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Abstract

In a general interdependent preference environment, we characterize when two payo¤ types

can be distinguished by their rationalizable strategic choices without any prior knowledge of their

beliefs and higher order beliefs. We show that two payo¤ types are strategically distinguishable

if and only if they satisfy a separability condition. The separability condition for each agent

essentially requires that there is not too much interdependence in preferences across agents.

A social choice function - mapping payo¤ type pro�les to outcomes - can be robustly virtu-

ally implemented if there exists a mechanism such that every equilibrium on every type space

achieves an outcome arbitrarily close to the social choice function. This de�nition is equivalent

to requiring virtual implementation in iterated deletion of strategies that are strictly dominated

for all beliefs. The social choice function is robustly measurable if strategically indistinguishable

payo¤ types receive the same allocation. We show that ex post incentive compatibility and

robust measurability are necessary and su¢ cient for robust virtual implementation.
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1 Introduction

Suppose that a social planner would like to design a mechanism that will induce self-interested

agents to make strategic choices that will lead to the selection of socially desirable outcomes. A

social choice function speci�es the social desired outcomes as a function of unobserved payo¤ types

of the agents. The planner would like to be sure that outcomes speci�ed by the social choice

function arise with probability arbitrarily close to 1: thus she requires virtual implementation; she

would like every possible equilibrium to virtually implement the social choice function: thus she

requires full implementation; and she would like every equilibrium to virtually implement the social

choice function whatever the agents�beliefs and higher order beliefs about others�types; thus she

requires robust implementation. In this paper, we provide a characterization of when robust virtual

implementation is possible in a general interdependent preference environment.

One necessary condition for robust virtual implementation will be ex post incentive compatibility :

under the social choice function, each agent must have an incentive to truthfully report his type

if others report their types truthfully, whatever their types. Ex post incentive compatibility is

su¢ cient to ensure the existence of desirable equilibria, but, as the existing incomplete information

implementation literature has emphasized, further restrictions on the social choice function are

required to rule out other, undesirable, equilibria. If a mechanism is to fully implement a social

choice function, it must be that two types who are treated di¤erently by the social choice function

are guaranteed to behave di¤erently in the implementing mechanism. The key result in this paper

is a characterization of when two payo¤ types are strategically distinguishable in this sense that

they can be guaranteed to behave di¤erently. Now a second necessary condition for robust virtual

implementation will be robust measurability : strategically indistinguishable types are treated the

same by the social choice function. We show that ex post incentive compatibility and robust

measurability are also su¢ cient for robust virtual implementation (under an economic assumption).

Thus the core of our contribution is an analysis of strategic distinguishability. Fix an inter-

dependent preferences environment, with a �nite set of agents, each with a �nite set of possible

payo¤ types, with expected utility preferences over lotteries depending on the whole pro�le of types.

Two payo¤ types of an agent are strategically distinguishable if they have disjoint rationalizable

strategic choices in some �nite game for all possible beliefs and higher order beliefs about others�

types. Thus a pair of payo¤ types are strategically indistinguishable if in every game, there exists

some action which each type might rationally choose given some beliefs and higher order beliefs.
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We are able to provide an exact and insightful characterization of strategic distinguishability. If

we have sets of types, 	1 and 	2, of agents 1 and 2, respectively, we say that 	2 separates 	1

if knowing agent 1�s preferences and knowing that agent 1 is sure that agent 2�s type is in 	2,

we can rule out at least one type of agent 1. Now consider an iterative process where we start,

for each agent, with all subsets of his type set and - at each stage - delete subsets of actions that

are separated by every remaining subset of types of his opponents. A pair of types are said to be

pairwise inseparable if the set consisting of that pair of types survives this process. We show that

two types are strategically indistinguishable if and only if they are pairwise inseparable.

If there are private values and every type is value distinguished, then every pair of types will be

pairwise separable and thus strategically distinguishable. Thus strategic indistinguishability arises

when the degree of interdependence in preferences is large. We can illustrate this with a simple

example. Suppose that agent i�s payo¤ type is �i 2 [0; 1] and agent i�s valuation of a private good
is �i+


X
j 6=i

�j . Each agent has quasilinear utility, i.e., his utility from money is linear and additive.

We show all distinct pairs of types are strategically distinguishable if j
j < 1
I�1 where I is the

number of agents. All pairs of types are strategically indistinguishable if j
j � 1
I�1 .

Our characterization result for strategic distinguishability (Theorem 1) comes in two parts. If

two types of an agent are pairwise inseparable, then they belong to a set of types which are not

separable by a pro�le of sets of types of that agent�s opponents. The set of types of each opponent

in that pro�le is then not separable by a pro�le of sets of types of that opponent�s opponents. And

there is a continuing chain of inseparable sets in the chain. We prove that pairwise inseparable types

are strategically indistinguishable (Proposition 1) by induction, showing that in any mechanism at

any stage in the iterated deletion of messages that are never best responses and for every set of types

in the chain of inseparable type sets, there is a common action which is played. The inseparability

property ensures that we can always construct beliefs for each type that make the same message a

best response.

To show the converse result (Proposition 2), we construct a �nitemaximally revealing mechanism

with the property that all pairwise separable types have disjoint sets of rationalizable actions. The

construction exploits the linearity of expected utility preferences and duality theory. Whenever a

set of types of one agent is separated by a pro�le of sets of types of other agents, we are able to

construct a �nite set of lotteries such that knowing the �rst agent�s preference over those lotteries

will always rule out at least one of his types. We can take the union over all such �nite sets
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constructed for each pro�le of type sets where the separability property holds. We then construct

a �nite �test set�of lotteries such that knowing an agent�s most preferred outcome in that test set

implicitly reveals his ranking of outcomes in all the original sets. Finally, we consider a mechanism

where each agent gets to pick a lottery with some positive probability, then guesses which lotteries

others chose and gets to pick another lottery, with small probability, contingent on other agents

making the choice he conjectured, and so on. With a large, but �nite, number of stages this

mechanism will eventually lead pairwise separable types to make distinct choices.

Our proof of the su¢ ciency of ex post incentive compatibility and robust measurability (corol-

lary 1) for robust virtual implementation builds on an ingenious construction used by Abreu and

Matsushima (1992b) to establish an extremely permissive result for complete information virtual

implementation; in Abreu and Matsushima (1992c), they adapted the argument to a standard

Bayesian virtual implementation problem; we in turn adapt the argument to our robust virtual

implementation problem.

While our su¢ ciency argument for robust virtual implementation builds on Abreu and Mat-

sushima (1992c), the interpretation of our results ends up being rather di¤erent. Abreu and Mat-

sushima (1992c) characterized virtual implementation in a standard Bayesian environment, where

there was common knowledge of a common prior over a �xed set of types, using the solution con-

cept of iterated deletion of strictly dominated strategies and restricting attention to well-behaved

(�nite) mechanisms. Bayesian incentive compatibility of the social choice function is a necessary

condition: a standard compactness argument shows that the weakening to virtual implementation

does not weaken the incentive compatibility requirement. In addition, they showed that a measur-

ability condition was necessary. Put each agent�s types into equivalence classes that have the same

preferences over outcomes, unconditional on other agents�types. Having distinguished some types

by their unconditional preferences, we can then further re�ne agents�types, by distinguishing types

with di¤erent preferences conditional on other agents�types in the �rst stage. We can continue this

process of re�ning agents�types based on preferences conditional on other agents�types revealed

so far. The social choice function is Abreu-Matsushima measurable if it is measurable with respect

to the limit of this iterative re�nement. This seems to be a weak restriction that is generically

satis�ed.1 Abreu and Matsushima (1992c) show that Bayesian incentive compatibility and Abreu-

1Abreu and Matsushima (1992c) and Serrano and Vohra (2005) note that a simple su¢ cient condition for all

social choice functions to be A-M measurable is type diversity : every type has distinct preferences over lotteries

unconditional on others�types.
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Matsushima measurability are su¢ cient as well as necessary for virtual implementation in iterated

deletion of strictly dominated strategies.

Robust virtual implementation is equivalent to requiring that there is a single mechanism that

implements a social choice function, for all possible type spaces that could be constructed for the

environment with �xed payo¤ types and utility functions for the agents. It is instructive to see

how to get from Abreu and Matsushima (1992c) to the robust virtual implementation results in

this paper.

Observe that Abreu and Matsushima (1992c)�s solution concept naturally uses agents�given

beliefs about others�types in their solution concept: when strategies are deleted, it is because they

are strictly dominated conditional on their beliefs. We want implementation for all possible beliefs;

we therefore establish our results under an incomplete information version of rationalizability that

does not make use of any beliefs over others�types; it is equivalent to iteratively deleting strategies

that are ex post strictly dominated, i.e., strictly dominated for all possible beliefs over others�types.

We work with this solution concept throughout the paper. However, results from the epistemic

foundations of game theory establish that an action is rationalizable in this sense for a payo¤ type

if and only if it could be played in an equilibrium on some type space with beliefs and higher

order beliefs, by a type with that payo¤ type (Brandenburger and Dekel (1987) and Battigalli

and Siniscalchi (2003)). Thus a bonus of our �robust� analysis is that the distinction between

equilibrium and rationalizability (or iterated deletion of strictly dominated strategies) becomes

moot.

Now ex post incentive compatibility is the robust analogue of Bayesian incentive compatibility

and robust measurability is the robust analogue of measurability of Abreu and Matsushima (1992c).

They could reasonably argue that - in a standard Bayesian setting - their measurability condition

is a weak technical requirement.2 As a result, the �bottom line� of the virtual implementation

literature has been that full implementation, i.e., getting rid of undesirable equilibria, does not

impose any substantive constraints beyond incentive compatibility, i.e., the existence of desirable

equilibria. By requiring the more demanding, but more plausible, robust formulation of incomplete

information, we end up with a condition that is substantive (imposing signi�cantly more structure

in interdependent value environments than incentive compatibility) and easily interpretable.

2Although Serrano and Vohra (2001) describe an economic example where all non-trivial individually rational

and Bayesian incentive compatible social choice functions fail Abreu-Matsushima measurability because types have

identical conditional preferences.
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This paper adds to a recent literature on robust mechanism design that provides one opera-

tionalization of the so-called �Wilson doctrine� that progress in practical mechanism design will

come from relaxing the implicit common knowledge assumption in the formulation of mechanism

design problems.3 Neeman (2004) highlighted the fact that full surplus extraction with correlated

type results (Myerson (1981) and Cremer and McLean (1985)) rely on the implicit assumption

that there is common knowledge of a mapping from beliefs to payo¤ types of all agents (a �beliefs

determine preferences�property). This (counterintuitive) assumption is implied by the �generic�

choice of a common prior on a �xed type space where distinct types are assumed to have di¤erent

preferences. The apparent weakness of the Abreu-Matsushima measurability condition (and the

fact that it is satis�ed for �generic�priors) relies on the same property. We believe that by relaxing

this unnatural implicit assumption, we get a better insight into the nature of the extra requirement

for full implementation over and above incentive compatibility conditions.

Our operationalization of the �Wilson doctrine� is rather strong: we put no restrictions on

agents�beliefs and higher order beliefs. A recent paper of Artemov, Kunimoto, and Serrano (2008)

examines what happens to the conditions for robust virtual implementation if the planner is given

partial information about agents�beliefs, in particular, a subset of beliefs over others�payo¤s types

that can arise with each payo¤ type. We discuss this intermediate robustness approach in section

6.3.

It is possible to interpret our result as rather negative: ex post incentive compatibility is already

a very strong condition, as emphasized by the recent work of Jehiel, Moldovanu, Meyer-Ter-Vehn,

and Zame (2006);4 robust measurability adds the further substantive restriction that there not be

too much interdependence of preferences; and, in any case, the mechanism that we use to robustly

virtually implement social choice functions is complicated to describe and presumably hard to

play. However, we can show that in one large and interesting class of economic environments with

interdependent preferences, robust virtual implementation is not only possible but is possible in

the direct mechanism where agents simply report their payo¤ types. Say that an environment has

aggregator single crossing preferences if the pro�le of agents�types can be aggregated into a single

number and preferences are single crossing with respect to that number. E¢ cient social choice

3Neeman (2004), Bergemann and Morris (2005b), Heifetz and Neeman (2006), Chung and Ely (2007).
4Although we argue in Bergemann and Morris (2009) that ex post incentive compatibility is feasible in many

economically important environments either because types are one dimensional or because natural economic features

of the environment lead to a failure of the �generic�properties that lead to the non-existence of non-trivial ex post

incentive compatible social choice functions in Jehiel, Moldovanu, Meyer-Ter-Vehn, and Zame (2006).
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functions satisfying ex post incentive compatibility often exist in such environments. Bergemann

and Morris (2009) showed that in such an environment, exact robust implementation is possible if

the social choice function satis�es strict ex post incentive compatibility and a contraction property.

In this paper, we observe that the contraction property is equivalent to robust measurability, so

that - under the weak condition that there exists some strictly ex post incentive compatible social

choice function - whenever robust virtual implementation is possible, it is possible in the direct

mechanism.

The remainder of the paper is organized as follows. Section 2 introduces the environment and

the solution concept. Section 3 illustrates the notion of separability in the context of a single private

good with interdependent preferences. Section 4 de�nes and characterizes strategic distinguisha-

bility, constructing the maximally revealing mechanism to show the equivalence between strategic

distinguishability and pairwise separability. Section 5 reports our results on robust virtual imple-

mentation. Section 6 concludes with discussions of the formal relation between Abreu-Matsushima

measurability and robust measurability, the role of moderate interdependence, intermediate no-

tions of robustness, the epistemic foundations for the solution concept, weak rather than strict

dominance, positive results in direct mechanisms and the relation to exact rather than virtual

implementation.

2 Setting

2.1 Environment

There is a �nite set of agents 1; :::; I and each agent i has �nite set of possible payo¤ types:

�i =
�
�1i ; :::; �

s
i ; :::; �

S
i

	
.

We assume without loss of generality that the cardinality of each set �i is equal to S for all i. The

�nite set X of pure outcomes is given by

X = fx1; :::; xn; :::; xNg :

The lottery space over the set of outcome is Y = �(X). A lottery y is an N dimensional vector

y = (y1; :::; yn; :::; yN ) with

yn � 0;
NX
n=1

yn = 1:
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Each agent has a von Neumann-Morgenstern expected utility function ui : Y ��! R with

ui (y; �) =

NX
n=1

ui (xn; �) yn:

We will abuse notation by writing x for the lottery putting probability 1 on outcome x and X for

the set of degenerate lotteries.

It is often convenient to work with underlying preferences over lotteries rather than any of their

representations. We write R for the collection of expected utility preference relations on Y . We

will write R�i;�i 2 R for the preference relation of agent i if his payo¤ type is �i and he has belief

�i 2 �(��i) about the types of others:

8y; y0 2 Y : yR�i;�iy
0 ,

X
��i2��i

�i (��i)ui (y; (�i; ��i)) �
X

��i2��i

�i (��i)ui
�
y0; (�i; ��i)

�
;

and we write P�i;�i for the strict preference relation corresponding to R�i;�i .

We make a weak assumption on the preferences: every agent i, whatever his type �i 2 �i and
beliefs �i 2 �(��i), has a strict preference over some pair of outcomes:

Assumption 1 (No Complete Indi¤erence)

For each i, �i 2 �i and �i 2 �(��i), there exist x; x0 2 X such that xP�i;�ix
0.

We maintain this assumption throughout the paper.5 An analogous condition appeared in

Abreu and Matsushima (1992c) and Serrano and Vohra (2005) in the Bayesian setting for all types

(and associated beliefs) of all agents. But in our robust context, it is a stronger assumption in

the sense that it rules out the possibility that alternative payo¤ type pro�les of others lead to a

reversal in the preferences of agent i with respect to some x and x0.

We denote by y the central lottery which puts equal probability on each of the pure outcomes.

Now no�complete-indi¤erence implies that every agent i, whatever his type �i and beliefs �i 2
�(��i), strictly prefers some pure outcome x to y; and compactness implies that those strict

preferences are uniformly strict:

Lemma 1 There exists c > 0 such that, for each i, �i 2 �i and �i 2 �(��i), there exists x 2 X
such that X

��i2��i

�i (��i)ui (x; (�i; ��i)) >
X

��i2��i

�i (��i)ui (y; (�i; ��i)) + c.

5Our results can be extended to allow for the presence of complete indi¤erence as shown in the appendix of the

working paper version, Bergemann and Morris (2007).
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The lemma is proved in appendix and we will use c in our later constructions. We will also

exploit the existence of an upper bound on payo¤ di¤erences C which follows immediately from

the �niteness of pure outcomes and states:

Lemma 2 There exists C > 0 such that

��ui (y; �)� ui �y0; ���� � C;
for all i; y; y0; �.

2.2 Mechanisms and Solution Concept

A mechanism M is a collection ((Mi)
I
i=1 ; g) where each Mi is �nite and g : M ! Y . We denote

a belief of agent i over the product of payo¤ type and message spaces of the other agents by

�i 2 �(��i �M�i). We consider the process of iteratively eliminating never best responses,

without making assumptions on agents�beliefs about others�payo¤ types. The set of messages

surviving the k�th level of elimination for type �i in mechanismM are de�ned by

S0i [M] (�i) ,Mi;

and for each k = 1; :::, by induction:

Sk+1i [M] (�i) ,

8>>>><>>>>:mi 2 Ski [M] (�i)

����������
9 �i 2 �(��i �M�i) s.t.:

(1) �i (��i;m�i) > 0) m�i 2 Sk�i [M] (��i)

(2) mi 2 argmax
m0
i

X
��i;m�i

�i (��i;m�i)ui (g (m0
i;m�i) ; (�i; ��i))

9>>>>=>>>>; ;
we let

Si [M] (�i) =
\
k�0

Ski [M] (�i) .

We refer to Si [M] (�i) as the rationalizable messages of type �i of agent i in mechanismM. This

incomplete information version of rationalizability was studied in Battigalli (1998) and Battigalli

and Siniscalchi (2003). A standard and well known duality argument implies that this solution

concept is equivalent to iterated deletion of ex post strictly dominated strategies.

Si [M] (�i) is the set of messages that type �i might send consistent with knowing that his

payo¤ type is �i, common knowledge of rationality and the set of possible payo¤ types of the other

players, but no restrictions on his beliefs and higher order beliefs about other types. Equivalently,

9



it is the set of messages that might be played in any equilibrium on any type space by a type of

player i with payo¤ type �i and any possible beliefs and higher order beliefs about others�payo¤

types. In section 6.4, we report a formal argument con�rming this interpretation. In the body of

the paper, we work directly with this solution concept.

2.3 Separability

We will be interested in the set of preferences that an agent might have if his payo¤ type is �i and

he knows that the type �j of each opponent j belongs to some subset 	j of his possible types �j .

Thus writing 	�i = f	jgj 6=i for a pro�le of subsets of i�s opponents, we de�ne

Ri (�i;	�i) = fR 2 R jR = R�i;�i for some �i 2 �(	�i)g .

We adopt the convention that if for some j 6= i; 	j = ?, then Ri (�i;	�i) = ?. Now suppose

we observed i�s preferences over lotteries and knew that i assigned probability 1 to his opponents�

type pro�le ��i being an element of 	�i, what would we be able to deduce about i�s type? We will

say that 	�i separates 	i if - whatever those realized preferences - we could rule out at least one

possible type of i.

De�nition 1 (Separation)

Type set pro�le 	�i separates 	i if \
�i2	i

Ri (�i;	�i) = ?.

We will be interested in a process by which we iteratively delete type sets of each agent that are

separated by some type set pro�le of his opponents. Thus writing �ki for the kth level inseparable

sets of player i, we have:

�0i = 2
�i , (1)

and

�k+1i =
n
	i 2 �ki

��� 	�i does not separate 	i, for some 	�i 2 �k�io ; (2)

and a (�nite) limit type set pro�le is de�ned by:

��i =
\
k�0

�ki . (3)

Finally, we say that a pair of types are pairwise inseparable if they cannot be iteratively sepa-

rated in this way:
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De�nition 2 (Pairwise Inseparability)

Types �i and �0i are pairwise inseparable, written �i � �0i, if
�
�i; �

0
i

	
2 ��i .

Note that the relation � is re�exive and symmetric by construction, but it is not necessarily

transitive. The following ��xed point�characterization of pairwise inseparability will be useful in

the analysis that follows. Let � = (�i)
I
i=1 2 �Ii=12�i be a pro�le of type sets for each agent.

De�nition 3 (Mutual Inseparability)

� is mutually inseparable if, for each i and 	i 2 �i, there exists 	�i 2 ��i such that 	�i does not
separate 	i.

Lemma 3 Types �i and �0i are pairwise inseparable if and only if there exists mutually inseparable

� = (�i)
I
i=1 and 	i 2 �i with

�
�i; �

0
i

	
� 	i.

Proof. (if) Suppose there exists b� = �b�i�I
i=1

and 	i 2 b�i with ��i; �0i	 � 	i. We claim thatn
	i

���	i � 	0i and 	0i 2 b�i for some 	0io � �ki
for each k = 0; 1; ::: . The claim holds for k = 0 by de�nition. Suppose the claim holds for arbitrary

k and suppose that 	i � 	0i and 	0i 2 b�i. Because b� is mutually inseparable, there exists 	�i 2b��i � �ki such that 	�i does not separate 	0i. By the de�nition of separation, since 	i � 	0i, 	�i
does not separate 	i. So 	i 2 �k+1i and

�
�i; �

0
i

	
� 	i 2 ��i =

\
k�0

�ki :

(only if) Observe that �k+1i � �ki for each k = 0; 1; ::: by construction. Thus (��i )
I
i=1 is mutually

inseparable. Thus if �i � �0i, there exists mutually inseparable �� with
�
�i; �

0
i

	
2 ��i .

3 An Environment with Interdependent Values for a Single Good

We consider a quasi-linear environment with a single good with interdependent values to illustrate

the notion of separability. There are I agents and agent i�s payo¤ type is �i 2 [0; 1]. If the type
pro�le is �, agent i�s valuation of an object is given by:

vi (�i; ��i) = �i + 

X
j 6=i

�j ,
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with 
 2 R+. The parameter 
 measures the amount of interdependence in valuations: the case of
private values is given by 
 = 0 and the case of pure common values is 
 = 1. The net utility of

agent i depends on his probability yi of receiving the object and the monetary transfer ti:

ui (�; yi; ti) =

0@�i + 
X
j 6=i

�j

1A yi � ti.
We determine the conditions for separability of types in this preference environment.6

Type set pro�le 	�i separates 	i if, knowing i�s preferences and knowing that he is sure that

others�type pro�le is 	�i, we can always rule out some �i. In this example, because the utility

function ui (�) is linear in the monetary transfer for all types and all agents, separability must come
from di¤erent valuations of the object. For given type set pro�le 	�i of all but i, we can identify

the set of possible (expected) valuations of agent i with type �i by writing:

Vi (�i;	�i) =

8<:vi 2 R+
������9�i 2 �(	�i) s.t. vi = �i + 


X
��i2	�i

�i (��i)
X
j 6=i

�j

9=;
=

24�i + 
X
j 6=i

min	j ; �i + 

X
j 6=i

max	j

35 . (4)

Now 	�i separates 	i if and only if

\
�i2	i

Vi (�i;	�i) = ?.

This is equivalent to requiring that

Vi (max	i;	�i) \ Vi (min	i;	�i) = ?.

By (4), this will hold if and only if

max	i + 

X
j 6=i

min	j > min	i + 

X
j 6=i

max	j .

6This example has a continuum of types and a continuum of deterministic monetary allocations while the general

model was de�ned for a �nite number of types and pure outcomes. We could rewrite the example and the corre-

sponding results without loss in the �nite setting. With a �nite model, integer problems would need to be taken into

account; in particular, the exact value of the critical threshold for moderate interdependence would depend on the

size of the grid. But as the grid becomes �ner, the critical thresholds converge to the ones of the continuum example

here.
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We can rewrite the inequality as

max	i �min	i > 

X
j 6=i

(max	j �min	j) .

Thus 	�i separates 	i if and only if the di¤erence between the smallest and the largest element in

the set 	i is larger than the weighted sum of the di¤erences of the smallest and the largest element

in the remaining sets 	j for all j 6= i. Conversely, 	�i does not separate 	i if the above inequality
is reversed, i.e.,

max	i �min	i � 

X
j 6=i

(max	j �min	j) . (5)

Now we can identify the kth level inseparable sets, described in (1)-(3), for our example. We have

�0i = 2
[0;1]

and, by (5),

�ki =

8<:	i 2 �ki
������max	i �min	i � 


X
j 6=i

max
	j2�kj

(max	j �min	j)

9=; ;
Now by induction, we have that

�k+1i =
n
	i

���max	i �min	i � (
 (I � 1))ko :
Thus if 
 (I � 1) < 1, ��i consists of singletons, ��i = (f�ig)�i2[0;1], while if 
 (I � 1) � 1, �

�
i consists

of all subsets, ��i = 2
[0;1].

Thus if 
 < 1
I�1 , so that interdependence is not too large, every distinct pair of types are

pairwise separable. If 
 � 1
I�1 , every pair of types are pairwise inseparable. We note that the linear

structure of the valuations vi (�) leads to the strong converse result. But the example illustrates
the general principle that pairwise separability corresponds to not too much interdependence. We

shall state a more general result about the relationship between pairwise separability and not too

much interdependence in Section 6.2. We also note that the argument surrounding the pairwise

separability result relies on the boundedness of the payo¤ type space. In particular if �i = R, then

pairwise separability could only be achieved in the case of of pure private values, i.e. 
 = 0.

Our later results will show that if 
 � 1
I�1 , no social choice function (except for a constant one)

is robustly virtually implementable; but if 
 < 1
I�1 , any ex post incentive compatible allocation

can be robustly virtually implemented. One can construct generalized VCG payments such that

13



e¢ cient allocation is ex post incentive compatible in this environment if 
 � 1. Thus the e¢ cient
allocation is robustly virtually implementable if and only if 
 < 1

I�1 .

Our result on robust virtual implementation in this environment will contrast with what would

happen with standard Bayesian implementation. Suppose we assumed there was common knowl-

edge of a common prior on the set of payo¤ types [0; 1]I . Suppose �rst that agents� types were

drawn independently. Then each type would have di¤erent expected valuations of the object and

could easily be separated. Even if priors were not independent, for a �typical�choice of prior, the

measurability condition of Abreu and Matsushima (1992b) and Bayesian virtual implementation

would be possible as long as incentive compatibility conditions were satis�ed. Ex post incentive

compatibility (and thus Bayesian incentive compatibility for any prior) is satis�ed by the e¢ cient

allocation if 
 � 1.

4 Strategic Distinguishability

4.1 Main Result

Two payo¤ types are strategically distinguishable if there exists a mechanism where the rationaliz-

able actions of those payo¤ types are disjoint; thus they are strategically indistinguishable if they

have a rationalizable action in common in every mechanism.

De�nition 4 (Strategically Indistinguishable)

Types �i and �0i are strategically indistinguishable if Si [M] (�i) \ Si [M]
�
�0i
�
6= ? for everyM.

The notion of strategic indistinguishability is related to the idea of incentive compatibility in the

context of information revelation in a mechanism. The di¤erence between distinguishability and

incentive compatibility arises from the two central features of strategic indistinguishability. First,

we say that two payo¤ types can be strategically distinguished if there exists some mechanism and

hence some outcome function for which the types have disjoint rationalizable actions. In contrast,

the analysis of incentive compatibility is typically concerned with a speci�c mechanism and hence

a speci�c outcome function. Second, strategic distinguishability requires that the two payo¤ types

display disjoint rationalizable actions for all possible beliefs and higher order beliefs. In contrast,

the analysis of incentive compatibility is typically concerned with a �xed and common prior belief

of the agents.

14



The characterization of strategic indistinguishability is the key result in our characterization of

robust virtual implementation.

Theorem 1 (Equivalence)

Types �i and �0i are strategically indistinguishable if and only if they are pairwise inseparable.

This result will be proved in two parts. First, Proposition 1 shows that under any �nite

mechanism, if �i and �0i are pairwise inseparable, then the intersection of the set of rationalizable

messages for �i and �0i will always be non-empty. This observation follows easily from our de�nitions.

Proposition 1

If �i and �0i are pairwise inseparable (�i � �0i), then Si [M] (�i)\Si [M]
�
�0i
�
6= ? in any mechanism

M:

Proof. By Lemma 3, if �i � �0i, there exists mutually inseparable � with
�
�i; �

0
i

	
� 	�i 2 �i.

Now �x any mechanism M. We will show, by induction on k, that for each k, i and 	i 2 �i,
there exists mk

i (	i) 2 Mi such that mk
i (	i) 2 Ski [M]

�e�i� for each e�i 2 	i. This is true by

de�nition for k = 0. Suppose that it is true for k. Now �x any i and 	i 2 �i. Since � is mutually
inseparable, there exists 	�i 2 ��i, R and, for each e�i 2 	i, �e�ii 2 �(	�i) such that Re�i;�e�ii = R.
Now let mk+1

i (	i) be any optimal message of agent i when he believes that his opponents will

sent message pro�le mk
�i (	�i) with probability 1 and has beliefs �

e�i
i about the type pro�le of his

opponents, i.e.,

mk+1
i (	i) 2 argmax

m0
i

X
��i

�
e�i
i (��i)ui

�
g
�
m0
i;m

k
�i (	�i)

�
;
�e�i; ��i�� .

By construction, mk+1
i (	i) 2 Sk+1i [M]

�e�i� for all e�i 2 	i.
By the �niteness of the mechanism, there exists K such that Ski [M]

�e�i� = Si [M]
�e�i� for all

i, e�i and k � K. Thus for each 	i 2 �i, there exists mi (	i) 2Mi such that mi (	i) 2 Si [M]
�e�i�

for each e�i 2 	�i . Thus there exists mi 2 Si [M] (�i) \ Si [M]
�
�0i
�
.

The second part of the theorem�s proof is the converse result.

Proposition 2 (Existence of Maximally Revealing Mechanism)

There existsM� such that �i � �0i ) Si [M�] (�i) \ Si [M�]
�
�0i
�
= ?.
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Propositions 1 and 2 immediately imply Theorem 1. Proposition 2 is proved by the explicit

construction of a mechanism which will lead every pair of distinguishable types to choose di¤erent

messages. We refer to the speci�c mechanism as the �maximally revealing mechanism�, and spend

the rest of this section describing its construction and �nding its properties.

4.2 The Maximally Revealing Mechanism

We will construct a mechanism that will work for any environment. In the canonical mechanism,

each agent is given K simultaneous opportunities to select a preferred allocation from a given �test

set�of allocations. For each opportunity k to select a preferred allocation, with k = 1; :::;K, the

agent is asked to report a pro�le of possible choices by the remaining agents in the opportunities

preceding the k-th opportunity. If the report of the agent at opportunity k matches the choices of

the other agents in the opportunities below k, then he will be given the right to choose a preferred

allocation. On the other hand, if his report fails to replicate the choices of the other agents in

the opportunities before k, then the designer will simply select the central lottery �y. While the

mechanism is entirely static, it requires each agent to make a series of choices, each one contingent

on the choices of the other agents. In particular, by asking the agent at opportunity k to match his

report with the choices of the other agents at the opportunities before k, we introduce an inductive

structure into the series of choices by each agent. We therefore refer to the k-th opportunity as the

k-th stage or k-th step of the mechanism even though the mechanism itself is entirely static.

The central aspect of the inductive structure of the choice mechanism is that it allows us

to analyze the behavior of the agent in the mechanism in terms of the iterative elimination of

dominated strategies. The precise construction of the choice mechanism is based on two central

concepts, the notion of a test set and the notion of an augmentation of a given mechanism. A test

set will give each agent a �nite set of choices and the choice behavior by the agent allows us to

distinguish between di¤erent types of the agent. The construction of the set of test allocations relies

on a few critical implications of our notion of separation. In turn, the notion of an augmentation

permits us to show that we can always construct a more informative mechanism on the basis of a

given mechanism.

4.2.1 A Class of Maximally Revealing Mechanisms

Fix a �nite �test set�of lotteries Y �. A maximally revealing mechanism o¤ers each agent i a series

of K opportunities to select a preferred allocation from Y �. The set of messages for each agent in
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a maximally revealing mechanism is de�ned as follows. Let M0
i =

�
m0
i

	
and inductively de�ne

Mk+1
i =Mk

i �Mk
�i � Y �:

Thus M0
i =

�
m0
i

	
, M1

i =
�
m0
i

	
�M0

�i � Y �, M2
i =

�
m0
i

	
�M0

�i � Y � �M1
�i � Y �, and so on.

The message mk+1
i of agent i in stage k+1 thus reiterates his message from step k and announces

a possible message pro�le of the remaining agents in step k. Due to the inductive structure of the

messages, we can write a typical element mk
i 2Mk

i as a list of the form

mk
i =

n
m0
i ; r

1
i ; y

1
i ; r

2
i ; y

2
i ; :::; r

k
i ; y

k
i

o
, (6)

with m0
i = m

0
i and each r

k
i 2Mk�1

�i and each yki 2 Y �. The entry rki constitutes the report of agent
i regarding the message of the other agents in the previous stage k � 1. The message set of agent
i is then given by MK

i .

The outcome function in the revealing mechanism is de�ned as:

gK;" (m) , y +
�
1� "K
1� "

�
1

I

 
KX
k=1

"k�1
IX
i=1

I
�
rki ;m

k�1
�i

��
yki � y

�!
; (7)

for some " > 0 and where I is the indicator function:

I
�
rki ;m

k�1
�i

�
,

8<: 1, if rki = m
k�1
�i ;

0, otherwise.

For a given " > 0 and positive integer K, we refer to the associated revealing mechanism as

MK
" ,

�
MK ; gK"

�
.

In words, the mechanism has K stages. In each stage k, an agent is asked to announce a stage k�1
message pro�le of messages he thinks his opponents might have sent and - with positive probability

- gets to pick a lottery from Y �. Lotteries from early stages are much more likely to be chosen

than lotteries from later stages. We can now analyze how the series of messages can iteratively and

interactively identify the types of each agent.

4.2.2 Characterizing Rationalizable Behavior for Small "

For su¢ ciently small " > 0, an agent�s choice of a message at the kth stage will be independent of

what messages he thinks others will send at stage k and higher and thus also independent of K, the
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total number of stages of messages that will be sent. We �rst propose an inductive characterization

of the set of types of player i who could possibly send kth stage message mk
i and we denote this set

by �
k
i

�
mk
i

�
. We then verify with Lemmas 6 and 8 that our proposed inductive characterization of

rationalizable messages is correct for su¢ ciently small ".

Write BY
�

i (�i; �i) for agent i�s most preferred lotteries in the set Y � if he has payo¤ type �i and

beliefs �i 2 �(��i) and (with a minor abuse of notation) let BY
�

i (�i;	�i) be agent i�s possible

most preferred lotteries if he has payo¤ type �i and assigns probability 1 to his opponents having

types in 	�i, so that

BY
�

i (�i; �i) ,
�
y 2 Y �

�� y R�i;�i y0 for all y0 2 Y �	 ;
and

BY
�

i (�i;	�i) ,
[

�i2�(	�i)
BY

�
i (�i; �i) :

We adopt the convention that if 	j = ? for some j 6= i, then BY
�

i (�i;?) = ? as well.

Let �
1
i

�
m1
i

�
be the set of types of player i who could possibly send �rst stage message m1

i .

Since we will ignore later stages, this will be independent of " and K. Taking these sets as given,

we will then �nd the set �
2
i

�
m2
i

�
of types of player i who could possibly send second stage message

m2
i , and so on. We will end up with an inductive characterization of the set �

k
i

�
mk
i

�
of types of

player i who could possibly send kth stage message mk
i . Thus

�
0
i

�
m0
i

�
, �i;

and inductively de�ne �
k+1
i

�
mk+1
i

�
, where we recall that by the inductive description of the

message mk+1
i in (6), we have mk+1

i =
�
mk
i ; r

k+1
i ; yk+1i

�
:

�
k+1
i

�
mk+1
i

�
,

8>>><>>>:�i 2 �i
���������
(i) �i 2 �

k
i

�
mk
i

�
;

(ii) �
k
�i

�
rk+1i

�
6= ?; and

(iii) yk+1i 2 BY �i
�
�i;�

k
�i

�
rk+1i

��
.

9>>>=>>>; (8)

The set �
k
i

�
mk
i

�
is meant to approximate the set of types of agent i for whom a speci�c message

mk
i is rationalizable in stage k. In some sense, the set �

k
i

�
mk
i

�
is the dual to Ski [M] (�i), which

describes the set of messages mi which are rationalizable for a speci�c type �i in stage k. The role

of the set �
k
i

�
mk
i

�
is to track the information that can be inferred from the choices of messages mi

about the type �i of agent i.
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The analysis of the limit behavior of �
k+1
i

�
mk+1
i

�
is heuristic in the sense that the inductive

process assumes the properties (ii) and (iii) in (8). In particular, it is simply assumed that agent

i in stage k + 1 announces a past message pro�le of the remaining agents which could have been

sent by some type pro�le of the other agents, and it is simply assumed that agent i will select an

allocation which is a best response to some belief in stage k + 1.

We will use two preliminary results to establish formally that these sets characterize limit

behavior for small " and large K. The routine proofs are reported in the Appendix. First, we

note that for any �xed �nite mechanismM, when we iteratively delete messages that are not best

responses, they are uniformly worse responses, i.e., there exists �M > 0 such that each of those

deleted messages is not even an �M-best response.

Lemma 4 (Uniformly Worse Responses)

For any mechanismM, there exists �M > 0 such that if mi 2 Ski [M] (�i), mi =2 Sk+1i [M] (�i) and

�i 2 �(��i �M�i) satis�es

�i (��i;m�i) > 0) mj 2 Skj [M] (�j) for each j 6= i;

then there exists mi such thatX
��i;m�i

�i (��i;m�i)ui (g
� (mi;m�i) ; (�i; ��i)) >

X
��i;m�i

�i (��i;m�i)ui (g
� (mi;m�i) ; (�i; ��i))+�M.

Second, we use the uniform lower bound in stating a key result about �augmenting�mecha-

nisms. We use this �augmentation lemma� in the construction of both the maximally revealing

mechanism (in this section) and the canonical mechanism for robust virtual implementation (in the

next section). For each player i, �x �nite message sets M0
i and M

1
i and let Mi = M

0
i �M1

i . Fix

g0 : M0 ! Y , g1 : M1 ! Y and g+ : M ! Y . Fix �0; �1; �+ � 0 with �0 + �1 + �+ = 1 and let
g :M ! Y be de�ned by

g (m) , �0g0
�
m0
�
+ �1g1

�
m1
�
+ �+g+ (m) :

We now consider the mechanism

M0 ,
��
M0
i

�I
i=1
; g0
�
;

and the augmented mechanism

M ,
�
(Mi)

I
i=1 ; g

�
.

We recall that the constant C > 0 is a �nite upper bound on the di¤erence in payo¤s across all

agents and all pairs of lotteries y and y0, which we established earlier in Lemma 2.
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Lemma 5 (Augmentation)

If �+C � �0�M0, then

�
m0
i ;m

1
i

�
2 Si [M] (�i)) m0

i 2 Si
�
M0

�
(�i) .

The lemma states that if the weight �0 put on the original payo¤ function g0 in the augmented

mechanism is much larger than the weight �+ put on the other component of the mechanism at

which m0 e¤ects the allocation, then any rationalizable message in the augmented mechanism must

entail sending a message m0
i that was rationalizable in the original mechanism.

We now show that these choices are indeed the result of iteratively elimination of strictly

dominated strategies. More precisely, we verify that �
k
i

�
mk
i

�
is an upper bound on the set of types

who could send kth stage message mk
i in anyMk

" for su¢ ciently small ".

Lemma 6 (Limit)

Suppose that BY
�

i (�i; �i) 6= Y � for each i, �i and �i 2 �(��i). Then, for each k, there exists " > 0
such that: n

�i 2 �i
���mk

i 2 S
h
Mk

"

i
(�i)

o
� �ki

�
mk
i

�
;

for all " � " and mk
i 2Mk

i .

Proof. By induction. The claim of holds for k = 0, since

�
�i 2 �i

��m0
i 2 S

�
M0

"

�
(�i)

	
= �i = �

0
i

�
m0
i

�
.

Now suppose that the claim holds for k. Thus there exists "k > 0, such thatn
�i 2 �i

���mk
i 2 S

h
Mk

"

i
(�i)

o
� �ki

�
mk
i

�
for all " � "k and mk

i 2Mk
i :

Now observe that Mk+1
" is an augmentation of Mk

" and thus - by Lemma 5 - there exists "k+1 2
(0; "k], such that for all " � "k+1,

mk+1
i =

�
mk
i ; r

k+1
i ; yk+1i

�
2 S

h
Mk+1

"

i
(�i)) mk

i 2 S
h
Mk

"

i
(�i) . (9)

Now by the inductive hypothesis, we also have

�i 2 �
k
i

�
mk
i

�
. (10)
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We further observe that mk+1
i 2 S

�
Mk+1

"

�
(�i) also implies there must exist �i 2 �

�
��i �Mk+1

�i

�
such that (1):

�i

�
��i;m

k+1
�i

�
> 0 ) mk+1

j 2 S
h
Mk+1

"

i
(�j) for each j 6= i

and (2):

mk+1
i 2 argmax

mk+1
i 2Mk+1

i

X
��i;m

k+1
�i

�i

�
��i;m

k+1
�i

� h
ui

�
gk+1;"

�
mk+1
i ;mk+1

�i

�
; (�i; ��i)

�i
.

But note that
�
rk+1i ; yk+1i

�
- the last components of mk+1

i - e¤ect only one additively separable

component of the above expression. In particular,
�
rk+1i ; yk+1i

�
must maximize:

X
��i;m

k+1
�i

�i

�
��i;m

k+1
�i

�
I
�
rk+1i ;mk

�i

��
ui

�
yk+1i ; (�i; ��i)

�
� ui (y; (�i; ��i))

�
, (11)

which we can rewrite asX
��i

X
fmk+1

�i jmk
�i=r

k+1
i g

�i

�
��i;m

k+1
�i

��
ui

�
yk+1i ; (�i; ��i)

�
� ui (y; (�i; ��i))

�
.

In particular, the later expression is zero if

�i

�
rk+1i

�
,
X
��i

X
fmk+1

�i jmk
�i=r

k+1
i g

�i

�
��i;m

k+1
�i

�
= 0.

But if �i
�
rk+1i

�
> 0 and yk+1i 2 BY �i (�i; �i), where

�i (��i) =

P
fmk+1

�i jmk
�i=r

k+1
i g

�i

�
��i;m

k+1
�i

�
X
�0�i

P
fmk+1

�i jmk
�i=r

k+1
i g

�i

�
�0�i;m

k+1
�i

� ,

then (11) must be strictly positive, by the premise of the lemma. Thus we must have
�
rk+1i ; yk+1i

�
chosen such that �i

�
rk+1i

�
> 0 and yk+1i 2 BY �i (�i; �i). Now �i

�
rk+1i

�
> 0, (9) and the inductive

hypothesis imply that

�
k
�i

�
rk+1i

�
6= ?; (12)

and

�i 2 �
�
�
k
�i

�
rk+1i

��
and yk+1i 2 BY �i (�i; �i) . (13)
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To wit, by the construction of the revealing mechanism (see (7)), the lottery yk+1i speci�ed in (13)

only a¤ects the (expected) payo¤ of agent i when rk+1i = mk
�i. It follows that y

k+1
i should be a

best reply to some belief conditioned on the event that rk+1i = mk
�i.

Now (10), (12) and (13) together imply that any message mk+1
i 2 S

�
Mk+1

"

�
(�i) satis�es

the three requirements in the construction of �
k+1
i

�
rk+1i

�
in (8) and hence we have that for any

mk+1
i 2 S

�
Mk+1

"

�
(�i), �i 2 �

k+1
i

�
mk+1
i

�
.

4.3 Constructing a Rich Enough Test Set

Finally, we show that we can choose the �test set�Y � to be su¢ ciently large so that Lemma 6 will

imply that - for su¢ ciently small " > 0 and su¢ ciently large K - any pair of mutually separable

types are sending distinct messages in the (K; ") revealing mechanism.

Lemma 7 (Existence of Finite Test Set)

There exists a �nite test set Y � � Y such that:

1. for each i, �i and �i 2 �(��i), BY
�

i (�i; �i) 6= Y �;

2. for each i, 	i and 	�i, if 	�i separates 	i, then for each �i 2 	i and �i 2 �(	�i), there
exists �0i 2 	i such that

BY
�

i (�i; �i) \BY
�

i

�
�0i;	�i

�
= ?.

The proof of Lemma 7 is in the Appendix. Now the proof of Proposition 2 is completed by the

following lemma, establishing that the sets �
k
i are closely related to kth level inseparable sets �

k
i ,

as de�ned earlier in (1)-(3).

Lemma 8 For all i, all k, and all mk
i 2Mk

i , �
k
i

�
mk
i

�
� 	i for some 	i 2 �ki .

Proof. By induction. The claim holds for k = 0 by de�nition. Suppose for all mk
�i 2

Mk
�i, we have �

k
�i
�
mk
�i
�
� 	i for some 	i 2 �ki . Now �x any mk+1

i =
�
mk
i ; r

k+1
i ; yk+1i

�
2

Mk+1
i . If �

k+1
i

�
mk+1
i

�
= ?, then we are done as the empty set is included in every 	i 6= ?.

If �
k+1
i

�
mk+1
i

�
6= ?, then we let 	i = �

k+1
i

�
mk+1
i

�
and let 	�i = �

k
�i

�
rk+1i

�
. Lemma 7.1

ensures that for every �i and �i, there exist y; y0 2 eY such that yP�i;�iy
0. Thus any best response

will involve setting rk+1i equal to some mk
�i that he assigns positive probability to and choosing a

strictly preferred lottery. By our inductive assumption, 	�i 2 �k�i. Now suppose 	�i separates
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	i and �x �i 2 	i. By Lemma 7.2, there exists �0i 2 	i such that yk+1i =2 BY �i
�
�0i;	�i

�
. Thus

�0i =2 �
k+1
i

�
mk+1
i

�
, a contradiction. We conclude that 	�i does not separate 	i.

5 Robust Virtual Implementation

In this section, we use the notions of strategic distinguishability and the maximally revealing mech-

anism to establish necessary and su¢ cient conditions for robust virtual implementation. Virtual

implementation of a social choice function requires a mechanism such that the desired outcomes are

realized with probability arbitrarily close to 1 (see Abreu and Matsushima (1992b) and Abreu and

Matsushima (1992c)). Robust implementation requires implementation of a social choice function

depending on agents��payo¤ types� independent of their beliefs and higher order beliefs about

others�payo¤ types (see Bergemann and Morris (2005a) and Bergemann and Morris (2009)). Our

de�nition of robust virtual implementation is the natural one incorporating both these notions.

5.1 De�nitions

Write ky � y0k for the rectilinear norm between a pair of lotteries y and y0, i.e.,



y � y0

 ,X
x2X

��y (x)� y0 (x)�� .
De�nition 5 (Robust "-Implementation)

The mechanismM robustly "-implements the social choice function f if

m 2 S [M] (�)) kg (m)� f (�)k � ";

f is robustly "-implementable if there exists a mechanismM that robustly "-implements f .

We can now de�ne the notion of robust virtual implementation.

De�nition 6 (Robust Virtual Implementation)

Social choice function f is robustly virtually implementable if, for every " > 0, f is robustly "-

implementable.

The relevant incentive compatibility condition required for our robust problem is ex post incen-

tive compatibility.
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De�nition 7 (EPIC)

Social choice function f satis�es ex post incentive compatibility (EPIC) if, for all i, �i, ��i and �0i:

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
.

Now �robust measurability�requires that if �i is pairwise inseparable from �0i, then the social

choice function must treat the two types the same. This condition is the robust analogue of the

measurability condition in Abreu and Matsushima (1992c) as we formally establish in Section 6.1.

De�nition 8 (Robust Measurability)

Social choice function f is robust measurable if �i � �0i ) f (�i; ��i) = f
�
�0i; ��i

�
for all ��i.

5.2 Necessity

It is well known from the literature on virtual Bayesian implementation (e.g., Abreu and Mat-

sushima (1992c)) that the relaxation to virtual implementation does not relax incentive compati-

bility conditions by a standard compactness argument.7

Theorem 2 (Necessity)

If f is robustly virtually implementable, then f is ex post incentive compatible and robustly mea-

surable.

Proof. We �rst establish ex post incentive compatibility. Fix any mechanismM that robustly

"-implements f . Fix ��i and m�i 2 SM�i (��i). For any m0
i 2 Si [M]

�
�0i
�
, virtual implementation

requires 

g �m0
i;m�i

�
� f

�
�0i; ��i

�

 � ". (14)

Now suppose that player i is type �i and is convinced that his opponent is type ��i sending message

m�i. Letmi be any message which is a best response to that belief. Thenmi 2 Si [M] (�i), implying

that

kg (mi;m�i)� f (�i; ��i)k � ". (15)

7Dasgupta, Hammond, and Maskin (1979) and Ledyard (1979) argued in a private value environment that dom-

inant strategy incentive compatibility was implied by Bayesian incentive compatibility for all priors on a �xed type

space. In the case of a social choice function, this argument - generalized to interdependent values - shows the

necessity of ex post incentive compatibility (see Bergemann and Morris (2005b)).
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In particular, by the best response property of mi:

ui (g (mi;m�i) ; (�i; ��i)) � ui
�
g
�
m0
i;m�i

�
; (�i; ��i)

�
. (16)

Now (14) and Lemma 2 imply

��ui �g �m0
i;m�i

�
; (�i; ��i)

�
� ui

�
f
�
�0i; ��i

�
; (�i; ��i)

��� � 1

2
"C; (17)

and (15) and Lemma 2 imply

jui (g (mi;m�i) ; (�i; ��i))� ui (f (�i; ��i) ; (�i; ��i))j �
1

2
"C: (18)

Now combining (16), (17) and (18), we obtain

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
� "C.

But virtual implementation implies that this holds for all " > 0, so we have

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
,

and this establishes EPIC as necessary condition.

Next we establish robust measurability. Suppose that f is robustly virtually implementable.

Fix any " > 0. Since f is robustly virtually implementable, there exists a mechanismM" such that

m 2 S [M"] (�)) kg (m)� f (�)k � ".

Now �x any ��i and m"
�i 2 S�i [M"] (��i). Also �x any �i � �0i, so by Proposition 1, there exists

m"
i 2 Si [M"] (�i) \ Si [M"]

�
�0i
�
:

Now


g �m"

i ;m
"
�i
�
� f (�i; ��i)



 � " and 

g �m"
i ;m

"
�i
�
� f

�
�0i; ��i

�

 � ". Thus 

f (�i; ��i)� f ��0i; ��i�

 �
2". This is true for each " > 0, so f (�i; ��i) = f

�
�0i; ��i

�
.

While we maintain the assumption the mechanism is �nite, the same argument implies the ne-

cessity of EPIC and robust measurability if we allow �regular mechanisms�(Abreu and Matsushima

(1992c)), i.e., mechanisms where best replies always exist of any conjecture over opponents�behav-

ior.
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5.3 Su¢ ciency

We �rst describe the construction of a canonical mechanism that will be used to establish su¢ ciency.

Our construction follows the logic of Abreu and Matsushima (1992c), which in turn builds on Abreu

and Matsushima (1992b). In the mechanism we construct, each agent simultaneously announces

(i) a message in the maximally revealing mechanism described above; (ii) L announcements of

his payo¤ type. With probability close to 1
L , the outcome is chosen according the agents� lth

announcement of their payo¤ types in part (ii) of their messages. But with small probability, the

outcome is chosen according to the maximally revealing mechanism and their part (i) messages.

The mechanism then checks to see which agents were the ��rst�to �lie�, in the sense that his lth

report of his type is not consistent with the message he sent in the maximally revealing mechanism

and no other agent sent an inconsistent message in an �earlier� report. If an agent is not one of

the �rst to lie, then the agent is rewarded. For this part of the mechanism, we need an economic

property.

De�nition 9 (Economic Property)

The uniform economic property is satis�ed if there exist a pro�le of lotteries, (zi)
I
i=1, such that, for

each i and �, ui (zi; �) > ui (y; �) and uj (y; �) � uj (zi; �) for all j 6= i.

Under the uniform economic property, there will exist a constant c0 such that

ui (zi; �) > ui (y; �) + c0 (19)

for all i and �.

In the canonical mechanism, part (i) announcements for the maximally revealing mechanism

are made as if the maximally revealing mechanism was being played as a stand alone mechanism

(since the probability of rewards can be chosen su¢ ciently small). An agent will never allow himself

to be one of the �rst to lie: sending a message that ensures that he is not the �rst to lie (given his

beliefs about others�strategies) will always strictly improve on his expected payo¤, since if others

are telling the truth, truth-telling is a weak best response by ex post incentive compatibility, and

if they are lying, for su¢ ciently large L, the reward will outweigh the cost of not lying in one stage

of the mechanism.

We writeM� =
�
(M�

i )
I
i=1 ; g

�
�
for the maximally revealing mechanism. We use three numbers

in de�ning the canonical mechanism: c0 is the uniform lower bound on an agent�s utility gain from

having his uniformly preferred lottery rather than the central lottery; recall from Lemma 2 that
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C is an upper bound on payo¤ di¤erences in the environment; recall from Lemma 4 whenever a

message is deleted in the iterated deletion process for the maximally revealing mechanismM�, it

is not even an �M�-best response to any conjecture. We will use these three numbers c0, C and

�M� , together with the number of players I, to de�ne two further numbers � and L that will be

used in the construction of the canonical mechanism. Choose � > 0 such that

� <
�M�

C
; (20)

and an integer L such that

L >
IC

�2c0
. (21)

Now the message space of the canonical mechanism is

Mi = M�
i �

L timesz }| {
�i � � � � ��i = M�

i ��Li :

Thus a typical message will be written as mi =
�
m0
i ;m

1
i ; :::;m

L
i

�
, with m0

i 2M�
i ; m

l
i 2 �i for each

l = 1; :::; L. The idea is that an agent is �supposed� to truthfully report his payo¤ type in each

stage l = 1; :::; L and will receive a small punishment if he is one of the ��rst� to report a type

that is not consistent with his 0-th message. The small individual rewards and punishments are

provided by

ri (m) =

8>>>>>><>>>>>>:
y, if

9k 2 f1; :::; Lg s.t. m0
i =2 Si [M�]

�
mk
i

�
;

and m0
j 2 Sj [M�]

�
ml
j

�
8j = 1; :::; I and l = 1; :::; k � 1;

zi, if otherwise.

(In slight abuse of notation, we use ri (m) here to denote rewards whereas we used rki earlier in

subsection 4.2.1). Now the outcome function of the canonical mechanism is:

g (m) =
�
1� � � �2

� 1
L

LX
l=1

f
�
ml
�
+ �g�

�
m0
�
+
�2

I

IX
i=1

ri (m) .

The mechanism g (m) has three components. The �rst component, which carries the largest

probability, is the social choice function f itself. The appropriate allocation f
�
ml
�
will be selected

by L replicas, each one of which is chosen with a small probability 1=L. The second component is

the maximally revealing mechanism outcome function g� which receives a smaller weight of �. The

third and �nal component, ri (m), represents a small reward or punishment. It is designed to give
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each agent an incentive to replicate in stage l the report issued in the previous stage. It provides

a small �punishment� (y) if player i is the �rst to report in the message component, ml
i, a type

inconsistent with previous reports, otherwise ri (m) provides the small �reward�(zi).

Theorem 3 Under the uniform economic property, if f satis�es EPIC and robust measurability,

then the canonical mechanism � (1 + �) robustly implements f .

This immediately implies the su¢ ciency part of our characterization of robust virtual imple-

mentation, since we can choose � arbitrarily close to 0 in the canonical mechanism.

Corollary 1 (Su¢ ciency) Under the uniform economic property, if f satis�es EPIC and robust

measurability, then f is robustly virtually implementable.

Proof. To prove the theorem, it is enough to establish that, for each i, mi =
�
m0
i ;m

1
i ; :::;m

L
i

�
2

Si [M] (�i) implies that (1) m0
i 2 Si [M�] (�i) and (2) m0

i 2 Si [M�]
�
ml
i

�
for each l = 1; :::; L. To

see why, observe that m0
i 2 Si [M�] (�i) \ Si [M�]

�
ml
i

�
implies �i is strategically indistinguishable

from ml
i, which implies, by robust measurability, that f

�
ml
i;m

l
�i
�
= f

�
�i;m

l
�i
�
. Since this holds

for each i, we have f
�
ml
�
= f (�). Since this is true for each l, we have that the mechanism selects

f (�) with probability at least 1� � � �2.
Claim (1) above - that

�
m0
i ;m

1
i ; :::;m

L
i

�
2 Si [M] (�i))m0

i 2 Si [M�] (�i) - follows from Lemma

5 and inequality (20), since m0 in�uences the outcome only through weight � on g�
�
m0
�
and weight

�2 on 1
I

IP
i=1
ri (m).

We will now establish claim (2) above - that
�
m0
i ;m

1
i ; :::;m

L
i

�
2 Si [M] (�i)) m0

i 2 Si [M�]
�
ml
i

�
for all i and l = 1; :::; L.

Suppose this claim were false. Then there must exist a smallest l for which the claim fails.

Thus there exists l� 2 f1; :::; Lg such that, for all j, mj 2 Sj [M�] (�j) ) m0
j 2 Sj [M�]

�
ml
j

�
for

all 1 � l < l�; but there exists i and mi =
�
m0
i ;m

1
i ; :::;m

L
i

�
2 Si [M�] (�i) with m0

i =2 Si [M�]
�
ml�
i

�
.

Now �x any conjecture �i 2 �(��i �M�i) with �i (��i;m�i) > 0 ) mj 2 Sj [M�] (�j) for all

j 6= i. Consider two cases. First, suppose that

�i (��i;m�i) > 0 ) m0
j 2 Sj [M�]

�
ml
j

�
for all j 6= i and l = 1; :::; L. (22)

In this case, sending the message

mi = (m
0
i ;

L timesz }| {
�i; �i; :::; �i)
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instead of mi will strictly increase i�s utility: since he is certain that each agent is reporting a type

that is strategically indistinguishable in each of the L stages, EPIC and robust measurability ensure

that his utility will not decrease from truthtelling in the L stages; his utility will be unchanged

in the maximally revealing mechanism; and his utility will be strictly increased in the punishment

component. Secondly, i�s conjecture �i is such that (22) fails. In this case, we can de�ne

bl = minnl 2 f1; :::; Lg : 9 (��i;m�i) with �i (��i;m�i) > 0 and m0
j =2 Sj [M�]

�
ml
j

�
for some j 6= i

o
.

Note that bl � l�. Now sending the message
mi = (m

0
i ;

bl timesz }| {
�i; �i; :::; �i;m

bl+1
i ; :::;mL

i )

instead of mi will strictly increase i�s utility: since he is certain that each agent is reporting a type

that is strategically indistinguishable in each of the �rst bl�1 stages, EPIC and robust measurability
ensure that his utility will not decrease from truthtelling in the �rst bl� 1 stages; his utility will be
unchanged in the maximally revealing mechanism; if it turns out that m0

j 2 Sj [M�]
�
m
bl
j

�
for some

j 6= i, then i�s utility will also not be reduced in the bl�th stage or in the punishment component;
but if it turns out that m0

j =2 Sj [M�]
�
m
bl
j

�
for all j 6= i, then i�s utility will be reduced in thebl�th stage by at most �1� � � �2� 1LC and will increase in his own punishment component ri (�)

by at least �2

I c0 (and by the economic property, will not decrease in his opponents�punishment

components r�i (�)). The second term exceeds the �rst term by (21).

We conclude that for no conjecture is mi a best response, contradicting our original assumption.

This proves our second claim.

While the basic construction of this proof follows Abreu and Matsushima (1992c), there are

some complications that arise in our robust formulation. The messages sent in the maximally

revealing mechanism do not partition an agent�s types. Rather, for each set of types that survives

the iterated deletion of sets that can always be separated, there is a message that may be sent by

all types in that set. So we say that message ml
i is consistent with m

0
i if message m

0
i is one that

might be sent by m0
i 2 Si [M�]

�
ml
i

�
.

The economic property can be weakened along the lines of assumption 2 in Abreu and Mat-

sushima (1992c). It would be enough to have the economic property hold for any type set pro�le 	

in the inseparable type set ��, i.e. for each set pro�le 	 = (	i)
I
i=1 2 ��, there exists (zi)

I
i=1, such

that, for each i and � 2 �Ii=1	j ; ui (zi; �) > ui (y; �) and uj (y; �) � uj (zi; �) for all j 6= i.
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6 Discussion

6.1 Abreu-Matsushima Measurability

We established in the preceding section that robust measurability, jointly with ex post incentive

compatibility, is a necessary and su¢ cient condition for robust virtual implementation. Ex post

incentive compatibility is equivalent to Bayesian incentive compatibility on the union of all type

spaces (Bergemann and Morris (2005b)). We now show that robust measurability is equivalent to

requiring that the notion of measurability originally suggested by Abreu and Matsushima (1992c)

holds on the union of all type spaces.8 To spell out the details of this equivalence result, we need

a formal language for epistemic type spaces in the sense of Harsanyi (1967-68) and Mertens and

Zamir (1985).

A type space is de�ned by T ,
�
Ti; b�i;b�i�I

i=1
, where each Ti is a countable set of types, where

the function b�i : Ti ! �(T�i) de�nes the beliefs that agent i assigns to other agents having types

t�i and where the function b�i : Ti ! �i de�nes the agent i�s payo¤ types. A type space is �nite

if each Ti is �nite. We �x a type space T and write �Tti for the induced preferences of type ti of
agent i over type-contingent lotteries eyi : T�i ! Y . Thus

eyi �ti ey0i
if and only if X

t�i2T�i

b�i (t�ijti)ui (eyi (t�i) ; t) � X
t�i2T�i

b�i (t�ijti)ui �ey0i (t�i) ; t� .
Fix a partition pro�le H = (Hi)Ii=1, where each Hi is a partition of Ti. A function eyi : T�i ! Y

is H-measurable if for all j 6= i:

�
tj ; t

0
j

	
� Hj 2 Hj ) ey �tj ; t�fi;jg� = ey �t0j ; t�fi;jg� :

Say that a pair of types ti and t0i are (T ;H)-distinguishable if there exists H-measurable eyi : T�i !
Y , such that eyi �Tti y and y �Tt0i eyi,
where we continue to denote by y the constant uniform lottery.

8We would like to thank an anonymous referee who suggested to investigate the exact relationship between Abreu-

Matsushima measurability and robust measurability.
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Now iteratively de�ne a sequence of partitions Hk =
�
Hki
�I
i=1

be letting each H0i be the coarsest
partition of the type set Ti, namely fTig and let each Hk+1i consist of sets of types of agent i that

are
�
T ;Hk

�
-indistinguishable.

Let H� be the limit of the sequence of partitions. We say that types ti and t0i are Abreu�

Matsushima, or �AM�, indistinguishable on type space T , written ti �TAM t0i, if ti and t
0
i are in the

same element of the partition H�i .

Proposition 3 (Equivalence)

1. If �i and �0i are pairwise inseparable, then there exists a �nite type space T and a pair of types
ti; t

0
i 2 Ti such that (i) b�i (ti) = �i; (ii) b�i (t0i) = �0i; and (iii) ti �TAM t0i.

2. Conversely, if there exists a type space T (perhaps in�nite but countable) and a pair of types

ti; t
0
i 2 Ti such that (i) b�i (ti) = �i; (ii) b�i (t0i) = �0i; and (iii) ti �TAM t0i, then �i and �

0
i are

pairwise inseparable.

The equivalence result of Proposition 3 suggests a alternative route to establishing the necessity

result for robust implementation in Theorem 2: by the equivalence of robust measurability and

AM measurability on the union of all type spaces, we could prove the necessity by an appeal to the

arguments used in Abreu and Matsushima (1992c). By contrast, our su¢ ciency result (Theorem

3) cannot be established using the arguments and methods in Abreu and Matsushima (1992c): as

the union of all type spaces is not a �nite object, the arguments in Abreu and Matsushima (1992c)

- which rely on the �niteness of the type space - cannot be applied.

6.2 Interdependence and Pairwise Separability

We illustrated the notions of pairwise and mutual inseparability in Section 3 in the context of a

linear model of interdependent preferences for a single object:

vi (�i; ��i) = �i + 

X
j 6=i

�j :

In this linear and symmetric model the parameter 
 represented the level of interdependence in

the preferences of the agents. We showed that for 
 < 1= (I � 1), all payo¤ types of all agents are
pairwise separable and suggested that pairwise separability required not too much interdependence

in the preferences.
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We now establish the relationship between pairwise inseparability and moderate interdepen-

dence in a substantially more general environment. We assume that the utility function of each

agent i is given by a convex combination of a private value utility function vi and an interdepen-

dent utility function wi over the general space of lotteries Y de�ned in Section 2. The private value

utility function vi:

vi : Y ��i ! R

gives rise to distinct preferences for every �i:

�i 6= �0i ) vi (�; �i) is not an a¢ ne transformation of vi
�
�; �0i
�
:

The interdependent utility function wi:

wi : Y ���i ! R

can depend in an arbitrary way on the type pro�le ��i 2 ��i of all agents except agent i. For any

i 2 [0; 1], let u


i
i be the utility functions that puts weight 1� 
i on the private value utility vi and

weight 
i on the interdependent utility wi:

u

i
i (y; �) , (1� 
i) vi (y; �i) + 
iwi (y; ��i) . (23)

The interdependence in the preferences is now described by the vector of weights 
 = (
1; :::; 
I) 2
[0; 1]I . For 
 = (0; :::; 0) all payo¤ types of all agents are pairwise separable as, by assumption,

the private utility function vi gives rise to distinct preferences for all �i. Also, for 
 = (1; :::; 1),

we cannot separate any pair of types for any agent. In this case, the preferences of each agent are

independent of his payo¤ type and therefore we cannot expect to separate the payo¤ types of agent

i on the basis of his revealed preference. We parametrize the limit set �� which by De�nition 2

describes the set of pairwise inseparable types, by the vector 
, or �� (
).

Proposition 4 (Interdependence)

1. The collection of sets ��i (
) satis�es �
�
i (0) =

��
�1i
	
; :::;

�
�Si
		
and ��i (1) = 2

�in? for all i.

2. If b
 � 
, then ��i (
) � ��i (b
).
The �rst part of the proposition determines the structure of the pairwise separable types with

minimal and maximal interdependence. The second part establishes that the sets of pairs of types
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�i and �0i which are inseparable are weakly increasing in the interdependence parameter 
. In

particular, it shows that the separability is monotone in the parameter of interdependence. We

should emphasize that as the interdependence is represented by the vector 
 = (
1; :::; 
I), the

threshold for complete separability of all types and all agents itself is a multidimensional surface

in the I-dimensional hypercube.

6.3 Intermediate Robustness Notions

The classic Bayesian implementation literature considers implementation on a �xed type space.

We believe that this approach - as usually formulated - assumes too much common knowledge

(among the agents and the planner) about the environment. In relaxing these common knowledge

assumptions, we take an extreme approach: we maintain the assumption that there is common

knowledge of the payo¤ structure of the environment (i.e., the set of possible payo¤ types of each

agent and how each agent�s utility function depends on the pro�le of payo¤ types) but do not

restrict agents�beliefs and higher order beliefs about other agents�types.

In a recent paper, Artemov, Kunimoto, and Serrano (2008) consider what happens to robust

virtual implementation results if one imposes some restrictions on agents� beliefs in the payo¤

environment. In particular, call a pair (�i; �i) 2 �i ��(��i) a �pseudo-type�and suppose that
we add the common knowledge that agent i�s pseudo-type (�i; �i) belongs to a subset Ti � �i �
�(��i). When can a social choice function be virtually implemented on all type spaces where

each agent i�s pseudo-type belongs to Ti? Note that an agent�s pseudo-type pins down his payo¤

type and belief about others�payo¤ types, but not his higher order beliefs. Thus this assumption

is intermediate between the standard approach and our robustness approach. In the special case

where Ti = �i��(��i), this setting becomes the setting of this paper. But if Ti is a strict subset
of �i ��(��i), the conditions for robust virtual implementation will be weakened.

Now say that �pseudo-type diversity�is satis�ed if

1. The set of beliefs consistent with a payo¤type is a compact set, i.e., f�i 2 �(��i) j (�i; �i) 2 Tig
is a compact set for each i and �i 2 �i.

2. Two distinct payo¤ types cannot have the same preference over constant lotteries, i.e.,

(�i; �i) ;
�
�0i; �

0
i

�
2 Ti and �i 6= �0i ) R�i;�i 6= R�0i;�0i .

Artemov, Kunimoto, and Serrano (2008) show that if pseudo-type diversity is satis�ed, then

robust virtual implementation will always be possible if the appropriate incentive compatibility
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conditions are satis�ed (their Theorem 1). The idea is that agents� payo¤ types can then be

identi�ed by their preferences over constant lotteries and the Abreu and Matsushima (1992c)-style

argument applied.9

To get a feel for the strength of the pseudo-type diversity condition, we can return to our leading

example in section 3. Recall that each �i = [0; 1] and vi = �i + 
Ei[
X
j 6=i

�j ] is a su¢ cient statistic

for agent i�s preferences. Now let �i � �
�
[0; 1]I�1

�
be a compact set of beliefs over others�types

that agent i may have (whatever his payo¤ type), so his set of possible pseudo-types is the product

set Ti = [0; 1]� �i. Now if 0 < 
 � 1
I�1 , so there is not too much interdependence of preferences,

pseudo-type diversity will be satis�ed if and only if each �i is a singleton.10

Artemov, Kunimoto, and Serrano (2008) also report the appropriate measurability condition re-

quired for robust virtual implementation if the pseudo-type diversity condition fails (their De�nition

12 and Theorem 2). This will naturally be intermediate between Abreu-Matsushima measurability

and our robust measurability condition. We can illustrate this also with our example. Suppose

that the probability that agent i assigns to any subset of other agents�payo¤ types is always at

least 1� � times the probability of that event under a uniform prior, so that

�i =

8><>:�i 2 �(��i)
��������i (E) � (1� �)

Z
��i2E

d��i; 8 measurable E � [0; 1]I�1

9>=>;
and Ti = �i � �i.

Now suppose that agent i�s payo¤ type is in 	i and he knows that other agents�payo¤ types

are in 	�i. If agent i�s beliefs are restricted to belong to �i, when do there exist a pair of payo¤

types in 	i who could not have the same expected valuation of the object? Only if

max	i + 

X
j 6=i

�
(1� �) 1

2
+ �min	j

�
> min	i + 


X
j 6=i

�
(1� �) 1

2
+ �max	j

�
.

9The version of �pseudo-type diversity� which we report is su¢ cient to implement the social choice functions

depending just on payo¤ types that we study in this paper. Artemov, Kunimoto, and Serrano (2008) assume a

slightly stronger version of pseudo-type diversity: they assume that each Ti is �nite and that distinct pseudo-types have

distinct preferences over constant lotteries even if they correspond to the same payo¤ type, i.e., (�i; �i) ; (�0i; �
0
i) 2 Ti

and (�i; �i) 6= (�0i; �
0
i) ) R�i;�i 6= R�0i;�0i . This allows them to implement richer social choice functions that treat

types with the same payo¤ types (but di¤erent beliefs over others�payo¤ types) di¤erently.
10This example has a continuum of payo¤ types, so does not �t our formal framework. But we could make the

same point with a �nite grid of payo¤ types.
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Thus 	�i ��-separates�	i if and only if

max	i �min	i � 
�
X
j 6=i

(max	j �min	j) .

Now the argument of Section 3 can be adapted to show that if 
� < 1
I�1 , all pairs of distinct

payo¤ types will be strategically distinguishable from each other (under � belief restrictions) and

thus incentive compatibility will be su¢ cient for robust virtual implementation. And if 
� > 1
I�1 ,

all pairs of payo¤ types will be strategically indistinguishable from each other (under � belief

restrictions) and robust virtual implementation will be impossible for any (non-constant) social

choice function.

6.4 Rationalizability and All Equilibria on All Type Spaces

Our analysis took as given the solution concept of incomplete information rationalizability for our

environment. Thus we assumed that if the agents�true payo¤ type pro�le was � = (�1; :::; �I), they

might send any message pro�le

m , (m1; :::;mI) 2
I
�
i=1
Si [M] (�i) , S [M] (�) .

Our motivation for employing this solution concept is that we did not want to make any assumption

about agents�beliefs and higher order beliefs about other agents�payo¤ types. In fact, suppose one

constructed a �type space�T specifying for each agent a set of possible epistemic types, and, for

each epistemic type, a description of his (known) payo¤ type and his beliefs about others�epistemic

types. By standard universal type space arguments, we can incorporate any beliefs and higher order

beliefs about others�payo¤ types in such a type space. Now the type space T and a mechanismM
together de�ne a standard incomplete information game. The set of messages that can be sent by

any type of agent i with payo¤ type �i in any Bayesian Nash equilibrium of the game (T ;M) for

any type space T is equal to Si [M] (�i). This result is the straightforward incomplete information

extension of the classic epistemic foundations result of Brandenburger and Dekel (1987), showing

that the set of actions that can be played in the subjective correlated equilibria of a complete

information game equals the set of actions that survive iterated deletion of strictly dominated

actions in that game. Battigalli and Siniscalchi (2003) reported the incomplete information version

of this result as Propositions 4.2 and 4.3. For completeness, we formally state and prove this result

in the appendix of the working paper version (Bergemann and Morris (2007)).
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This observation means that the gap between the solution concepts of pure strategy Bayesian

Nash equilibrium (Serrano and Vohra (2001), Serrano and Vohra (2005)) and iterated deletion of

(interim) strictly dominated strategies (Abreu and Matsushima (1992c)) in incomplete information

virtual implementation disappears in our robust approach. We consider this to be an attraction

of our approach. The intuition is that the extra bite obtained by the assumption of equilibrium is

lost without complementary strong assumptions on beliefs and higher order beliefs for the imple-

mentation problem.

6.5 Iterated Deletion of Weakly Dominated Strategies

Our incomplete information rationalizability solution concept is equivalent to iterated deletion of

strictly dominated strategies. What would happen if we looked at iterated deletion of weakly

dominated strategies instead? In other words, we let W 0
i [M] (�i) =Mi,

W k+1
i [M] (�i) =

8>>>><>>>>:mi 2W k
i [M] (�i)

����������
9 �i 2 �++

�
(��i;m�i)

��m�i 2W k
�i [M] (��i)

	
s.t.

mi 2 argmax
m0
i

X
��i;m�i

�i (��i;m�i)ui (g (m0
i;m�i) ; (�i; ��i))

9>>>>=>>>>; ;
and

Wi [M] (�i) =
\
k�0

W k
i [M] (�i) :

It is easy to see that our �negative�results would go through unchanged. If two types are pairwise

inseparable (�i � �0i) then the argument of Proposition 1 - unchanged - implies that they will have
iteratively weakly undominated actions in common in every mechanism, or

Wi [M] (�i) \Wi [M]
�
�0i
�
6= ? for allM:

Thus robust measurability is a necessary condition for implementation (virtual or exact) of any

social choice function in iterated deletion of weakly dominated strategies in a �nite (or compact)

mechanism: the argument of Proposition 2 will go through unchanged in this case.

Abreu and Matsushima (1994) show that their argument for virtual complete information im-

plementation in iterated deletion of strictly dominated strategies can be adapted to show the

possibility of exact complete information implementation in iterated deletion of weakly dominated

strategies, with some extra restrictions on the environment. It is a reasonable conjecture that

this extension could be adapted to the standard incomplete information implementation setting of
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Abreu and Matsushima (1992c) and our robust incomplete information setting. However, we have

not attempted this extension.

Chung and Ely (2001) have shown that in an auction environment with interdependent valu-

ations as in section 3, the e¢ cient outcome can be implemented in the direct mechanism under

iterated deletion of weakly dominated strategies (i.e., the solution concept described above) under

the assumption that 
 < 1
I�1 . Our results supply a strong converse: if 
 �

1
I�1 , it is not possible to

implement (exactly or virtually) any non-trivial social choice function in iterated deletion of weakly

dominated strategies in any �nite (or compact) mechanism, direct or indirect.11

6.6 Implementation in a Direct Mechanism

We restricted attention in this paper to �nite mechanisms. Thus the mechanisms here do not

include any of the pathological features of �integer games�that play an important role in the full

implementation literature and have been much criticized (see, e.g., Jackson (1992)). Nonetheless,

the mechanisms in this paper are complex. The canonical mechanism for robust virtual implemen-

tation inherits the complexity of the mechanism of Abreu and Matsushima (1992c), on which it

builds. Our maximally revealing mechanism generating strategic distinguishability is no simpler.

While the mechanisms are theoretically kosher, it has been argued that their complexity and the

logic of the iteration deletion in the mechanism might make them hard to use in practise. For

example, Glazer and Rosenthal (1992) have made this argument about the mechanism used by

Abreu and Matsushima (1992b) for complete information virtual implementation (see Abreu and

Matsushima (1992a) for a response and Sefton and Yavas (1996) for later experiments inspired by

the mechanism).

By requiring robustness to agents�beliefs and higher order beliefs, we reduce the amount of

common knowledge about the environment that can be used by the planner in designing a mecha-

nism. This will make it harder to achieve positive results (and our robust measurability condition

is rather strong in applications). But one motivation for studying robust implementation is that we

hope that robustness considerations will endogenously lead to simpler mechanisms when positive

results can be achieved. By adapting results from our earlier work on exact robust implementation

in direct mechanisms (Bergemann and Morris (2009)), we can report that, in at least one broad

class of economic environments of interest, whenever robust virtual implementation is possible ac-

11Our results are stated for a lottery space over �nite outcomes, but the extension to any compact space and

compact mechanisms is straightforward.
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cording to corollary 1, it is possible in a direct mechanism where agents simply report their payo¤

types. We say that preferences satisfy aggregator single crossing (ASC) if each agent i�s preferences

at type pro�le � belong to a single crossing class parameterized by hi (�), where hi : � ! R is a

monotonic aggregator. Bergemann and Morris (2009) established that exact robust implementation

by a compact mechanism is possible if and only if the social choice function satis�es strict ex post

incentive compatibility and a contraction property on the aggregator functions h = (h1; :::; hI).

In the appendix of the working paper version, we show that under the ASC assumption, robust

measurability is always satis�ed under the contraction property.

6.7 Exact Implementation and Integer Games

The �rst papers on incomplete information implementation focussed on exact implementation.

Postlewaite and Schmeidler (1986) and Jackson (1991) identi�ed a Bayesian monotonicity condition

which (together with Bayesian incentive compatibility) was necessary and (under weak economic

conditions) su¢ cient for exact implementation in Bayesian Nash equilibrium. Bergemann and

Morris (2005a) provide a robust analogue of this result, showing that ex post incentive compatibility

and a robust monotonicity condition are necessary and - under weak economic conditions - su¢ cient

for exact robust implementation. All these papers follow a tradition in the implementation literature

of allowing very badly behaved mechanisms, like integer games, in proving their general results. In

this paper, we follow Abreu and Matsushima (1992c) in restricting attention to �nite - and thus

well-behaved - mechanisms. We brie�y discuss the relation between these results in this section:

a more complete and formal discussion in contained in the appendix of the working paper version

(Bergemann and Morris (2007)).

Robust measurability and robust monotonicity turn out to be equivalent in the important class

of aggregator single crossing preferences. However, in general, one can show by example that robust

measurability neither implies nor is implied by robust monotonicity. Thus requiring only virtual

implementation is sometimes a strict relaxation; and allowing badly-behaved mechanisms is some-

times a strict relaxation. We do not have a characterization of when exact robust implementation

by a well behaved mechanism is possible (just as analogous characterizations do not exist for com-

plete information and classical Bayesian implementation). We know only that robust measurability,

robust monotonicity and strict ex post incentive compatibility will all be necessary.

We restrict attention in our analysis to social choice functions rather than social choice cor-

respondences. Bergemann and Morris (2005b) considered the problem of partially robustly im-
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plementing a social choice correspondence, i.e., ensuring that whatever players�beliefs and higher

order beliefs about others�types, there is an equilibrium leading to outcomes contained in the so-

cial choice correspondence. In the special case where the social choice correspondence is a function

(and more generally in a class of separable environments), this is possible only if the function (or a

selection from the correspondence in separable environments) is ex post incentive compatible. But

in the general case, we do not have a satisfactory characterization of when partial robust imple-

mentation is possible. For this reason, we have not attempted a characterization of (full) robust

implementation of social choice correspondences.
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7 Appendix

The appendix contains omitted proofs from the main body of the paper.

Proof of Lemma 1. Suppose thatX
��i2��i

�i (��i)ui (y; (�i; ��i)) �
X

��i2��i

�i (��i)ui (x; (�i; ��i)) (24)

for all x 2 X. If X
��i2��i

�i (��i)ui (y; (�i; ��i)) >
X

��i2��i

�i (��i)ui
�
x0; (�i; ��i)

�
for some x0 2 X, we could conclude, thatX

��i2��i

�i (��i)ui (y; (�i; ��i)) >
1

N

X
x2X

X
��i2��i

�i (��i)ui (x; (�i; ��i))

=
X

��i2��i

�i (��i)ui (y; (�i; ��i)) ,

a contradiction. So (24) impliesX
��i2��i

�i (��i)ui (y; (�i; ��i)) =
X

��i2��i

�i (��i)ui (x; (�i; ��i)) (25)

for all x 2 X. But (25) implies that R�i;�i is indi¤erent between all pure outcomes and thus all
lotteries. This contradicts assumption 1 on no-complete-indi¤erence. We conclude that the no-

complete-indi¤erence assumption implies that (24) fails for all i, i.e., that for all i, �i 2 �i and
�i 2 �(��i), there exists x 2 X such thatX

��i2��i

�i (��i)ui (x; (�i; ��i)) >
X

��i2��i

�i (��i)ui (y; (�i; ��i)) . (26)

Equivalently, for all i, �i 2 �i and �i 2 �(��i) :

max
x2X

X
��i2��i

�i (��i) [ui (x; (�i; ��i))� ui (y; (�i; ��i))] > 0:

Now, note that for each x 2 X the functionX
��i2��i

�i (��i) [ui (x; (�i; ��i))� ui (y; (�i; ��i))]
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is continuous in � (in the standard topology). The conclusion follows from the compactness (in the

standard topology) of �(��i) and continuity of the maximum operator. �

Proof of Lemma 4. Fix any mi =2 Si [M] (�i). Then there exists k such that mi 2 Ski [M] (�i)

and mi =2 Sk+1i [M] (�i). Consider

�ki =
n
�i 2 �(��i �M�i)

����i (��i �m�i) > 0) m�i 2 Sk�i [M] (��i) for each j 6= i
o
.

For all �i 2 �ki , there exists mi such thatX
��i;m�i

�i (��i;m�i)ui (g (mi;m�i) ; (�i; ��i)) >
X

��i;m�i

�i (��i;m�i)ui (g (mi;m�i) ; (�i; ��i)) .

By compactness of �ki , there exists "i (mi) > 0 such that for all �i 2 �ki there exists mi such thatX
��i;m�i

�i (��i;m�i)ui (g (mi;m�i) ; (�i; ��i))

>
X

��i;m�i

�i (��i;m�i)ui (g (mi;m�i) ; (�i; ��i)) + "i (mi) .

Now let

�M = min
i; �i and mi =2Si[M](�i)

"i (mi) ;

which establishes the desired bound.�

Proof of Lemma 5. Suppose �+C � �0�M0 . We will argue, by induction on k, that�
m0
i ;m

1
i

�
2 Ski [M] (�i)) m0

i 2 Ski
�
M0

�
(�i)

for all k � 0. This is true by de�nition for k = 0; suppose that it is true for k. Now suppose that
m0
i =2 Sk+1i

�
M0

�
(�i) but

�
m0
i ;m

1
i

�
2 Sk+1i [M] (�i) and so

�
m0
i ;m

1
i

�
2 Ski [M] (�i) and - by the

inductive hypothesis - m0
i 2 Ski

�
M0

�
(�i). Now �x any �i 2 �(��i �M�i) satisfying

�i

�
��i;

�
m0
j ;m

1
j

�
j 6=i

�
> 0)

�
m0
j ;m

1
j

�
j 6=i 2 S

k
�i [M] (��i)) m0

�i 2 Sk�i
�
M0

�
(��i) .

Let

�i
�
��i;m

0
�i
�
=

X
(m1

j)j 6=i2M
1
�i

�i

�
��i;

�
m0
j ;m

1
j

�
j 6=i

�
.

By Lemma 4, there exists m0
i such that:X

��i;m0
�i

�i
�
��i;m

0
�i
� �
ui
�
g0
�
m0
i ;m

0
�i
�
; (�i; ��i)

�
� ui

�
g0
�
m0
i ;m

0
�i
�
; (�i; ��i)

��
> �M0 .
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Thus X
��i;m�i

�i (��i;m�i)
�
ui
�
g
��
m0
i ;m

1
i

�
;m�i

�
; (�i; ��i)

�
� ui

�
g
��
m0
i ;m

1
i

�
;m�i

�
; (�i; ��i)

��
> �0�M0 � �+C � 0.

This contradicts our premise that
�
m0
i ;m

1
i

�
2 Sk+1i [M] (�i) and we conclude that�

m0
i ;m

1
i

�
2 Sk+1i [M] (�i)) m0

i 2 Sk+1i

�
M0

�
(�i) :�

The canonical mechanism asks each agent to make a series of binary choices between the central

lottery �y and a speci�c lottery y from the test set. If the test set is to be successful in eliciting the

private information from agent i, then the test set should contain a su¢ cient number of allocations

such that for every type �i and every belief �i of agent i there exists some allocation y that is

strictly preferred to the central lottery �y.

Lemma 9 (Duality)

Type set pro�le 	�i separates 	i if and only if there exists ey : 	i ! Y such thatX
�i2	i

(ey (�i)� y) = 0; (27)

and ey (�i)P�i;�i y; (28)

for all �i 2 	i and all �i 2 �(	�i).

This result says that for each �i 2 	i, we can identify a direction in the lottery space, ey (�i)�y,
that agent i likes whatever his beliefs about 	�i, such that the sum of those changes add up to

zero. The lemma follows from the following duality result in Samet (1998):

Proposition 5 (Samet (1998))

Let V1; :::; VS be closed, convex, subsets of the N -dimensional simplex �N . These sets have an

empty intersection if and only if there exist z1; :::; zS 2 RN such that

SX
s=1

zs = 0;

and

v � zs > 0, for each s = 1; :::; S and v 2 Vs:
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This result was introduced in Samet (1998) to provide a simple proof of the observation that

asymmetrically informed agents will trade against each other if and only if they do not share a

common prior, i.e., their posterior beliefs could not have been derived by updating a common

prior.12 Suppose that there are N states and S agents. Each agent s observes one of a collection

of signals about the true state. Each signal leads him to have a posterior v 2 �N over the states.

Let Vs be the convex hull of his set of possible posteriors. Notice that Vs represents the set of prior

beliefs he might have held over the state space before observing his signal. Thus posterior beliefs

are consistent with a common prior if and only if the intersection of the Vs sets is non-empty. Now

consider a multilateral bet specifying that if state n was realized, agent s will receive payment zsn

where the total payments sum to zero:

SX
s=1

zsn = 0 for all n:

Writing zs , (zsn)Nn=1, we then have
SX
s=1

zs = 0:

There exists such a bet where every agent has a strictly positive expected value from accepting the

bet conditional on every signal if v � zs > 0, for each s = 1; :::; S and v 2 Vs.

Proof of Lemma 9. By de�nition, type set pro�le 	�i separates 	i if, for every R 2 R, there
exists �i 2 	i such that R�i;�i 6= R for every �i 2 �(	�i). Write

X = fx1; :::; xn; :::; xNg ;�i =
�
�1i ; :::; �

s
i ; :::; �

S
i

	
, and ��i =

�
�1�i; :::; �

w
�i; :::; �

W
�i
	
; with W = SI�1.

The vector

vsw =
�
ui
�
xn;
�
�si ; �

w
�i
���N

n=1
;

is an element of RN . Without loss of generality (since expected utility preferences can be represented

by any a¢ ne transformation), we can assume that each vsw is an element of the N dimensional

simplex �N . Now (vsw)
W
w=1 is a collection of W elements of �N , and the set of preferences�

R�si ;�i : �i 2 �(	�i)
	
,

are represented by the convex hull of (vsw)
W
w=1, which we write as

Vs = conv
�
(vsw)

W
w=1

�
� �N :

12This converse to the no trade theorem was originally proved by Morris (1994), by a more indirect duality argument.
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Thus 	�i separates 	i exactly if
S\
s=1

Vs = ?.

By Proposition 5, this is true if and only if there exist z1; :::; zS 2 RN such that

SX
s=1

zs = 0; (29)

and

v � zs > 0; (30)

for all s and all v 2 Vs. But if (zs)Ss=1 satisfy (29) and (30), we may choose " > 0 su¢ ciently small
such that ey (�si ) = y + "zs 2 Y for each s, and we have established (27) and (28).

Conversely, if (27) and (28) hold and we set zs = ey (�si )� y for s = 1; :::; S, then (zs)Ss=1 satisfy
(29) and (30).�

We now use Lemma 9 to show how, if 	�i separates 	i, we can construct a �nite set of lotterieseYi (	i;	�i) � Y such that knowing that agent i knows that his opponent�s type is in 	�i and

knowing his preferences on eYi (	i;	�i) will always be enough to rule out at least one type in 	i
for agent i.

Lemma 10 If 	�i separates 	i, then there exists a �nite set eYi (	i;	�i) � Y , such that for each
�i 2 	i and �i 2 �(	�i), there exists y 2 eYi (	i;	�i) such that

yP�i;�iy; (31)

and for some �0i 2 	i,
yP�0i;�0i y; (32)

for all �0i 2 �(	�i).

Proof. By Lemma 9, there exists ey : 	i ! Y such thatX
�i2	i

(ey (�i)� y) = 0;
and ey (�i)P�i;�iy for all �i 2 	iand �i 2 �(	�i) :
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Let eYi (	i;	�i) = fey (�i)g�i2	i . Fix �i 2 	i and �i 2 �(	�i). Write eYi (	i;	�i) = �y1; :::; yK	,
with y1 = ey (�i). Let y0 = y and

yl = y + "

lX
�=1

(y� � y) ;

with " > 0 chosen su¢ ciently small such that yl 2 Y for all l = 1; :::;K. We know y1 P�i;�i y
0.

Suppose yl+1 R�i;�i y
l for all l = 1; :::;K � 1. By transitivity, this would imply that yK P�i;�i y

0.

But yK = y0, so we have a contradiction. We conclude that, for some l = 1; :::;K � 1, yl P�i;�i
yl+1. This implies that there exists �0i such that y P�i;�i y

�
�0i
�
. Since

y
�
�0i
�
P�0i;�0i y for all �

0
i 2 �(	�i) ,

the inequalities (31) and (32) are established.

Now we will construct a large enough �nite set of lotteries (the �test set�) such that knowing

just an agent�s most preferred outcome on the test set will always reveal enough information about

his preferences to separate out a type, if it is possible to do so. This will establish the proof of

Lemma 7.

Proof of Lemma 7. Our proof is constructive. We �rst construct a set eY consisting of the de-

generate lotteries X and the sets eYi (	i;	�i) constructed in Lemma 10, for every triple (i;	i;	�i)
with 	�i separating 	i. Knowing an agent�s ranking of each element of eY relative to the central

lottery y would reveal all the information we need to extract. In order to extract this information

in a single choice, we let the agent pick f : eY ! f0; 1g. For each y 2 eY , y is chosen with probability
1=eY if f (y) = 1, otherwise the central lottery y is chosen. We let Y � be the set of all such lotteries.
Now observing an agent�s most preferred outcome in Y � reveals his binary preference between y

and each element of eY . Since eY contains each eYi (	i;	�i), this will ensure part (2). Since eY
contains all the lotteries which are putting probability 1 on each pure outcome, Assumption 1

(no-complete-indi¤erence) implies that, for each �i and �i, there exist y; y0 2 eY such that yP�i;�iy
0

and thus y0 =2 BY �i (�i; �i). This proves part (1)..

Let eY = X [
[

f (i;	i;	�i)j	�i separates 	ig

eYi (	i;	�i) .
Now for any f : eY ! f0; 1g, let yf be the lottery obtained by picking an element y 2 eY with
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uniform probability and then choosing lottery y if f (y) = 1 and y if f (y) = 0. Thus we de�ne:

yf � y +
1

#eY X
y2eY

f (y) (y � y) :

Let Y � be the set of such lotteries, i.e.,

Y � =
n
y 2 Y

���9f : eY ! f0; 1g such that y = yf
o
.

To prove part (1) of the Lemma, �x any �i 2 �i and �i 2 �(��i). By Lemma 1, there exists
x 2 X � eY such that xP�i;�iy; now let f

0 (y) = 0, for all y 2 eY ; and
f� (y) =

8<: 0, if y 6= x;
1, if y = x:

So we can write:

yf0 = y; yf� = y +
1

#eY (x� y)
and so yf0 =2 BY

�
i (�i; �i).

To prove part (2) of the Lemma, suppose that 	�i separates 	i. Fix �i 2 	i and �i 2 �(	�i).
By Lemma 10, there exists y 2 eYi (	i;	�i) and �0i 2 	i such that y P�i;�i y and y P�0i;�0i y for all
�0i 2 �(	�i). So

yf 2 BY
�

i (�i; �i)) f (y) = 0;

while

yf 2 BY
�

i

�
�0i;	i

�
) f (y) = 1,

and so

BY
�

i (�i; �i) \BY
�

i

�
�0i;	i

�
= ?;

which establishes the result.�

Proof of Proposition 2. Consider an arbitrary pair of types, �i and �0i such that �i � �0i. Then

by the de�nition of pairwise inseparability,
�
�i; �

0
i

	
2 ��i . By the construction of the inseparable

sets �ki , it follows that there is a �nite stage �k such that
�
�i; �

0
i

	
2 ��ki but:�

�i; �
0
i

	
=2 ��k+1i : (33)

By Lemma 7 we have for all i; k and mk
i that:

�
k
i

�
mk
i

�
2 �ki ; (34)
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and by Lemma 6, for each k there exists " > 0 such thatn
�i 2 �i

���mk
i 2 Si

h
Mk

"

i
(�i)

o
� �ki

�
mk
i

�
; (35)

for all " < " and mk
i 2Mk

i . Now since �
� is established in a �nite number of stages, it follows that

by the choosing k su¢ ciently large and " su¢ ciently small, we obtain an augmented mechanism

MK
" =M� such that if �i � �0i, then from the exclusion (33) and the inclusions (34) and (35), it

follows that SM
�

i (�i) \ SM
�

i

�
�0i
�
= ?; which establishes the result.�

Proof of Proposition 3. (1.) Fix mutually inseparable � = (�i)
I
i=1. We will use properties of

� to construct a type space T . For each 	i 2 �i, there exists 		i�i 2 ��i such that 	
	i
�i does not

separate 	i. Recall that �	
	i
�i does not separate 	i�means that there exists a preference relation

Ri over uncontingent lotteries Y such that for each �i 2 	i, there exists ��i;	ii 2 �
�
		i�i

�
such

that R
�i;�

�i;	i
i

= Ri. Now, for each i, let

Ti , f(�i;	i) 2 �i � �i j�i 2 	i g ; (36)

with

b�i �(�j ;	j)j 6=i j(�i;	i)� ,
8<: ��i;	ii (��i) , if 	�i = 	

	i
�i;

0, if otherwise;
(37)

and b�i (�i;	i) , �i. (38)

Now consider the partition Hi of the type set Ti, as de�ned through (36) - (38), which is generated
by the equivalence relation (�i;	i) �

�
�0i;	

0
i

�
if 	i = 	0i. By construction, each (�i;	i) and�

�0i;	i
�
are (T ;H)-indistinguishable. To see this, observe that since �i; �0i 2 	i, there exists a

common 	�i, namely 	
	i
�i such that �

�i;	i
i

�
		i�i

�
= �

�0i;	i
i

�
		i�i

�
= 1. Now, as the type contingent

lottery eyi has to be H-measurable, it follow in particular that it has to be constant on 		i�i and
hence is an uncontingent lottery on 		i�i. But Lemma 3 shows that if any pair of payo¤ types �i

and �0i are pairwise inseparable, then there exists mutually inseparable � = (�i)
I
i=1 and 	k 2 �k

with
�
�k; �

0
k

	
� 	k.

(2.) For the other direction, �x a type space T . Write H� for the limit of the sequence of
partitions de�ned above and let �TAMbe the corresponding equivalence relation. Write H�

i (ti) =�
t0ijt0i �TAM ti

	
and let

�i ,
n
	i 2 2�i

�
?
���9ti 2 Ti such that 	i = n�i ���9t0i 2 H�

i (ti) with b�i �t0i� = �ioo :
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Intuitively, �i is a set of payo¤ types that cannot be distinguished on the particular (interim) type

space T .
Fix a player i and any ti 2 Ti, and let

	i =
n
�i

���9t0i 2 H�
i (ti) with b�i �t0i� = �io :

Suppose t0i �TAM ti. We know that for every H�-measurable eyi, eyi �Tti y ) eyi �Tt0i y. Observe
that each t0i 2 H�

i (ti) must have the same support on elements of H��i. Pick any t��i such thatb�i �H�
�i
�
t��i
�
jt0i
�
> 0 for all t0i 2 H�

i (ti). Consider ��i;	ii

�
		i�i

�
which equals the uniform lottery

everywhere except on t�i with tj �TAM t�j for all j 6= i, i.e.,

eyi (t�i) = y if not tj �TAM t�j for some j.

Note that eyi is H�-measurable. Now let 	j =
n
�j j9t0j 2 H�

j

�
t�j

�
with b�j �t0j� = �jo and observe

that by construction 	i is not separated by 	�i. Thus � is mutually inseparable. �
The proof of Proposition 4 will follow directly from the monotone behavior of the following

auxiliary sets related to the inseparable sets. In Section 2.3 we de�ned a sequence of inseparable

sets,
�
�k
	1
k=0

=
��
�k1; :::;�

k
I

�	1
k=0
, where the k + 1st level of sets is determined by an inductive

step:

�k+1i =
n
	i 2 �ki

��� 	�i does not separate 	i, for some 	�i 2 �k�io : (39)

For our monotonicity result, it will be useful to simply �x a sequence of sets for all agents except i:n
�k�i

o1
k=0

=
n�
�k1; :::;�

k
i�1;�

k
i+1; :::;�

k
I

�o1
k=0

such that the sequence satis�es the inclusion property:

�k+1j � �kj , (40)

but without necessarily coming from the separation property as �k+1j in (39). However, for agent

i, �ki is generated by the separation property relative to the sequence
�
�k�i

	1
k=0
. In particular,

�0i = 2
�in? and:

�k+1i ,
n
	i 2 �ki

��� 	�i does not separate 	i, for some 	�i 2 �k�io (41)

and the resulting limit set is de�ned by:

��i =
\
k�0

�ki .
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Now we consider two sequences of sets for all agents i,
nb�k�i o1

k=0
and

�
�k�i

	1
k=0
,such that one

sequence is nested in the other, or for all k, b�k�i � �k�i. We then compare the resulting limit set
for agent i with respect to �k�i and b�k�i respectively. Correspondingly, we denote the respective
limit sets of agent i by ��i and b��i .
Lemma 11 (Monotonicity I) If for all k, b�k�i � �k�i, then b��i � ��i .

Proof. It su¢ ces to show that for all k, b�ki � �ki . The proof is by induction. By construction
it is true for k = 0. Suppose now that it holds for k and we want to establish that it holds for k+1.

By assumption, b�ki � �ki and hence consider a set 	i 2 �ki \ b�ki . Now suppose that 	i 2 b�k+1i and

we want to show that 	i 2 �k+1i . We observe that if 	i 2 b�k+1i , then there exists some 	�i 2 �k�i
such that 	�i does not separate 	i. But by assumption the set 	�i 2 �k�i, and hence it follows
that 	i 2 �k+1i as well.

Lemma 12 (Monotonicity II) If b
i > 
i, then for all k, �ki � b�ki .
Proof. The proof is by induction. By construction it is true for k = 0. Suppose now that it

holds for k and we want to establish that it holds for k + 1. By assumption, �ki � b�ki and hence
consider a set 	i 2 �ki \ b�ki . Now suppose that 	i 2 �k+1i and we want to show that 	i 2 b�k+1i .

We observe that if 	i 2 �k+1i , then there exists some 	�i 2 �k�i such that 	�i does not separate
	i. In other words, there exists for every �i 2 	i a belief �i (� j�i ) 2 �(	�i) such that for all x 2 X
and all �0i; �

00
i 2 	i :

(1� 
i) vi
�
x; �0i

�
+
i

X
��i2��i

�i
�
��i
���0i �wi (x; ��i) = (1� 
i) vi �x; �00i �+
i X

��i2��i

�i
�
��i
���00i �wi (x; ��i) :

As the interdependent utility wi (�) does not depend on �i, we can rewrite the equality as:

(1� 
i)
�
vi
�
x; �0i

�
� vi

�
x; �00i

��
= 
i

X
��i2��i

�
�i
�
��i
���00i �� �i ���i ���0i ��wi (x; ��i) : (42)

Now we want to show that if b
i > 
i, then we can �nd again associated beliefs b�i ���i ���00i � such
that

(1� b
i) �vi �x; �0i�� vi �x; �00i �� = b
i X
��i2��i

�b�i ���i ���00i �� b�i ���i ���0i ��wi (x; ��i) : (43)

We can easily verify that by letting for all ��i 2 ��i the beliefs b�i (��i j�i ) be de�ned by:
b�i (��i j�i ) , (1� b
i) 
ib
i (1� 
i)�i ���i ���00i �+ b
i � 
ib
i (1� 
i) 1

(I � 1)S ; (44)

49



we satisfy (43) if and only if we satisfy (42). Now since b
i > 
i, it follows that
(1� b
i) 
ib
i (1� 
i) < 1;

and hence the conditional probability distribution b�i (��i j�i ) is well-de�ned if, as assumed, �i (��i j�i )
is well-de�ned. But now it follows that 	i 2 b�k+1i as well.

Proof of Proposition 4. (1.) For 
 = 0, we have by the de�nition of the private value utility

function vi (�) for all i and all �i and �0i: Ri (�i;��i)\Ri
�
�0i;��i

�
= ?. Hence it follows that we have

for all i, ��i (0) =
��
�1i
	
; :::;

�
�Si
		
. For 
 = 1, we have by the de�nition of the interdependent

value function wi (�), for all i and all �0i 2 �i:\
�i2�i

Ri (�i;��i) = Ri
�
�0i;��i

�
;

and hence for all i, ��i (1) = 2
�in?.

(2.) It su¢ ces to establish the result component-wise. We thus consider b
 � 
 such that b
i > 
i
for some i and b
j = 
j for all j 6= i. Now suppose that for some agent l, we have ��l (
) 6= ��l (b
).
Then there must be a �rst stage k0 such that �k

0
l (
) 6= �k

0
l (b
), but for all k < k0, we have for all

l; �kl (
) = �
k
l (b
). Now since we only changed the preferences of agent i, and k0 is the �rst stage

where the sets �k
0
l (
) and �

k0
l (b
) di¤er, it must be that l = i. But now it follows from Lemma 12

that �k
0
i (
) � �k

0
i (b
). Suppose now that there is step k00 > k0 such that there exists j 6= i such

that �k
00
j (
) 6= �k00j (b
), but for all k < k00, we have �kj (
) = �kj (b
). Now we can apply Lemma 11

to conclude that �kj (
) � �kj (b
). Now a monotonicity argument of either Lemma 11 or 12 applies
at every further step along the sequence and hence we have shown that for all j, including i, we

have �kj (
) � �kj (b
) for all k and this establishes the result. �
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