t(a) is

a positive linear combination of x(ai, aj)’s (j �= i) and so is pt(a). Clearly,

lim
t→∞ zi,t(a) = zi(a)

and

lim
t→∞ pi,t(a) = pi(a).

Furthermore, since the probability of joining the pool is 1− δ after both agree to continue

the relationship, we have

zi,t+1(a) = (1 − pi,t)zi,t + (1 − δ)(1 − zi,t(a)).

Letting t go to infinity, we have

(3.7) zi(a) =
1 − δ

1 − δ + pi(a)
.

Intuitively, if a player has a low aspiration level, then his chance of forming a successful

partnership would be higher than a player with a higher aspiration level. As a result, the

probability that a player stays in the pool, zi(a), would be a decreasing function of the

aspiration level of player i. The next lemma partially confirms this simple, but critical,

observation.

To state the lemma, we need some preparation. Given a = (a1, . . . , an), define

a(1) = min{a1, . . . , an}

and given a(1), . . . , a(i), define

a(i+1) = min
({a1, . . . , an} \ {a(1), . . . , a(i)}

)
.
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By (i), we mean the player with the i-th lowest aspiration among {a1, . . . , an}. In partic-

ular,

a(n) = max{a1, . . . , an}.

Lemma 3.2. For a given a = (a1, . . . , an),

z(1)(a) ≤ z(n)(a).

Proof. The Markov process over Q converges to the unique stationary distribution regard-

less of the initial distribution μ0 over Q. Thus, it suffices to prove

lim
t→∞ z(1),t(a) ≤ lim

t→∞ z(n),t(a)

for an arbitrary initial distribution μ0.

Recall that x(ai, aj) is symmetric:

x(ai, aj) = z(aj , ai)

and a decreasing function of the aspiration levels:

x(a(i), a(k)) ≤ x(a(i′), a(j′)) ∀i ≥ i′, ∀j ≥ j′, i �= j.

Thus,

x(a(1), aj) ≥ x(ak, a(n)) = x(a(n), ak)

for all j �= 1 and k �= n. From (3.6), we have

p(1),t(a) ≥ p(n),t(a)

for all t. Thus,

p(1)(a) ≥ p(n)(a)

holds. Then from (3.7), we have

z(1)(a) ≤ z(n)(a).


�

Given ai and aj, let vij be the conditional expected payoff of player i when players i

and j agree to form a long-term relation. Note that in this event, ui < ai does not occur.
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Then we have

x(ai, aj)vij =
∫

(ui,uj)
I(ui − ai)I(uj − aj)uidν(ui, uj) ≥ x(ai, aj)ai.

Let vi(a) be the conditional expected payoff when agent i stays in the same pair from the

previous period. Using vij ’s, we have

vi(a) =
∑
j �=i

μ∗(a)({i, j} ∈ Uc)
μ∗(a)(i /∈ U)

vij.

Note that vi(a) > ai always holds.

Let us define a state contingent expected utility function of player i for a given a:

ui : Q → R

suppressing its dependency on a to simplify notation. Given q ∈ Q, if i ∈ U , then

ui(q) = vo.

If q = (U,Uc) satisfies {i, j} ∈ Uc, then ui(q) represents the expected utility conditioned

on forming a successful partnership, i.e.,

ui(q) = vij .

Thus, the expected payoff in this stationary state is written as

Eμ∗(a)[ui] = μ∗(a)(i ∈ U)vo +
∑
j �=i

μ∗(a)({i, j} ∈ Uc)vij

= zi(a)vo + (1 − zi(a))vi(a).(3.8)

We state a series of preliminary results that show how the expected utility gain Eμ∗(a)[ui−
ai] is affected by the profile of aspirations, a.

Lemma 3.3. Given a, we have

Eμ∗(a)[ui − ai| {i, k} ∈ Uc] > Eμ∗(a)[uj − aj | {j, k} ∈ Uc]

if ai < aj holds.
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Proof. Note that agents i (resp. j) and k form a long-term relation if and only if ui > ai

(resp. uj > aj) and uk > ak.

Eμ∗(a)[ui − ai| {i, k} ∈ Uc] − Eμ∗(a)[uj − aj | {j, k} ∈ Uc]

=

∫
u′>ai
u′′>ak

(u′ − ai)dν(u′, u′′)

P[u′ > ai and u′′ > ak]
−

∫
u′>aj
u′′>ak

(u′ − aj)dν(u′, u′′)

P[u′ > aj and u′′ > ak]
.(3.9)

We claim that (3.9) is positive if aj > ai, using the assumptions on the distribution of

(u′, u′′). To begin with, note that (3.9) is positive if and only if∫
u′>ai
u′′>ak

(u′ − ai)dν(u′, u′′)

∫
u′>ai
u′′>ak

dν(u′, u′′)

is decreasing in ai. Therefore, it suffices to show that its derivative with respect to ai is

negative:

−
[∫

u′>ai

∫
u′′>ak

fν(u′, u′′)du′′du′
]2

+
[∫

u′>ai

∫
u′′>ak

(u′ − ai)fν(u′, u′′)du′′du′
]
·
[∫

u′′>ak

fν(ai, u
′′)du′′

]
< 0.(3.10)

Define

Fak
(u′) =

∫
u′′>ak

fν(u′, u′′)du′′,

and

amax = sup{u′|Fak
(u′) > 0}.

Then (3.10) is equivalent to

(3.11) −
[∫ amax

ai

Fak
(u′)du′

]2

+
[∫ amax

ai

(u′ − ai)Fak
(u′)du′

]
· Fak

(ai) < 0.

Noticing that Fak
(u′) is concave, we consider the following three cases.

Case (i) Fak
(u′) is decreasing in u′ on [ai, amax]. We have∫ amax

ai

(u′ − ai)Fak
(u′)du′ <

∫ amax

ai

amax − ai

2
Fak

(u′)du′.

Then it suffices to show

−
∫ amax

ai

Fak
(u′)du′ +

amax − ai

2
Fak

(ai) < 0,

which holds due to the concavity of Fak
.
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Case (ii) Fak
(u′) is increasing in u′ on [ai, amax]. We have∫ amax

ai

(u′ − ai)Fak
(u′)du′ <

∫ amax

ai

(amax − ai)Fak
(u′)du′.

Then it suffices to show

−
∫ amax

ai

Fak
(u′)du′ + (amax − ai)Fak

(ai) < 0,

which holds since Fak
(ai) < Fak

(u′) holds for all u′ ∈ [ai, amax].

Case (iii) Fak
(u′) is increasing and then decreasing on [ai, amax]. Fix a′ that satisfies

∂Fak
(a′)

∂u′ = 0.

Then we decompose the equation into two parts to invoke the logic from Cases (i) and

(ii) to obtain ∫ amax

ai

Fak
(u′)du′ =

∫ a′

ai

Fak
(u′)du′ +

∫ amax

a′
Fak

(u′)du′.

Then we apply exactly the same arguments as in Cases (i) and (ii) to the first and second

term of the right hand side of the equation to prove the lemma. 
�

The following lemma is an easy corollary whose proof is omitted since it is essentially

the same as that of Lemma 3.3.

Lemma 3.4. Given the average payoff profile a, we have

Eμ∗(a)[ui − ai| {i, k} ∈ Uc] > Eμ∗(a)[ui − ai| {i, �} ∈ Uc]

if ak < a� holds.

The next lemma uses the assumption on the distribution of (u′, u′′). Its proof is a matter

of tedious calculation, using the fact that

fν(ai + x + z, aj + x − z) ≥ fν(ai + x − z, aj + x + z)

holds for all x ≥ 0 and 0 ≤ z ≤ x, which is due to the symmetry around the 45 degree

line and the concavity of fν .

Lemma 3.5. Given the average payoff profile a, we have

Eμ∗(a)[ui − ai| {i, j} ∈ Uc] ≥ Eμ∗(a)[uj − aj | {i, j} ∈ Uc]

if ai < aj holds.
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Note that since vo is the average payoff in the pool and the agents form a long-term

relationship only if their payoffs are higher than the past average payoffs, a(n) ≥ vo must

hold.

Lemmata 3.4 and 3.5 together imply

min
k �=(1)

Eμ∗(a)[u(1) − a(1)| {(1), k} ∈ Uc] > max
� �=(n)

Eμ∗(a)[u(n) − a(n)| {(n), �} ∈ Uc]

for all k, � if a(1) < a(n). Indeed, if ai < aj holds, then for all ak, a� ∈ [ai, aj ], we have

Eμ∗(a)[ui − ai| {i, k} ∈ Uc] ≥ Eμ∗(a)[ui − ai| {i, j} ∈ Uc]

≥ Eμ∗(a)[uj − aj| {i, j} ∈ Uc] ≥ Eμ∗(a)[uj − aj | {j, �} ∈ Uc]

where the first and the third inequalities come from Lemma 3.4, and the second inequality

comes from 3.5. This together with the definition of vi(a) implies

(3.12) v(1)(a) − a(1) ≥ v(n)(a) − a(n).

Now, we are in a position to state the following key result.

Proposition 3.6. If a(1) < a(n) holds, then we have

(3.13) Eμ∗(a)[u(1) − a(1)] > Eμ∗(a)[u(n) − a(n)].

Proof. Suppose that a(1) < a(n) holds. Using (3.8), we can write

Eμ∗(a)[u(1) − a(1)] = z(1)(a)(vo − a(1)) + (1 − z(1))(v(1)(a) − a(1))

> z(1)(a)(vo − a(n)) + (1 − z(1))(v(n)(a) − a(n))(3.14)

≥ z(n)(a)(vo − a(n) + (1 − z(n))(v(n)(a) − a(n))(3.15)

= Eμ∗(a)[u(n) − a(n)].

(3.12) together with the assumption of the proposition implies the strict inequality in

(3.14), and (3.15) uses the fact that

z(1)(a) ≤ z(n)(a) and vo < a(n) < v(n)(a).


�
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3.3. Evolution of Aspiration. The key step toward analyzing the asymptotic properties

of the distribution of average payoffs is identifying the associated ODE of the individual

average payoff. The evolution of the mean of the average payoff around a small neigh-

borhood of ai is dictated by the difference between ai and the expected payoff associated

with the invariant distribution of the transition matrix (Kushner and Yin (1997)),

(3.16) ȧi = Eμ∗(a) [ui] − ai = Eμ∗(a) [ui − ai] .

Note also that we eventually have ai ≥ vo for all i with probability one since the expected

value of ai is a convex combination of vo and E[u′ > ai], which is greater than or equal to

vo. This fact implies (3.13), and therefore, (3.16) implies the following proposition.

Proposition 3.7.

(3.17) ȧ(n) − ȧ(1) < 0.

Suppose now that a(n) = a(1) = â. Then â is no more than u∗. Fix ζ > 0, a sufficiently

small number, as given. Suppose that â < u∗ − ζ/2. Let

p̂ =
∫

u′>â
u′′>â

dν(u′, u′′),

and

v̂ =
∫

u′>â
u′′>â

u′dν(u′, u′′)/p̂.

Note that v̂ > â by definition. Moreover, using the assumption on ν, we can verify that

v̂ ≥ (u∗ + â)/2.

Note that Q(a) = Q in this case. This implies that μ∗(a) is continuous in a in the

neighborhood of (â, . . . , â). Also, since every agent has the same average payoff â, the

dynamics is relatively easy. Indeed, since the transition probability of each agent from the

pool to the matched state is p̂, while that from the matched state to the pool is given by

(1−δ), each agent is in the pool and in the match with the probabilities of (1−δ)/(1−δ+p̂)

and p̂/(1 − δ + p̂), respectively. Hence, the expected payoff is given by

Eμ∗(a)[ui] =
1 − δ

1 − δ + p̂
vo +

p̂

1 − δ + p̂
v̂.

Since p̂ is independent of δ, we have

Eμ∗(a)[ui] → v̂ ≥ u∗ + â

2
, as δ → 1.
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In particular, if we let δ ∈ (0, 1) satisfy

ζ2

2(1 − δ)(u∗)2 + ζ2

u∗ + â

2
> u∗ − ζ,

then â < u∗ − ζ implies
p̂

1 − δ + p̂

u∗ + â

2
> â.

This in turn implies

ȧit = Eμ∗(a)[ui] − â > 0,

for all i ∈ I.

As a result, we have the following theorem.

Theorem 3.8. ∀ζ > 0 ∃δ < 1 ∀δ ∈ (δ, 1)

u∗ − ζ ≤ lim inf
t→∞ a(1),t ≤ lim sup

t→∞
a(n),t ≤ u∗ + ζ

with probability 1.

4. Concluding Remarks

In a society populated with players who have very limited computational and forecasting

capabilities, the decentralized matching process can generate a uniform standard to initiate

a long-term relationship. For example, if the underlying game has the structure of the

prisoners’ dilemma game, then Theorem 3.8 implies that a long-term relationship cannot

be formed if one party is greedy in the sense that he receives more than the cooperative

outcome.

In our model, the players are ex post heterogeneous because each player can go through

a different experience, which is then summarized into a different level of aspiration. Yet,

through a decentralized matching process, every player comes to have the same criterion

for starting a long-term relationship.

The intuition is simple and robust. Whenever a player is trying to be greedy, he will

be dumped into the pool of singles where he has to go through a matching process. If his

aspiration is substantially higher than the cooperative outcome, then he is more likely to

fail to form a successful long-term relationship. As he goes through a long period of failed

attempts, his aspiration level goes down. With a lower aspiration level, he can then form

a successful long-term relationship.
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The robustness of the intuition in turn makes our result very much robust against a

small perturbation of the basic model. For example, if we allow each player to deviate

from the agreed action with a small probability in each period, then the same result holds.

In the basic model, the aspiration is a simple average of the past payoffs. If we replace

the simple average with the discounted average, then the same result is obtained as the

rate at which the previous period’s payoff is discounted converges to 1.

There are many tasks to be undertaken in the future. First, if we would like to use this

analysis for labor search, we should consider two population. The second point, which is

related to the first, is that in order to show its real usefulness, we should study economies

with heterogeneous agents. The present model assumes ex ante identical agents, who are

different only in terms of experiences. Differences in potential productivity may lead to

different long-term payoffs. If we solve such a model, then we may be able to study income

inequality based on differences in ability in the search theoretic context. Third, if we are

interested in repeated games, we may need to consider more sophisticated strategies than

the threshold ones. How we can extend the strategy space beyond the set of threshold

strategies is a topic for future research.
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