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1. Introduction

Nash (1953) considers a scenario in which two players may choose

their strategies independently, but in which contractual enforcement

is available both for strategic agreements the two players may come

to, and for threats each player makes about what she will do if agree-

ment is not reached. Nash gives two analyses of this problem, and

shows that the two solutions coincide. One builds upon Nash (1950)

in giving an axiomatic treatment, while the other devises what is

now called a �Nash demand game�whose payo¤s are perturbed to

yield a unique re�ned Nash equilibrium payo¤ pair. Carrying out

this dual axiomatic/noncooperative approach to strategic problems

with contracts is what has been dubbed �the Nash program�.

This paper attempts to implement the Nash program in a broad

class of two-player stochastic games. Leaving behind the static world

of Nash (1953), it admits problems in which the state of the world

(for example, �rms�marginal costs, capital stocks, inventories and

so on) may evolve over time, perhaps in�uenced by the players�

actions. Like a game without state variables, a stochastic game

with contracts is, in essence, a bargaining problem. One wants to

know how players are likely to divide the surplus a¤orded by their

stochastic environment.

Since the passage of time is crucial in a stochastic game, whereas

it plays no role in Nash (1953), it is not immediately clear how to
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do an exercise in the spirit of Nash in these dynamic settings. For

this reason, we begin in Section 2 by recasting the atemporal game

of Nash as a strictly repeated discounted game. At the beginning

of each period, players select actions for that period, and have an

opportunity to bargain over how to split the surplus for the rest of

the in�nite-horizon game. If agreement is not reached in period 1,

there is another opportunity to bargain in period 2, and so on. All

stationary perfect equilibria of the intertemporal game approach (as

slight stochastic perturbations as in Nash (1953) tend to zero) the

same division of surplus as the static Nash bargaining with threats

(NBWT) solution. The result is independent of the rate of interest.

After the stochastic game model is introduced in Section 3, Sec-

tion 4 develops the proposed solution for a broad class of these

games. At the heart of the analysis is a family of interlocking Nash

bargaining problems. With each state ! is associated a bargaining

set (the convex hull of the set of all pairs of expected present dis-

counted values of strategy pro�les for the game starting in !) and a

disagreement point. The disagreement point is determined partly by

the �threat�actions played in !, and partly by the solution values of

possible successor states of !. The solution value at ! is generated

by the feasible set and disagreement point at ! by the maximiza-

tion of the �Nash product� just as it is in Nash (1950, 1953). At

least one solution (giving action pairs and value pairs in each state)
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exists, and we give su¢ cient conditions for all solutions to have the

same value pair starting at state !: call this value pair V �(!).

Consider perturbing the game G so that it is not perfectly pre-

dictable whether a given pair of demands is feasible at !. Section

5 establishes that all Markov perfect equilibrium payo¤s have the

same limit as the perturbation approaches 0; for the game starting

at !, this limit equals V �(!), the solution value suggested by the

family of NBWT problems from the preceding paragraph.

Thus, the solution V �(!) has been given a noncooperative in-

terpretation. Section 6 demonstrates that, applying the axiomatic

approach of Nash (1953) to the family of NBWT problems of Sec-

tion 3, one gets unique predictions of how surplus will be divided

starting in any state !. Showing that this prediction coincides with

V �(!) completes the Nash program for stochastic games.

Given the �exibility of the stochastic game model, applications

of the solution are almost limitless. Section 7 sketches one example

that illustrates the ability of a relatively weak competitor to extort

surplus from a stronger party.

Section 8 concludes, and relates the results to ongoing work on

reputationally perturbed stochastic games.

2. Strictly Repeated Games
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This Section translates the noncooperative treatment Nash (1953)

gives his bargaining problem, from his static setting to a station-

ary, in�nite-horizon environment. Making assumptions analogous

to those of Nash, we derive identical results regarding the propor-

tions in which surplus is divided, and the actions that should be

employed as threats.

Nash takes as exogenous a �nite game G = (S1; S2;U1; U2) in strate-

gic form (with associated mixed strategy sets M1 and M2) and a

bargaining set B � R2. The set of feasible payo¤s of G, namely

� = co fu(s) : s 2 Sg (where co denotes "convex hull of"), represents

all the payo¤s players can attain without cooperation (ignoring in-

centives). The set B includes all payo¤s available to players through

cooperation, that is, through enforceable contracts. Nash assumes

that B is convex and compact, and that � � B. The interpretation

is that if players are willing to cooperate, they may be able to attain

payo¤ combinations not possible from playing G. (For example, if a

couple are willing to sign a marriage contract, they gain additional

legal rights and perhaps receive a tax break.)

For any arbitrary nonempty, compact, convex bargaining set X �

R2 and "threat point" or "disagreement point" d 2 X, N(d) denotes

the associated Nash bargaining solution. The latter is the unique

solution to maxx2B (x1 � d1)(x2 � d2) if there exists x 2 B such that

x � d and otherwise uniquely satis�es N(d) 2 X and N(d) � x all
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x 2 X such that x � d. Let the functions Vi :M1 �M2 ! R be de�ned

by Vi(m) = Ni(U(m)):

In the strategic setting described by (G;B) as in the preceding

paragraph, there is a bargaining set, but no exogenous threat point.

In constructing his proposed solution, Nash imagines that players

choose respective threats mi 2 Mi, i = 1; 2; knowing that the Nash

bargaining solution will result (relative to the threat point (m1;m2)

and B). That is, he de�nes the game bG = (M1;M2;V1; V2): Nash shows

that this game bG whose pure strategies are the mixed strategies of G,
has equilibria that are interchangeable and equivalent. Their value,

denoted v�, is the Nash bargaining with threats (NBWT) solution.

Notice that the game bG is just a construction in the formulation
of the solution, NOT the noncooperative implementation of that

solution. The construction mixes the idea of Nash equilibrium with

the Nash product, which was justi�ed axiomatically in Nash (1950).

To obtain an entirely strategic justi�cation for his proposed so-

lution, free of any axiomatic assumptions, Nash devised a two-stage

game as follows. In the �rst stage, each player i simultaneously

chooses mi 2 Mi. Thus, the pure actions of the �rst stage game are

the mixed strategies of G. In the second stage, having observed the

actions (m1;m2) from the �rst stage, each player i makes a utility de-

mand ui. If the pair (u1; u2) is feasible in B, then it is implemented.

Otherwise, the utility pair received by the players is U(m1;m2), the
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threat point determined by �rst period choices. Since the threat pair

is typically NOT a Nash equilibrium of G, the players often have an

interest in not carrying it out; external enforcement is needed to

ensure that the threats are not abandoned ex post.

There is in general a great multiplicity of (subgame perfect) equi-

libria of the two-stage game, so Nash introduces random pertur-

bations to the feasible set, making players slightly unsure about

whether a given pair of demands would be feasible or not. This

allows him (after taking limits of sequences of equilibria, as the per-

turbations become vanishingly small) to isolate a particular equilib-

rium, whose value pair coincides with the feasible pair that maxi-

mizes the Nash product.

We follow Nash in assuming free disposal: if u 2 B and v � u then

v is feasible. Let B+ = fv j v � u for some u 2 Bg : In the unperturbed

problem, if players demand v = (v1; v2); the probability it is feasible

is 1 if v 2 B+ and 0 if v =2 B+. In a perturbed game, a perturbation

function h speci�es the probability that v will be feasible.

We consider perturbation schemes as de�ned by probability func-

tions of the following form:

A perturbation is a function h : R2 ! [0; 1] with

(i) h(v) = 1 if v 2 B+ and h(v) < 1 if v =2 B+.

7



(ii) h is continuously di¤erentiable. Furthermore, h(v) 2 (0; 1) )

hi(v1; v2) < 0:

We are interested in limits of SPEs of a sequence of perturbed

games, where the perturbation functions approach the unperturbed

game in a natural way.

Nash shows that there is only one equilibrium that survives all

local perturbations. It is unfortunately still possible that for any

particular perturbation, there may be many equilibria with dra-

matically di¤erent values. This cannot be the case for any regular

perturbation, as de�ned below.

A sequence of perturbations fhng1n=1 is regular if:

(i) A compact and A \B+ = ?) 9 integer n s.t. v 2 A) hn(v) = 0

8n � n.

Let On = fv j hn(v) 2 (0; 1)g: For (v1; v2) 2 On;

 n(v) � �h
n
1

hn2

is the slope of the iso-probability line at v:

Let s(v) and s(v) be the supremum and in�mum respectively of

slopes of supporting hyperplanes of B at v:

Let B+ denote the boundary of B+:
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(ii) 8v 2 B+ & 8" > 0; 9� > 0 & n s.t.

v0 2 Cn & jv0 � vj < � =)

s(v)� " �  n(v0) � s(v) + "

The �rst condition imposes a uniformity on the way in which

points outside B are assigned certain infeasibility as n grows. The

second requirement is that asymptotically, the iso�probability sets

must respect (approximately, for points near the frontier of B+) the

trade-o¤s between players�demands that are expressed in the slope

of the frontier of B+.

Let vi denote player i0s minmax payo¤ in G:

To avoid some tedious quali�cations in the proofs, we assume

that vi < bi, i = 1; 2:

Recall that v� denotes the equilibrium payo¤ pro�le and let m�

denote a pro�le of mixed strategy equilibrium threats of the stan-

dard NBWT game associated with (G;B):

Let mj 2Mj denote a strategy of j which minmaxes i 6= j.

Lemma 1 If v�i=bi then mj is an optimal strategy for j in the NBWT

game bG:
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Let m�
j be an optimal strategy for j in the NBWT game bG and

furthermore equal to mj if v�i=bi:

Let bi be player i�s highest payo¤ in B (or equivalently B+): For

b1 � b1 let f2(b1) be the maximal corresponding value of b2 in B+ :

(b1; f
2(b1)) 2 B+ and for all (b1; y) 2 B+; f2(b1) � y: The function f1 is

de�ned analogously.

Suppose for the moment that the two players have chosen threats

m1 and m2: Denote the resulting subgame, with perturbation func-

tion h, by �(m;h) (suppressing for the moment the game G and bar-

gaining set B that are being held �xed), and let V (m) be the Nash

bargaining solution for the problem with bargaining set B and dis-

agreement point U(m).

Even in a perturbed demand game, there may be degenerate equi-

libria in which each player i demands so much that if j 6= i demands

at least as much as his value at the threat point, the probability of

feasibility is zero. All our results are for equilibria that are nonde-

generate in this sense on all subgames.

Lemma 1 says that if Player i uses her NBWT equilibrium strat-

egy m�
i as de�ned earlier, then all nondegenerate equilibria of only

slightly perturbed demand games have values at least (almost) equal
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to v�i : Since v� is a strictly e¢ cient payo¤, Proposition 1 below fol-

lows directly.

Lemma: Let fhng be a regular sequence of perturbations and

consider a threat pair m � (m1;m
�
2). Then for any " > 0 there exists n

such that for all n � n and any non-degenerate NE �n of the subgame

indexed by m;

U2 (�
n)� V 2(m)� "

Proof :

Denote by vni Player i�s equilibrium demands in the subgame

indexed by m: If the conclusion is false then there must exist a

subsequence (for simplicity denote this also by n) converging to some

bv such that bv2 < V (m) :We argue that this yields a contradiction.

In the subgame vn1 solves

maxvn1 fv
n
1 h

n(v1; v2) + (1� hn(v1; v2))d1g where d = U(m):

The FONC are:

vn1 h
n
1 + h

n � hn1d1 = 0 or (vn1 � d1)hn1 = �hn:

By the nondegeneracy assumption hn(vn) > 0: It follows that (vn1 �

d1) > 0; and hn1 < 0:

Since the corresponding conditions apply to Player 2,

vn2 � d2
vn1 � d1

=
hn1 (v

n
1 ; v

n
2 )

hn2 (v
n
1 ; v

n
2 )
:
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It must be the case that bv lies on the upper boundary of B (de-
noted B): If bv =2 B then for large n; hn(vn) = 0; contradicting the

nondegeneracy assumption. If bv 2 B and bv =2 B then the optimality
of players�choice of demands is contradicted for large n:

It follows that for all " > 0; there exists n such that for all  n(vn) �

�h
n
1 (v

n
1 ; v

n
2 )

hn2 (v
n
1 ; v

n
2 )
, the slope of the iso-probabality line at vn, satis�es s(bv)�

" �  n(vn) � s(bv) + ":
It follows thatbv2 � d2bv1 � d1 = �s for some s 2 [s(bv); s(bv)] : By Nash (1950, 1953), if

bv is on the boundary of B and bv � d then the preceding condition

is satis�ed if and only if bv = V (m) (and consequently the conclusion

follows).

If d lies on the (strictly) e¢ cient frontier of B then bv = d and

d = bv = V (m):

Now suppose that d is not on the e¢ cient frontier of B and bv1 = d1

and bv2 = d2: Since, as argued above, bv 2 B; either bv2 = d2 = b2 or bv1 =
d1 = b1: In the former case we are done. In the latter, it follows that

v�1 = b1: But in this case we have de�ned m�
2 = m2 and consequently

d1 < b1 (as per our assumption that vi < bi, i = 1; 2:): This yields a

contradiction.

In the above scenario if bv1 > d1 and bv2 = d2 then lim n(vn) �

0 (recall that  n(vn) = �h
n
1 (v

n
1 ; v

n
2 )

hn2 (v
n
1 ; v

n
2 )
=
vn2 � d2
vn1 � d1

): It follows that bv2 = d2 =
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b2; and again we are done. Finally suppose that bv1 = d1 and bv2 > d2:

Then lim n(vn) � 1: It follows that bv1 = d1 = b1: But this yields a

contradiction as in the preceding paragraph.

Now consider the full two-stage game with perturbation func-

tion h in stage two; call this extensive game E(h). A nondegenerate

subgame perfect equilibrium of E(h) is an SPE of E(h) which in-

duces nondegenerate equilibria in every subgame following a choice

of threats. Proposition 1 says that the values of nondegenerate

SPE�s converge, as you move along a regular sequence of perturba-

tions, to the NBWT value v�:

Proposition 1: Let fhng be a regular sequence of perturbations

and f�ng any sequence of nondegenerate SPEs of the respective per-

turbed games. Then

lim
n!1

U(�
n
) = v

� (NBWT solution):

Again Proposition 1 does something slightly di¤erent from what

Nash (1953) shows, establishing convergence of ALL nondegener-

ate equilibria (along ANY regular sequence of perturbations). Nash

instead argues that only one equilibrium survives ALL nearby per-

turbations, and he admits a broader class of perturbation functions
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than we do. A second distinction is that Nash does the limit analysis

only in the second- stage game, using the limiting values to deter-

mine �rst-period behavior.

This completes our analysis of the static world of Nash (1953).

We turn now to the description of an in�nite horizon model whose

Markovian SPE�s yield the same (limiting) results. In each period (if

agreement has not yet been reached), the two players play the per-

turbed two-stage game E(h) described earlier: each player i chooses

a threat mi from Mi, and having observed her opponent�s threat,

chooses a demand vi 2 R: With probability h(v); the demands are

feasible, and the game is essentially over: each player i receives vi in

each subsequent period. With complementary probability, the de-

mands are infeasible, and play proceeds to the next period. In every

period before agreement is reached the same perturbation function

h is used, but the draws are independent across time. Payo¤s are

discounted at the rate of interest r > 0:

Notice that the utility pair U (m1;m2) serves as a temporary threat

point: it will determine the period-t payo¤s if the demand pair is

infeasible. In contrast to Nash (1953), infeasibility causes a delay to

cooperation rather than irreversible breakdown.

We are interested in the Markov perfect equilibria (MPE) of the

repeated game. An MPE is a stationary subgame perfect equilib-
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rium in which neither player�s behavior in period t depends on the

history of actions or demands in earlier periods.

The proposition below is the analog of the result Nash (1953)

derives for his two-stage noncooperative game (in which a choice of

threats is followed by a Nash demand game). It proves that along

any sequence of perturbed games (and MPE�s thereof) with the

perturbations converging to 0, the demands made by the players

converge to the NBWT solution (Nash (1953). Thus, the repeated

game is an alternative to Nash�s original two-stage game as a setting

in which to give noncooperative expression to the NBWT solution.

Proposition 2: Let fhng be a regular sequence of perturbations

of the "repeated bargaining game" and f�ng any sequence of corre-

sponding nondegenerate Markov Perfect equilibria of the respective

perturbed games. Then

lim
n!1

U(�n) = v�

An axiomatic foundation for the NBWT solution is easily given

in the repeated game setting of this section, but it is covered in the

more general treatment of Section 6.

3. The Stochastic Model
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In the stationary model of Section 2, the noncooperative game G

summarizes the payo¤ pairs that are feasible (ignoring incentives),

and the bargaining set B speci�es a weakly larger set of payo¤s avail-

able to players if they sign binding contracts. This section speci�es

the game and the bargaining sets (one for each state) for the sto-

chastic environment studied in Sections 4, 5 and 6.

The role of G will be played by G = (
; Si(!); ui(:;!); �(:;!; s(!)); s(!) 2

S(!); ! 2 
; i = 1; 2; !0; r); where 
 is the �nite set of states, !0 is the

initial state, Si(!) is the �nite set of pure strategies available to

player i in state !, ui speci�es i�s utility in any period as a func-

tion of the state ! prevailing in that period and the action pair

s 2 S(!) played in that period, �(!0:;!; s) is the probability that if

state ! prevails in any period t, and s is the action pair in S(!)

played in t; state !0 will prevail in period t + 1. Let Mi(!) be the

mixed strategy set associated with Si(!). For any m(!) 2 M(!),

�(!0;!;m(!)) =
P

s12S1(!)
P

s22S2(!) �(!
0;!; s)m1(s1;!)m2(s2;!). Finally r

is the strictly positive rate of interest at which both players discount

their in�nite stream of payo¤s.

The interpretation is that in period 1, each player i selects a strat-

egy from Si(!0) or from its associated mixed strategy set Mi(!0); and

the strategy pair results in an immediate payo¤ and a probability of

transiting to each respective state in period 2, and so on. Starting

in any period t and state ! one can compute the feasible (average)
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payo¤s from t onward; let this set be denoted �(!):

Let B(!) denote the set of discounted average payo¤s that the

players could attain from period t onward starting in state !; by

signing contracts. Just as Nash assumed � � B (see Section 2),

we assume for each ! that �(!) � B(!) : contractual cooperation

can achieve anything that independent action can achieve. Further,

anything players can accomplish by acting independently today and

then signing contracts tomorrow, they can achieve today by simply

signing one contract today. Formally, we assume:

cof(1��)u(m(!);!)+�
P

!0 �(!
0!;m(!))v(!0) s.t. m(!) 2M(!); v(!0) 2

B(!0) all !0g � B(!):

To establish uniqueness of a �xed point arising in the proposed

solution in Section 4, either of the following conditions is su¢ cient.

Eventual Absorption(EA): The set of states can be partitioned

into K classes 
k, k = 1; :::;K such that 
K is an absorbing set of

states and from any states in 
k, k = 1; :::;K�1; play can transit only

to states in 
k0 for k0 > k.

Uniformly Transferable Utility(UTU): The e¢ ciency frontiers of

all B(!); ! 2 
 are linear and have the same slope.
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Because of the availability of long-term contracts, it is not crucial

to work with in�nite-horizon stochastic games. Note that Eventual

Absorption places no restrictions whatever on �nite-horizon stochas-

tic games. Transferable utility is most plausible when players are

bargaining over something that is "small" relative to their overall

wealth.

We will refer to the game G and the collection of bargaining sets

B, as a stochastic bargaining environment.

4. The Proposed Solution

Here we develop a solution for stochastic games with contracts,

that will be given noncooperative and axiomatic justi�cations, re-

spectively, in Sections 5 and 6. The goal is to formulate a theory that

explains players�behavior in a state ! by analyzing the bargaining

situation they �nd themselves in at !.

What bargaining problem do players face at !, if they have not

yet signed a contract? The available strategies for player i are those

in Mi(!), and the bargaining set is B(!). We want to follow Nash by

maximizing the Nash product in B(!) relative to the disagreement

point. But if players choose the threat pair (m1;m2), the correspond-

ing one-period payo¤ u(m(!)) is just the temporary disagreement
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point, familiar from Section 2. Taking a dynamic programming per-

spective, a player who observes that bargaining has failed today in

state ! expects that after getting u(m(!)) today, she will get the

value assigned by the solution to whatever state !0 arises tomorrow.

Thus, the dynamic threat point D (!;m) associated with threats m

and proposed value function v (:;m), is given by the formula:

D (!;m) = (1� �)u(m(!);!) +

+�
X
!0

� (!0j!;m (!)) v (!0;m)

which naturally depends on the rate of interest and on the en-

dogenous transition probabilities.

Notice the simultaneous determination of the values D (!;m)and

v (!0;m): we wish each v (!;m) to maximize the Nash product relative

to D (!;m), but at the same time D (!;m) is partly determined by the

v (!0;m). Thus, even holding �xed the threats m(!), �nding a solution

involves a �xed point calculation. The uniqueness of the �xed point

is guaranteed by either eventual absorption (EA) or by uniformly

transferable utility (UTU) (see section 3).

Lemma 1 Assume EA or UTU. Then for any (m1;m2) 2M1 �M2,

there exists a unique function V (�;m1;m2) de�ned on 
, such that

for all ! 2 
; V (!;m1;m2) is the Nash bargaining solution to the
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bargaining problem (� (!) ; D (!)) ; where

D (!) = (1� �)d (!;m) + �
X
!0

� (!0j!;m (!))V (!0;m)

The above exercise was done for a �xed action pair. Now that

value consequences for action pairs are established, we can ask, for

each state !, what actions (threats, in Nash�s interpretation, 1953)

players would choose if they were in !: In other words, we imagine

players playing modi�ed versions of G, where for state !, the payo¤s

will be given by V (!; �). This is called the threat game. It is indexed

by the "initial" state ! and is denoted .

bG (!)= (Mi; Vi (!; �) ; i = 1; 2)

Again, we mimic Nash in thinking of players in ! choosing m1

and m2, to maximize V1 (!;m) and V2 (!;m) respectively. This game�s

equilibria are interchangeable and equivalent, so it has a value v� (!) :

We have:

Lemma 2 (Existence) There exists a pair (m�
1;m

�
2) such that (m�

1;m
�
2)

is an equilibrium of bG (!) for all ! 2 
:
Notice that in addition to existence, the lemma asserts a nice

time consistency property. Moreover,
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Lemma 3 Equilibria of bG (!) are equivalent and interchangeable.
Let the function v� : 
! R2 be de�ned by v� (!) = V (!;m�) : This

is the proposed solution.

In the framework of Nash (1953), the pair (m�
1;m

�
2) is the (state-

contingent) pair of threats associated with the stochastic game with

initial state !; and V (!;m�
1;m

�
2) is the associated equilibrium value

pair. These may be viewed as generalizations of the NBWT solution

to stochastic environments.

5. Noncooperative Treatment

Section 4 developed a proposed solution for any stochastic game

that satis�es "eventual absorption" or that has transferable utility.

Here we provide support for the proposed solution by doing a non-

cooperative analysis of the stochastic game in the spirit of Nash

(1953). As in Section 2, we perturb the demand game (in any state)

and study the equilibria as the perturbations become vanishingly

small. All Markovian equilibria have values in any state ! converg-

ing to v(!), the demand pair recommended by the proposed solution.
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Similarly, the limit points of any sequence of Markovian equilibrium

action pairs at ! (as perturbations vanish) are in the interchange-

able and equivalent set of temporary threat pairs at ! speci�ed by

the proposed solution. In other words, a noncooperative perspective

points to the same state-contingent values and threat actions as the

proposed solution.

We begin by describing the (unperturbed) noncooperative game

to be analyzed. Based on the stochastic bargaining environment of

Section 3, it involves the bargainers playing a threat game, followed

by a demand game, in any period if no contract has yet been agreed

upon. In period 1, the state is !0; so each player i chooses a threat

x 2 Mi(!0). Having observed the threats, players make demands

(v1; v2). If (v1; v2) 2 B(!0), the rewards are enforced contractually and

the game is essentially over. Otherwise, the threat payo¤ is realized

in period 1, and the state transits to !0 with probability � (!0j!; x).

In period 2, threats are again chosen (from sets that depend on the

prevailing state), and so on.

This unperturbed game, denoted G, naturally has many perfect

Bayesian equilibria, so one looks at a sequence of perturbed games

approaching G. The nth element of the sequence is a stochastic

game in which feasibility of a demand pair (v1; v2) 2 B(!) is given by

hnw (v1; v2), where the outcomes are independent across periods. For
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any !, the perturbation function hnw satis�es the same conditions as

in Section 3, and regularity of the sequence (with index n) is de�ned

as before.

Before stating the convergence result precisely we provide some

rough intuition for the case of "eventual absorption" (with K classes

of states). In any absorbing state !; players are in the situation

covered by Section 2, where the "Nash bargaining with threats"

convergence results were established. If instead ! is in class K � 1;

incentives are di¤erent, both because the game in the current pe-

riod di¤ers from the game to be played from tomorrow onward, and

because threats today a¤ect the state transition matrix. But the

dynamic threat point de�ned in the construction of the proposed

solution in Section 4 mimics these phenomena exactly, so conver-

gence to the generalized NBWT threats and demands (the proposed

solution) also occurs in these states. The same argument applies by

induction to all states.

Proposition: let fhn!g!;n be a regular sequence of perturbations

of the stochastic bargaining game and f�ng any sequence of corre-

sponding nondegenerate Markov Perfect equilibria of the respective

perturbed games. Then

lim
n!1

U(�n(!)) = v�(!)

Proof. (Sketch)
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For given mn

Dn(!) = (1� �)u(mn(!);!) + �
X
!0

�(!0 j!;mn(!))V n(!)

vn1 (!)h
n!(vn(!)) + (1� hn!(vn))Dn

1 (!)

FONC

vn2 (!)�Dn
2 (!)

vn1 (!)�Dn
1 (!)

=
hn!1 (vn(!))

hn!2 (vn(!))

The unique NBWT �xed point is characterized by:

D(!) = (1� �)v(m (!) ;!)

+�
X
!0

�(!0 j!;m(!))v(!0;m)

v2(!;m)�D2(!;m)

v1(!;m)�D1(!;m)
= �f 0(v1(!;m))

To be completed.

Section 6. Cooperative Treatment

Nash (1953) gives us an axiomatic theory of how a bargaining

problem will be resolved. A bargaining problem consists of a non-

empty, compact and convex set B of feasible utility pairs, nonempty

�nite sets S1 and S2 of pure strategies (or �threats�) players can em-

ploy (they can mix over those pure strategies), and a utility function
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U mapping S1�S2 into R2. A theory associates with each bargaining

problem a unique solution, an element of the feasible set. Nash pro-

poses a set of axioms such a theory should satisfy; he shows there

is exactly one theory consistent with this set.

At �rst glance, it would appear that a much more elaborate set of

axioms is required to address the complexities of a stochastic game

with contracts. But adopt the perspective of Section 4: the players

in the stochastic game beginning in state ! implicitly face a bargain-

ing problem. Their feasible set is the set of all present discounted

expected payo¤ pairs they can generate by signing contracts today

concerning their actions in all contingencies. Their sets of threats

are the sets of actions available at !. How do the players evaluate a

pair of threats (m1;m2)? They get a �ow payo¤ pair U(m1;m2) until

the state changes and there is some new opportunity to bargain. At

that point, they have encountered a new bargaining problem (the

stochastic game beginning in some state !0), and the theory we are

trying to axiomatize says what players should get in that situation.

Since the pair (m1;m2) determines the arrival rates of transition to

other states, one can compute the expected discounted payo¤ con-

sequences of (m1;m2) for each player.

To summarize, a theory assigns to each stochastic game with

contracts, a solution pair from its feasible set. If the players believe

the theory, these values determine a payo¤ pair that players expect
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to result if they adopt a particular threat pair and agreement is not

reached. Analogues of Nash�s axioms can be applied directly to this

family of bargaining problems. The di¤erence between this family

and that of Nash (1953) is that for Nash, the threat pair utilities are

fully speci�ed by a pair of actions, whereas here they are partially

determined by the proposed theory, as explained in the preceding

paragraph. This gives rise to a �xed point problem. While we can

show existence in great generality, for uniqueness we assume either

transferable utility or eventual absorption, as in Sections 4 and 5.

A stochastic bargaining game G is de�ned by a stochastic game

and a state-dependent bargaining set B(!) where �(!) � B(!):

Fix 
; �. We may associate a variety of stochastic bargaining

environments E with the above �xed elements [By varying B(:)�s,

M�s, etc.]

De�nition: A value v� for a stochastic bargaining environment E

speci�es for each ! 2 
 a unique element v�(!) 2 B(!).

De�nition: A solution speci�es a unique value for each E.

Axioms on Solution

1. Pareto optimality

2. Independent of Cardinal Representation.

Consider E and E0where E0 is identical to E except that for

some ai > 0 and bi; i = 1; 2; utility values ui in E are transformed
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to

u0i = aiui + bi in E 0.

Then

v�i (!; E 0) = aiv
�
i (!; E) + bi 8!; i = 1; 2:

3. "Local" determination / IIA

Suppose S and S0 are stochastic bargaining environments and

are identical except that B0(!) � B(!) 8!. If for all ! v�(!;E) 2

B0(!) then

v�(!; E 0) = v�(!; E) 8!

For bargaining environments E with a single threat pair (m1;m2),

the disagreement payo¤ at state ! is denoted D(!) and is de�ned

endogenously in terms of the solution as follows:

D(!) = (1� �)u(m1;m2;!) + �
X
!0

�(!0 j !;m(!))v�(!0)

where v� is the value speci�ed by the solution for E.

4. SYMMETRY

Suppose a bargaining environment E has a single threat pair

(m1;m2) and at some state !; B(!) is symmetric and D1(!) =

D2(!). Then v�1(!) = v�2(!).

5. Suppose M 0

1 �M1. Then v1(!;M
0
1;M2) � v1(!;M1;M2) 8!.
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6. For all m1 2M1 there exists m2 2M2 s.t.

v�1(!; fm1g; fm2g) � v
�
1(!;M1;M2)

The �rst four axioms are the most familiar, as they appear in

Nash (1950) as well as Nash (1953). The �nal two axioms are analo-

gous to two Nash added in 1953 to handle endogenous threat points.

Axiom 5 says that a player is (weakly) strengthened by having ac-

cess to more threats. Axiom 6 says that if Player 1�s set of threats

is reduced to a singleton fm1g, and 2�s threat set is reduced to a

singleton in the most favorable way for 2, then 2 is not hurt by the

changes. This is compelling if, in some sense, threats don�t exert

in�uence "as a group" against a singleton threat of an opponent.

7. Example

8. Conclusion.
When two persons have di¤erent preferences about how to co-

operate, what should each of them threaten to try to gain advan-

tage, and what will the ultimate outcome be? For static bargain-

ing situations, Nash (1953) proposes a solution, and presents both

axiomatic and noncooperative strategic analyses that isolate his so-

lution. We translate his results into a real-time setting, and then

allow for dynamic phenomena such as random changes in the en-

vironment, learning by doing, investment in physical and human
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capital, and so on. Our extensions of Nash�s axiomatic and non-

cooperative approaches agree on a unique division of surplus in a

wide class of stochastic games with contracts, and on what actions

to take to in�uence the outcome in one�s favor.

As a simple example of the strategic dynamics that can be cap-

tured, we show that a weak rival can extort a surprising amount

of money from a stronger competitor by threatening to enter the

market (even if this would be at great loss to the weaker party). If

gaining access to the market is costly to the potential entrant, the

theory o¤ers a prediction about the optimal rate of investment in

the technology needed for entry.

Our adaptation of Nash�s perturbed demand game to the sto-

chastic game setting is perhaps more convincing than his original

story in the static case: when an accidental failure of bargaining

occurs (because of random perturbations), we don�t need to insist

that the ine¢ cient threat actions will be carried out in perpetu-

ity. Rather, they will be reconsidered when another opportunity

to bargain arises. Nonetheless, we think there is a still more plau-

sible noncooperative story that justi�es our proposed solution. In

ongoing work we show that small behavioral perturbations of the

stochastic game lead to �war of attrition�equilibria whose expected

payo¤s coincide with those proposed here.
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