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Abstract

This paper provides a complete solution to the question of the existence of equilibria in

games with general strategy spaces that may be discrete, continuum or non-convex and payoff

functions that may be discontinuous or do not have any form of quasi-concavity. We establish

a single condition, called recursive diagonal transfer continuity, which is both necessary and

sufficient for the existence of pure strategy Nash equilibrium in games with arbitrary compact

strategy spaces and payoffs. As such, our result strictly generalizes all the existing results

on the existence of pure strategy Nash equilibrium. Moreover, recursive diagonal transfer

continuity also permits full characterization of symmetric, mixed strategy, and Bayesian Nash

equilibria in games with general strategy spaces and payoffs. The approach and main result

developed in the paper can also allow us to ascertain the existence of equilibria in impor-

tant classes of economic games. As an illustration, we show how they can be employed to

fully characterize the existence of competitive equilibrium for economies with excess demand

functions. The method of proof adopted to obtain our main result is also new and elementary

— a non-fixed-point-theorem approach.
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1 Introduction

The notion of Nash equilibrium introduced by Nash (1950, 1951) is probably one of the most

important solution concepts in game theory that has wide applications in almost all areas in eco-

nomics. The early theorems of Nash (1950, 1951), Debreu (1952), and Fan (1953) reveal that

games possess a pure strategy Nash equilibrium if (1) the strategy spaces are nonempty, convex and

compact, and (2) players have continuous and quasiconcave payoff functions. The theorems say

nothing about equilibrium in games with discontinuous and/or non-quasiconcave payoffs. Glicks-

berg (1952) shows that games with compact Hausdorff strategy spaces and continuous payoffs

possess mixed strategy Nash equilibria.

Many economic models such as the classic price competition models of Bertrand (1883),

Hotelling (1929), and auction models such as the one in Milgrom and Weber (1982), patent

race models of Fudenberg et al. (1983), etc., however, frequently exhibit discontinuities or non-

quasiconcavity in payoffs. Consequently, the standard theorems cannot be applied to establishing

the existence of a pure or mixed strategy Nash equilibrium. While in many of these games equi-

libria can be constructed, there are other models in which this is not the case. Indeed, even for

multi-dimensional auction models, the existence of an equilibrium in this type of games has been

at issue since payoffs are not continuous, see Jackson (2005). Also, many economic models do not

have convex strategy spaces, and payoff functions under consideration may not be quasiconcave

or even do not have any form of quasi-concavity.

Accordingly, economists have been struggling to seek weaker conditions that can still guar-

antee the existence of an equilibrium. So far, two approaches have been adopted to weaken the

continuity and/or quasiconcavity. The first approach is to relax the quasi-concavity of payoffs and

convexity of strategy spaces. In a homogeneous product setting McManus (1964) and Roberts and

Sonnenschein (1976) show the existence of a symmetric Cournot equilibrium allowing for a gen-

eral downward sloping demand when there are n identical firms with convex costs. Nishimura and

Friedman (1981) assume, in addition to some conditions on best reply correspondences, that payoff

functions are continuous. Topkis (1979), Vives (1990), and Milgrom and Roberts (1990) establish

the existence in games where payoffs are upper semi-continuous and satisfy certain monotonicity

properties.

The central idea of this approach is based upon lattice-theoretical concepts, and at its heart lies

Tarski’s (1955) fixed point theorem. An advantage of Vives’ approach is that it does not require

the convexity of strategy sets. Payoffs need not be quasiconcave in all of the papers mentioned

above, and additionally payoffs need not be continuous in some of them. The key property is that

best-replies are increasing in the opponents’ strategies, which guarantees the existence of pure
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strategy Nash equilibrium. However, the lattice-theoretic approach requires payoff functions must

be upper semi-continuous in one’s own strategy in order to guarantee the existence of best replies.

This assumption fails to hold in virtually all auctions, as well as in the classic games of Bertrand

and Hotelling.

The second approach is the topological approach proposed to weaken the continuity of pay-

off functions. Dasgupta and Maskin (1986) are the first to establish an existence theorem valid

for games with discontinuous payoff functions. Their results reveal that such games possess a

pure strategy equilibrium, provided (1) the strategy spaces are nonempty, convex and compact,

and (2) players have payoff functions that are quasiconcave, upper semi-continuous, and graph

continuous. They also investigate the existence of mixed strategy Nash equilibrium in games with

discontinuous payoffs.

Simon (1987) obtains the existence of mixed strategy Nash equilibria in discontinuous games

through introducing the notion of reciprocal upper semi-continuity (under the name of “comple-

mentary discontinuities”) and thus strictly generalizes the result of Dasgupta and Maskin (1986).

Reciprocal upper semi-continuity requires that some player’s payoff jump up whenever some other

player’s payoff jumps down, which generalizes the condition that the sum of the players’ payoffs

is upper semicontinuous.

Simon and Zame (1990) establish the existence of a Nash equilibrium in mixed strategies with

an endogenous sharing rule. While in some settings involving discontinuities this approach is

remarkably helpful, in others it is less so. In an auction design environment where discontinuities

are sometimes deliberately introduced, the participants must be presented with a game that fully

describes the strategies and payoffs, since one cannot leave some of the payoffs unspecified or

somehow endogenously determined. In addition, this method is only useful in establishing the

existence of a mixed, as opposed to pure, strategy equilibrium.

Baye, Tian, and Zhou (1993) investigate the existence of pure strategy Nash equilibrium and

dominant-strategy equilibrium by weakening both continuity and quasi-concavity of payoffs. It

is shown that diagonal transfer quasi-concavity is necessary, and further, under diagonal transfer

continuity and compactness, sufficient for the existence of pure strategy Nash equilibrium. Both

diagonal transfer quasi-concavity and diagonal transfer continuity are very weak notions of quasi-

concavity and continuity, which adopt a basic idea of transferring a set of strategy profile(s) to

another set of strategy profile(s).

Reny (1999) establishes the existence of Nash equilibrium in compact and quasiconcave games

that are better-reply secure, which is also a weak notion of continuity. Reny (1999) shows that

better-reply security can be imposed separately as reciprocal upper semi-continuity introduced by
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Simon (1987) and payoff security. Bagh and Jofre (2006) further weaken reciprocal upper semi-

continuity to weak reciprocal upper semi-continuity and show that it, together with payoff security,

implies better-reply security. Both better-reply security and payoff security use a similar idea of

transferring a (non-equilibrium) strategy to a securing strategy, and therefore they are also in the

form of transfer continuity.

Nessah and Tian (2008) introduce an even weaker form of continuity, called weak transfer

quasi-continuity, which is weaker than diagonal transfer continuity in Baye, Tian, and Zhou (1993)

and better-reply security in Reny (1999), and holds in a large class of discontinuous games. They

show that weak transfer quasi-continuity, together with the compactness of strategy spaces and

quasiconcavity or (strong/weak) diagonal transfer quasiconcavity of payoffs, permits the existence

of pure strategy Nash equilibrium so that it strictly generalizes the results of Baye, Tian, and

Zhou (1993) and Reny (1999). They provide some sufficient conditions for weak transfer quasi-

continuity by introducing notions of weak transfer continuity, weak transfer upper continuity and

weak transfer lower continuity. These conditions are satisfied in many economic games and are

often quite simple to check. They also study the existence of mixed strategy Nash equilibria in

discontinuous and nonconvex games.

Recently, Barelli and Soza (2009) further significantly weaken the continuity and quasiconcav-

ity conditions. They generalize most existing results and establish the existence of pure strategy

Nash equilibria in discontinuous quasiconcave games and qualitative convex games.

However, all the existing results only give sufficient conditions for the existence of equilib-

rium, and no full characterization has been given yet in the literature.1 The existing results use

two separated conditions: continuity and quasi-concavity/monotonicity. Neither single unified

condition nor full characterization approach has been given. A question is then whether or not

there exists a single unified condition that can be used to prove the existence of (pure/mixed) Nash

equilibrium in games with arbitrary strategy spaces and payoff functions, and if so, what the weak-

est condition is. This paper provides a complete answer to these questions by giving a necessary

and sufficient condition for the existence of equilibrium in games with arbitrary strategy spaces

and payoffs.

This paper fully characterizes the existence of pure strategy Nash equilibrium in games with

general topological strategy spaces that may be discrete, continuum or non-convex and payoff

functions that may be discontinuous or do not have any form of quasi-concavity. It is shown that

the condition, recursive (or called sequential) diagonal transfer continuity introduced in the pa-
1In the mechanism design literature, a lot of studies on full characterizations of Nash implementation of a social

choice correspondence have been given such as those in Maskin (1999), Moore and Repullo (1990), Dutta and Sen

(1991), etc. Also, Rahman (2008) recently provides a full characterization of correlated equilibrium.
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per, is necessary and sufficient for the existence of pure strategy Nash equilibrium in games with

arbitrary compact strategy spaces and payoff functions. As such, it strictly generalizes all the ex-

isting theorems on the existence of pure strategy Nash equilibrium. Recursive diagonal transfer

continuity defined on respective spaces also permits full characterization of symmetric pure strat-

egy, mixed strategy Nash, and Bayesian Nash equilibria in games with general strategy spaces and

payoffs. Our full characterization result provides not only a way of understanding equilibrium,

but also a way of checking the existence/nonexistence of pure strategy Nash equilibrium in games

with discontinuous or nonconcave payoffs. We use quite a few known examples to illustrate the

usefulness of our main theorem, especially its usefulness in checking the nonexistence of equi-

librium. The approach and main result developed in the paper can also allow us to ascertain the

existence of equilibria in important classes of economic games. As an application, we show how

they can be employed to fully characterize the existence of competitive equilibrium with excess

demand functions.

The logic of recursive diagonal transfer continuity, which generalizes the notion of “diagonal

transfer continuity” to allow for recursive dominance (sequential security) , can be roughly de-

scribed as follows. Whenever a profile of strategies is not an equilibrium, there is a strategy profile

that will be transferred to any finite set of “sequential securing strategies”, each of which upsets

deviation strategy profiles uniformly and locally. This means whenever a strategy profile x is not

an equilibrium, there is a deviation strategy profile y and an open set of candidate strategy profiles

containing x, all of which are dominated by any recursive deviation (sequential securing) strategy

profiles that directly or indirectly dominates y.

The relation of the recursive diagonal transfer continuity and diagonal transfer continuity is

somewhat similar to that of the weak axiom of revealed preference (WARP) and strong axiom

of revealed preference (SARP) in the revealed preference theory on the rational behavior of indi-

vidual decision making. Directly revealing a preference by WARP is not enough to fully reveal

individuals’ preferences, and then one may use SARP – recursive sequences of indirect revealed

preferences (transitive closure) to fully reveal the rational behavior. Similarly, diagonal transfer

continuity or better-reply security alone is not enough to guarantee the existence of Nash equilib-

rium -a description of rational behavior of individuals’ strategic decision making, one then may

need to use recursive diagonal transfer continuity to fully characterize the existence of equilibrium.

The method of proof employed to obtain our main result is new. While there are different ways

of establishing the existence of Nash equilibria, all the existing proofs use the fixed-point-theorem

related approaches. As such, previous techniques fail for two reasons. First, all the approaches in

the literature either use two types of conditions: continuity and quasi-convexity, or only provide
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sufficient conditions to guarantee the existence of a pure strategy Nash equilibrium. The presence

of discontinuity and non-quasi-concavity in payoffs may preclude the existence of best replies so

that best reply correspondences need not be nonempty-valued or convex-valued. Consequently,

both lattice-theoretical techniques and topological techniques (standard application of Kakutani’s

fixed point theorem) to best reply correspondences fail. Second, to weaken the continuity, and

thus, to obtain the existence of an equilibrium, the existing approaches have only considered a

direct deviation from a non-equilibrium strategy. Moreover, a remarkable advantage of our proof

is that it is simple and elementary without using advanced math.

The remainder of the paper is organized as follows. Section 2 describes the notation, and pro-

vides a number of preliminary definitions used in our study of noncooperative games, including

the definition of the aggregate function that underlies our analysis of noncooperative games. Sec-

tion 3 introduces the new condition, recursive diagonal transfer continuity, which is used in our

full characterization of pure strategy Nash equilibrium. We prove our main result that recursive di-

agonal transfer continuity is a necessary and sufficient condition for the existence of pure strategy

Nash equilibrium for arbitrary strategy spaces and payoffs. We also provide sufficient conditions

for recursive diagonal transfer continuity to be true. Section 4 extends the full characterization

result to symmetric pure strategy Nash equilibrium. Section 5 fully characterizes the existence of

mixed strategy Nash equilibrium in games with arbitrary strategy spaces and payoffs. Section 6

shows recursive diagonal transfer continuity is also a necessary and sufficient condition for the

existence of Bayesian Nash equilibrium in games. Section 7 shows how our main result can be

employed to fully characterize the existence of competitive equilibrium for economies with excess

demand functions. Finally, concluding remarks are offered in Section 8.

2 Preliminaries

Consider the following noncooperative game in the normal form:

G = (Xi, ui)i∈I (1)

where I = {1, ..., n} is the finite set of players,2 Xi is player i’s strategy space which is a

nonempty subset of a topological space Ei, and ui : X −→ R is the payoff function of player i.

Denote by X =
∏
i∈I

Xi the Cartesian product of the sets of strategy profiles of the game. For each

player i ∈ I , denote by −i all other players rather than player i. Also denote by X−i =
∏
j 6=i

Xj the

Cartesian product of the sets of strategies of players −i.
2All the results in the paper hold for a countable infinity of players.
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A strategy profile x∗ ∈ X is a pure strategy Nash equilibrium of a game G if,

ui(yi, x
∗
−i) ≤ ui(x∗) ∀i ∈ I, ∀yi ∈ Xi.

A game G = (Xi, ui)i∈I is compact, convex, bounded, and upper (lower) semi-continuous if,

for all i ∈ I , Xi is compact, convex, and ui is bounded and upper (lower) semi-continuous on X ,

respectively. A game G = (Xi, ui)i∈I is quasiconcave if, for every i ∈ I , Xi is convex and the

function ui is quasiconcave in xi.

To fully characterize the existence of equilibria, our strategy is to consider a mapping of indi-

vidual payoffs into an aggregator function, and then provide a condition on the aggregator func-

tion that guarantees the existence of pure strategy Nash equilibrium. This kind of approach is

pioneered by Nikaido and Isoda (1955), and is also used by Baye, Tian, and Zhou (1993). Das-

gupta and Maskin (1986) also use a similar approach to prove the existence of mixed strategy Nash

equilibrium in games with discontinuous payoff functions.

Our full characterization of pure strategy Nash equilibrium is based on the aggregator function,

U : X ×X → < defined by3

U(y, x) =
n∑

i=1

ui(yi, x−i), ∀(x, y) ∈ X ×X, (2)

which refers to the aggregate payoff across individuals where for every player i assuming she or

he deviates to yi given that all other players follow the strategy profile x. We may call U(y, x)

the virtual deviation aggregate payoff, which may not be realizable. Immediately, we have the

following observation.

LEMMA 2.1 x∗∈X is a pure strategy Nash equilibrium of a game G if and only if U(y, x∗) ≤
U(x∗, x∗) for all y ∈ X .

Proof: Suppose U(y, x∗) ≤ U(x∗, x∗) for all y ∈ X . Let y = (yi, x
∗
−i). We then have

ui(yi, x
∗
−i) ≤ ui(x∗) ∀ yi ∈ X, (3)

which means that x∗ is a Nash equilibrium. The converse is obvious by summing up (3) for all

players.
3When I is a countably infinite set, one may define U according to U(y, x) =

∑
i∈I

1
2i ui(yi, x−i). This is a more

general formulation.
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3 Full Characterization of Pure Strategy Nash Equilibria

In this section we provide a complete solution to the question of the existence of pure strategy

Nash equilibrium in games with arbitrary compact strategy spaces and payoffs by providing a

necessary and sufficient condition for the existence of pure strategy Nash equilibrium.

3.1 Main Result

We begin with stating diagonal transfer continuity introduced by Baye, Tian, and Zhou (1993)

since the notion of recursive diagonal transfer continuity is somewhat an extension of diagonal

transfer continuity.

DEFINITION 3.1 A game G = (Xi, ui)i∈I is diagonally transfer continuous if, whenever

U(y, x) > U(x, x) for x, y ∈ X , there exists a deviation strategy profile z ∈ X and a neigh-

borhood Vx ⊂ X of x such that U(z, x′) > U(x′, x′) for all x′ ∈ Vx.

Note that “U(y, x) > U(x, x) for x, y ∈ X” means “x ∈ X is not an equilibrium”. We

will use these terms interchangeably. We say that a strategy profile y upsets strategy profile x if

U(y, x) > U(x, x). Also, since the deviation strategy profile z results in a strictly higher payoff

in a neighborhood of x, we call such a deviation strategy profile z a securing strategy profile. The

diagonal transfer continuity then simply means that, whenever x is not an equilibrium, there exists

a securing strategy profile z that upsets all points in some neighborhood of x. For convenience of

exposition, let U(z,Vx) > U(Vx,Vx) denote U(z, x′) > U(x′, x′) for all x′ ∈ Vx, where Vx is a

neighborhood of x.

DEFINITION 3.2 (Recursive Upsetting) A strategy profile y0 ∈ X is said to be recursively

(or called sequentially) upset by z ∈ X if there exists a finite set of deviation strategy pro-

files {y1, y2, . . . , ym−1, z} such that U(y1, y0) > U(y0, y0), U(y2, y1) > U(y1, y1), . . .,

U(z, ym−1) > U(ym−1, ym−1).

We say that a strategy profile y0 ∈ X is m-recursively upset by z ∈ X if the number of

such deviation strategy profiles is m. For convenience, we say y0 is directly upset by z when

m = 1, and indirectly upset by z when m > 1. Recursive upsetting says that a strategy profile

y0 can be directly or indirectly upset by a strategy profile z through sequential deviation strategy

profiles {y1, y2, . . . , ym−1} in a recursive way that y0 is upset by y1, y1 is upset by y2, . . ., and

ym−1 is upset by z. The assertion that y0 is directly upset by z is a dominance relation that the

virtual aggregate payoff with individuals’ deviation exceeds the realizable total payoff for a given
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strategy profile y0. Then the recursive upsetting says this dominance holds for any finite sequence

of strategy profiles originated from a given strategy point.

We are now ready to introduce the notion of recursive diagonal transfer continuity.

DEFINITION 3.3 (Recursive Diagonal Transfer Continuity) A game G = (Xi, ui)i∈I is said

to be recursively (or called sequentially) diagonal transfer continuous if, whenever U(y, x) >

U(x, x) for x, y ∈ X , there exists a strategy profile y0 ∈ X (possibly y0 = x) and a neighborhood

Vx of x such that U(z,Vx) > U(Vx,Vx) for any z that recursively upsets y0.

Similarly, we can define m-recursive diagonal transfer continuity. A game G = (Xi, ui)i∈I

is m-recursively diagonal transfer continuous if the phrase “for any z that recursively upsets y0”

in the above definition is replaced by “for any z that m-recursively upsets y0”. Thus, a game

G = (Xi, ui)i∈I is recursively diagonal transfer continuous if it is m-recursively diagonal transfer

continuous on X for all m = 1, 2 . . ..

REMARK 3.1 Under recursive diagonal transfer continuity, when U(z, ym−1) >

U(ym−1, ym−1), U(ym−1, ym−2) > U(ym−2, ym−2), . . ., U(y1, y0) > U(y0, y0), we have not

only U(z,Vx) > U(Vx,Vx), but also U(ym−1,Vx) > U(Vx,Vx), . . ., U(y1,Vx) > U(Vx,Vx)

since it is also k-recursively diagonal transfer continuous for k = 1, 2 . . ., m-1. That means all of

the points in Vx are upset by the sequence of securing strategy profiles {y1, . . . , ym−1, ym} that

directly or indirectly upset y0.

Recursive diagonal transfer continuity means that whenever x is not an equilibrium, there

is a strategy profile y0 and an open set of candidate strategy profiles containing x, all of which

are upset by all securing strategy profiles that directly or indirectly upset y0. This implies that,

if equilibrium fails to exist, then there is a nonequilibrium strategy profile x such that for every

y0 ∈ X and every neighborhood Vx of x, some deviation strategy profiles in the neighborhood

cannot be upset by a securing strategy profile z that directly or indirectly upsets y0.

Recursive diagonal transfer continuity refers to the fact that, when U(y, x) > U(x, x), y may

be transferred to a sequence of securing strategy profiles {y1, y2, . . . , ym} in order for all points in

a neighborhood of x to be upset by these securing strategy profiles. The usual notion of continuity

would require that this dominance hold at y for all points in a neighborhood of x.

REMARK 3.2 When m = 0, there is no recursive upsetting. 0-recursive diagonal transfer con-

tinuity becomes the diagonal transfer continuity whenever there is a securing strategy profile y0.

Also, recursive diagonal transfer continuity neither implies nor is implied by continuity for games
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with two or more players.4 This point becomes clear when one sees recursive diagonal transfer

continuity is a necessary and sufficient condition for the existence of pure strategy Nash equilib-

rium for arbitrary strategy spaces and payoff functions while continuity of the aggregate payoff

function is not a necessary nor sufficient condition for the existence of pure strategy Nash equilib-

rium.

Before proceeding to our main result, we describe the basic idea why recursive diagonal trans-

fer continuity ensures the existence of pure strategy Nash equilibrium for a compact game. When

a compact game fails to have pure strategy Nash equilibrium, every strategy profile x will be upset

by another strategy profile y0. Then, by recursive diagonal transfer continuity, there is some open

set of candidate profiles containing x, all of which will be upset by some securing strategy pro-

file z that directly or indirectly upsets y0. Then there are finite strategy profiles {x1, x2, . . . , xn}
whose neighborhoods cover X . Thus, all of the points in a neighborhood, say Vx1 , will be upset

by a corresponding deviation profile z1, which means z1 cannot be an element in Vx1 . If it is in

some other neighborhood, say, Vx2 , then it can be shown that z2 will upset all strategy profiles in

the union of Vx1 and Vx2 so that z2 is not in the union of Vx1 and Vx2 . Suppose z2 ∈ Vx3 . Then

we can similarly show that z3 is not in the union of Vx1 , Vx2 and Vx3 . Repeating such arguments,

we can show that zk 6∈ Vx1 ∪ Vx2 ∪ . . . ,∪Vxk , i..e, zk is not in the union of Vx1 , Vx2 , . . . ,Vxk

for k = 1, 2, . . . , n. In other words, zk 6∈ Vxj for all j ≤ k and k = 1, 2, . . . , n so that the se-

curing strategy profile zn will not be in the strategy space X , which is impossible. Thus recursive

diagonal transfer continuity guarantees the existence of a pure strategy Nash equilibrium.

Now we are ready to state our main result that strictly generalizes all the existing results on

the existence of pure strategy Nash equilibrium as special cases.

THEOREM 3.1 Suppose G = (Xi, ui)i∈I is compact. Then, the game G possesses a pure strategy

Nash equilibrium if and only if it is recursively diagonal transfer continuous on X .

PROOF. Sufficiency (⇐). Suppose, by way of contradiction, that there is no pure strategy Nash

equilibrium. Then, by recursive diagonal transfer continuity, for each x ∈ X , there exists y0 and a

neighborhood Vx such that U(z,Vx) > U(Vx,Vx) whenever y0 ∈ X is recursively upset by z, i.e.,

for any sequence of recursive securing strategy profiles {y1, . . . , ym−1, ym} with U(ym, ym−1) >

U(ym−1, ym−1), U(ym−1, ym−2) > U(ym−2, ym−2), . . ., U(y1, y0) > U(y0, y0) for m ≥ 1, we

have U(z,Vx) > U(Vx,Vx). Since there is no equilibrium by the contrapositive hypothesis and

4In one-player games recursive diagonal transfer continuity is equivalent to the player’s utility function possessing

a maximum on a compact set, and consequently it implies transfer weak upper continuity introduced in Tian and Zhou

(1995), which is weaker than continuity.
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the game is recursively diagonal transfer continuous on X , such a sequence of recursive securing

strategy profiles {y1, . . . , ym−1, ym} exists for some m ≥ 1.

Since X is compact and X ⊆ ⋃
x∈X Vx, there is a finite set {x1, . . . , xL} such that X ⊆

⋃L
i=1 Vxi . For each of such xi, the corresponding initial deviation profile is denoted by y0i so that

U(zi,Vxi) > U(Vxi ,Vxi) whenever y0i is recursively upset by zi.

Since there is no equilibrium, for each of such y0i, there exists zi such that U(zi, y0i) >

U(y0i, y0i), and then, by 1-recursive diagonal transfer continuity, we have U(zi,Vxi) >

U(Vxi ,Vxi). Now consider the set of securing strategy profiles {z1, . . . , zn}. Then, zi 6∈ Vxi ,

otherwise, by U(zi,Vxi) > U(Vxi ,Vxi), we will have U(zi, zi) > U(zi, zi), a contradiction. So

we must have z1 6∈ V(x1).

Without loss of generality, we suppose z1 ∈ Vx2 . Since U(z2, z1) > U(z1, z1) by noting

that z1 ∈ Vx2 and U(z1, y01) > U(y01, y01), then, by 2-recursive diagonal transfer continuity, we

have U(z2,Vx1) > U(Vx1 ,Vx1). Also, U(z2,Vx2) > U(Vx2 ,Vx2). Thus U(z2,Vx1 ∪ Vx2) >

U(Vx1 ∪ Vx2 ,Vx1 ∪ Vx2), and consequently z2 6∈ Vx1 ∪ Vx2 .

Again, without loss of generality, we suppose z2 ∈ Vx3 . Since U(z3, z2) > U(z2, z2) by

noting that z2 ∈ Vx3 , U(z2, z1) > U(z1, z1), and U(z1, y01) > U(y01, y01), by 3-recursive diag-

onal transfer continuity, we have U(z3,Vx1) > U(Vx1 ,Vx1). Also, since U(z3, z2) > U(z2, z2)

and U(z2, y02) > U(y02, y02), by 2-recursive diagonal transfer continuity, we have U(z3,Vx2) >

U(Vx2 ,Vx2). Thus, we have U(z3,Vx1 ∪Vx2 ∪Vx3) > U(Vx1 ∪Vx2 ∪Vx3 ,Vx1 ∪Vx2 ∪Vx3), and

consequently z3 6∈ Vx1 ∪ Vx2 ∪ Vx3 .

Applying repeatedly the above arguments, we can show that zk 6∈ Vx1 ∪ Vx2 ∪ . . . ,∪Vxk , i.e.,

zk is not in the union of Vx1 ,Vx2 , . . . ,Vxk for k = 1, 2, . . . , L. In particular, for k = L, we have

zL 6∈ Vx1 ∪ Vx2 . . . ∪ VxL and so zL 6∈ X , a contradiction.

Necessity (⇒). Suppose x∗ is a pure strategy Nash equilibrium and U(y, x) > U(x, x) for

x, y ∈ X . Let y0 = x∗ and Vx be a neighborhood of x. Since U(y, x∗) ≤ U(x∗, x∗) for

all y ∈ Y , it is impossible to find any sequence of strategy profiles {y1, y2, . . . , ym} such that

U(y1, y0) > U(y0, y0), U(y2, y1) > U(y1, y1), . . . , U(ym, ym−1) > U(ym−1, ym−1). Hence,

the recursive diagonal transfer continuity holds trivially.

Theorem 3.1 provides a necessary and sufficient condition for a game to have a pure strategy

Nash equilibrium, which can be used to show the existence/non-existence of pure strategy Nash

equilibrium for these games. Five examples that illustrate the usefulness of the above result will

be given in Subsection 3.3 below.

In general, the weaker the conditions in an existence theorem are, the harder it is to verify

whether the conditions are satisfied in a particular game. Although these examples show the use-
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fulness of Theorem 3.1, especially in proving the nonexistence of pure strategy Nash equilibrium,

given the generality of the condition, it is not surprising that the condition is, in general, not easy

to check from a practical point of view. Since the main purpose of the paper is to characterize

the existence of equilibria in games with general strategy spaces and payoffs, the condition does

suggest a way to interpret equilibrium existence. It mainly shows what is possible for a game

to have a pure strategy Nash equilibrium. Nevertheless, adding specificity to the model, we may

get sufficient conditions for recursive diagonal transfer continuity, and consequently provide new

sufficient conditions for the existence of pure strategy Nash equilibrium.

DEFINITION 3.4 (Deviation Transitivity) G = (Xi, ui)i∈I is said to be deviational transitive if

U(y2, y1) > U(y1, y1) and U(y1, y0) > U(y0, y0) imply that U(y2, y0) > U(y0, y0). That is, the

upsetting dominance relation is transitive.

COROLLARY 3.1 Suppose G = (Xi, ui)i∈I is compact and deviational transitive. Then, there

exists a pure strategy Nash equilibrium point if and only if G is 1-recursively diagonal transfer

continuous.

PROOF. We only need to show that, when G is deviational transitive, 1-recursive diagonal transfer

continuity implies m-recursive diagonal transfer continuity for m ≥ 1. Suppose x is not an

equilibrium. Then, by 1-recursive diagonal transfer continuity, there exists a strategy profile y0 ∈
X and a neighborhood Vx of x such that U(z,Vx) > U(Vx,Vx) whenever U(z, y0) > U(y0, y0)

for any z ∈ X .

Now, for any sequence of deviation profiles {y1, . . . , ym−1, ym}, if U(ym, ym−1) >

U(ym−1, ym−1), U(ym−1, ym−2) > U(ym−2, ym−2), . . ., U(y1, y0) > U(y0, y0), we then have

U(ym, y0) > U(y0, y0) by deviation transitivity of U , and thus by 1-recursive diagonal trans-

fer continuity, U(ym,Vx) > U(Vx,Vx). Since m is arbitrary, G is recursively diagonal transfer

continuous.

3.2 Discussion and Related Work

The recursive diagonal transfer continuity we propose is of transfer type. The basic transfer

method is developed in Tian (1992, 1993), Tian and Zhou (1992, 1995), Zhou (1992), and Baye,

Tian, and Zhou (1993) for studying the maximization of binary relations that may be nontotal or

nontransitive and the existence of equilibrium in games that may have discontinuous or nonquasi-

concave payoffs. They develop three types of transfers: transfer continuities, transfer convexities,

and transfer transitivities. This kind of properties have provided milestones in the literature on
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the maximization of binary relations and the existence of equilibrium in games with discontinu-

ous and/or nonquasiconcave payoffs. Various notions of transfer continuities, transfer convexities

and transfer transitivities provide complete solutions to the question of the existence of maxi-

mal elements for complete preorders and interval orders — cf. Tian (1993) and Tian and Zhou

(1995). The recursive diagonal transfer continuity proposed in this paper extends the static trans-

fer approach to a dynamic (sequential) one so that it enables us to provide a complete solution to

the question of the existence of equilibrium in games with arbitrary compact strategy spaces and

payoffs.

We now discuss how Theorem 3.1 yields the results of Baye, Tian, and Zhou (1993), Reny

(1999), Nessah and Tian (2008), and Barelli and Soza (2009).

Baye, Tian, and Zhou (1993) study the existence of pure strategy Nash equilibria in games

with discontinuous and nonquasiconcave payoffs by introducing the concepts of diagonal transfer

continuity and diagonal transfer qausiconcavity.

DEFINITION 3.5 A game G = (Xi, ui)i∈I is diagonally transfer quasiconcave in y if, for

any finite subset Y m = {y1, ..., ym} ⊂ X , there exists a corresponding finite subset Xm =

{x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, and any

x ∈ co{xk1
, xk2

, ..., xks}, we have min
1≤l≤s

U(ykl
, x) ≤ U(x, x).

Theorem 1 in Baye, Tian, and Zhou (1993) shows that diagonal transfer quasi-concavity is

necessary, and further, under diagonal transfer continuity and compactness, sufficient for the exis-

tence of pure strategy Nash equilibrium.

Reny (1999) studies the existence of pure strategy Nash equilibria in discontinuous games by

introducing the concepts of payoff security and better-reply security.

Let Γ = {(x, u) ∈ X × Rn : ui(x) = ui, ∀i ∈ I} be the graph of the game. The closure of

Γ in X × Rn is denoted by Γ̄. The frontier of Γ, which is the set of points in Γ̄ but not in Γ, is

denoted by Fr Γ.

DEFINITION 3.6 A game G = (Xi, ui)i∈I is better-reply secure if, whenever (x∗, u∗) ∈ Γ̄, x∗

is not an equilibrium implies that there is some player i, xi ∈ Xi, and an open neighborhood Vx−i

of x−i such that ui(xi, y−i) > ui(x∗) for all y−i ∈ Vx−i .

The notion of better-reply security also uses the same idea of transferring a non-equilibrium

strategy to a securing strategy, and thus it actually falls in the form of transfer continuity.

Theorem 3.1 in Reny (1999) shows that a game G = (Xi, ui)i∈I possesses a Nash equilibrium

if it is compact, bounded, quasiconcave and better-reply secure. Reny (1999) and Bagh and Jofre

(2006) provide sufficient conditions for a game to be better-reply secure.
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DEFINITION 3.7 A game G = (Xi, ui)i∈I is payoff secure if for every player i, x ∈ X , and ε >

0, there exists xi ∈ Xi and an open neighborhood Vx−i of x−i such that ui(xi, y−i) ≥ ui(x) − ε

for all y−i ∈ Vx−i .

DEFINITION 3.8 A game G = (Xi, ui)i∈I is reciprocally upper semicontinuous if, whenever

(x, u) ∈ Γ̄ and ui(x) ≤ ui for every player i, ui(x) = ui for every player i.

DEFINITION 3.9 A game G = (Xi, ui)i∈I is weakly reciprocal upper semi-continuous if, for

any (x, u) ∈ Fr Γ, there is a player i and x̂i ∈ Xi such that ui(x̂i, x−i) > ui.

Reny (1999) shows that a game G = (Xi, ui)i∈I is better-reply secure if it is payoff secure

and reciprocally upper semi-continuous. Bagh and Jofre (2006) further show that G = (Xi, ui)i∈I

is better-reply secure if it is payoff secure and weakly reciprocal upper semi-continuous.

To provide more sufficient conditions for recursive diagonal transfer continuity, as a comple-

ment of this paper, Nessah and Tian (2008) recently introduce a new notion of weak continuity,

called weak transfer quasi-continuity, which is weaker than the most known weak notions of con-

tinuity, including diagonal transfer continuity in Baye, Tian, and Zhou (1993) and better-reply

security in Reny (1999), and holds in a large class of discontinuous games.

DEFINITION 3.10 A game G = (Xi, ui)i∈I is said to be weakly transfer quasi-continuous if,

whenever x ∈ X is not an equilibrium, there exists a strategy profile y ∈ X and a neighborhood

V(x) of x so that for every x′ ∈ V(x), there exists a player i such that ui(yi, x
′
−i) > ui(x′).

They also provide some sufficient conditions, each of which implies weak transfer quasi-

continuity: (1) transfer continuity, (2) weak transfer continuity, (3) weak transfer upper continuity

and payoff security, and (4) upper semicontinuity and weak transfer lower continuity.

DEFINITION 3.11 A game G = (Xi, ui)i∈I is said to be transfer continuous if for all player i,

whenever ui(zi, x−i) > ui(x) for zi ∈ Xi and x ∈ X , there is some neighborhood V(x) of x and

yi ∈ Xi such that ui(yi, x
′
−i) > ui(x′) for all x′ ∈ V(x).

DEFINITION 3.12 A game G = (Xi, ui)i∈I is said to be weakly transfer continuous if, whenever

x ∈ X is not an equilibrium, there exists a player i, yi ∈ Xi and a neighborhood Vx of x such that

ui(yi, x
′
−i) > ui(x′) for all x′ ∈ Vx.

DEFINITION 3.13 A game G = (Xi, ui)i∈I is said to be weakly transfer upper continuous if,

whenever x ∈ X is not an equilibrium, there exists a player i, x̂i ∈ Xi and a neighborhood Vx of

x such that ui(x̂i, x−i) > ui(x′) for all x′ ∈ Vx.
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DEFINITION 3.14 A game G = (Xi, ui)i∈I is said to be weakly transfer lower continuous if,

whenever x is not a Nash equilibrium, there exists a player i, yi ∈ Xi, and a neighborhood Vx−i

of x−i such that ui(yi, x
′
−i) > ui(x) for all x′−i ∈ Vx−i .

They also introduce some new notions of transfer type of quasiconcavity, called strong di-

agonal transfer quasiconcavity and weak diagonal transfer quasiconcavity, each of which is a

necessary condition for the existence of pure strategy Nash equilibrium, and consequently a nec-

essary condition for recursive diagonal transfer continuity.

DEFINITION 3.15 A game G = (Xi, ui)i∈I is said to be strongly diagonal transfer quasi-

concave if for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset

{x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, and any

x ∈ co{xk1
, xk2

, ..., xks}, there exists yh ∈ {yk1
, ..., yks} satisfying ui(ykh

i , x−i) ≤ ui(x) for all

i ∈ I .

DEFINITION 3.16 A game G = (Xi, ui)i∈I is said to be weakly diagonal transfer quasiconcave

if for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset {x1, ..., xm} ⊂
X such that for each x̃ =

∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m}, we have

min
(i,j)∈J

[ui(y
j
i , x̃−i)− ui(x̃)] ≤ 0,

where λi,j ≥ 0 with
∑
i,j

λi,j = 1 and J = {(i, j : λi,j > 0}.

It may be remarked that a game G is: (1) weakly transfer quasi-continuous if it is weakly

transfer continuous, diagonally transfer continuous or better reply secure; (2) weakly transfer

upper continuous if it is upper semicontinuous; and (3) weakly diagonal transfer quasiconcave

and diagonally transfer quasiconcave if it is strongly diagonal transfer quasiconcave.

Nessah and Tian (2008) show that a game G = (Xi, ui)i∈I possesses a Nash equilibrium

if it is convex, compact, weakly transfer quasi-continuous, and quasiconcave or strongly/weakly

diagonal transfer quasiconcave.

As a source of reference, we summarize these results as corollaries of Theorem 3.1 that provide

sufficient conditions for recursive diagonal transfer continuity.

COROLLARY 3.2 Suppose G = (Xi, ui)i∈I is compact and convex. Then any one of the fol-

lowing conditions is sufficient for a game to be recursively diagonal transfer continuous, and

consequently it possesses a pure strategy Nash equilibrium:
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1. the game is quasiconcave, upper semicontinuous in xi, and group continuous in x5 [Das-

gupta and Maskin (1986)] ;

2. the game is diagonally transfer quasiconcave and diagonally transfer continuous [Baye,

Tian and Zhou (1993)];

3. the game is bounded, quasiconcave, and better-reply secure [Reny (1999)];

4. the game is bounded, quasiconcave, payoff secure, and reciprocally upper semicontinuous

[Reny (1999)];

5. the game is bounded, quasiconcave, payoff secure, and weakly reciprocal upper semicon-

tinuous [Bagh (2006)];

6. the game is bounded, quasiconcave, and weakly transfer quasi-continuous [Nessah and Tian

(2008)];

7. the game is strongly diagonal transfer quasiconcave and weakly transfer quasi-continuous

[Nessah and Tian (2008)];

8. the game is bounded, weakly diagonal transfer quasiconcave, and weakly transfer quasi-

continuous [Nessah and Tian (2008)];

9. the game is bounded, weakly diagonal transfer quasiconcave, and diagonally transfer con-

tinuous [Nessah and Tian (2008)];

10. the game is bounded, weakly diagonal transfer quasiconcave, and better-reply secure [Nes-

sah and Tian (2008)];

11. the game is bounded, weakly diagonal transfer quasiconcave, weakly transfer upper contin-

uous, and payoff secure [Nessah and Tian (2008)];

12. the game is bounded, weakly diagonal transfer quasiconcave, weakly transfer lower contin-

uous, and upper semicontinuous [Nessah and Tian (2008)].

In addition, the conditions imposed in Nash (1951), Debreu (1952), Nikaido and Isoda (1955),

Nishimura and Friedman (1981), Dasgupta and Maskin (1986), Vives (1990), Carmona (2005),

Morgan and Scalzo (2007), etc., which guarantee the existence of pure strategy Nash equilibria,

can be regarded as sufficient conditions of recursive diagonal transfer continuity.
5A payoff function ui : X → R is graph-continuous if for all x ∈ X , there exists a function Fi : A−i → Ai with

Fi(x̄−i) = x̄i such that ui(Fi(x−i), x−i) is continuous at x−i = x̄−i.
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REMARK 3.3 From Baye, Tian, and Zhou (1993), one knows that a game is diagonally transfer

quasiconcave if any one of the following conditions is satisfied: (1) each ui(xi, x−i) is concave

in xi; (2) U(x, y) is concave in x; (3) U(x, y) is quasiconcave in x; and (4) U(x, y) is diagonally

quasiconcave in x. A game is diagonally transfer continuous if any one of the following conditions

is satisfied: (1) each ui(xi, x−i) is continuous; (2) each ui(xi, x−i) is upper semicontinuous in xi

and continuous in x−i; (3) U(x, y) is continuous; and (4) φ(x, y) ≡ U(x, y) − U(y, y) is lower

semicontinuous in y. As a result, any pair of conditions, one each from the sufficient conditions for

diagonal transfer quasi-concavity and diagonal transfer continuity, are sufficient for the existence

of a pure strategy Nash equilibrium for games with compact strategy spaces.

3.3 Examples

In this subsection we provide five examples to illustrate how our main theorem fully characterizes

the existence or nonexistence of pure strategy Nash equilibrium in games that do not satisfy the

conditions of existing theorems. Examples 1 and 2 are games with pure strategy equilibria that

are accounted for by our Theorem 3.1, but which violate the conditions of existing theorems.

Examples 3-5 are games that do not have an equilibrium because they fail to satisfy our recursive

diagonal transfer continuity condition.

EXAMPLE 3.1 Consider a game with n = 2, X1 = X2 = [0, 1], and the payoff functions are

defined by

ui(x1, x2) =





1 if (x1, x2) ∈ Q×Q
0 otherwise

i = 1, 2,

where Q = {x ∈ [0, 1] : x is a rational number}.

Then the game is compact and convex, but not quasiconcave. It is not weakly transfer quasi-

continuous either (so it is not diagonally transfer continuous, better-reply secure, or weakly trans-

fer continuous either). To see this, consider any nonequilibrium x that consists of irrational num-

bers. Then, for any neighborhood Vx of x, choosing x′ ∈ Vx with x′1 ∈ Q and x′2 ∈ Q, we have

u1(y1, x
′
2) ≤ u1(x′1, x

′
2) = 1 and u2(x′1, y2) ≤ u2(x′1, x

′
2) = 1 for any y ∈ X . So the game is not

weakly transfer quasi-continuous. Thus, there is no existing theorem that can be applied.

However, it is recursively diagonal transfer continuous on X . Indeed, suppose U(y, x) >

U(x, x) for x = (x1, x2) ∈ X and y = (y1, y2) ∈ X . Let y0 be any vector with rational

numbers and Vx be a neighborhood of x. Since U(y, y0) ≤ U(y0, y0) for all y ∈ Y , it is im-

possible to have {y1, y2, . . . , ym} such that U(ym, ym−1) > U(ym−1, ym−1), U(ym−1, ym−2) >
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U(ym−2, ym−2), . . ., U(y1, y0) > U(y0, y0) for any of such strategy profiles. Hence, the recur-

sive diagonal transfer continuity holds. Therefore, by Theorem 3.1, this game has a pure strategy

Nash equilibrium. In fact, the set of pure strategy Nash equilibria consists of all rational numbers

on [0, 1].

EXAMPLE 3.2 Consider the two-player game with the following payoff functions defined on

[0, 1]× [0, 1] studied by Barelli and Soza (2009).

ui(xi, x−i) =





0 if xi ∈ (0, 1)

1 if xi = 0 and x−i ∈ Q
1 if xi = 1 and x−i /∈ Q
0 otherwise

,

where Q = {x ∈ [0, 1] : x is a rational number}.

This game is convex, compact, bounded and quasiconcave, but it is not weakly transfer quasi-

continuous, and consequently, it is not diagonally transfer continuous, better-reply secure, or

weakly transfer continuous, either. Thus, there is no existing theorem that can be applied.

To see the game is not weakly transfer quasi-continuous, consider the nonequilibrium x =

(1, 1). We then cannot find any y ∈ X and any neighborhood V(1,1) of (1, 1) such that for every

x′ ∈ Vx, there is a player i with ui(yi, x
′
−i) > ui(x′). We show this by considering two cases.

Case 1. y2 6= 0. Then, for any neighborhood V(1,1) of (1, 1), choosing x′ ∈ Vx with x′1 = 1

and x′2 6∈ Q, we have u1(y1, x
′
2) ≤ u1(x′1, x

′
2) = 1 and u2(x′1, y2) = u2(x′1, x

′
2) = 0.

Case 2. y2 = 0. When y1 6= 0, choosing x′ ∈ Vx with x′2 = 1 and x′1 6∈ Q, we have

u1(y1, x
′
2) = u1(x′1, x

′
2) = 0 and u2(x′1, y2) ≤ u2(x′1, x

′
2) = 1. When y1 = 0, choosing x′ ∈ Vx

with x′1 6∈ Q and x′2 6∈ Q, we have u1(y1, x
′
2) = u1(x′1, x

′
2) = 0 and u2(x′1, y2) = u2(x′1, x

′
2) = 0.

Thus, the game is not weakly transfer quasi-continuous, and Theorems 3.1-3.3 of Nessah and

Tian (2008) can not be applied.

However, it is recursively diagonal transfer quasi-continuous. Indeed, suppose U(y, x) >

U(x, x) for x = (x1, x2) ∈ X and y = (y1, y2) ∈ X . Let y0 = (0, 0) and Vx be a neighborhood

of x. Since U(y, y0) ≤ U(y0, y0) for all y ∈ Y , it is impossible to have {y1, y2, . . . , ym} such

that U(ym, ym−1) > U(ym−1, ym−1), U(ym−1, ym−2) > U(ym−2, ym−2), . . ., U(y1, y0) >

U(y0, y0) for any of such strategy profiles. Hence, the recursive diagonal transfer continuity

holds. Therefore, by Theorem 3.1, this game has a pure strategy Nash equilibrium.

Our full characterization result is especially useful to check the nonexistence of equilibrium

of economic games. No such result is available in the literature.
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EXAMPLE 3.3 (DASGUPTA AND MASKIN) Consider the following game studied by Dasgupta

and Maskin (1986): n = 2, X1 = X2 = [0, 1], and the payoff functions are defined by

ui(x1, x2) =





0 if x1 = x2 = 1

xi otherwise
i = 1, 2.

The game is not recursively diagonal transfer continuous on X . To see this, for x = (1, 1)

and y ∈ (0, 1) × (0, 1), we have U(y, x) > U(x, x). We then cannot find any y0 ∈ X and

neighborhood Vx of x such that U(z, x′) > U(x′, x′) for every deviation profile z that is upset

directly or indirectly by y0 for all x′ ∈ Vx. We show this by considering two cases.

Case 1. y0 6= (1, 1). Then, for any neighborhood V(1,1) of (1, 1), choosing strategy profiles

z ∈ X and x′ ∈ V(1,1) such that y0
1 +y0

2 < z1 +z2 < x′1 +x′2, we then have U(z, y0) > U(y0, y0)

but U(z, x′) < U(x′, x′).

Case 2. y0 = (1, 1). Then, for any neighborhood V(1,1) of (1, 1), choosing strategy profiles

z ∈ X and x′ ∈ V(1,1) such that 0 < z1 + z2 < x′1 + x′2 < y0
1 + y0

2 , we then have U(z, y0) >

U(y0, y0) but U(z, x′) < U(x′, x′).

Thus, we cannot find any y0 ∈ X and any neighborhood V0 of (1, 1) such that U(z, x′) >

U(x′, x′) for every deviation profile z that is upset by y0 for all x′ ∈ Vx. Hence, the game is not

recursively diagonal transfer continuous on X , and therefore, by Theorem 3.1, there is no pure

strategy Nash equilibrium on X .

EXAMPLE 3.4 (KARLIN) Consider games of “timing” or “silent duel”, which have been stud-

ied by Karlin (1959), Owen (1968), Jones (1980), and Dasgupta and Maskin (1986). These are

symmetric two-person zero-sum games on the unit square so that n = 2, X1 = X2 = [0, 1], and

U(x, x) = 0 for all x ∈ X . The version called the “silent duel” has player l’s payoff function of

the form:

u1(x1, x2) =





x1 − x2 + x1x2, if x1 < x2

0, if x1 = x2

x1 − x2 − x1x2, if x1 > x2

.

Consider x = (x1, x2) = (1, 1). It can be verified that U(y, x) > U(x, x) implies that y must

satisfy one of the following three sets of conditions: (1) y1 + y2 > 1, y1 < 1, and y2 < 1; (2)

y1 = 1 and y2 > 1/2, and (3) y2 = 1 and y1 > 1/2. We then cannot find any y0 ∈ X and

neighborhood Vx of x such that U(z, x′) > U(x′, x′) for every deviation profile z that is upset

directly or indirectly by y0 for all x′ ∈ Vx. To show this, four cases need to be considered.

Case 1. y0
1 < 1 and y0

2 < 1. Then, for any neighborhood V(1,1) of (1, 1), choose strat-

egy profiles z ∈ X and x′ ∈ V(1,1) such that y0
1 < z1 < x′1 and y0

2 < z2 < x′2. Since
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u1(y1, y2) and u2(y1, y2) = −u1(y1, y2) are both increasing in y1 and y2, respectively, we

have u1(z1, y
0
2) − u1(y0

1, y
0
2) > 0 and u2(y0

1, z2) − u2(y0
1, y

0
2) = u1(y0

1, y
0
2) − u1(y0

1, z2) > 0,

u1(z1, x
′
2) − u1(x′1, x

′
2) < 0 and u2(x′1, z2) − u2(x′1, x

′
2) = u1(x′1, x

′
2) − u1(x′1, z2) < 0. Thus,

we have U(z, y0) > U(y0, y0) but U(z, x′) < U(x′, x′).

Case 2. y0
1 = 1 and y0

2 < 1. Then, for any neighborhood V(1,1) of (1, 1), choose strategy

profiles z ∈ X and x′ ∈ V(1,1) such that y0
1 = z1 = x′1 and y0

2 < z2 < x′2. Then, by the

monotonicity of u1(y1, y2) and u2(y1, y2) = −u1(y1, y2), we have U(z, y0) > U(y0, y0) but

U(z, x′) < U(x′, x′).

Case 3. y0
1 < 1 and y0

2 = 1. Then, for any neighborhood V(1,1) of (1, 1), choose strategy

profiles z ∈ X and x′ ∈ V(1,1) such that y0
1 < z1 < x′1 and y0

2 = z2 = x′2. Then, by similar

reasoning, we have U(z, y0) > U(y0, y0) but U(z, x′) < U(x′, x′).

Case 4. y0
1 = 1 and y0

2 = 1. Then, for any neighborhood V(1,1) of (1, 1), choose strategy

profiles z ∈ X and x′ ∈ V(1,1) such that 1/2 < z1 < x′1 and 1/2 = z2 = x′2. We then have

u1(z1, y
0
2)− u1(y0

1, y
0
2) = 2z1 − 1 > 0 and u2(y0

1, z2)− u2(y0
1, y

0
2) = u1(y0

1, y
0
2)− u1(y0

1, z2) =

2z2−1 > 0, u1(z1, x
′
2)−u1(x′1, x

′
2) < 0 and u2(x′1, z2)−u2(x′1, x

′
2) = u1(x′1, x

′
2)−u1(x′1, z2) <

0, and consequently, U(z, y0) > U(y0, y0) but U(z, x′) < U(x′, x′).

Thus, we cannot find any y0 ∈ X and any neighborhood V0 of (1, 1) such that U(z, x′) >

U(x′, x′) for every deviation profile z that is upset by y0 for all x′ ∈ Vx. Hence, the game is not

recursively diagonal transfer continuous on X , and therefore, by Theorem 3.1, there is no pure

strategy Nash equilibrium on X .

The version called the “noisy duel” has player l’s payoff function of the form:

u1(x1, x2) =





2x1 − 1, if x1 < x2

0, if x1 = x2

1− 2x2, if x1 > x2

.

In this game, the payoff function ui(x1, x2) is neither diagonally transfer continuous nor quasi-

concave in yi for i = 1. Therefore, theorems in Baye, Tian, and Zhou (1993) and Reny (1999) are

not applicable.

Suppose U(y, x) > U(x, x) for x = (x1, x2) ∈ X and y = (y1, y2) ∈ X . Let

y0 = (1/2, 1/2) and Vx be a neighborhood of x. Since U(y, y0) ≤ U(y0, y0) for all

y ∈ Y , it is impossible to have {y1, y2, . . . , ym} such that U(ym, ym−1) > U(ym−1, ym−1),

U(ym−1, ym−2) > U(ym−2, ym−2), . . ., U(y1, y0) > U(y0, y0) for any of such strategy profiles.

Hence, the recursive diagonal transfer continuity holds. Therefore, by Theorem 3.1, this game has

a pure strategy Nash equilibrium.
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EXAMPLE 3.5 (VARIAN) Consider a two-person game with nonnegative price strategies p1 and

p2. Thus Z1 = Z2 = [0, r] with r > 0. The payoffs ui(p1, p2) are given by the functions

ui(p1, p2) =





pi(I + µ)k if pi < pi

pi( I
2 + µ)k if p1 = p2

piµk if pi > pi

i = 1, 2.

This game has a number of interpretations. Varian (1980) interprets I to be the number of in-

formed consumers, who will shop at the firm charging the lowest price, while 2µ is the number of

uninformed consumers, who allocate themselves equally across the two firms. Thus each firm sells

to µ uninformed consumers automatically, but gets the I informed consumers only if it succeeds

in setting the lowest price.

It is well known that this game has no pure strategy Nash equilibrium (cf. Varian (1980);

Baye, Kovenock, and de Vries (1992)), and in fact we can similarly verify that U is not recursively

diagonal transfer continuous. Thus, by Theorem 3.1, the blame unambiguously lies squarely on

the fact that the game is not recursively diagonal transfer continuous.

4 Full Characterization of Symmetric Pure Strategy Nash Equilibria

The techniques developed in the previous section can be used to fully characterize the existence of

symmetric pure strategy Nash equilibrium. Throughout this section, we assume that the strat-

egy spaces for all players are the same. As such, let X0 = X1 = . . . = Xn. If in addi-

tion, u1(y, x, . . . , x) = u2(x, y, x, . . . , x) = . . . , un(x, . . . , x, y) for all x, y ∈ X , we say that

G = (Xi, ui)i∈I is a quasi-symmetric game.

DEFINITION 4.1 A Nash equilibrium (x∗1, . . . , x
∗
n) of a game G is said to be symmetric if x∗1 =

. . . = x∗n.

For convenience, we denote, for each player i, and for all x, y ∈ X0, ui(x, . . . , y, . . . , x) the

function ui evaluated at the strategy in which player i chooses y and all others choose x.

Define a quasi-symmetric function ψ : X0 ×X0 → R by

ψ(y, x) = ui(x, . . . , y, . . . , x). (4)

Since G is quasi-symmetric, x∗ is a symmetric pure strategy Nash equilibrium if and only if

ψ(y, x∗) ≤ ψ(x∗, x∗) for all y ∈ Xi.

We then have the following theorem.
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THEOREM 4.1 Suppose a game G = (Xi, ui)i∈I is quasi-symmetric and compact. Then it

possesses a symmetric pure strategy Nash equilibrium if and only if ψ(y, x) defined by (4) is

recursively diagonal transfer continuous on X .

PROOF. The proof is the same as that of Theorem 3.1 provided U is replaced by ψ, thus it is

omitted here.

Theorem 4.1 strictly generalizes all the existing results on the existence of symmetric pure

strategy Nash equilibrium such as those in Reny (1999).

EXAMPLE 4.1 (BAGH AND JOFRE) The following two-person concession quasi-symmetric

game on the unit square considered by Bagh and Jofre (2006) is a special case of a class of timing

games on the unit square considered by Reny (1999). The payoffs are:

ui(x1, x2) =





10, if xi < x−i

1, if xi = x−i < 0.5

0, if xi = x−i ≥ 0.5

−10, if xi > x−i

.

Note that the payoffs are not quasiconcave (nor are they quasiconcave along the diagonal of

the unit square). We now show that ψ is recursively diagonal transfer continuous, and thus the

game possesses a symmetric pure strategy equilibrium. Indeed, let ψ(y, x) = ui(y, x). Suppose

ψ(y, x) > ψ(x, x) for x = (x1, x2) ∈ X and y = (y1, y2) ∈ X . Let y0 = (0, 0) and Vx

be a neighborhood of x. It is clear that ψ(y, y0) ≤ ψ(y0, y0) for all y ∈ Y , and thus it is im-

possible to have {y1, y2, . . . , ym} such that ψ(ym, ym−1) > ψ(ym−1, ym−1), ψ(ym−1, ym−2) >

ψ(ym−2, ym−2), . . ., ψ(y1, y0) > ψ(y0, y0) for any of such strategy profiles. Hence, the recursive

diagonal transfer continuity holds, and thus by Theorem 4.1, this game has a pure strategy Nash

equilibrium.

EXAMPLE 4.2 (HENDRICKS AND WILSON) Consider the concession quasi-symmetric game

between two players studied by Hendricks and Wilson (1983), Simon (1987), and Reny (1999).

The players must choose a time x1, x2 ∈ [0, 1] to quit the game. The player who quits last wins,

although conditional on winning, quitting earlier is preferred. If both players quit at the same time,

the unit prize is divided evenly between them. Then payoffs are:

ui(x1, x2) =





−xi, if xi < x−i

1/2− xi, if xi = x−i

1− xi, if xi > x−i

.

22



Note that the payoffs are not quasiconcave (nor are they quasiconcave along the diagonal of

the unit square) although U is diagonally transfer continuous by Proposition 2.(e) in Baye, Tian,

and Zhou (1993). We now show that ψ is not recursively diagonal transfer continuous, and thus

the game does not possess a symmetric pure strategy equilibrium. To see this, consider x = 0. It

is clear that ψ(y, x) = ui(y, 0) > ui(0, 0) implies that 0 < y < 1/2. We then cannot find any

y0 ∈ X0 and neighborhood Vx of x such that ψ(z, x′) > ψ(x′, x′) for every deviation profile z

that is upset by y0 for all x′ ∈ Vx. We show this by considering two cases.

Case 1. y0 6= 0. Then, for any neighborhood V0 of 0, choose a strategy profile z ∈ [0, 1]

and a strategy profile x′ ∈ V0 such that max{1/2 + ε, y0} < z < 1/2 + y0 and x′ < ε, where

0 < ε < min{1/2, y0}. Then, by z > y0 and 1 − z > 1/2 − y0, we have ψ(z, y0) > ψ(y0, y0).

However, since z > x′ and 1/2 + x′ < 1/2 + ε < z, we have 1− z < 1/2− x′, and consequently

ψ(z, x′) < ψ(x′, x′).

Case 2. y0 = 0. Note that ψ(z, y0) > ψ(y0, y0) if and only if 0 < z < 1/2. Then, for

any neighborhood V0 of 0, choosing a positive number ε such that (ε/2, ε) ⊂ V0, z = ε/2 and

a strategy profile x′ ∈ V0 such that x′ ∈ (ε/2, ε), we have ψ(z, y0) > ψ(y0, y0) but ψ(z, x′) =

−z < 1/2− x′ = ψ(x′, x′).

Thus, we cannot find any y0 ∈ [0, 1] and any neighborhood V0 of 0 such that ψ(z, x′) >

ψ(x′, x′) for every deviation profile z that is upset by y0 for all x′ ∈ Vx. Therefore, ψ is not

recursively diagonal transfer continuous on X0, and thus, by Theorem 4.1, there is no symmetric

pure strategy Nash equilibrium on X .

Besides, since all the games in Examples 3.1-3.5 are quasisymmetric, it is even easier to show

the existence/nonexistence of pure strategy (symmetric) Nash equilibrium by working on a single

payoff function ψ, instead of the aggregate payoff function U that is the sum of individual payoff

functions.

Similar to Corollary 3.1, the following corollary is reached.

COROLLARY 4.1 Suppose a game G = (Xi, ui)i∈I is quasi-symmetric, compact, and devia-

tional transitive. Then it possesses a pure strategy symmetric Nash equilibrium if and only if

ψ(x, y) defined by (4) is 1-recursively diagonal transfer continuous on X .

We now provide some sufficient conditions for a game to be deviational transitive and 1-

recursively diagonal transfer continuous.

DEFINITION 4.2 A game G = (Xi, ui)i∈I is diagonally monotonic if for each x̄ ∈ X0,

ui(x̄, . . . , x, . . . , x̄) is either: (i) decreasing in x on X0 \ x̄ or (ii) increasing in x on X0 \ x̄.
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The following propositions provide sufficient conditions for a game G = (Xi, ui)i∈I to be

deviational transitive and 1-recursively diagonal transfer continuous.

PROPOSITION 4.1 Suppose Xi is a subset of R. If a game G = (Xi, ui)i∈I is diagonally

monotonic, ψ is deviational transitive.

PROOF. We only need to show the case where ψ is nondecreasing in x. The proof of the case

where ψ is non-increasing in x is similar.

We need to show that ψ(z, y) > ψ(y, y) and ψ(y, x) > ψ(x, x) imply that ψ(z, x) > ψ(x, x).

Indeed, when ψ(y, x) > ψ(x, x), i.e., ui(x, . . . , y, . . . , x) > ui(x, . . . , x), we have y > x by

monotonicity of ui(x, . . . , y, . . . , x). When ψ(z, y) > ψ(y, y), we have z > y by monotonicity

of ui(x, . . . , y, . . . , x). Thus we have z > y > x. Then, by monotonicity of ui(x, . . . , y, . . . , x),

we have

ui(x, . . . , z, . . . , x) > ui(x, . . . , y, . . . , x) > ui(x, . . . , x)

and therefore ψ(y, x) = ui(x, . . . , z, . . . , x) > ψ(x, x), which means ψ is deviational transitive.

PROPOSITION 4.2 Suppose Xi is a subset of R and a game G = (Xi, ui)i∈I is diagonally

monotonic. Any of the following conditions implies it is 1-recursively diagonal transfer continuous

in x.

(i) ui(x̄, . . . , x, . . . , x̄) is continuous in x;

(ii) ui(x̄, . . . , x, . . . , x̄) is upper semi-continuous in x;

PROOF. We only need to prove the case of upper semi-continuity and the case where ψ is increas-

ing in x. The proof of the case where ψ is decreasing in x is similar.

Suppose ψ(y, x) > ψ(x, x) for x, y ∈ X0. We need to show that there exists a point y0 ∈ X0

and a neighborhood Vx of x such that ψ(z,Vx) > ψ(Vx,Vx) whenever ψ(z, y0) > ψ(y0, y0).

Indeed, since ψ(y, x) > ψ(x, x), we have y > x by diagonal monotonicity of ψ. Let y0 =

x + δ < y for some positive δ > 0. We have ψ(y0, x) > ψ(x, x) by diagonal monotonicity of ψ.

Then, by upper semi-continuity, there is a neighborhood Vx = {x′ ∈ X0 : |x′ − x| < ε} such that

ψ(y0, x) > ψ(x′, x) for all x′ ∈ Vx. Since ui(x̄, . . . , x, . . . , x̄) is nondecreasing in x on X0 \ x̄

for all x̄ ∈ X0, we particularly have ψ(y0, x′) > ψ(x′, x′) for all x̄ = x′ ∈ Vx. Thus, whenever

ψ(z, y0) > ψ(y0, y0), we have z > y0 by diagonal monotonicity of ψ, and therefore, we have

ψ(z, x′) > ψ(y0, x′) > ψ(x′, x′) for all x′ ∈ Vx, which means ψ is 1-recursively diagonal transfer

continuous in x.
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EXAMPLE 4.3 (BAYE AND KOVENOCK; BAYE, TIAN, AND ZHOU) Consider the two-player

quasi-symmetric game studied by Baye and Kovenock (1993), and Baye, Tian, and Zhou (1993).

Two duopolists have zero costs and set prices (p1, p2) on Z = [0, T ]× [0, T ]. The payoff functions

are (for 0 < c < T ):

ui(p1, p2) =





pi if pi ≤ p−i

pi − c otherwise
.

One can interpret the game as a duopoly in which each firm has committed to pay brand loyal

consumers a penalty of c if the other firm beats its price.6 These payoffs are neither quasiconcave

nor continuous. However, the game is diagonally monotonic and upper semicontinuous, and thus

it is 1-recursively diagonal transfer continuous. Thus, by Corollary 4.1, this game possesses a

symmetric pure strategy equilibrium.

We end this section by discussing how Theorem 4.1 covers Reny’s result as a corollary.

The game G = (Xi, ui)i∈I is diagonally quasiconcave if Xi is convex, and for

every player i, all x1, . . . , xm ∈ X and all x ∈ co{x1, . . . , xm}, ui(x, . . . , x) ≥
min1≤k≤m ui(x, . . . , xk, . . . , x).

DEFINITION 4.3 A game G = (Xi, ui)i∈I is diagonally better-reply secure if, whenever

(x∗, u∗) ∈ X × R is in the closure of the graph of its payoff function and (x∗, . . . , x∗) is not

an equilibrium, there is some player i, y ∈ X0, and an open neighborhood Vx∗ of x∗ such that

ψ(y, x′) > ψ(x∗) for all x′ ∈ Vx∗ .

COROLLARY 4.2 (RENY (1999)) If G = (Xi, ui)i∈I is quasi-symmetric, compact, diangonally

quasiconcave, and better-reply secure, then it possesses a symmetric pure strategy Nash equilib-

rium.

5 Full Characterization of Mixed Strategy Nash Equilibria

In this section, we fully characterize the existence of mixed strategy Nash equilibrium as corollar-

ies to the pure strategy existence results derived in the previous sections. We assume throughout

this section that each ui is both bounded and measurable, and Xi is a compact Hausdorff space

so we call G = (Xi, ui)i∈I a compact, Hausdorff game. Consequently, if Mi denotes the set of

(regular, countably additive) probability measures on the Borel subsets of Xi , Mi is compact in
6See Baye and Kovenock (1993) for an alternative formulation with both brand loyal and price conscious consumers,

whereby a firm commits to pay a penalty if it does not provide the best price in the market.
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the weak∗ topology. Extend each ui to
∏

i∈I Mi by defining ui(µ) =
∫
X ui(x)dµ for all µ ∈ M ,

and let Ḡ = (Mi, ui)i∈I denote the mixed extension of G, where M =
∏

i∈I Mi.

The definitions of recursive diagonal transfer continuity, etc. given in the previous sections,

apply in the obvious ways to the mixed extension Ḡ.

We now present the mixed strategy implications of Theorem 3.1.

THEOREM 5.1 Suppose that G = (Mi, ui)i∈I is a compact, Hausdorff game. Then G possesses

a mixed strategy Nash equilibrium if and only if its mixed extension, Ḡ, is recursively diagonal

transfer continuous.

This theorem strictly generalizes all the existence results on the mixed strategy equilibrium

in the literature such as those in Nash (1950), Glicksberg (1952), Mas-Colell (1984), Dasgupta

and Maskin (1986), Robson (1994), Simon (1987), Reny (1999), Monteiro and Page (2007), and

Nessah and Tian (2008). Any sufficient conditions imposed in the existing theorems on the exis-

tence of mixed strategy Nash equilibrium imply the recursive diagonal transfer continuity of Ū(·).
To illustrate this, we present here the results of Monteiro and Page (2007), and Nessah and Tian

(2008) as corollaries of Theorem 5.1. We first state some definitions introduced by them.

Monteiro and Page (2007) introduce the concept of uniform payoff security for games with

compact separable metric strategy spaces and payoffs bounded and measurable in players’ strate-

gies. They show that if a game is compact and uniformly payoff secure, then its mixed extension

Ḡ is payoff secure.

DEFINITION 5.1 The game G is uniformly payoff secure if for every player i ∈ I , every xi ∈ Xi,

and every ε > 0, there is a strategy xi ∈ Xi such that for every y−i ∈ X−i, there exists a

neighborhood Vy−i of y−i such that ui(xi, x
′
−i) ≥ ui(xi, y−i)− ε, for all x′−i ∈ Vy−i .

COROLLARY 5.1 [Monteiro and Page (2007)] If a game G = (Xi, ui)i∈I is compact, bounded,

separable metric, uniformly payoff secure, and has reciprocally upper semicontinuous payoffs,

then it possesses a mixed strategy Nash equilibrium.

Nessah and Tian (2008) introduce the concept of uniform transfer continuity, and show that if

a game G = (Xi, ui)i∈I is uniformly transfer continuous, then the mixed extension G is weakly

transfer continuous.

DEFINITION 5.2 The game G is said to be uniformly transfer continuous if for every player

i ∈ I , every xi ∈ Xi, and every ε > 0, there is a strategy xi ∈ Xi such that for every y−i ∈ X−i,

there exists a neighborhood V(xi,y−i) of (xi, y−i) such that

ui(xi, x
′
−i) + ε ≥ ui(xi, y−i) ≥ ui(z)− ε, for all z ∈ V(xi,y−i).
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COROLLARY 5.2 [Nessah and Tian (2008)] If a game G = (Xi, ui)i∈I is compact, bounded,

Hausdorff, and uniformly transfer continuous, then it possesses a mixed strategy Nash equilibrium.

We now provide a full characterization on the existence of symmetric mixed strategy Nash

equilibrium for quasi-symmetric games. For the following result only, let M0 denote the common

set of mixed strategies for each player i.

Define an extended quasi-symmetric function ψ̄ : M0 ×M0 → R by

ψ(ν, µ) = ui(µ, . . . , ν, . . . , µ). (5)

Since Ḡ is quasi-symmetric, µ∗ is a symmetric mixed strategy Nash equilibrium if and only if

ψ̄(ν, µ∗) ≤ ψ̄(µ∗, µ∗) for all ν ∈ M0.

THEOREM 5.2 Suppose that G = (Mi, ui)i∈I is a compact, quasi-symmetric, and Hausdorff

game. Then G possesses a symmetric mixed strategy Nash equilibrium if and only if its mixed

extension payoff ψ̄(ν, µ) defined by (4) is recursively diagonal transfer continuous on M0.

This result covers Corollary 5.3 of Reny (1999) as a special case.

6 Full Characterization of Bayesian Nash Equilibrium

In this section, we provide a full characterization of Bayesian Nash equilibrium in an ex ante

formulation of a Bayesian game, in which each player’s beliefs are common prior. The existence of

Bayesian Nash equilibrium in this formulation has been studied by Radner and Rosenthal (1982),

Milgrom and Weber (1985), Vives (1990), and Zandt and Vives (2007). The full characterization

of Bayesian Nash equilibrium in an interim or incomplete-information formulation of a Bayesian

game studied by Van Zandt (2007) can be similarly investigated.

Let the strategy spaces be compact subsets of topological spaces and Ti the set of types of

player i, a non-empty complete separable metric space. Denote by T the Cartesian product of the

sets of types of the players, T =
∏

i∈I Ti. The common beliefs of the players are represented by

µ, a probability measure on the Borel subsets of T . The measure µi will represent the marginal on

T . The payoff to player i is given by ui : X × T → R, Borel measurable and bounded. A (pure)

strategy for player i is a (Borel measurable) map αi : Ti → Xi that assigns an action to every

possible type of the player. Let Σi(µi) denote the strategy space of player i when we identify

strategies σi and ui if they are equally µi-almost surely (a.s.)

Let

Πi(σ) =
∫

T
ui(σ1(t1), . . . , σn(tn), ti)dµ(dt) (6)
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be the expected payoff to player i when agent j uses strategy σj , j ∈ I .

A strategy σ∗ is a Bayesian Nash equilibrium of a game if

Πi(σ∗) = Πi(σi, σ
∗
−i) ∀σi ∈ Σi.

There are several results available in the literature on the existence of pure strategy equilibria

in Bayesian games [e.g. Radner and Rosenthal (1982), Milgrom and Weber (1985), and Vives

(1990)].

As a direct corollary of Theorem 3.1, the following result strictly generalizes all the existing

results on the existence of Bayesian Nash equilibrium.

THEOREM 6.1 Suppose a Bayesian-Nash game Γ = (Σi, Πi)i∈I is compact. Then it possesses

a Bayesian Nash equilibrium if and only if Πi is recursively diagonal transfer continuous on X .

This theorem strictly generalizes the existing results such as those in Ray and Rosenthal

(1982), Milgrom and Weber (1985), Vives (1990), Athey (2001), Reny (2006), Van Zandt (2007),

and Zandt and Vives (2008) as special cases.

7 Economic Applications

The approach and main result developed in the paper can also allow us to ascertain the existence of

equilibria in important classes of economic games. As an application, in this section, we show how

they can be employed to fully characterize the existence of competitive (or Walrasian) equilibrium

for a certain class of economies.

One of the great achievements of economic theory in the last sixty years is the general equilib-

rium theory. The proof of the existence of a competitive equilibrium is generally considered one

of the most important and robust results of economic theory. There are many different ways of

establishing the existence of competitive equilibria, including the “excess demand approach” by

showing that there is a price at which excess demand can be non-positive.

The significance of such an approach lies partly in the fact that demand and/or supply may not

be continuous or even not be necessarily derived from profit maximizing behavior of price taking

firms, but is determined by prices in completely different ways. It is well known that Walrasian

equilibrium precludes the existence of an equilibrium in the presence of increasing returns to

scale and assumes price-taking and profit-maximizing behavior. Some other alternative pricing

rules then have been proposed such as loss-free, average cost, marginal cost, voluntary trading,

and quantity-taking pricing rules in the presence of increasing returns to scale or more general

types of non-convexities— cf. Beato (1982), Bonnisseau and Cornet (1990), Quinzii(1992), Tian
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(2009) and the references therein. There is a large literature on the existence results using the

excess demand approach, such as those in Gale (1955), Nikaido (1956, 1968, 1970), Debreu

(1970, 1974, 1982), Sonnenschein (1972, 1973), Hildenbrand (1974), Hildenbrand and Kirman

(1975), Grandmont (1977), Neuefeind (1980), Aliprantis and Brown (1983), Hüsseinov (1999),

Momi(2003), Quah (2008), etc.

We provide a complete solution to the existence of competitive equilibrium in economies with

general excess demand functions,7 in which commodities may be indivisible and excess demand

functions may be discontinuous or do not have any structure except Walras’ law. We introduce

a condition, called recursive transfer lower semi-continuity, which is necessary and sufficient for

the existence of general equilibrium in such economies. Thus, our result strictly generalizes all

the existing results on the existence of equilibrium in economies with excess demand functions.

Let ∆ be the closed L− 1 dimensional unit simplex defined by

∆ = {p ∈ <L
+ :

L∑

l=1

pl = 1}, (7)

and let ẑ(·) : ∆ → RL ∪ {±∞} denote the excess demand function of some economy. A

very important property of excess demand function is Walras’ law, which can take either of the

following two forms. The strong form of Walras’ law is given by

p · ẑ(p) = 0 for all p ∈ ∆,

and the weak form of Walras’ law is given by

p · ẑ(p) ≤ 0 for all p ∈ ∆.

A price vector p∗ is a competitive or Walrasian equilibrium if ẑ(p∗) ≤ 0.

The equilibrium price problem is to find a price vector p which clears the markets for all

commodities (i.e., the excess demand functions ẑ(p) ≤ 0 for the free disposal equilibrium price

or ẑ(p) = 0) under the assumption of Walras’ law.

We say that price p upsets price q if p gives a higher value to q’s excess demand, i.e. p · ẑ(q) >

q · ẑ(q) > 0.

DEFINITION 7.1 (Recursive Upset Pricing) Let ẑ(·) : ∆ → RL ∪ {±∞} be an excess demand

function. We say that a non-equilibrium price vector p0 ∈ ∆ is recursively upset by p ∈ ∆ if there

exists a finite set of price vectors {p1, p2, . . . , p} such that p1 · ẑ(p0) > 0, p2 · ẑ(p1) > 0, . . .,

p · ẑ(pm−1) > 0.
7In the case of strictly convex preferences and production sets, we obtain excess demand functions rather than

correspondences.
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In words, a non-equilibrium price vector p0 is recursively upset by p means that there exist

finite upsetting price vectors p1, p2, . . . , pm with pm = p such that p0’s excess demand is not

affordable at p1, p1’s excess demand is not affordable at p2, and pm−1’s excess demand is not

affordable at pm. When the strong form of Walras’ law holds, this implies that p0 is upset by p1,

p1 is upset by p2, ..., pm−1 is upset by p.

DEFINITION 7.2 (Recursive Transfer Lower Semi-Continuity) An excess demand function ẑ(·) :

∆ → RL ∪ {±∞} is said to be recursively transfer lower semi-continuous on ∆ if, whenever

q ∈ ∆ is not a competitive equilibrium price vector, there exists some price p0 ∈ ∆ (possibly

p0 = q) and a neighborhood Vq such that p · ẑ(Vq) > 0 for any p that recursively upsets p0.

Roughly speaking, recursive transfer lower semi-continuity of ẑ(·) means that, whenever q is

not a competitive equilibrium price vector, there exists another non-competitive equilibrium price

vector p0 such that all excess demands in some neighborhood of q are not affordable at any price

vector p that recursively upsets p0. This implies that, if a competitive equilibrium fails to exist,

then there is some non-equilibrium price vector q such that for every other price vector p0 and

every neighborhood of q, excess demand of some price vector q′ in the neighborhood becomes

affordable at price vector p that recursively upsets p0.

REMARK 7.1 While continuity does not imply nor is implied by recursive diagonal transfer con-

tinuity, recursive transfer lower semi-continuity is weaker than lower semi-continuity. Indeed,

when ẑ(·) is lower semi-continuous, p · ẑ(·) is also lower semi-continuous for any nonnegative

vector p, and thus we have pm · ẑ(q′) > 0 for all q′ ∈ N(q) and p ∈ ∆.

Now we have the following theorem that strictly generalizes all the existing results on the ex-

istence of competitive equilibrium in economies that have single-valued excess demand functions.

THEOREM 7.1 Suppose an excess demand function ẑ(·) : ∆ → RL ∪ {±∞} satisfies either of

the two forms of Walras’ law. Then there exists a competitive price equilibrium p∗ ∈ ∆ if and only

if ẑ(·) is recursively transfer lower semi-continuous on ∆.

PROOF. Sufficiency (⇐). Define a function φ : ∆×∆ → < by φ(p, q) = p· ẑ(p) for p, q ∈ ∆.

Since p · ẑ(q) > 0 and q · ẑ(q) ≤ 0 for all p ∈ ∆ by Walras’ law, we have φ(p, q) > φ(q, q) for

all p, q ∈ ∆. Then, by recursive transfer lower semi-continuity of ẑ(·), φ is recursively diagonal

transfer continuous on ∆.8 Thus, by the sufficiency of Theorem 3.1, there exists p∗ ∈ ∆ such
8The reverse may not be true under the weak form of Walras’ law. However, when the strong form of Walras’ law

holds, ẑ is recursively transfer lower semi-continuous if and only if φ is recursively diagonal transfer continuous.
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that p · ẑ(p∗) = φ(p, p∗) ≤ φ(p∗, p∗) ≤ 0 for all p ∈ ∆. Letting p1 = (1, 0, . . . , 0), p2 =

(0, 1, 0, . . . , 0), and pL = (0, 0, . . . , 0, 1), we have ẑl(p∗) ≤ 0 for l = 1, . . . , L and thus p∗ is a

competitive price equilibrium.

Necessity (⇒). Suppose p∗ is a competitive price equilibrium and p · ẑ(q) > 0 for q, p ∈ ∆.

Let p0 = p∗ and N(q) be a neighborhood of q. Since p · ẑ(p∗) ≤ 0 for all p ∈ ∆, it is impossible

to find any sequence of finite price vectors {p1, p2, . . . , pm} such that p1 · ẑ(p0) > 0, p2 · ẑ(p1) >

0, . . . , pm · ẑ(pm−1) > 0 . Hence, the recursive transfer lower semi-continuity holds trivially.

8 Conclusion

The existing results only give sufficient conditions for the existence of equilibrium, and no com-

plete solution to the question of the existence of equilibrium in general games has been given in

the literature. This paper fills this gap by providing a full characterization of equilibrium in games

with arbitrary strategy spaces and payoffs. We fully characterize the existence of pure strategy

Nash equilibrium in games with general topological strategy spaces that may be discrete, contin-

uum or non-convex and payoff functions that may be discontinuous or do not have any form of

quasi-concavity. We establish a condition, called recursive diagonal transfer continuity, which is

both necessary and sufficient for the existence of pure strategy Nash equilibrium in games with

arbitrary compact strategy spaces and payoffs. As such, it strictly generalizes all the existing

theorems on the existence of pure strategy Nash equilibrium. Recursive diagonal transfer conti-

nuity also permits full characterization results on the existence of symmetric pure strategy, mixed

strategy Nash, and Bayesian Nash equilibria in games with general strategy spaces and payoffs.

As an application of our approach and main result, we also fully characterizes the existence of

competitive equilibrium for economies with excess demand functions.

We end the paper by remarking that characterization results are mainly for the purpose of iden-

tifying whether or not a game has an equilibrium, but not whether it is easy to check. Recursive

diagonal transfer continuity provides a way of understanding equilibrium, more than necessarily

providing a way to check its existence. Even so, in the paper, we use many known economic

examples to illustrate that it is useful to employ recursive diagonal transfer continuity to check the

existence of equilibrium, especially the nonexistence of pure strategy Nash equilibrium. Never-

theless, Nessah and Tian (2008) develop some very weak sufficient conditions that are relatively

easy to check and generalize most of the existing results for the existence of equilibrium in dis-

continuous games. A potential future work may be attempted to find ways of applying recursive

diagonal transfer continuity as a useful tool for establishing equilibrium.
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