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Abstract

This paper takes a new look at the long-run implications of re-
source abundance. Using a Schumpeterian growth model that yields
an analyitical solution for the transition path, it derives conditions
under which the “curse of natural resources” occurs and is in fact a
curse, meaning that welfare falls, conditions under which it occurs but
it is not a curse, meaning that growth slows down but welfare rises
nevertheless, and conditions under which it does not occur at all. An
effective way to summarize the results is to picture growth and wel-
fare as hump-shaped functions of resource abundance. The property
that the peak of growth occurs earlier than the peak of welfare cap-
tures the crucial role of initial consumption, which rises with resource
abundance, and is an important reminder that the welfare effect of re-
source abundance depends on the whole path of consumption, not on
a summary statistic of its slope. Growth regressions that ignore the
endogeneity of initial income do not provide sufficient information to
assess whether resource abundance is bad even if one could prove be-
yond reasonable doubt that the relation is indeed negative and causal.
Recent evidence that the correlation is actually positive should make
us even more skeptical of policy advice based on the “curse” logic.
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1 Introduction

The debate on the role that natural resources play in the long-run fortunes
of the economy is as lively as ever. Currently it focuses on the influential
work of Sachs and Warner (1995, 2001), who find a negative cross-country
correlation between the share of natural resources exports in GDP and the
growth rate of GDP per capita, and interpret the export share as a measure
of natural resource abundance. This finding poses tough questions for eco-
nomic theory and policy – the idea that abundant resources are bad for the
economy strikes many as a paradox. Not surprisingly, then, it has spurred
a large amount of work that has added to an already large literature.1

Roughly speaking, the current debate pitches explanations of the neg-
ative correlation based on institutional deterioration, whereby natural re-
sources create the opportunity for rent-seeking, corruption and conflict,
against explanations based on sectoral reallocation, whereby activities in-
tensive in natural resources crowd out other, more technologically dynamic
activities (e.g., manufacturing, knowledge-based services).2 Recently, some-
thing akin to a third side has emerged as some researchers find a positive
correlation between growth and resource abundance and conclude that there
is no paradox to resolve.3

The motivation for this paper is what all sides of the debate have in
common. Empirical contributions take as given that the slower growth as-
sociated to resource abundance is bad – hence referring to it as the “curse
of natural resources” is accepted practice – and that dispelling the “curse”
requires proving that the correlation is, in fact, positive; theoretical contri-
butions discuss specific mechanisms producing slower growth, not whether
slower growth yields lower welfare. Underlying this literature, thus, seems
to be the tacit assumption growth = welfare.

This is puzzling since the notion that growth and welfare are not the
same is the cornerstone of the intertemporal trade-off at the heart of modern

1A comprehensive review is beyond the scope of the paper. The interested reader can
consult Gylfason (2001a), Stevens (2003) or Lederman and Maloney (2007).

2From this viewpoint, of particular interest is the evidence in Papyrakis and Gerlagh
(2007) and Boyce and Emery (2007), who document a negative correlation across U.S.
states between the growth rate of the Gross State Product (GSP) and, respectively, the
share of the primary sector in GSP and the share of employment in mining. Because they
focus on U.S. states, these studies raise important issues for institution-based stories.

3The positive correlation is actually not new; see Sala-i-Martin (1997), Sala-i-Martin,
Doppelhofer and Miller (2004). What is new is the explicit assertion that the “curse” does
not exist; see Alexeev and Conrad (2007), Brunneschweiler and Bulte (2007), Lederman
and Maloney (2007b).
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growth theory. Moreover, since the correlation between resource abundance
and the initial level of GDP per capita is positive it is not at all obvious that
resource abundant countries are worse off.4 Similarly puzzling is that empir-
ical papers only rarely state explicitly whether “curse” denotes a permanent
or a temporary slowdown. Yet, such a property is surely of consequence for
the welfare effects that we can expect. If the slowdown is permanent, it can
easily dominate the level effect of resources abundance; if it is temporary,
it can be dominated by the level effect. It follows that the specifics of the
growth model that one uses to interpret the regressions are of paramount
importance and should be discussed explicitly.5

4See Rodriguez and Sachs (1999), Bravo-Ortega and De Gregorio (2007) and, expe-
cially, Alexeev and Conrad (2007) for cross-country evidence; see also Boyce and Emery
(2007) for U.S. states

5 It is worth discussing examples of papers that tackle these issues to some extent to
illustrate what I have in mind. Bravo-Ortega and de Gregorio (2007) develop a theoretical
model whose predictions they take to the data. However, they don’t use the model to
draw welfare implications – surprisingly so, since they emphasize the positive relation
between resource abundance and the whole path of log-income (see Figure 4.1, p. 80)
and thus forewarn the reader that not only the intertemporal trade-off plays a crucial
role in interpreting the regressions, but that the predicted welfare effect is positive. The
most striking example of this practice is Rodriguez and Sachs (1999), who develop a fully
specified simulation model of the Venezuelan economy and document that that country’s
growth experience is due to the fact that the discovery of oil allows it to live beyond its
means – meaning that it converges to the steady state from above. Despite having all the
ingredients, they do not calculate the discounted integral of utility to show that such a path
is in fact associated to lower welfare; they only remark in the conclusions that experiencing
falling income and consumption is bad. It surely is, but it is not clear that looking at flow
utility answers the key question: Would Venezuela be better off if it hadn’t found oil?
After all, it converges from above because it overshoots the steady state in the first place.
To argue that the slower growth subsequent to the inital overshooting period produces
lower welfare, at a minimum they need to argue that the economy converges to a lower
steady state (convergence from above to the same steady state, as it seems to be the case
in the data reported in Figure 3, p. 289, yields higher welfare). Among purely empirical
papers, Gylfason (2001b) documents the negative relation between growth and the share
of natural wealth in national wealth and then writes: “Shaving one percentage point of
any country’s annual growth rate is a serious matter because the (weighted) average rate
of per capita growth in the world economy since 1965 has been about 1.5 percent per
year” (p. 849). Thus, the benchmark for infering that a high share of natural wealth is a
bad thing is the world’s average growth rate, not the economy’s own welfare. Papyrakis
and Gerlagh (2003, 2007) derive the long-run income effect of resource abundance from
the transition dynamics of the standard reduced-form, log-linear representation of growth
models. However, they are never explicit about (i) how resource abundance affects steady-
state growth and initial income and (ii) how the long-run income effect that they compute
relates to welfare. Welfare usually depends on the whole path of consumption (as in
the papers just discussed) and the long-run income effect alone is not sufficient to assess
whether it rises or falls with resource abundance. The paper that is most explicit about
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In this paper I take to heart these observations and take a new look at
the long-run implications of resource abundance through the lens of modern
Schumpeterian growth theory. In particular, I use a model of the latest vin-
tage that allows me to study welfare analytically. I derive conditions under
which the “curse” occurs and is in fact a curse, meaning that welfare falls,
conditions under which it occurs but it is not a curse, meaning that growth
slows down but welfare rises nevertheless, and conditions under which it
does not occur at all.

The model has two factors of production in exogenous supply, labor and
a natural resource, and two sectors, primary production (or resource process-
ing) and manufacturing. I define resource abundance as the endowment of
the natural resource relative to labor. The primary sector uses labor to
process the raw natural resource; the manufacturing sector uses labor and
the processed natural resource to produce differentiated consumption goods.
Because both sectors use labor, its reallocation from manufacturing to pri-
mary production drives the economy’s adjustment to an increase in resource
abundance. The manufacturing sector is technologically dynamic: firms and
entrepreneurs undertake R&D to learn how to use factors of production more
efficiently and to design new products. Importantly, the process of product
proliferation fragments the aggregate market into submarkets whose size
does not increase with the size of the endowments and thereby sterilizes the
scale effect. This means that the effect of resource abundance on growth is
only temporary. The resulting structure is extremely tractable and yields a
closed-form solution for the transition path.

The core mechanism is how the pattern of factor substitution in the two
sectors determines the response of the natural resource price to an increase
in the endowment ratio. The price response determines the income earned
by the owners of the resource (the households) and thereby their expendi-
ture on manufacturing goods. This mechanism links resource abundance
to the size of the market for manufacturing goods. Since manufacturing is
the economy’s innovative sector, it drives how resource abundance affects
incentives to undertake R&D.

Substitution matters because it determines the price elasticity of demand
for the natural resource. Inelastic demand means that the price has to fall
drastically to induce the market to absorb the additional quantity; elastic

the importance of accounting for the effect of resource abundance on initial income is
Alexeev and Conrad (2007) who show, convincingly in my view, that doing so changes
dramatically most of the results reported in the literature. However, they don’t discuss
growth explicitly, they only argue that we can infer the growth effect from the long-run
level effect, and never mention welfare.
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demand means that the adjustment requires a mild drop in the price. Im-
portantly, the two cases are part of a continuum because I use technologies
with factor substitution that changes with quantities. Now, if the economy
exhibits substitution, demand is elastic, the price effect is mild, the quan-
tity effect dominates, and resource income rises, spurring more spending
on manufacturing and a temporary growth acceleration. If, instead, the
economy exhibits complementarity, demand is inelastic, the price effect is
strong, resource income falls, and we have a temporary growth deceleration
– a “curse”. Whether the economy experiences a growth acceleration or
deceleration, however, is not sufficient to determine what happens to wel-
fare, since, given technology, the lower resource price makes consumption
goods cheaper. This means that to assess the welfare effect of the change
in the endowment ratio I need to resolve the trade-off between short- and
long-run effects if they differ in sign. As said, I can do this analytically since
I have a closed-form solution for the transition path.

My main result is that I identify threshold values of the equilibrium price
of the natural resource – and therefore threshold values of the endowment
ratio – that yield the following sequence of scenarios as we gradually raise
the endowment ratio from tiny to very large.

1. There is no curse — with or without quotation marks. This happens
when the resource price is high, because the endowment ratio is low,
demand is elastic, the quantity effect dominates over the price effect,
and, consequently, resource income rises. In other words, starting from
a situation of scarcity, the increase in resource abundance generates a
growth acceleration associated to an initial jump up in consumption
that yields higher welfare.

2. The “curse” is not a curse. That is, there is a “curse”, in that the rise
in the endowment ratio causes a growth deceleration, but the decel-
eration is offset by the fact that resource abundance raises the initial
level of consumption. This happens when the endowment ratio is in
the intermediate range in between the two thresholds and, correspond-
ingly, the resource price is in its intermediate range. Relative to the
previous case, as we enter this range demand becomes inelastic and
the price effect dominates over the quantity effect, with the result that
resource income falls as the endowment ratio rises.

3. The “curse” is a curse. This happens when the resource price is low,
because the endowment ratio is high, demand is inelastic, the price
effect dominates over the quantity effect, and resource income falls.
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Differently from the previous case, the fall in resource income is now
sufficiently large to cause the growth deceleration to dominate over
the initial jump up in consumption.

One way to summarize this pattern is to picture growth and welfare as
hump-shaped functions of resource abundance. The property that the peak
of growth occurs earlier than the peak of welfare captures the crucial role of
initial consumption, which rises with resource abundance.

Before getting into the details of the paper, it is worth discussing some
features that help evaluate its strenghts and weaknesses in relation to the
literature. First, I work with a closed economy and thus rule out trade-
induced specialization (i.e., there is no Dutch disease) and dependence, in
the traditional sense of primary exports being a crucial component of the
national economy.6 The main advantage of this approach is that there is no
confusion about the definition of resource abundance. Moreover, it assigns
a central role to endogenous price adjustments. This is important, in my
judgment, because the assumption that prices are fixed (common in work
that focuses on small open economies) removes drivers of income effects
that should be part of the analysis. The main disadvantage is obvious: the
paper’s link to the empirical literature is not as direct. However, the recent
emphasis of empirical researchers on relative endowments suggests that the
problem might be more the literature’s early focus on the primary exports
share rather than this paper’s focus on a closed economy.

The second feature is that I work with two sectors to capture the crucial
aspect of specialization induced by resource abundance: the sectoral shares
of activity and employment change and drive the economy’s adjustment
path and the associated welfare level. Importantly, I assume, in line with
the rest of the literature, that one sector is technologically progressive and
the other is not (or less so in a more general version of the model). This,
of course, is necessary to obtain the reallocation and associated crowding-
out mechanism that drives the “curse”. Overall, then, the model emphasizes
substitution and technological change (also diminishing returns to scale, but
this is not essential) as the driving forces of the economy’s adjustment to
changes in the relative endowment.7 I thus appear to side with reallocation-
based explanations in the debate characterized earlier. In a sense I do,

6 I am working on an extension of the analysis of this paper to the open economy case.
The preliminary results are in line with what I present here.

7See Smulders (2005) for an insightful discussion of the role ot the “neoclassical trinity”
– substitution, technological change, diminishing returns – in the study of the interaction
of economic growth and natural resources scarcity
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mainly because I believe that technological change is a prime driver of growth
and reallocation-based models assign to it the starring role. However, the
main message of the paper is not that reallocation-based stories are superior;
rather, it is that closer attention should be paid to welfare and that the
growth = welfare implicit assumption is grossly misleading. This insight
applies to all explanations of the “curse” – institution-based, reallocation-
based or any other type that future researchers will develop.8

The paper’s organization is as follows. Section 2 sets up the model.
Section 3 constructs the general equilibrium of the market economy. Section
4 discusses the key properties of the equilibrium that drive the paper’s main
results. Section 5 derives the main results. It first studies the conditions
under which the “curse” occurs and then studies the conditions under which
it is, in fact, a curse. It also discusses interesting implications for our reading
of the empirical literature. Section 6 concludes.

2 The model

2.1 Overview

The basic model that I build on is developed in Peretto and Connolly (2007),
who build on Peretto (1998). A representative household supplies labor ser-
vices in a competitive market. It also borrows and lends in a competitive
market for financial assets. The household values variety and buys as many
differentiated consumption goods as possible. Manufacturing firms hire la-
bor to produce differentiated consumption goods, undertake R&D, or, in the
case of entrants, set up operations. Production of consumption goods also
requires a processed resource, which is produced by competitive suppliers
using labor and a raw natural resource. The introduction of this up-stream
primary sector is the main innovation of this paper. The economy starts
out with a given range of goods, each supplied by one firm. Entrepreneurs
compare the present value of profits from introducing a new good to the
entry cost. They only target new product lines because entering an exist-
ing product line in Bertrand competition with the existing supplier leads to

8Arguably, institution-based stories have an easier time explaining why an economy
might experience a collapse of both the level and growth of income than reallocation stories.
This implies that initial income is a critical ingredient not only in assessing welfare but also
in discriminating between the two approaches. Alexeev and Conrad (2007), for example,
use their evidence on the positive effect of resource abundance on initial income to assess
the causal link between economic performance and institutional quality. Interestingly,
they conclude that there is none.
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losses. Once in the market, firms establish in-house R&D facilities to pro-
duce cost-reducing innovations. As each firm invests in R&D, it contributes
to the pool of public knowledge and reduces the cost of future R&D. This
allows the economy to grow at a constant rate in steady state.

2.2 Households

The representative household maximizes lifetime utility

U(t) =

Z ∞

t
e−(ρ−λ)(s−t) log u(s)ds, ρ > 0 (1)

subject to the flow budget constraint

Ȧ = rA+WL+ pΩ+ΠM − Y, (2)

where ρ is the discount rate, A is assets holding, r is the rate of return
on financial assets, W is the wage rate, L = L0e

λt, L0 ≡ 1, is population
size, which equals labor supply since there is no preference for leisure, and
Y is consumption expenditure. In addition to asset and labor income, the
household receives rents from ownership of the endowment, Ω, of a nat-
ural resource whose market price is p and dividend income from resource-
processing firms, ΠM . The household takes these terms as given.

The household has instantaneous preferences over a continuum of differ-
entiated goods,

log u = log

"Z N

0

µ
Xi

L

¶ �−1
�

di

# �
�−1

, � > 1 (3)

where � is the elasticity of product substitution, Xi is the household’s pur-
chase of each differentiated good, and N is the mass of goods (the mass of
firms) existing at time t.

The solution for the optimal expenditure plan is well known. The house-
hold saves according to

r = rA ≡ ρ+
Ẏ

Y
− λ (4)

and taking as given this time-path of expenditure maximizes (3) subject to
Y =

R N
0 PiCidi. This yields the demand schedule for product i,

Xi = Y
P−�iR N

0 P 1−�i di
. (5)
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With a continuum of goods, firms are atomistic and take the denominator
of (5) as given; therefore, monopolistic competition prevails and firms face
isoelastic demand curves.

2.3 Manufacturing: Production and Innovation

The typical firm produces one differentiated consumption good with the
technology

Xi = Zθ
i · FX (LXi − φ,Mi) , 0 < θ < 1, φ > 0 (6)

where Xi is output, LXi is production employment, φ is a fixed labor cost,
Mi is processed resource use (henceforth “materials” for short), and Zθ

i is
the firm’s TFP, a function of the stock of firm-specific knowledge Zi. The
function FX (·) is a standard neoclassical production function homogeneous
of degree one in its arguments. Hence, the production technology exhibits
constant returns to rival inputs, labor and materials, and overall increasing
returns. (6) gives rise to total cost

Wφ+ CX(W,PM)Z
−θ
i Xi, (7)

where the function CX (·) is a standard unit-cost function homogeneous of
degree one in its arguments.

The elasticity of unit cost reduction with respect to knowledge in (7)
is the constant θ. The firm accumulates knowledge according to the R&D
technology

Żi = αKLZi , α > 0 (8)

where Żi measures the flow of firm-specific knowledge generated by an R&D
project employing LZi units of labor for an interval of time dt and αK is the
productivity of labor in R&D as determined by the exogenous parameter α
and by the stock of public knowledge, K.

Public knowledge accumulates as a result of spillovers. When one firm
generates a new idea to improve the production process, it also generates
general-purpose knowledge which is not excludable and that other firms can
exploit in their own research efforts. Firms appropriate the economic re-
turns from firm-specific knowledge but cannot prevent others from using
the general-purpose knowledge that spills over into the public domain. For-
mally, an R&D project that produces Żi units of proprietary knowledge also
generates Żi units of public knowledge. The productivity of research is de-
termined by some combination of all the different sources of knowledge. A
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simple way of capturing this notion is to write

K =

Z N

0

1

N
Zidi,

which says that the technological frontier is determined by the average
knowledge of all firms.9

The R&D technology (8), combined with public knowledge K, exhibits
increasing returns to scale to knowledge and labor, and constant returns to
scale to knowledge. This property makes constant, endogenous steady-state
growth feasible.

2.4 The Primary or Resources Sector

In the primary sector competitive firms hire labor, LR, to extract and process
natural resources, R, into materials, M , according to the technology

M = FM (LM , R) , (9)

where the function FM (·) is a standard neoclassical production function
homogeneous of degree one in its arguments. The associated total cost is

CM (W,p)M, (10)

where CM is a standard unit-cost function homogeneous of degree one in
the wage W and the price of resources p.

This is the simplest way to model the primary sector for the purposes
of this paper. Materials are produced with labor and a natural resource.
The natural resource is in fixed endowment and earns rents. The primary
sector competes for labor with the manufacturing sector. This captures the
fundamental inter-sectoral allocation problem faced by this economy.

3 Equilibrium of the Market Economy

This section constructs the symmetric equilibrium of the manufacturing sec-
tor. It then characterizes the equilibrium of the primary sector. Finally, it
imposes general equilibrium conditions to determine the aggregate dynamics
of the economy. The wage rate is the numeraire, i.e., W ≡ 1.

9For a detailed discussion of the microfoundations of a spillovers function of this class,
see Peretto and Smulders (2002).
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3.1 Partial Equilibrium of the Manufacturing Sector

The typical manufacturing firm is subject to a death shock. Accordingly, it
maximizes the present discounted value of net cash flow,

Vi (t) =

Z ∞

t
e−

R s
t [r(v)+δ]dvΠi(s)ds, δ > 0

where e−δt is the instantaneous probability of death. Using the cost function
(7), instantaneous profits are

ΠXi = [Pi − CX(1, PM)Z
−θ
i ]Xi − φ− LZi ,

where LZi is R&D expenditure. Vi is the value of the firm, the price of
the ownership share of an equity holder. The firm maximizes Vi subject to
the R&D technology (8), the demand schedule (5), Zi(t) > 0 (the initial
knowledge stock is given), Zj(t

0) for t0 ≥ t and j 6= i (the firm takes as
given the rivals’ innovation paths), and Zj(t

0) ≥ 0 for t0 ≥ t (innovation is
irreversible). The solution of this problem yields the (maximized) value of
the firm given the time path of the number of firms.

To characterize entry, I assume that upon payment of a sunk cost βPiXi,
an entrepreneur can create a new firm that starts out its activity with pro-
ductivity equal to the industry average.10 Once in the market, the new firm
implements price and R&D strategies that solve a problem identical to the
one outlined above. Hence, entry yields value Vi and a free entry equilibrium
requires Vi = βPiXi.

The appendix shows that the equilibrium thus defined is symmetric and
is characterized by the factor demands:

LX = Y
�− 1
�

¡
1− SMX

¢
+ φN ; (11)

M = Y
�− 1
�

SM
X

PM
, (12)

where

SM
X ≡

PMMi

CX(W,PM)Z
−θ
i Xi

=
∂ logCX(W,PM)

∂ logPM
.

Associated to these factor demands are the return to cost reduction and
entry, respectively:

r = rZ ≡ α

∙
Y θ(�− 1)

�N
− LZ

N

¸
− δ; (13)

10See Etro (2004) and, in particular, Peretto and Connolly (2007) for a more detailed
discussion of the microfoundations of this assumption.
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r = rN ≡
1

β

∙
1

�
− N

Y

µ
φ+

LZ

N

¶¸
+ Ŷ − N̂ − δ. (14)

The dividend price ratio in (14) depends on the gross profit margin 1
� . Antic-

ipating one of the properties of the equilibria that I study below, note that
in steady state the capital gain component of this rate of return, Ŷ − N̂ , is
zero. Hence, the feasibility condition 1

� > (r + δ)β must hold. This simply
says that the firm expects to be able to repay the entry cost because it more
than covers fixed operating and R&D costs.

3.2 General equilibrium

As mentioned, the resources sector is competitive. Hence, firms produce up
to the point where PM = CM (1, p) and demand factors according to:

R = SR
M

MPM
p

= Y
�− 1
�

SM
X SR

M

p
, (15)

LM =
¡
1− SR

M

¢
MPM = Y

�− 1
�

SM
X

¡
1− SR

M

¢
, (16)

where

SR
M ≡

∂ logCM(W,p)

∂ log p

and I have used (11) and (12) to obtain the expressions after the second
equality sign. These factor demands yield that the competitive resource
firms make zero profits.

Equilibrium of the primary sector requires R = Ω. One can thus think
of (15) as the equation that determines the price of the natural resource,
and therefore resource income for the household, given the level of economic
activity measured by expenditure on consumption goods Y .

The remainder of the model consists of the household’s budget constraint
(2), the labor demands (11) and (16), the returns to saving, cost reduction
and entry in (4), (13) and (14). The household’s budget constraint becomes
the labor market clearing condition (see the appendix for the derivation):

L = LN + LX + LZ + LM ,

where LN is aggregate employment in entrepreneurial activity, LX + LZ is
aggregate employment in production and R&D operations of existing firms
and LM is aggregate employment of resources-processing firms. Assets mar-
ket equilibrium requires equalization of all rates of return (no-arbitrage),
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r = rA = rZ = rN , and that the value of the household’s portfolio equal the
value of the securities issued by firms, A = NV = βY .

A useful feature of the model is that I can combine the equilibrium condi-
tions for the labor and assets markets to obtain an equation that describes
how the resource price affects household income and thus expenditure on
consumption goods. Specifically, substituting A = βY into (2) and using
the rate of return to saving (4), I obtain after rearranging terms

Y − L− pΩ

Y
= β (ρ− λ) .

Notice how all dynamic terms dropped out. Recall that I am focussing
on a closed economy where the fixed domestic resource supply Ω implies
that the price of the resource reflects scarcity. Then, letting y ≡ Y

L denote
expenditure per capita and ω ≡ Ω

L denote the endowment ratio, I can use
(15) and the condition R = Ω to study the instantaneous equilibrium (p∗, y∗)
as the intersection in (p, y) space of the following two curves:

y =
1 + pω

1− β (ρ− λ)
; (17)

y =
1

1− β (ρ− λ)− �−1
� SR

M (p)S
M
X (p)

. (18)

The first describes how resource income determines expenditure on con-
sumption goods; the second how expenditure drives demand for the factors
of production and thereby determines resource income.

Before proceeding, notice how population growth implies that a solution
with constant p∗ and y∗ fails to exist if the endowment Ω is constant and
the ratio ω shrinks over time. There are four ways of handling this problem.
The first is to assume zero population growth. The second is to allow for
population growth and assume that Ω grows at the same rate so that ω
stays constant. The third is to posit Cobb-Douglas technologies so that
the shares SM

X and SR
M are exogenous constants. This approach allows for

explosive growth of p∗ due to scarcity but has the drawback that while y∗

remains constant it is independent of the endowment ratio (see below). The
fourth way is to allow for population growth and deal with the fact that SM

X

and SR
M are time-varying. The first three approaches retain the desirable

feature that y∗ is constant and consequently that the interest rate is r = ρ
at all times; see the Euler equation (4). The fourth requires to handle a
time-varying interest rate. To keep things as simple as possible, and retain
the feature that the endowment ratio affects y∗ through prices, I follow the
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second approach and assume that ω is constant because Ω and L grow at the
same rate,11 possibly zero. I discuss in detail existence and the comparative
statics properties of the equilibrium (p∗, y∗) with respect to ω in Section 5.
For the reminder of this section and the next, I posit that it exists and study
its implications for the economy’s dynamics.

3.3 Dynamics12

It is useful to work with the variable n ≡ N
L . Taking into account the

non-negativity constraint on R&D, the fact that y∗ is constant and implies
r∗ = ρ allows me to solve (8) and (13) for

Ẑ = α
LZ

N
=

½
y∗

n
αθ(�−1)

� − ρ− δ n < n̄
0 n ≥ n̄

, (19)

where

n̄ ≡ y∗
αθ (�− 1)
(ρ+ δ) �

.

Substituting into (14) yields

n̂ =

⎧⎨⎩
1
β

h
1−θ(�−1)

� −
³
φ− ρ+δ

α

´
n
y∗

i
− (ρ+ δ) n < n̄

1
β

h
1
� − φ n

y∗

i
− (ρ+ δ) n ≥ n̄

.

The general equilibrium of the model thus reduces to a single differential
equation in the mass of firms per capita.13 The economy converges to

n∗ =

⎧⎪⎨⎪⎩
1−θ(�−1)

�
−(ρ+δ)β

φ−ρ+δ
α

y∗
1−θ(�−1)

�
−(ρ+δ)β

φα−(ρ+δ) < θ(�−1)
(ρ+δ)�

1
�
−(ρ+δ)β

φ y∗
1−θ(�−1)

�
−(ρ+δ)β

φα−(ρ+δ) ≥ θ(�−1)
(ρ+δ)�

. (20)

These solutions exist only if the feasibility condition 1
� > (ρ+ δ)β holds.

The interior steady state with both vertical and horizontal R&D requires

11This assumption is actually quite common in empirical work. See Brunneschweiler
and Bulte (2007) for a summary of the arguments that justify the practice.
12This section draws on Peretto and Connolly (2007) where the model that I build on

in this paper is developed in full.
13For simplicity I ignore the non-negativity constraint on Ṅ . I can do so without loss

of generality because population growth implies that the mass of firms grows all the time.
See Peretto (1998) for a discussion of this property. Also, I have posited a death shock so
that negative net entry is feasible. This allows one to check that the model’s qualitative
implications for the case of zero population growth remain the same.
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the more stringent conditions αφ > ρ+ δ and

(ρ+ δ)β +
θ (�− 1)

�
<
1

�
< (ρ+ δ)β +

αφ

ρ+ δ

θ (�− 1)
�

.

It then yields
y∗

n∗
=

φ− ρ+δ
α

1−θ(�−1)
� − (ρ+ δ)β

(21)

so that

Ẑ∗ =
φα− (ρ+ δ)

1−θ(�−1)
� − (ρ+ δ)β

θ (�− 1)
�

− (ρ+ δ) . (22)

Notice how this steady-state growth rate is independent of the endowments
L and Ω because there is no scale effect.

To perform experiments, I shall focus on this region of parameter space
and work with the equation

n̂ = ν −
µ
φ− ρ+ δ

α

¶
n

βy∗
, ν ≡ 1− θ (�− 1)

β�
− (ρ+ δ) .

This is a logistic equation (see, e.g., Banks 1994) with growth coefficient

ν and crowding coefficient
³
φ− ρ+δ

α

´
1

βy∗ . Using the value n
∗ in (20), also

called carrying capacity, I can rewrite it as

n̂ = ν
³
1− n

n∗

´
, (23)

which has solution

n (t) =
n∗

1 + e−νt
³
n∗
n0
− 1
´ , (24)

where n0 is the initial condition.

4 Properties of the equilibrium: technology, the
path of consumption and welfare

The main advantage of this model is that one can solve explicitly for the
level of welfare associated to the economy’s transition to the steady state
starting from any initial condition. In this section I bring this feature to the
forefront as it provides the building blocs that I use in the derivation of the
paper’s main results.
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In symmetric equilibrium (3), (5) and the fact that manufacturing firms
set prices at a markup �

�−1 over marginal cost (see the Appendix) yield

log u∗ = log

µ
�− 1
�

y∗

c∗
ZθN

1
�−1

¶
,

where
c∗ ≡ CX (1, CM (1, p

∗))

One can reinterpret the utility function (3) as a production function for
a final homogenous good assembled from intermediate goods, so that u is
indeed a measure of output, and define aggregate TFP for this economy as

T ≡ ZθN
1

�−1 . (25)

Taking logs and time derivatives this yields

T̂ (t) = θẐ (t) +
1

�− 1N̂ (t) = θẐ (t) +
1

�− 1λ+
1

�− 1 n̂ (t) ,

where Ẑ (t) is given by (19), n̂ (t) by (23) and n (t) by (24). In steady state
this gives

T̂ ∗ = θẐ∗ +
1

�− 1λ ≡ g∗,

which is independent of the endowments L and Ω, and thus of ω.
Observe now that according to (21) in steady state we have

y∗

n∗
=

y0
n0
⇒ y∗

y0
=

n∗

n0
,

and define

∆∗ ≡ n∗

n0
− 1 = y∗

y0
− 1.

This is the percentage change in expenditure that the economy experiences
in response to changes in fundamentals and/or policy parameters. It fully
summarizes the effects of such changes on the scale of economic activity.
Using this information, I obtain the following result.

Proposition 1 Let log u∗ (t) and U∗ be, respectively, the instantaneous con-
sumption index (3) and the welfare function (1) evaluated at y∗. Then, a
path starting at time t = 0 with initial condition n0 and converging to the
steady state n∗ is characterized by:

log T (t) = logT0 + g∗t+

µ
γ

ν
+

1

�− 1

¶
∆∗
¡
1− e−νt

¢
, (26)
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where

γ ≡ θ
αθ (�− 1)

�

y∗

n∗
= θ

αθ (�− 1)
�

φ− ρ+δ
α

1−θ(�−1)
� − (ρ+ δ)β

.

Therefore,

log u∗ (t) = log
y∗

c∗
+ g∗t+

µ
γ

ν
+

1

�− 1

¶
∆∗
¡
1− e−νt

¢
, (27)

where without loss of generality �−1
� T0 = 1. This yields

U∗ =
1

ρ− λ

∙
log

µ
y∗

c∗

¶
+

g∗

ρ− λ
+ μ∆∗

¸
, (28)

where

μ ≡
γ + ν

�−1
ρ− λ+ ν

.

Proof. See the Appendix.

The transitional component of the TFP operator in (26) summarizes the
cumulated gain/loss due to above/below steady-state cost reduction and
product variety expansion. The expression for flow utility (27) allows one to
see separately the initial jump due to y∗/c∗ and the gradual evolution due
to T . Accordingly, the first term in (28) captures the role of steady-state
real expenditure calculated holding technology constant; the second cap-
tures the role of steady-state growth; the third is the contribution from the
gain/loss due to the transitional acceleration/deceleration of TFP relative
to the steady state path. Following Peretto and Connolly (2007) we define
the term μ as a welfare multiplier summarizing the transitional effects of
the change in market size ∆∗.

5 The “curse”: does it occur, is it a curse?

This section analyzes the effects of a change in the endowment ratio. It
begins with a discussion of the conditions under which it raises or lowers
consumption expenditure so that the market for manufacturing goods ex-
pands or contracts. It then shows how the interaction of the initial change in
consumption and the transition dynamics after the shock produce a change
in welfare whose sign can be assessed analytically.
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5.1 Expenditure and prices

The first step in the assessment of the effects of resource abundance is to use
(17) and (18) to characterize expenditure and prices. The following property
of the demand functions (12) and (15) is useful.

Lemma 2 Let:

�MX ≡ −
∂ logM

∂ logPM
= 1− ∂ logSM

X

∂ logPM
= 1− ∂SM

X

∂PM

PM
SM
X

;

�RM ≡ −
∂ logR

∂ log p
= 1− ∂ logSR

M

∂ log p
= 1− ∂SR

M

∂p

p

SR
M

.

Then,
∂
¡
SR
M (p)S

M
X (p)

¢
∂p

= Γ (p)
SR
M (p)S

M
X (p)

p
, (29)

where
Γ (p) ≡

¡
1− �MX (p)

¢
SR
M (p) + 1− �RM (p) .

Proof. See the Appendix.

Γ (p) is the elasticity of SR
M (p)S

M
X (p) with respect to p. According to

(12), therefore, it is the elasticity of the demand for the resource R with
respect to its price p, holding constant expenditure per capita y. It thus
captures the partial equilibrium effects of price changes in the resource and
materials markets for given market size and regulates the shape of the income
relation (18). To see how, differentiate (18), rearrange terms and use (15)
to obtain:

d log y (p)

dp
=

�−1
�

d(SRM (p)S
M
X (p))

dp

1− β (ρ− λ)− �−1
� SR

M (p)S
M
X (p)

= ωΓ (p) .

This says that the effect of changes in the resource price on expenditure on
manufacturing goods depends on the overall pattern of substitution that is
reflected in the price elasticities of materials and resource demand and in
the resource share of materials production costs. To see the pattern most
clearly, I pretend for the time being that Γ (p) does not change sign with p.
I comment later on how allowing Γ (p) to change sign for some p makes the
model even more interesting. The following proposition states the results
formally, Figure 1 illustrates the mechanism.
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Proposition 3 Suppose that Γ (p) is positive, zero or negative for all p.
Then, there are three cases.

1. Substitution. This occurs when Γ (p) > 0 and the income relation
(18) is a monotonically increasing function of p with domain p ∈ [0,∞)
and codomain y ∈ [y∗ (0) , y∗ (∞)), where

y∗ (0) =
1

1− β (ρ− λ)− �−1
� SR

M (0)S
M
X (0)

,

y∗ (∞) =
1

1− β (ρ− λ)− �−1
� SR

M (∞)SM
X (∞)

.

Then there exists a unique equilibrium (p∗ (ω) , y∗ (ω)) with the prop-
erty:

p∗ (ω) : (0,∞)→ (∞, 0) ,
dp∗ (ω)

dω
< 0 ∀ω;

y∗ (ω) : (0,∞)→ [y∗ (∞) , y∗ (0)) , dy∗ (ω)

dω
< 0 ∀ω.

2. Cobb-Douglas-like economy. This occurs when SR
M and SM

X are
exogenous constants, Γ (p) = 0 and the income relation (18) is the flat
line

y =
1

1− β (ρ− λ)− �−1
� SRMSM

X

≡ y∗CD.

Then there exists a unique equilibrium (p∗CD (ω) , y
∗
CD) with the prop-

erty:

p∗CD (ω) : (0,∞)→ (∞, 0) ,
dp∗ (ω)

dω
< 0 ∀ω.

3. Complementarity. This occurs when Γ (p) < 0 and the income
relation (18) is a monotonically decreasing function of p with domain
p ∈ [0,∞) and codomain y ∈ (y∗ (∞) , y∗ (0)], where

y∗ (∞) =
1

1− β (ρ− λ)− �−1
� SR

M (∞)SMX (∞)
,

y∗ (0) =
1

1− β (ρ− λ)− �−1
� SR

M (0)S
M
X (0)

.

Then there exists a unique equilibrium (p∗ (ω) , y∗ (ω)) with the prop-
erty:

p∗ (ω) : (0,∞)→ (∞, 0) ,
dp∗ (ω)

dω
< 0 ∀ω;

y∗ (ω) : (0,∞)→ [y∗ (∞) , y∗ (0)) , dy∗ (ω)

dω
> 0 ∀ω.
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Proof. See the Appendix.

I refer to the second case as the Cobb-Douglas-like economy because
this seemingly special configuration, requiring �RM = 1 +

¡
1− �MX

¢
SR
M , is in

fact quite common in the literature as it occurs when both technologies are
Cobb-Douglas and �MX = �RM = 1.

Notice how the effect of resource abundance on the resource price is neg-
ative in all cases while the effect on expenditure changes sign according to
the substitution possibilities between labor and materials in manufacturing
and between labor and the natural resource in materials production. This
brings us to the observation that if Γ (p) changes sign for some p, the model
generates endogenously a switch from, say, complementarity to substitu-
tion. I illustrate this case in Figure 2 where the income relation (18) is a
hump-shaped function of p. The pattern is best captured by looking at the
properties of the function Γ (p). Using the definitions in Lemma 2, we have

dΓ (p)

dp
= −d�

M
X (PM)

dPM

dPM
dp

SR
M (p)

+
¡
1− �MX (PM)

¢ ¡
1− �RM (p)

¢
− d�RM (p)

dp
.

This derivative is negative if the following two conditions hold:

• the elasticities �MX and �RM are increasing in PM and p, respectively;

• the terms 1− �MX and 1− �RM have opposite sign.

The hump-shaped income relation in Figure 2 then obtains if Γ (0) > 0 and
Γ (∞) < 0. Notice that the second condition says that if demand in one
sector is elastic, say 1 < �MX , then demand in the other sector is inelastic,
1 > �RM . Below I show that these conditions hold quite naturally in an
economy with CES technologies. Here I discuss the general property.

Proposition 4 Suppose that there exists a price p̄ where Γ (p) changes sign,
from positive to negative, so that the income relation (18) is a hump-shaped
function of p with domain p ∈ [0,∞) and codomain y ∈ [y∗ (0) , y∗ (∞)) or
y ∈ [y∗ (∞) , y∗ (0)), where

y∗ (0) =
1

1− β (ρ− λ)− �−1
� SR

M (0)S
M
X (0)

,

y∗ (∞) =
1

1− β (ρ− λ)− �−1
� SR

M (∞)SM
X (∞)

.
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Then there exists a unique equilibrium (p∗ (ω) , y∗ (ω)) with the property:

p∗ (ω) : (0,∞)→ (∞, 0) ,
dp∗ (ω)

dω
< 0 ∀ω;

y∗ (ω) : (0,∞)→ [y∗ (∞) , y∗ (0)) , dy∗ (ω)

dω
R 0 ω Q ω̄,

where ω̄ is the value of ω such that p∗ (ω̄) = p̄.

Proof. See the Appendix.

The main message of this analysis is that resource abundance raises ex-
penditure, and thereby results into a larger market for manufacturing goods,
when the economy exhibits overall substitution between labor and resources
(processed and raw) in the manufacturing of consumption goods and the
processing of the natural resource into materials. Conversely, when the
economy exhibits overall complementarity resource abundance results into
a smaller market for manufacturing goods. More importantly, whether the
economy exhibits substitution or complementarity depends on equilibrium
prices and thus on the endowment ratio itself. In other words, there are
solid reasons to expect that the effect of the endowment ratio on the path
of consumption is non-monotonic.

5.2 The path of consumption and welfare

For concreteness, consider an economy in steady state (p∗, y∗) and imagine
an increment dω in its endowment ratio. Then, by construction we have

∆∗ =
y∗ (ω) + dy∗(ω)

dω

y∗ (ω)
− 1 = 1

y∗ (ω)

dy∗ (ω)

dω

and we can use the results of the previous section in a straightforward man-
ner. Let us look first at the initial effect on consumption.

Proposition 5 The impact effect of the change in the endowment ratio is

d log
³
y∗(ω)
c∗(ω)

´
dω

= [Γ (p∗ (ω))−Ψ (p∗ (ω))]ωdp
∗ (ω)

dω
, (30)

where

Ψ (p∗ (ω)) ≡ �

(�− 1) y∗ (ω) = κ− SR
M (p

∗ (ω))SMX (p∗ (ω)) ,

κ ≡ �

�− 1 [1− β (ρ− λ)] .
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Proof. See the Appendix.

Equation (27), Proposition 5 and the fact that dp∗(ω)
dω < 0 ∀ω then yield

three possible configurations for the path of consumption:

1. Γ (p∗ (ω)) < 0 < Ψ (p∗ (ω)). The initial jump is up and then we have
a growth acceleration. There is no “curse” and welfare rises.

2. 0 < Γ (p∗ (ω)) < Ψ (p∗ (ω)). The initial jump is up and then we have
a growth deceleration. The welfare change is ambiguous since we have
an intertemporal trade-off. Is the “curse” a curse?

3. 0 < Ψ (p∗ (ω)) < Γ (p∗ (ω)). The initial jump is down and then we
have a growth deceleration. Welfare falls. The “curse” is a curse.

Figure 3 illustrates these possibilities. Case 2 highlights the need to look at
welfare directly to resolve the ambiguity.

Proposition 6 The welfare effect of a change in the endowment ratio is

dU∗ (ω)

dω
=

1

ρ− λ
[(1 + μ)Γ (p∗ (ω))−Ψ (p∗ (ω))]ωdp

∗ (ω)

dω
. (31)

Proof. See the Appendix.

We can then characterize four scenarios for welfare.

1. There is no curse — with or without quotation marks. This happens
when

(1 + μ)Γ (p∗ (ω)) < Γ (p∗ (ω)) ≤ 0 < Ψ (p∗ (ω))
and the rise of the endowment ratio generates a growth acceleration
associated to an initial jump up in consumption.14

2. There is a “curse”, in that the rise of the endowment ratio causes
a growth deceleration, but the deceleration is offset by the fact that
resource abundance reduces prices and raises the level of consumption.
This happens when

0 < Γ (p∗ (ω)) < (1 + μ)Γ (p∗ (ω)) < Ψ (p∗ (ω)) .

In this case the “curse” is not a curse.
14Notice that this includes the Cobb-Douglas economy since in that case 1 = �MX = �RM

and growth does not respond to ω at all while lower prices yield higher utility.
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3. The “curse” is a curse. This happens when

0 < Γ (p∗ (ω)) < Ψ (p∗ (ω)) < (1 + μ)Γ (p∗ (ω))

and the rise of the endowment ratio generates a growth deceleration
that dominates over the initial jump up in consumption.

4. The “curse” truly is a curse. This worst-case scenario happens when

0 < Ψ (p∗ (ω)) < Γ (p∗ (ω)) < (1 + μ)Γ (p∗ (ω))

and the rise of the endowment ratio generates a growth deceleration
associated to an initial fall of consumption.

One of course is interested in mapping these scenarios into values of the
endowment ratio itself. To do this, it is useful to impose some more structure
on the model.

5.3 A CES economy

Consider the following CES economy:

Xi = Zθ
i [ψX (LXi − φ)σX + (1− ψX)M

σX
i ]

1
σX , σX ≤ 1;

M =
£
ψMLσM

M + (1− ψM)R
σM
¤ 1
σM , σM ≤ 1.

The associated unit-cost functions are:

CXi = Z−θi

∙
ψ
− 1
σX−1

X W
σX

σX−1 + (1− ψX)
− 1
σX−1 P

σX
σX−1
M

¸σX−1
σX

;

CM =

∙
ψ
− 1
σM−1

M W
σM

σM−1 + (1− ψM)
− 1
σM−1 p

σM
σM−1

¸σM−1
σM

;

From these one derives (recall that W ≡ 1):

SM
X =

1

1 +
³

ψX
1−ψX

´ 1
1−σX P

σX
1−σX
M

; �MX = 1 +
σX

1− σX

¡
1− SM

X

¢
;

SR
M =

1

1 +
³

ψM
1−ψM

´ 1
1−σM p

σM
1−σM

; �RM = 1 +
σM

1− σM

¡
1− SR

M

¢
.
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As is well known, the CES contains as special cases the linear production
function (σ = 1) wherein inputs are perfect substitutes, the Cobb-Douglas
(σ = 0) wherein the elasticity of substitution between inputs is equal to 1,
and the Leontief (σ = −∞) wherein inputs are perfect complements. The
advantage of the CES specification, then, is that we can make things quite
explicit and at the same time general.

Specifically, define:

Γ (ω) ≡ Γ (p∗ (ω)) =
¡
1− �MX (p

∗ (ω))
¢
SR
M (p

∗ (ω)) + 1− �RM (p
∗ (ω)) ;

Ψ (ω) ≡ Ψ (p∗ (ω)) = κ− SR
M (p

∗ (ω))SM
X (p∗ (ω)) .

Observe that if σX > 0 and σM > 0, then Γ (p) < 0 for all p and the “curse”
never occurs. If σX < 0 and σM < 0, instead, Γ (p) > 0 for all p and the
“curse” always occurs. Interestingly, if σX and σM have opposite signs we
can capture how the economy moves from one case to the other as the en-
dowment ratio changes. Specifically, let σX > 0 and σM < 0 so that the
manufacturing sector exhibits gross substitution between labor and materi-
als while the resource sector exhibits gross complementarity between labor
and raw resources. Recall that this means that demand for processed re-
sources, i.e., materials, in the manufacturing sector is elastic, while demand
for raw resources in the primary sector is inelastic. We then have:

1. There is no “curse” and hence no curse. This happens when

Γ (ω) ≤ 0⇔ 0 < ω < ω̄.

2. The “curse” is not a curse. This happens when

0 < (1 + μ)Γ (ω) < Ψ (ω)⇔ ω̄ < ω < ω̃.

3. The “curse” is a curse. This happens when

0 < Ψ (ω) < (1 + μ)Γ (ω)⇔ ω̃ < ω <∞.

Figure 4 illustrates this analysis. The appendix establishes formally the
properties of the curves Γ (ω) and Ψ (ω) used in the figure to find the thresh-
old values of the endowment ratio. Here I focus on the economics.

First, and most important: Why does the overall pattern of substitu-
tion/complementarity matter so much for growth and welfare? Because it
regulates the reduction in the price p required for the economy to absorb
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the extra endowment of R relative to L. Notice, moreover, that the primary
and manufacturing sectors are vertically related so the adjustment involves
the interdependent responses of PM to the increase in supply of processed
resources and of p to the increase in supply of raw resources. Now, inelastic
demand means that the price has to fall drastically to induce the market to
absorb the additional quantity. Hence, if demand is inelastic in both sectors
the overall adjustment requires drastic drops in both PM and p. What mat-
ters is that the drastic fall of p results in a fall of resources income pω which
depresses expenditure y. This is the case Γ > 0. In contrast, if demand is
elastic in both sectors the overall adjustment requires mild drops in prices.
The crucial difference is that in this case Γ < 0 so that resources income pω
rises because the quantity effect dominates the price effect.

With this intuition in hand, we can now interpret the analytical results of
the model. The function Γ (ω) starts out negative and increases monoton-
ically, changing sign at ω̄ and converging to its positive upper bound as
ω →∞. To see this, write

Γ0 (ω) =
dΓ (p∗)

dp∗
dp∗

dω

and observe that the CES economy with σX > 0 and σM < 0 satisfies
the conditions for dΓ (p) /dp < 0 ∀p discussed above, namely: �MX > 1 and
increasing in PM ; �RM < 1 and increasing in p.

The function Ψ (ω) is hump-shaped with a peak exactly at ω̄, where Γ (ω)
changes sign. The reason is that this is the value where the derivative of
SR
M (p)S

M
X (p) with respect to p equals zero. Notice also that Γ (ω) < Ψ (ω)

for all ω (see the appendix for the proof) so that Case 3 from figure 3
and Scenario 4 from the analysis of welfare no longer apply because initial
consumption cannot fall.

The resulting pattern is the following: The endowment ratio is initially
very low and prices are very high, that is, ω → 0 ⇒ p → ∞ ⇒ PM =
CM (1, p) → ∞. Under these conditions, Γ (0) < 0 < Ψ (0) so that an
increase in ω produces a growth acceleration associated to a jump up in
initial consumption. Intuitively, this says that in a situation of extreme
scarcity and extremely high price a helicopter drop of natural resource is
good. As the relative endowment grows, the overall pattern of substitution
changes. In particular, Γ (ω) changes sign at ω = ω̄ and we enter the region
where we get a “curse of natural resources” because an increase in resource
abundance yields a decrease in expenditure on manufacturing goods that
triggers a slowdown of TFP growth. This, “curse”, however, is not really
a curse since we are to the left of ω̃ and the slowdown is associated to an
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initial jump up in consumption that dominates in the intertemporal trade-
off. As we keep moving to the right and enter the next region, ω̃ < ω <
∞, the growth deceleration is again associated to an initial jump up in
consumption but now the deceleration dominates in the intertemporal trade-
off and welfare falls. It is here that we have a curse.

An effective summary of this pattern is to picture growth and welfare
as hump-shaped functions of resource abundance. To do this, we first must
translate the path of the log of TFP into a measure of average growth in
line with what is considered in the empirical literature. Specifically, let

g (0, t) ≡ 1
t
[log T (t)− logT0]

be the average growth rate of TFP between time 0 and time t. Then, using
(26) we have:

g (0, t) = g∗ +

µ
γ

ν
+

1

�− 1

¶
∆∗
1− e−νt

t
. (32)

This says that the an increase in the endowment ratio is associated to a
transitory period of above (below) trend average growth if it generates an
increase (decrease) in per capita expenditure on consumption goods. Notice
that as t → ∞ this measure converges to g∗, which does not depend on ω
because there is no scale effect. Notice also, that since it depends on ω only
through ∆∗ it is hump-shaped in ω with the maximum at ω = ω̄.

For welfare we have two options. We can use the measure U∗ calculated
in (28), which is clearly hump-shaped in ω with the maximum at ω = ω̃. We
then conclude directly that the peak of growth occurs earlier than the peak
of welfare. This property captures the crucial role of initial consumption,
which rises with resource abundance, in disposing of the growth = welfare
tacit assumption. As equation (28) makes clear, welfare depends on the
whole path of consumption, not on a summary statistic of its slope.

One could argue that using (32) and (28) is inappropriate as they are
summary statistics computed over different time intervals. The alternative
is to compute welfare as the discounted integral of the same part of the
consumption path that we use to compute (32), that is,

U∗ (0, t) =

Z t

0
e−(ρ−λ)s log u∗ (s) ds.

Using (26), (27) and (32), we can write

U∗ (0, t) = (a1 − a3) g
∗ + a2 · log

µ
y∗

c∗

¶
+ a3 · g (0, t) ,
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where

a1 ≡
Z t

0
e−(ρ−λ)ssds; a2 ≡

Z t

0
e−(ρ−λ)sds; a3 ≡

t
R t
0 e
−(ρ−λ)s (1− e−νs) ds

1− e−νt
.

This more algebra-intensive exercise does not change the conclusion: the
two summary statistics differ because the former excludes the initial jump
in consumption. It is then obvious that at ω = ω̄ the derivative of U∗ (0, t)
with respect to ω is still positive and welfare is still rising. An intriguing
property of the expression above is that it includes only items that in prin-
ciple are observable so that one can do quick, back-of-the-envelope welfare
calcuations.

5.4 The reallocation

One is interested in knowing how the outcomes above relate to the economy’s
reallocation of labor across sectors. Using (16) we have

LM

L
= y

�− 1
�

SM
X

¡
1− SR

M

¢
.

It is then easy to show that (see the Appendix)

d

dω

µ
LM

L

¶
> 0 ∀ω,

so that, intuitively, resource abundance yields a reallocation of labor from
manufacturing to primary production. This result implies that

LX

L
+

LZ + LN

L
= 1− LM

L

falls to its new steady state value when ω increases.
This is an interesting property as it says that there is a reallocation of la-

bor from production of manufacturing goods to production of materials, but
that this reallocation is not necessarily associated to a TFP slowdown. This
is a fundamental difference between this model and models that generate
the curse of natural resources by tying productivity growth to manufactur-
ing employment through learning by doing mechanisms.

Since the inter-sectoral reallocation is instantaneous, the dynamics that
drive the time path of TFP take place within manufacturing. Equations
(4), (14) and the formulation of the entry cost yield that the R&D share of
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employment is

LZ + LN

L
=

LZ

L
+

Ṅ

L
· β Y

N

=

∙
1

�
− β (ρ− λ+ δ)

¸
y − φn.

Recall that y jumps on impact to its new steady state value y∗ while n is
predetermined and does not jump. Then, using (24) at any time t we have

LZ + LN

L
=

∙
1

�
− β (ρ− λ+ δ)

¸
y∗ − φn∗

1 + e−νt∆∗
.

The new steady state value isµ
LZ + LN

L

¶∗
= y∗

∙∙
1

�
− β (ρ− λ+ δ)

¸
− φ

n∗

y∗

¸
,

where we know from the analysis of section 3 that n∗

y∗ is independent of ω.
Thus, when the economy experiences a growth acceleration (deceleration)
because y∗ rises (falls), the R&D share of employment jumps up (down)
and converges from above (below) to a permanently higher (lower) value.
Obviously, then, the ratio LX

L jumps down (up) and converges from below
(above) to a permanently lower (higher) value.

5.5 Other interesting considerations

It is also interesting to study in some detail the role of measures of abun-
dance and specialization. I consider the following two measures of resource
abundance that are close analogs to measures that have been studied in the
empirical literature: the value of natural wealth as a share of GDP and
the value of natural wealth per capita. Notice that since A = βY and y is
constant, in this economy (nominal) GDP is

GDP = Y + Ȧ = Y + βẎ = Y (1 + βλ) .

Then, my two measures of abundance are:

pΩ

L
= pω;

pΩ

GDP
=

pω

(1 + βλ) y
.

28



Differentiation yields:

d (pω)

dω
= (ω + 1) pωΓ

dp

dω
;

d

dω

µ
pΩ

GDP

¶
=

1

(1 + βλ) y

∙
d (pω)

dω
− pω

y

dy

dω

¸
=

pω

(1 + βλ) y
Γ
dp

dω
.

Notice how for both measures the effect of a change in ω necessarily has the
same sign as the effect on expenditure,

∆∗ =
1

y∗ (ω)

dy∗ (ω)

dω
= ωΓ

dp

dω
.

The model, in other words, predicts a positive correlation between natural
wealth (per unit of GDP or per capita) and growth whether the “curse”
occurs or not. It thus suggests that the positive correlation reported in the
papers mentioned in the introduction does not provide sufficient informa-
tion to assess the underlying economic mechanism – which here is driven
by an income effect in which the adjustment of the resource price plays a
crucial role – without specifying further what restrictions one imposes on
the endogenous variables that show up in these measures.

For example, Brunneschewiler and Bulte (2007) note that there is a
crucial difference between the two measures of abundance in that the latter
has an endogenous variable at the denominator while the former does not.
They argue that institutional factors drive down both the level and the
growth rate of GDP per capita, so that it is quite possible that the ratio
pΩ

GDP rises and regressions that do not control for its endogeneity reveal a
negative correlation between growth and this measure of abundance. They
thus suggest that one should use the former measure because it is not subject
to this problem, and they show that doing so produces a positive correlation
with growth. From this result they infer that the “curse” does not exist.
The premise of this line of reasoning – that the endogeneity of the level of
GDP at the denominator of the second measure of abundance must be taken
into account – is absolutely correct. My analysis, however, shows that the
first measure is not immune from endogeneity issues either, since it contains
the price of the natural resource. Thus, the inference that the “curse” does
not exist is correct if we know that the price effect is zero so that an increase
in ω surely yields higher resource income. To my knowledge, the question of
whether the data on natural capital used in this type of regressions supports
such an assumption has not been investigated.15

15This strikes me as a first-order question since much of the debate hinges on the per-
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It is also interesting to study the value of primary production as a share
of GDP since it is a relatively close analog of the export-based measures of
specialization considered in the literature. Using (12) and (15), I have

PMM

GDP
=

�−1
�

1 + βλ
SM
X

so that

d

dω

µ
PMM

GDP

¶
=

�−1
�

1 + βλ

dSM
X

dPM

dPM
dp

dp

dω
=

�−1
�

1 + βλ

¡
1− �MX

¢ dp
dω

.

Thus, if 1 < �MX this derivative is positive and the increase of the share is as-
sociated to either a growth acceleration or a growth deceleration depending
on what happens to y, i.e., on whether Γ < 0 or Γ > 0. Similarly, if 1 > �MX
this derivative is negative and the decrease of the share is associated to either
a growth acceleration or a growth deceleration depending on whether Γ > 0
or Γ < 0. The model, in other words, says that the sign of the correlation
between growth and the share of the primary sector in GDP depends on
the properties of the overall pattern of substitution in manufacturing and
resources processing and one cannot interpret the results of regression ex-
ercises without further information on the function Γ (p) and its individual
components, in particular, �MX (p). The important point, therefore, is that
the correlation between growth and the share of primary production in GDP
does not provide sufficient information to assess the underlying mechanism.

Notice, however, that Γ and its individual components are observable
so that the model provides specific guidelines for the derivation of testable
predictions. The most obvious is that one should sort economies according
to �MX and Γ as the sign of the regression coefficient depends on these val-
ues. For example, if we stipulate (and document empirically) that demand
for processed resources is elastic in all economies in the sample, then the
discriminating factor is whether the elasticity of demand for raw resources
in the primary sector, �RM , and the share of resources in primary producers’
costs, SR

M , yield Γ > 0 or Γ < 0.

formance of oil, gas or mineral exporting countries. Is it a fact that the discovery of new
reserves of some resource in some country does not affect the world price of the resource?
Even under price-taking behavior by the country’s suppliers, the country’s overall effect
on the world price can be non-negligible.
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6 Conclusion

The debate on whether natural resource abundance is good or bad for the
long-run fortunes of the economy is almost as old as economics itself. The
modern incarnation, spurred by the work of Sachs and Warner (1995, 2001),
hinges on the sign of the coefficient of measures of resource abundance in
growth regressions. Differently from the past, thus, it is much more driven
by solid and systematic econometric work. This is the clearest benefit of
the comprehensive data sets now available. As this evidence accumulates
and adds to the already existing large body of historical information and
analyses, a definitive answer might finally emerge. We are not there yet,
and the debate rages on.

One striking feature of this debate – and of the associated theoretical
literature – is that at its heart is a tacit assumption growth = welfare
that is rarely, if ever, taken to task. Yet, the notion that growth and welfare
are different is the cornerstone of modern growth theory. Moreover, natural
resource abundance is positively related to initial income in the very data
that researchers use to debate whether it is positively or negatively related
to subsequent growth. Accordingly, it is not obvious at all that the “curse
of natural resources” is, in fact, a curse.

In this paper, I developed a model of endogenous growth that allowed me
to focus on the role of the intertemporal trade-off in determining whether the
effects of natural resource abundance on initial income and growth yield an
increase or a decrease in welfare. It is only in the latter case that the “curse”
is indeed a curse. I found that resource abundance has non-monotonic effects
on growth and welfare. More precisely, growth and welfare are hump-shaped
functions of resource abundance. The property that the peak of growth
occurs earlier than the peak of welfare captures the crucial role of initial
consumption, which rises with resource abundance, and is an important
reminder that the welfare effect of resource abundance depends on the whole
path of consumption, not on a summary statistic of its slope. This reminder
applies to all explanations of the “curse” – institution-based, reallocation-
based or any other type that future researchers will develop.

If resource abundance means that we sacrifice growth to boost current
consumption, it stands to reason that to figure out whether we are better or
worse off requires us to resolve the intertemporal trade-off. Consequently,
growth regressions that ignore the effect of resource abundance on initial
income provide only one piece of the puzzle, not the solution. This is not a
simple restatement of the fact that correlation is not causation. We cannot
infer from the negative correlation between resource abundance and growth
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that resource abundant economies are worse off even if we can establish
beyond reasonable doubt that the relation is indeed negative and causal.

7 Appendix

7.1 The typical firm’s behavior

To characterize the typical firm’s behavior, consider the Current Value
Hamiltonian

CVHi = [Pi − CX(1, PM)Z
−θ
i ]Xi − φ− LZi + ziαKLZi ,

where the costate variable, zi, is the value of the marginal unit of knowledge.
The firm’s knowledge stock, Zi, is the state variable; R&D investment, LZi ,
and the product’s price, Pi, are the control variables. Firms take the public
knowledge stock, K, as given.

Since the Hamiltonian is linear, one has three cases. The case 1 > ziαK
implies that the value of the marginal unit of knowledge is lower than its
cost. The firm, then, does not invest. The case 1 < ziαK implies that
the value of the marginal unit of knowledge is higher than its cost. Since
the firm demands an infinite amount of labor to employ in R&D, this case
violates the general equilibrium conditions and is ruled out. The first order
conditions for the interior solution are given by equality between marginal
revenue and marginal cost of knowledge, 1 = ziαK, the constraint on the
state variable, (8), the terminal condition,

lim
s→∞

e−
R s
t [r(v)+δ]dvzi(s)Zi(s) = 0,

and a differential equation in the costate variable,

r + δ =
żi
zi
+ θCX(1, PM)Z

−θ−1
i

Xi

zi
,

that defines the rate of return to R&D as the ratio between revenues from
the knowledge stock and its shadow price plus (minus) the appreciation
(depreciation) in the value of knowledge. The revenue from the marginal
unit of knowledge is given by the cost reduction it yields times the scale of
production to which it applies. The price strategy is

Pi = CX(1, PM)Z
−θ
i

�

�− 1 . (33)
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Peretto (1998, Proposition 1) shows that under the restriction 1 > θ (�− 1)
the firm is always at the interior solution, where 1 = ziαK holds, and
equilibrium is symmetric.

The cost function (7) gives rise to the conditional factor demands:

LXi =
∂CX(W,PM)

∂W
Z−θi Xi + φ;

Mi =
∂CX(W,PM)

∂PM
Z−θi Xi.

Then, the price strategy (33), symmetry and aggregation across firms yield
(11) and (12).

Also, in symmetric equilibrium K = Z = Zi yields K̇/K = αLZ/N ,
where LZ is aggregate R&D. Taking logs and time derivatives of 1 = ziαK
and using the demand curve (5), the R&D technology (8) and the price
strategy (33), one reduces the first-order conditions to (13).

Taking logs and time-derivatives of Vi yields

r + δ =
ΠXi

Vi
+

V̇i
Vi
,

which is a perfect-foresight, no-arbitrage condition for the equilibrium of the
capital market. It requires that the rate of return to firm ownership equal
the rate of return to a loan of size Vi. The rate of return to firm ownership is
the ratio between profits and the firm’s stock market value plus the capital
gain (loss) from the stock appreciation (depreciation).

In symmetric equilibrium the demand curve (5) yields that the cost of
entry is β Y

N . The corresponding dmand for labor in entry is LN = Ṅβ Y
N .

The case V > β Y
N yields an unbounded demand for labor in entry, LN =

+∞, and is ruled out since it violates the general equilibrium conditions.
The case V < β Y

N yields LN = −∞, which means that the non-negativity
constraint on LN binds and Ṅ = 0. Free-entry requires V = β Y

N . Using the
price strategy (33), the rate of return to entry becomes (14).

7.2 The economy’s resources constraint

I now show that the household’s budget constraint reduces to the economy’s
labor market clearing condition. Starting from (2), recall that A = NV and
(r + δ)V = ΠX + V̇ . Substituting into (2) yields

ṄV = NΠX + L+ pΩ+ΠM − Y.
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Observing that NΠX = NPX − LX − LZ − PMM , NPX = Y , ΠM =
PMM−LM −pR, R = Ω, and that the free entry condition yields that total
employment in entrepreneurial activity is LN = ṄV , this becomes

L = LN + LX + LZ + LM .

7.3 Proof of Proposition 1

Taking logs of (25) yields

logT (t) = θ logZ0 + θ

Z t

0
Ẑ (s) ds+

1

�− 1 logN (t) .

Using the definition n ≡ Ne−λt and adding and subtracting Ẑ∗ from Ẑ (t)
yields

logT (t) = θ logZ0 + gt+ θ

Z t

0

h
Ẑ (s)− Ẑ∗

i
ds+

1

�− 1 logn (t) .

Using (19) the integral becomes

θ

Z t

0

³
Ẑ (s)− Ẑ∗

´
ds = θ

αθ (�− 1)
�

Z t

0

µ
y∗

n (s)
− y∗

n∗

¶
ds

= γ

Z t

0

µ
n∗

n (s)
− 1
¶
ds,

where

γ ≡ θ
αθ (�− 1)

�

y∗

n∗
= θ

αθ (�− 1)
�

φ− ρ+δ
α

1−θ(�−1)
� − ρβ

.

Finally, (24) and the definition of ∆∗ yield

θ

Z t

0

³
Ẑ (s)− Ẑ∗

´
ds = γ

Z t

0
e−νs

µ
n∗

n0
− 1
¶
ds

=
γ

ν
∆∗
¡
1− e−νt

¢
.

Using this result and (24) again, and noting that by construction T0 =

Zθ
0n

1
�−1
0 since n0 = N0e

−λ·0 = N0, yields

log T (t) = logT0 + g∗t+
γ∆∗

ν

¡
1− e−νt

¢
+

1

�− 1 log
1 +∆∗

1 + e−νt∆∗
.
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Next consider

log u∗ (t) = log
�− 1
�

+ log

µ
y∗

c∗

¶
+ logT (t)

and use the expression just derived to write

log u∗ (t) = log
y∗

c∗
+ g∗t+

γ∆∗

ν

¡
1− e−νt

¢
+

1

�− 1 log
1 +∆∗

1 + e−νt∆∗
.

Substituting this expression into (1) yields

U∗ =

Z ∞

0
e−(ρ−λ)t log u∗ (t) dt

=

Z ∞

0
e−(ρ−λ)t

∙
log

µ
y∗

c∗

¶
+ g∗t

¸
dt

+
γ

ν
∆∗
Z ∞

0
e−(ρ−λ)t

¡
1− e−νt

¢
dt

+
1

�− 1

Z ∞

0
e−(ρ−λ)t log

1 +∆∗

1 + e−νt∆∗
dt.

The first and second integrals have straightforward closed form solutions; the
third has a complicated solution involving the hypergeometric function. For
my purposes, it is useful to introduce the following approximation that allows
me to simplify the expression for welfare. Since in general log (1 + x) ' x, I
can rewrite

log
1 +∆∗

1 + e−νt∆∗
= log (1 +∆∗)− log

¡
1 + e−νt∆∗

¢
= ∆∗

¡
1− e−νt

¢
,

which yields (26), (27) and

U∗ =

Z ∞

0
e−(ρ−λ)t

∙
log

µ
y∗

c∗

¶
+ g∗t

¸
dt

+

µ
γ

ν
+

1

�− 1

¶
∆∗
Z ∞

0
e−(ρ−λ)t

¡
1− e−νt

¢
dt,

which upon integration yields (28).
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7.4 Proof of Lemma 2

Differentiating and manipulating terms yields:

∂
¡
SM
X SR

M

¢
∂p

=
∂SM

X

∂p
SR
M +

∂SR
M

∂p
SM
X

=
∂SM

X

∂PM

PM
SM
X

· ∂PM
∂p

p

PM
· S

M
X SR

M

p
+

∂SR
M

∂p

p

SR
M

· S
R
MSM

X

p

=

∙
∂SM

X

∂PM

PM
SM
X

· ∂PM
∂p

p

PM
+

∂SR
M

∂p

p

SR
M

¸
SR
MSM

X

p

=

∙
∂SM

X

∂PM

PM
SM
X

· ∂CM

∂p

p

CM
+

∂SR
M

∂p

p

SR
M

¸
SR
MSM

X

p
.

Recalling that
∂SM

X

∂PM

PM
SM
X

= 1− �MX ,

∂SR
M

∂p

p

SR
M

= 1− �RM ,

∂CM

∂p

p

CM
= SR

M

and substituting into the expression above yields (29).

7.5 Proof of Proposition 3

Refer to Figure 1. In the case of complementarity, depicted in the upper
panel, we have the following pattern. For ω → 0 the expenditure line (17) is
almost, but not quite, flat and intersects the income relation (18) for p→∞
and y → y∗ (∞). As ω grows, the expenditure line rotates counterclockwise
and the intersection shifts left, tracing the income relation. We thus obtain
that both p∗ and y∗ fall. As ω →∞, the expenditure line becomes vertical
and the intersection occurs at p→ 0 and y → y∗ (0).

In the case of substitution in the lower panel, we have a similar pattern
with the difference that the income relation now has negative slope so that as
the expenditure line rotates counterclockwise y∗ increases. Specifically, for
ω → 0 the expenditure line is almost, but not quite, flat and intersects the
income relation for p → ∞ and y → y∗ (∞). As ω grows, the expenditure
line rotates counterclockwise and the intersection shifts left yielding that
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p∗ falls while y∗ rises. As ω →∞, the expenditure line becomes vertical and
the intersection occurs at p→ 0 and y → y∗ (0).16

7.6 Proof of Proposition 4

Refer to Figure 2. The proof is essentially the same as above. The only
difference is that as the expenditure line rotates it traces the hump-shaped
income relation yielding that p∗ always falls while y∗ rises for 0 < ω < ω̄
and falls for ω̄ < ω <∞.

7.7 Proof of Proposition 5

Observe first that
d log

¡y
c

¢
dω

=
d log y

dω
− d log c

dω
.

Now,
d log y

dω
=

d log y

dp

dp

dω
= ωΓ (p)

dp

dω

and

d log c

dω
=

1

CX

dCX

dω
=

1

CX

dCX

dPM

dPM
dp

dp

dω

=
PM
CX

dCX

dPM

dPM
dp

p

PM

1

p

dp

dω

=
SM
X SR

M

p

dp

dω
.

16An interesting question is whether the model admits an equilibrium for ω = 0. To
investigate whether it does, it is useful to focus on the CES case considered in the text. The
answer depends on wheteher resources are essential. Under σM < 0, σX < 0 they are and
thus an equlibrium with ω = 0 (due to Ω = 0) cannot exist. To see this, notice that in this
case SMX (0)SRM (0) = 0 and SMX (∞)SRM (∞) = 1 so that the representation in the upper
panel of Figure 1 applies with the difference that the expenditure and income relations
have the intercept y∗ (0) in common. (This point, obviously, is not an equilibrium.) We
then have that for ω = 0 the expenditure line is exactly flat and there is no intersection
with the income relation. If instead we posit σM > 0, σX > 0 we have SMX (0)SRM (0) > 0
and SMX (∞)SRM (∞) = 0 and the representation in the lower panel of Figure 1 applies with
the crucial difference that the expenditure line starts out at y∗ (∞). Hence, for ω = 0 the
line is exactly tangent to the horizontal asymptote of the income relation implying that
p =∞ and y∗ (∞) is a feasible equilibrium. This is because we now allow for substitution
so that processed natural resources are not essential in manufacturing and the economy
can exist with Ω = 0.
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Hence,
d log

¡y
c

¢
dω

=

µ
Γ− SM

X SR
M

pω

¶
ω
dp

dω
.

which using (12) becomes (30).

7.8 Proof of Proposition 6

Observe that by construction

d∆∗

dω
=
1

y∗
dy∗

dω

Differentiation of (28) then yields

dU∗

dω
=

1

ρ− λ

⎡⎣d log
³
y∗

c∗

´
dω

+ μ
1

y∗
dy∗

dω

⎤⎦
=

1

ρ− λ

∙
(1 + μ)

d log y∗

dω
− d log c∗

dω

¸
.

Using the expressions calculated above and rearranging terms yields (31).

7.9 The CES economy with σX > 0 and σM < 0

The Γ (ω) curve. Dropping stars to simplify notation, the equation is:

Γ (ω) =

∙
− σX
1− σX

¡
1− SM

X (p (ω))
¢
+

σM
1− σM

¸
SR
M (p (ω))−

σM
1− σM

Proposition 4 yields that p (0) =∞ and p (∞) = 0. Therefore, for ω → 0:

SR
M (0) = lim

p→∞
1

1 +
³

ψM
1−ψM

´ 1
1−σM p

σM
1−σM

= 1.

Also,

PM (0) = lim
p→∞

∙
ψ

1
1−σM
M + (1− ψM)

1
1−σM p

σM
σM−1

¸σM−1
σM

=∞,

so that
SM
X (0) = lim

PM→∞

1

1 +
³

ψX
1−ψX

´ 1
1−σX P

σX
1−σX
M

= 0.
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Consequently,

Γ (0) =
−σX
1− σX

< 0.

In contrast, for ω →∞:

SR
M (∞) = lim

p→0
1

1 +
³

ψM
1−ψM

´ 1
1−σM p

σM
1−σM

= 0.

Also,

PM (∞) = lim
p→0

∙
ψ

1
1−σM
M + (1− ψM)

1
1−σM p

σM
σM−1

¸σM−1
σM

= ψ
− 1
σM

M ,

so that
SM
X (∞) = 1

1 +
³

ψX
1−ψX

´ 1
1−σX ψ

− 1
σM

σX
1−σX

M

.

Consequently,

Γ (∞) = −σM
1− σM

> 0.

The next step is to show that the curve is monotonically increasing:

Γ0 (ω) =
σX

1− σX
·| {z }

+

dSM
X

dPM| {z } ·
−

dPM
dp| {z } ·
+

dp

dω|{z} ·
−

SR
M

+

∙
− σX
1− σX

¡
1− SM

X

¢
+

σM
1− σM

¸
| {z } ·

−

dSR
M

dp| {z } ·
+

dp

dω|{z}
−

> 0.

Finally, notice that by continuity there exists a value ω̄ where Γ (ω̄) = 0.
The Ψ (ω) curve. Again dropping stars, the equation is:

Ψ (ω) = κ− SR
M (p (ω))S

M
X (p (ω)) .

The limiting behavior at 0 and ∞ is straightforward. The previous calcula-
tions yield:

Ψ (0) = κ− SR
M (0)S

M
X (0) = κ;

Ψ (∞) = κ− SR
M (∞)SM

X (∞) = κ.
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Next observe that

Ψ0 (ω) =
d
¡
SR
M (p (ω))S

M
X (p (ω))

¢
dp (ω)

dp (ω)

dω

= Γ (ω)
SR
M (p (ω))S

M
X (p (ω))

p (ω)

dp (ω)

dω
,

so that the curve is hump-shaped with its maximum exactly at the value ω̄
where Γ (ω) changes sign.

The threshold values. Observe that κ > 1 > −σM
1−σM . It is evident

from Figure 2 then that Γ (ω) < Ψ (ω) ∀ω. It follows that there is only one
relevant intersection, of Ψ (ω) with (1 + μ)Γ (ω), that yields the threshold
value ω̃ such that ω̄ < ω̃.

7.10 The reallocation

The expression for the share of employment in the primary sector and the
expressions derived in the proofs above yield

d

dω

µ
LM

L

¶
=

�− 1
�

"
dy

dω
SM
X

¡
1− SR

M

¢
+ y

dSM
X

dω
−

d
¡
SM
X SR

M

¢
dω

#

=
�− 1
�

∙
Γ

Ψ
SM
X

¡
1− SR

M

¢
+ 1− �MX − Γ

¸
ω
dp

dω
.

Recall that dp
dω < 0. Then

d

dω

µ
LM

L

¶
> 0 ∀ω

because the term in brackets is

Γ

Ψ

¡
SMX − κ

¢
+ 1− �MX < 0

since κ > 1 and 1 − �MX < 0 under the assumption that manufacturing
exhibits substitution between labor and materials.
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Figure 3: The path of consumption 
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Figure 2: General Equilibrium: Hump-shaped income relation  
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Figure 1: General Equilibrium: Monotonic income relation 
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