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Abstract

This paper investigates the existence of pure strategy, dominant strategy, and mixed strat-

egy Nash equilibria in discontinuous and/or nonconvex games. We introduce a new notion of

very weak continuity, called weak transfer quasi-continuity, which is weaker than the most

known weak notions of continuity, including diagonal transfer continuity in Baye et al. [1993]

and better-reply security in Reny [1999], and holds in a large class of discontinuous games.

We show that weak transfer quasi-continuity, together with the compactness of strategy space

and the quasiconcavity or (strong/weak) diagonal transfer quasiconcavity of payoffs, permits

the existence of a pure strategy Nash equilibrium. We provide sufficient conditions for weak

transfer quasi-continuity by introducing notions of weak transfer continuity, weak transfer up-

per continuity, and weak transfer lower continuity. Moreover, an analogous analysis is applied

to show the existence of dominant strategy and mixed strategy Nash equilibria in discontinu-

ous games.
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1 Introduction

The concept of Nash equilibrium in Nash [1950, 1951] is probably the most important solution in

game theory. It is immune from unilateral deviations, that is, each player has no incentive to devi-

ate from his/her strategy given that other players do not deviate from theirs. Nash [1951] proved

that a finite game has a Nash equilibrium in mixed strategies. Debreu [1952] then showed that

games possess a pure strategy Nash equilibrium if (1) the strategy spaces are nonempty, convex

and compact, and (2) players have continuous and quasiconcave payoff functions. Game theory

has then been successfully applied in many areas in economics including oligopoly theory, so-

cial choice theory, and incentive mechanism design theory. These applications lead researchers

from different fields to investigate the possibility of weakening equilibrium existence conditions

to further enlarge its domain of applicability.

The uniqueness of pure strategy Nash equilibrium is established in Rosen [1965]. Nishimura

and Friedman [1981] and Yao [1992] considered the existence of Nash equilibria in games where

the payoff functions are not quasi-concave (but satisfying a strong condition) and γ-diagonally

quasiconcave, respectively. Dasgupta and Maskin [1986] established the existence of pure and

mixed strategy Nash equilibria in games where the strategy sets are convex and compact, and pay-

off functions are quasiconcave, upper semicontinuous and graph continuous by using an approxi-

mation technique. Simon [1987] and Simon and Zame [1990] used a similar approach to consider

the existence of mixed strategy Nash equilibria in discontinuous games. Simon and Zame [1990]

showed that if one is willing to modify the vector of payoffs at points of discontinuity so that they

correspond to points in the convex hull of limits of nearby payoffs, then one can ensure a mixed

strategy equilibrium of such a suitably modified game. Vives [1990] established the existence of

Nash equilibria in games where payoffs are upper semicontinuous and satisfy certain monotonicity

properties.

Baye et al. [1993] provided necessary and sufficient conditions for the existence of pure strat-

egy Nash equilibria and dominant strategy equilibria in noncooperative games which may have

discontinuous and/or non-quasiconcave payoffs. It is shown that diagonal transfer quasiconcavity

is necessary, and further, under diagonal transfer continuity and compactness, sufficient for the

existence of pure strategy Nash equilibrium. Both transfer quasiconcavity and diagonal transfer

continuity are very weak notions of quasiconcavity and continuity and use a basic idea of transfer-

ring nonequilibrium strategies to a “securing” profile of strategies.

Reny [1999] established the existence of Nash equilibria in compact and quasiconcave games

where the game is better-reply secure, which is a weak notion of continuity. Reny [1999] showed

that better-reply security can be imposed separately as reciprocal upper semicontinuity introduced

by Simon [1987] and payoff security. Bagh and Jofre [2006] further weakened reciprocal upper

semicontinuity to weak reciprocal upper semicontinuity and showed that it, together with payoff
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security, implies better-reply security. As one shall see, both better-reply security and payoff

security use the same idea of transferring a (nonequilibrium) strategy to a “securing” profile of

strategies, and they are actually also in the forms of transfer continuity.

Recently, Tian [2008] fully characterizes the existence of equilibria in games with general

strategy spaces and payoffs. He establishes a single condition, called recursive diagonal transfer

continuity, which is both necessary and sufficient for the existence of equilibria in games with

arbitrary compact strategy spaces and payoffs. Like other existing characterization results, this is

mainly for the purpose of providing a way of understanding equilibrium and identifying whether

or not a game has an equilibrium, but not whether it is easy to check. In general, the weaker a

condition in an existence theorem is, the harder it is to verify whether the conditions are satisfied

in a particular game.

Most recently, Barelli and Soza [2009] further weaken the continuity and quasiconcavity con-

ditions by using “majorized” approach. The conditions they developed allow more than one “se-

curing strategy profiles” which depend on players and strategy profiles in a neighborhood of a

non-equilibrium strategy profile under consideration. They unify and generalize most existing re-

sults, establishing existence of a pure strategy Nash equilibrium in the literature on discontinuous

quasiconcave games and qualitative convex games. However, like a characterization result, the

conditions are complicated and hard to check.

This paper investigates the existence of pure strategy, dominant strategy, and mixed strategy

Nash equilibria in discontinuous and nonconvex games by providing a set of very weak suffi-

cient conditions. We introduce a new notion of very weak continuity, called weak transfer quasi-

continuity, which is weaker than the most known weak notions of continuity, including diagonal

transfer continuity in Baye et al. [1993] and better-reply security in Reny [1999], and holds in

a large class of discontinuous games and is relatively easy to check. Roughly speaking, a game

is weakly transfer quasi-continuous if for every nonequilibrium strategy x∗, there exists a neigh-

borhood and a securing strategy profile such that for every strategy profile in the neighborhood

there is player i who is strictly better off by using his securing strategy. As a result, if x is not

nonequilibrium, there is a neighborhood V(x) of x that does not contain any equilibrium. Weak

transfer quasi-continuity holds in many economic games and is easy to check. Besides those

known sufficient conditions such as diagonal transfer continuity and better-reply security, we give

four additional sets of sufficient conditions, each of which implies weak transfer quasi-continuity:

(1) transfer continuity, (2) weak transfer continuity, (3) weak transfer upper continuity and payoff

security,1 and (4) upper semicontinuity and weak transfer lower continuity. These conditions are

satisfied in many economic games and often quite simple to check.

We provide three main results on the existence of pure strategy Nash equilibria in games
1It is worth pointing out that, while reciprocal upper semicontinuity combined with payoff security implies better-

reply security, here weak transfer upper semicontinuity combined with payoff security implies weak transfer continuity.
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with possibly discontinuous payoffs, which strictly generalize the most known existence results

such as those in Baye et al. [1993] and Reny [1999]. Our Theorem 3.1 shows that weak transfer

quasi-continuity, together with the boundedness and compactness of strategy space and the qua-

siconcavity of payoffs, permits the existence of a pure strategy Nash equilibrium. By relaxing

the boundedness and quasiconcavity conditions, our Theorem 3.2 shows that under weak transfer

quasi-continuity of payoffs and the compactness of strategy spaces, a game possesses a pure strat-

egy Nash equilibrium if and only if it is strongly diagonal transfer quasiconcave. Furthermore, by

introducing the notion of weak diagonal transfer quasiconcavity that is weaker than (strong) diag-

onal transfer quasiconcavity, our Theorem 3.3 shows that under weak transfer quasi-continuity of

payoffs and the boundedness and compactness of strategy spaces, a game possesses a pure strategy

Nash equilibrium if and only if it is weakly diagonal transfer quasiconcave.

Strong diagonal transfer quasiconcavity, diagonal transfer quasiconcavity, weakly diagonal

transfer quasiconcavity are all very weak notions of quasiconcavity. A game is (strongly/weakly)

diagonal transfer quasiconcave provided it has a pure strategy Nash equilibrium. We also give

a results, Theorem 3.4, which shows the existence of pure strategy Nash equilibrium by further

relaxing the compactness of strategy spaces. Moreover, by introducing the notion of weak domi-

nant transfer upper continuity, an analogous analysis is applied to show the existence of dominant

strategy and mixed strategy Nash equilibria in discontinuous games.

The remainder of the paper is organized as follows. Section 2 describes the notation, and

provides a number of preliminary definitions. Section 3 introduces the notions of weak transfer

continuity/weak transfer quasi-continuity and weak/strong diagonal transfer quasiconcavity, and

provides the main results on the existence of pure strategy Nash equilibrium. We then general-

ize the results and those in Baye et al. [1993] and Reny [1999] without assuming any form of

quasi-concavity of payoff functions or convexity of strategy spaces. Examples and applications

illustrating the theorem are also given. Section 4 considers the existence of dominant strategy

equilibrium by introducing a similar condition, weak dominant transfer continuity. We provide a

main existence result of dominant strategy Nash equilibrium. Section 5 considers the existence of

mixed strategy Nash equilibrium by applying the main result obtained in Section 3 on the exis-

tence of pure strategy Nash equilibrium. It is shown there that the mixed strategy theorems of Nash

[1950], Glicksberg [1952], Dasgupta and Maskin [1986], Robson [1994], Simon [1987] and Reny

[1999] imply our main result presented in section 5. Concluding remarks are offered in Section 6.

The proofs of the theorem and propositions are presented in Appendix.

2 Preliminaries

Consider the following noncooperative game in a normal form:

G = (Xi, ui)i∈I (2.1)
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where I = {1, ..., n} is a finite set of players, Xi is player i’s strategy space which is a nonempty

subset of a topological space Ei, and ui : X −→ R is the payoff function of player i. Denote by

X =
∏
i∈I

Xi the set of strategy profiles of the game. For each player i ∈ I , denote by−i all players

rather than player i. Also denote by X−i =
∏
j 6=i

Xj the set of strategies of the players in coalition

−i.

We say that a game G = (Xi, ui)i∈I is compact, convex, bounded, and semi-continuous,

respectively if, for all i ∈ I , Xi is compact and convex, and ui is bounded and semi-continuous

on X , respectively. We say that a game G = (Xi, ui)i∈I is quasiconcave if, for every i ∈ I , Xi is

convex and the function ui is quasiconcave in xi.

We say that a strategy profile x∗ ∈ X is a pure strategy Nash equilibrium of game G if,

ui(yi, x
∗
−i) ≤ ui(x∗) ∀i ∈ I, ∀yi ∈ Xi.

We say that a strategy profile x∗ ∈ X is a pure dominant strategy equilibrium of a game G if,

∀(yi, y−i) ∈ X, ui(yi, y−i) ≤ ui(x∗i , y−i) ∀i ∈ I.

Define a function U : X ×X → R by

U(x, y) =
n∑

i=1

ui(yi, x−i), ∀(x, y) ∈ X ×X. (2.2)

Baye et al. [1993] study the existence of pure strategy Nash equilibria in games with possi-

bly discontinuous and nonquasiconcave payoffs by introducing the concepts of diagonal transfer

continuity and diagonal transfer quasiconcavity of U .

DEFINITION 2.1 A game G = (Xi, ui)i∈I is diagonally transfer continuous if x is not an equi-

librium, there exist a strategy profile y ∈ X and a neighborhood V(x) ⊂ X of x such that

U(z, y) > U(z, z) for all z ∈ V(x).

REMARK 2.1 The point y in the above definition can be termed as a securing profile of strategies

since whenever a strategy profile x is not an equilibrium, it secures a strictly higher utility for

all strategy profiles in some neighborhood of x. It is clear that continuity of U implies diagonal

transfer continuity of U .

DEFINITION 2.2 A game G = (Xi, ui)i∈I is diagonally transfer quasiconcave if, for any

finite subset Y m = {y1, ..., ym} ⊂ X , there exists a corresponding finite subset Xm =

{x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, and any

x ∈ co{xk1
, xk2

, ..., xks} we have min
1≤l≤s

U(x, ykl
) ≤ U(x, x).
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Theorem 1 in Baye et al. [1993] shows that, a game that is compact, convex, diagonally transfer

continuous, and diagonally transfer quasiconcave must possess a pure strategy Nash equilibrium.

Reny [1999] studies the existence of pure strategy Nash equilibria in discontinuous games by

introducing the concepts of payoff security and better-reply security.

The graph of the game is Γ = {(x, u) ∈ X × Rn : ui(x) = ui, ∀i ∈ I}. The closure of Γ in

X × Rn is denoted by cl Γ. The frontier of Γ, which is the set of points that are in cl Γ but not in

interior of Γ, is denoted by Fr(Γ).

DEFINITION 2.3 A game G = (Xi, ui)i∈I is payoff secure if for every x ∈ X , every ε > 0, and

every player i, there exists xi ∈ Xi, such that ui(xi, y−i) ≥ ui(x) − ε for all y−i in some open

neighborhood of x−i.

DEFINITION 2.4 A game G = (Xi, ui)i∈I is better-reply secure if (x∗, u∗) ∈ cl Γ and x∗ is not

an equilibrium, there is a player i and a strategy xi ∈ Xi such that ui(xi, y−i) > u∗i for all y−i in

some open neighborhood of x−i.

DEFINITION 2.5 A game G = (Xi, ui)i∈I is reciprocally upper semicontinuous if, whenever

(x, u) ∈ cl Γ and ui(x) ≤ ui for every player i, then ui(x) = ui for every player i.

The following notions are introduced by Bagh and Jofre [2006] and Morgan and Scalzo [2007],

respectively.

DEFINITION 2.6 A game G = (Xi, ui)i∈I is weakly reciprocal upper semicontinuous, if for any

(x, u) ∈ Fr(Γ), there is a player i and x̂i ∈ Xi such that ui(x̂i, x−i) > ui.

DEFINITION 2.7 Let Z be a topological space and f be an extended real valued function de-

fined on Z. f is upper pseudocontinuous at z0 if for all z ∈ Z such that f(z0) < f(z), we have

lim sup
y→z0

f(y) < f(z). f is said to be lower pseudocontinuous at z0 if −f is upper pseudocontinu-

ous at z0. f is said to be pseudocontinuous if it is both upper and lower pseudocontinuous.

Theorem 3.1 in Reny [1999] shows that a G = (Xi, ui)i∈I possesses a Nash equilibrium if

it is compact, bounded, quasiconcave and better-reply secure. Reny [1999] and Bagh and Jofre

[2006] provided sufficient conditions for a game to be better-reply secure. Reny [1999] showed

that a game G = (Xi, ui)i∈I is better-reply secure if it is payoff secure and reciprocal upper

semicontinuous. Bagh and Jofre [2006] further showed that G = (Xi, ui)i∈I is better-reply secure

if it is payoff secure and weakly reciprocal upper semicontinuous. Morgan and Scalzo [2007]

showed that G = (Xi, ui)i∈I is better-reply secure if ui is pseudocontinuous, ∀i ∈ I .

REMARK 2.2 Since payoff security requires taking an open neighborhood in the upper contour

set of a given level of payoff, it is a weak notion of lower semicontinuity. Also, since better-reply
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security requires the limit payoff resulted from strategies to approach a nonequilibrium point, it

is a weak notion of continuity (which displays a certain form of both lower semicontinuity and

upper semicontinuity). In addition, both notions use the same idea of transferring nonequilibrium

strategy profile to a securing strategy profile that results in a strictly better-off payoff, and thus

they actually fall in the forms of transfer continuity.

3 Existence of Nash Equilibria

In this section we investigate the existence of pure strategy Nash equilibria in games that may be

discontinuous or nonquasiconcave. We first provide three main results on the existence of pure

strategy Nash equilibria in discontinuous games, which strictly generalize the existence results of

Baye et al. [1993], Reny [1999] and Bagh and Jofre [2006]. We also characterize the existence of

pure strategy Nash equilibrium without assuming the convexity of strategy spaces or any form of

quasiconcavity of payoff functions. We then show how our main existence results are applied to

some important economic games.

3.1 Nash Equilibria in Discontinuous Games

We start by introducing some weak forms of continuities.

DEFINITION 3.1 A game G = (Xi, ui)i∈I is said to be transfer continuous if for all player i, ui

is transfer continuous in x with respect to Xi, i.e., if ui(zi, x−i) > ui(x) for zi ∈ Xi and x ∈ X ,

then there is some neighborhood V(x) of x and yi ∈ Xi such that ui(yi, x
′
−i) > ui(x′) for all

x′ ∈ V(x).

DEFINITION 3.2 A game G = (Xi, ui)i∈I is said to be weakly transfer continuous if x ∈ X

is not an equilibrium, then there exist player i, yi ∈ Xi and a neighborhood V(x) of x such that

ui(yi, x
′
−i) > ui(x′) for all x′ ∈ V(x).

Weak transfer continuity means that whenever x is not an equilibrium, some player i has a

“securing” strategy yi yielding a strictly better off payoff even if all players deviate slightly from

x∗. Note that the notion of weak transfer continuity only requires some player, but not all players,

who can have a “securing” strategy resulting in a strictly better off payoff even if all players

deviate slightly from a non-Nash equilibrium. Games with continuous payoff functions are clearly

(weakly) transfer continuous. It is also clear that a game G is weakly transfer continuous if it is

transfer continuous, but the reverse may not be true. We will give such an example to show this in

the next subsection.

An even weaker form of continuity is the notion of weak transfer quasi-continuity.
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DEFINITION 3.3 A game G = (Xi, ui)i∈I is said to be weakly transfer quasi-continuous if

x ∈ X is not an equilibrium, then there exist a strategy profile y ∈ X and a neighborhood V(x)

of x so that for every x′ ∈ V(x), there exists a player i such as ui(yi, x
′
−i) > ui(x′).

Roughly speaking, weak transfer quasi-continuity means whenever a strategy profile is not

an equilibrium, there exist some of its neighborhood and a securing strategy profile such that for

every strategy profile in the neighborhood, some player will be strictly better off by using his

securing strategy. Thus, weak transfer quasi-continuity implies that if x is not nonequilibrium,

some of its neighborhood V(x) of x does not contain any equilibrium. This is a very weak form

of continuity that covers almost all the known weak forms of continuity, and here we have the

following proposition.

PROPOSITION 3.1 If a game G = (Xi, ui)i∈I is weakly transfer continuous, diagonal transfer

continuous or better reply secure, then it is weakly transfer quasi-continuous.

Now we are ready to state our first main result, which strictly generalizes Theorem 3.1 of Reny

[1999] by weakening better-reply security.

THEOREM 3.1 Suppose G = (Xi, ui)i∈I is convex, compact, bounded, quasiconcave, and

weakly transfer quasi-continuous. Then G possesses a pure strategy Nash equilibrium.

By Proposition 3.1, Theorem 3.1 also extends Theorem 1 of Baye et al. [1993] by replacing

diagonal transfer quasiconcavity with the conventional quasiconcavity that is much easier to verify.

We then have the following corollary.

COROLLARY 3.1 Suppose G = (Xi, ui)i∈I is convex, compact, bounded, quasiconcave, and the

function U(x, y) defined in (2.2) is diagonal transfer continuous in x . Then G possesses a pure

strategy Nash equilibrium.

EXAMPLE 3.1 (Tullock: Baye et al. [1993]): Consider an n-person game played on the unit

square Xi = [0, 1] and the payoffs:

ui(pi, p−i) =





1/n, if ph = 0, h = 1, ..., n
pα

i∑
j=1,...,n

pα
j
− pi, otherwise

with α ∈ (0, 1).

This game is convex, compact, quasiconcave and the aggregate function U(x, y) is diagonally

transfer continuous in y. Then, by Corollary 3.1, the game has a pure strategy Nash equilibrium.

To relax the boundedness and/or quasiconcavity conditions in Theorem 3.1 above and the

result of Reny [1999], we now introduce the notion of strong diagonal transfer quasiconcavity.
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DEFINITION 3.4 A game G = (Xi, ui)i∈I is said to be strongly diagonal transfer quasi-

concave if for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset

{x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, and any

x ∈ co{xk1
, xk2

, ..., xks}, there exists yh ∈ {yk1
, ..., yks} so that

ui(ykh

i , x−i) ≤ ui(x) ∀i ∈ I. (3.1)

Strong diagonal transfer quasiconcavity roughly says that given any finite subset Y m =

{y1, ..., ym} of deviation profiles , there exists a corresponding finite subset Xm = {x1, ..., xm}
of candidate profiles such that for any subset {xk1

, xk2
, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, its convex

combinations are not upset by all deviation profiles in Xm̃ for all players simultaneously. In the

definition, diagonal refers to the fact that the convex combination is taken along the diagonal (i.e.,

it is taken not only for player i but also for all other players). It is clear that a game is diagonally

transfer quasiconcave if it is strongly diagonal transfer quasiconcave. Indeed, summing up (3.1),

we have min
1≤l≤s

U(x, ykl
) ≤ U(x, x).

REMARK 3.1 Let the correspondence F : X → 2X be defined by F (y) = {x ∈ X :

ui(yi, x−i) ≤ ui(x), ∀i ∈ I}. Then it is transfer FS-convex if and only if the game is strongly

diagonal transfer quasiconcave.2

We then have our second main theorem, which extends Theorem 3.1 above and Theorem 3.1

in Reny [1999] by relaxing the boundedness and quasiconcavity conditions.

THEOREM 3.2 Suppose G = (Xi, ui)i∈I is convex, compact and weakly transfer quasi-

continuous. Then, the game G possesses a Nash equilibrium if and only if it is strongly diagonal

transfer quasiconcave.

With strong diagonal transfer quasiconcavity, the proof of Theorem 3.2 is much simpler than

the proof of Theorem 3.1. Strong diagonal transfer quasiconcavity can be further weakened if

one is willing to impose the boundedness of payoffs. Indeed, we can do so by introducing weak

diagonal transfer quasiconcavity.

Let m ∈ N∗3 and let the following special simplex: 4

∆(n,m) = {λ = (λi,j)i=1,...,n
j=1,...,m

∈MR(n,m) : λi,j ≥ 0 and
∑

i,j

λi,j = 1}.

2A correspondence H : X → 2X is transfer FS-convex if for any finite subset {y1, ..., ym} ⊂ X , there exists a

corresponding finite subset {x1, ..., xm} ⊂ X such that for each J ⊂ {1, ..., m}, we have co{xj , j ∈ J} ⊂ ⋃
j∈J

H(yj).

3N∗ is the set of strictly positive integer numbers.
4MR(n, m) is the matrix space with n lines, m columns and scalars in R
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DEFINITION 3.5 A game G = (Xi, ui)i∈I is said to be weakly diagonal transfer quasiconcave if

for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset {x1, ..., xm} ⊂ X

such that for each x̃ =
∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m}, we have

min
(i,j)∈J

[ui(y
j
i , x̃−i)− ui(x̃)] ≤ 0, with J = {(i, j) : λi,j > 0}. (3.2)

REMARK 3.2 The Definition 3.5 is equivalent to the following definition: A game G =

(Xi, ui)i∈I is weakly diagonal transfer quasiconcave if and only if for any finite subset

{y1, ..., ym} ⊂ X , there exists a corresponding finite subset {x1, ..., xm} ⊂ X such that for

each λ ∈ ∆(n,m), there exists a player i ∈ I such that

min
j∈J(i)

ui(y
j
i , x̃−i) ≤ ui(x̃),

where J(i) = {j = 1, ..., m : λi,j > 0} and x̃ =
∑
i,j

λi,jx
j .

Weak diagonal transfer quasiconcavity roughly says that given any finite subset Y m =

{y1, ..., ym} of deviation profiles, there exists a corresponding finite subset Xm = {x1, ..., xm}
of candidate profiles such that for any subset {xk1

, xk2
, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, there exists

some player i so that its convex combinations are not upset by those deviation profiles in Xm̃

which have nonzero weights.

Weak diagonal transfer quasiconcavity is also weaker than diagonal transfer quasiconcavity as

shown in the following proposition.

PROPOSITION 3.2 If the aggregate function defined by (2.2) is diagonally transfer quasiconcave,

then the game G is weakly diagonally transfer quasiconcave.

Now we have our third main result on the existence of pure strategy Nash equilibrium, which

generalizes Theorem 1 in (Baye et al. [1993]) by weakening both transfer diagonal continuity

and transfer quasiconcavity, and extends Theorem 3.1 in Reny [1999] by weakening better-reply

security and relaxing quasiconcavity condition.

THEOREM 3.3 Suppose G = (Xi, ui)i∈I is convex, compact, bounded and weakly transfer

quasi-continuous, then G possesses a pure strategy Nash equilibrium if and only if it is weakly

diagonal transfer quasiconcave.

By Theorem 3.3, we have the following corollaries.

COROLLARY 3.2 Suppose G = (Xi, ui)i∈I is compact, bounded, and diagonally transfer con-

tinuous. Then, the game G possesses a Nash equilibrium if and only if it is weakly diagonal

transfer quasiconcave.
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COROLLARY 3.3 Suppose that G = (Xi, ui)i∈I is compact, bounded, and better-reply secure.

Then, the game G possesses a Nash equilibrium if and only if it is weakly diagonal transfer qua-

siconcave.

REMARK 3.3 Strong diagonal transfer quasiconcavity, diagonal transfer quasiconcavity as well

as weak diagonal transfer quasiconcavity are all very weak notions of quasiconcavity, and in

fact, one can see from the proof of necessity of Theorems 3.2 and 3.3 that a game must be

(strongly/weakly) diagonal transfer quasiconcave as long as it possesses a pure strategy Nash

equilibrium.5

3.2 Discussion and Examples

Various weak notions of continuity having appeared in our results, such as transfer continuity,

weak transfer continuity, weak transfer quasi-continuity, diagonal transfer continuity, better-reply

security, etc., are quite weak, which hold in a large class of discontinuous games. In this subsection

we illustrate the relationships of these weak notions of continuity and show the usefulness of our

main results with examples.

It is clear that a game G is weakly transfer continuous if it is transfer continuous. However,

the following example shows the reverse may not be true.

EXAMPLE 3.2 Consider a two-player game with X1 = X2 = [0, 1] and

u1(x1, x2) =

{
2 + x1 + x2, if x1 = x2,

x1 + x2, otherwise,
and u2(x) = x1 + x2.

To show it is not transfer continuous, consider the nonequilibrium x = (1, 0). Then, for

any y1 ∈ [0, 1] and any neighborhood V(x) ⊂ X of x, choosing z ∈ V(x) with z1 = 1 and

1 6= z2 6= y1, we then have u1(y1, z2) = y1 + z2 ≤ 1 + z2 = u1(1, z2). Thus, u1 is not transfer

continuous.

However, this game is weakly transfer continuous. Indeed, since the unique Nash equilibrium

is given by x1 = x2 = 1, any nonequilibrium strategy profile (x1, x2) contains a component that

is not equal to one.

If x2 < 1, let y2 = 1. Then, for any neighborhood V(x) of x where V(x) ⊂ [0, 1] × [0, 1)

such that for all z ∈ V(x), we have u2(z1, y2) = 1 + z1 > u2(z1, z2) = z1 + z2.

If x2 = 1, then x1 < 1. Letting y1 = 1, then for any neighborhood V(x) of x such that

V(x) ⊂ [0, 1) × [0, 1] and for all z ∈ V(x), z1 < z2, we have u1(y1, z2) = 3 + z2 if z2 = 1 and

u1(y1, z2) = 1 + z2 otherwise. Thus u1(y1, z2) > z1 + z2 = u1(z1, z2) for all z2.

Hence, the game is weakly transfer continuous.
5Strong diagonal transfer quasiconcavity, diagonal transfer quasiconcavity, and weak diagonal transfer quasicon-

cavity all become the same for one-player games.
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Also, weak transfer quasi-continuity is strictly weaker than weak transfer continuity and better-

reply security. To see this, consider the following example.

EXAMPLE 3.3 Consider the two-player game with the following payoff functions defined on

X = [0, 1]× [0, 1].

u1(x1, x2) =





0 if x1 ∈ (0, 1)

1 if x1 = 0 and x2 ∈ Q
1 if x1 = 1 and x2 /∈ Q
0 otherwise.

, and u2(x1, x2) = x1 − x2

where Q = {x ∈ [0, 1] : x is a rational number}.

The payoff function of player 1 is taken from Barelli and Soza [2009]. This game is neither

weakly transfer continuous, better-reply secure, nor diagonally transfer continuous, but is weakly

transfer quasi-continuous.

To show the game is not weakly transfer continuous, consider the nonequilibrium x = (1, 0).

Then, for any y1 ∈ [0, 1] and any neighborhood V(x) ⊂ X of x, choosing z ∈ V(x) with z1 = 1

and z2 6∈ Q, we have u1(y1, z2) ≤ u1(z1, z2) = 1. Also, for any y2 ∈ [0, 1] and any neighborhood

V(x) ⊂ X of x, choosing z ∈ V(x) with z2 = 0, we have u2(z1, y2) = z1−y2 ≤ z1 = u2(z1, z2).

So it is not weakly transfer continuous.

To show the game is not better-reply secure either, consider x = (1, 0) and u = (0, 1). Clearly

(x, u) is in the closure of the graph of its vector function, and x is not a Nash equilibrium. We

show that player 1 cannot obtain a payoff strictly above u1 = 0. Indeed, for all y1 ∈ [0, 1] and

any neighborhood V(x2) ⊂ [0, 1] of x2, choosing z2 ∈ V(x2)\Q if y1 = 0, or z2 = 0 otherwise,

we then have u1(y1, z2) = 0 ≤ u1 = 0. Player 2 cannot obtain a payoff strictly above u2 = 1

either. To see this, for all y2 ∈ [0, 1] and any neighborhood V(x1) ⊂ [0, 1] of x1, we have

u2(z1, y2) = z1 − y2 ≤ z1 ≤ 1 = u2 for z1 ∈ V(x1). Thus, this game is not better-reply secure,

so Theorem 3.1 of Reny [1999] can not be applied.

Now we show the game is not diagonally transfer continuous. Let x = (1, 0) and y = (0, 0).

Then, U(x, y) = u1(y1, x2) + u2(x1, y2) = u1(0, 0) + u2(1, 0) = 2 > U(x, x) = u1(1, 0) +

u2(1, 0) = 1. However, for all y
′ ∈ [0, 1] × [0, 1] and any neighborhood V(x) ⊂ X of x,

choosing z ∈ V(x) with z1 = 1 and z2 /∈ Q if y′1 < 1, or z2 = 0 otherwise, we then have:

(1) If y′1 < 1, then z2 /∈ Q. Thus, u1(y
′
1, z2) = 0, u1(z1, z2) = 1, u2(z1, y

′
2) = 1 − y

′
2 and

u2(z1, z2) = 1 − z2. Therefore U(z, y
′
) = 1 − y

′
2 ≤ 2 − z2 = U(z, z). (2) If y′1 = 1, then

z2 = 0. Thus, u1(y
′
1, z2) = 0, u1(z1, z2) ≤ 1, u2(z1, y

′
2) = 1− y

′
2 and u2(z1, z2) = 1. Therefore

U(z, y
′
) = 1 − y

′
2 ≤ 1 + u1(z1, z2) = U(z, z). Thus, this game is not diagonally transfer

continuous, so Theorem 1 of Baye et al. [1993] can not be applied.

However, it is weakly transfer quasi-continuous. Indeed, let (x1, x2) be a nonequilibrium

strategy profile with at least one non-zero coordinate. There are two cases to be considered.
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1. x2 > 0. Letting y = (y1, 0) and taking a neighborhood V(x) ⊂ [0, 1]× (0, 1] of x, then for

each z ∈ V(x) and player i = 2, we have u2(z1, z2) = z1 − z2 < z1 = u2(z1, y2).

2. x2 = 0 and x1 > 0. Letting y = (0, 0) and taking a neighborhood V(x) ⊂ (0, 1] × [0, 1]

of x, then for each z ∈ V(x), we have u1(z1, z2) = 0 < 1 = u1(y1, z2) for player 1 when

z2 ∈ Q and u2(z1, z2) = z1 − z2 < z1 = u2(z1, y2) for player 2 when z2 /∈ Q.

Since the game is also convex, compact, bounded and quasiconcave, by Theorem 3.1, the game

considered possesses a Nash equilibrium.

Although diagonal transfer continuity, better-reply security, weak transfer (quasi-)continuity

are all transfer types of continuities that are satisfied by many discontinuous economic games,

a main difference among them is that, while better-reply security takes an open neighborhood

of strategy profiles only for opponents’ strategies rather than those of deviation player i, diago-

nal transfer continuity and the weak transfer (quasi-)continuity take open neighborhoods of the

strategy profile x for all players to the aggregate payoff function U and individual payoffs ui,

respectively.

Also, although weak transfer quasi-continuity is implied by better-reply security in Reny

[1999] or diagonal transfer continuity in Baye et al. [1993], weak transfer continuity neither im-

plies nor is implied by better-reply security in Reny [1999] or diagonal transfer continuity in Baye

et al. [1993]. The following examples can show this.

EXAMPLE 3.4 Consider the two-player game with the following payoff functions defined on

[0, 1]× [0, 1] studied by Carmona [2008].

ui(x1, x2) =

{
ϕi(x1, x2), if x1 = x2,

ψi(x1, x2), otherwise,

where ϕi, ψi : [0, 1]2 → R are continuous functions. In addition, assume that G is bounded and

quasiconcave and satisfies the following conditions:

• (i) For each i ∈ I , ε > 0 and y ∈ [0, 1], there exist x̄ ∈ [0, 1] and a neighborhood V(y) ⊂
[0, 1] of y with x̄ /∈ V(y) such that ψi(x̄, z) ≥ ϕi(y, y)− ε for each z ∈ V(y).

• (ii) If for each x, y ∈ [0, 1] with x 6= y and for some i, ψi(x, y) > ϕi(y, y), then there

exist a player j, x̄ 6= y ∈ [0, 1] and a neighborhood V(y, y) ⊂ [0, 1]2 of (y, y) such that

ψj(x̄, y) > uj(z) for each z ∈ V(y, y).

Carmona [2008] shows that the functions ϕi and ψi can be chosen so as to violate diagonal transfer

continuity and/or better-reply security.

However, under conditions (i)-(ii), we can show that it is weakly transfer continuous so that it

has a Nash equilibrium by Theorem 3.1. Indeed, suppose x is not a Nash equilibrium. Then there

exist a player i and a strategy yi ∈ [0, 1] such that ui(yi, x−i) > ui(x).
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1. If x1 = x2 = x, then ψi(yi, x) > ϕi(x, x). By condition (ii), there exist a player j, x̄j 6=
x ∈ [0, 1], and a neighborhood V(x1, x1) ⊂ [0, 1]2 of (x1, x2) such that ψj(x̄j , x) > uj(z)

for each z ∈ V(x1, y2). Let ε > 0 such that ψj(x̄j , x)− ε > sup uj(z). Since x̄j 6= x and

the function ψj(x̄j , .) is continuous, then there exists a neighborhood V(x) ⊂ [0, 1] such

that x̄j /∈ V(x) and ψj(x̄j , x) − ε ≤ ψj(x̄j , z−j) for all z−j ∈ V(x). Thus, there exist a

player j, a neighborhood V(x1, x1) ⊂ [0, 1]2, and a strategy x̄j ∈ [0, 1] with x̄j 6= z−j such

that uj(x̄j , z−j) > uj(z) for all z ∈ V(x1, x1).

2. If x1 6= x2, then ui(yi, x−i) − ε > ψi(x1, x2) for some ε > 0. If yi 6= x−i, then by

continuity of ψi, there exists a V(x1, x2) such that for all z ∈ V(x1, x1), z1 6= z2 and

ui(yi, z−i) > ui(z).

If yi = x−i, then ϕi(yi, yi) − ε > ψi(x1, x2). By condition (i), there exist

x̄i ∈ [0, 1] and a neighborhood V(yi) ⊂ [0, 1] of yi with x̄i /∈ V(yi) such that

ψi(x̄i, z) ≥ ϕi(yi, yi) − ε
2 for each z ∈ V(yi). Since the function ψj(., .) is continuous,

then there exists a neighborhood V(x1, x2) ⊂ [0, 1]2 such that for all z ∈ V(x1, x2),

z1 6= z2 and ψi(x1, x2) + ε
2 ≥ ψi(zj , z−j). Thus, for each z ∈ V(x1, x2), we have

ψi(zj , z−j) ≤ ψi(x1, x2) + ε
2 < ϕi(yi, yi) − ε

2 ≤ ψi(x̄i, z−i) = ui(x̄i, z−i), i.e.

ui(x̄i, z−i) > ui(z).

3.3 Sufficient Conditions for Weak Transfer (Quasi-)Continuity

In this subsection we provide some new sufficient conditions for weak transfer (quasi-)continuity.

While it is simple to verify weak transfer continuity, it is sometimes even simpler to verify other

conditions leading to it and consequently weak transfer quasi-continuity. In addition to the fact that

diagonal transfer continuity, better-reply security, transfer continuity, and weak transfer continuity

all imply weak transfer quasi-continuity, weak transfer upper continuity and weak transfer lower

continuity introduced below, when they are combined respectively with payoff security and upper

semicontinuity, they also imply weak transfer continuity, and consequently weak transfer quasi-

continuity.

DEFINITION 3.6 A game G = (Xi, ui)i∈I is said to be weakly transfer upper continuous if

x ∈ X is not an equilibrium, then there exist player i, x̂i ∈ Xi and a neighborhood V(x) of x such

that ui(x̂i, x−i) > ui(x′) for all x′ ∈ V(x).

REMARK 3.4 If a game G is upper semicontinuous, then G is weakly transfer upper continuous.

Indeed, suppose x is not a Nash equilibrium, then there exist a player i and a strategy yi such

that ui(yi, x−i) > ui(x). Choose ε > 0 such that ui(yi, x−i) − ε > ui(x). Since G is upper
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semicontinuous, then there exists a neighborhood V(x) of x such that ui(yi, x−i) − ε > ui(x) ≥
ui(x′)− ε, for each x′ ∈ V(x).

DEFINITION 3.7 A game G = (Xi, ui)i∈I is said to be weakly transfer lower continuous if x is

not a Nash equilibrium, which implies that there exist a player i, yi ∈ Xi, and a neighborhood of

V(x−i) of x−i such that ui(yi, x
′
−i) > ui(x) for all x′−i ∈ V(x−i).

REMARK 3.5 If a game G is payoff secure, then G is weakly transfer lower continuous. To

see this, suppose x ∈ X and x is not a Nash equilibrium, then there exists a player i that has

a strategy x̂i such that ui(x̂i, x−i) > ui(x). Choose ε > 0 such that ui(x̂i, x−i) − ε > ui(x).

Since G is payoff secure, then there exist a strategy yi and a neighborhood V(x−i) of x−i such

that ui(yi, x
′
−i) ≥ ui(x̂i, x−i)− ε > ui(x), for each x′−i ∈ V(x−i).

We then have the following propositions that provide sufficient conditions for weak transfer

(quasi-)continuity.

PROPOSITION 3.3 If a game G = (Xi, ui)i∈I is weakly transfer upper continuous and payoff

secure, then it is weakly transfer continuous.

PROPOSITION 3.4 If a game G = (Xi, ui)i∈I is weakly transfer lower continuous and upper

semicontinuous, then it is weakly transfer continuous.

Propositions 3.3-3.4, together with Theorem 3.1 or Theorem 3.3, immediately yield the fol-

lowing useful results.

COROLLARY 3.4 If a game G = (Xi, ui)i∈I is convex, compact, bounded, weakly transfer upper

continuous, payoff secure, and quasiconcave or weakly diagonal transfer quasiconcave, then G

possesses a pure strategy Nash equilibrium.

COROLLARY 3.5 If a game G = (Xi, ui)i∈I is convex, compact, bounded, weakly transfer lower

continuous, upper semicontinuous, and quasiconcave or weakly diagonal transfer quasiconcave,

then G possesses a pure strategy Nash equilibrium.

As an application of the above proposition, consider the following well-known noisy game.

EXAMPLE 3.5 Consider the two-player, nonzero sum, noisy games with the following payoff

functions defined from [0, 1]× [0.1].

fi(xi, x−i) =





li(xi), if xi < x−i,

φi(xi), if xi = x−i,

mi(x−i), if xi > x−i,

where li(.), mi(.) and φi(.) are upper semicontinuous over [0, 1], li(.) is strictly nondecreasing on

[0, 1] and satisfies the following additional conditions:
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a) ∀x ∈ [0, 1], ∀ε > 0, there exists a neighborhood V(x) of x such that φi(x) ≥
max(li(z),mi(z))− ε, for every z ∈ V(x).

b) if mi(x) > φi(x) with x < 1, then there exists a neighborhood V(x) ⊂ [0, 1) of x such that

mi(z) > φi(x), for every z ∈ V(x).

c) if φi(x) > mi(x) with x < 1, then there exists a neighborhood V(x) ⊂ [0, 1) of x such that

φi(z) > mi(x), for every z ∈ V(x).

It is clear that this game G is compact and convex. Suppose that G is quasiconcave. The

condition a) and the upper semicontinuity of li(.), mi(.) and φi(.) over [0, 1], imply that the noisy

game is upper semicontinuous. The conditions b) and c) imply that the game is weakly transfer

lower continuous. Then, the game considered is weakly transfer continuous by Proposition 3.4.6,

and thus it has a Nash equilibrium by Theorem3.1.

REMARK 3.6 All the definitions of weak transfer quasi-continuity, weak transfer continuity,

weak transfer upper continuity, weakly transfer lower continuity and upper semicontinuity can

be easily extended to the quasi-symmetric game and to get the existence results on symmetric

Nash equilibrium.

3.4 Nash Equilibria in Discontinuous and Nonconvex Games

In this subsection we characterize the existence of pure strategy Nash equilibria in games that

may be discontinuous or nonconvex. We generalize the results above as well as the most known

existence results, such as Baye et al. [1993], Reny [1999] and Bagh and Jofre [2006], without

assuming the convexity of strategy spaces or any form of quasiconcavity of payoff functions.

The following theorem generalizes Theorems 3.1– 3.3 by relaxing the convexity of strategy

spaces, (weak) diagonal transfer quasiconcavity and weak diagonal transfer quasiconcavity of

payoff functions.

THEOREM 3.4 Suppose G = (Xi, ui)i∈I is compact and weakly transfer quasi-continuous.

Then, the game G has a Nash equilibrium if and only if for all A ∈ 〈X〉, there exists x ∈ X

such that for all i ∈ I , ui(yi, x−i) ≤ ui(x), ∀y ∈ A.

Since the diagonal transfer continuity and the better-reply security imply the weak transfer

quasi-continuity, then Theorem 3.4 generalizes Theorem 3.1–3.3, Theorem 1 in Baye et al. [1993],

and Theorem 3.1 in Reny [1999] by relaxing the boundedness convexity of strategy spaces and

(strong/weak) diagonal transfer quasiconcavity or quasiconcavity of payoffs, respectively.

EXAMPLE 3.6 Consider a game with n = 2, X1 = X2 = [1, 2] ∪ [3, 4], and
6As Reny [1999] showed, if φi(x) ∈ co{li(x), mi(x)} and li(x) is nondecreasing, then the game is quasiconcave.
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u1(x) = x2x
2
1,

u2(x) = −x1x
2
2.

Note that, Xi is not convex for i = 1, 2, and the function yi 7→ ui(yi, x−i) is not quasiconcave for

i = 1 so that the existing theorems on Nash equilibrium are not applicable.

However, we can show the existence of Nash equilibrium by applying Theorem 3.4. Indeed,

for each x = (x1, x2) and y = (y1, y2),

U(x, y) = x2y
2
1 − x1y

2
2 .

The function U is continuous on X × X . For any subset {(1y1,2 y2), ..., (ky1,k y2)} of X , let

x = (x1, x2) ∈ X such that x1 = max
h=1,...,k

iy1 and x2 = min
h=1,...,k

iy2. Then, we have

{
iy

2
2 ≥ x2

2, ∀i = 1, ..., k,

iy
2
1 ≤ x2

1.

Thus,
{
−x1 iy

2
2 ≤ −x1 x2

2, ∀i = 1, ..., k,

x2 iy
2
1 ≤ x2 x2

1.

Therefore, U(x, iy) ≤ U(x, x), ∀i = 1, ..., k. According to Theorem 3.4, this game has a Nash

equilibrium.

3.5 Applications

In this subsection we show how our main existence results are applied to some important economic

games. We provide two applications: one is in the shared resource games that is intensively studied

by Rothstein [2007], and the other is in the classic Bertrand price competition games.

3.5.1 The Shared Resource Games

Rothstein [2007] studies a class of shared resource games with discontinuous payoffs, which in-

cludes a wide class of games such as the canonical game of fiscal competition for mobile capital. In

these games, players compete for a share of a resource that is in fixed total supply, except perhaps

at certain joint strategies. Each player’s payoff depends on her opponents’ strategies only through

the effect those strategies have on the amount of the shared resource that the player obtains.

Formally, for such a game G = (Xi, ui)i∈I , each player i has a convex and compact strategy

space Xi ⊂ Rl and a payoff function ui that associates sharing rule defined by Si : X → [0, s]

with s ∈ (0,+∞). That is to say, each player has a payoff function ui : X → R with the form

ui(xi, x−i) = Fi[xi, Si(xi, x−i)] where Fi : Xi × [0, s] → R and ui is bounded.7.

7For more details on this model, see Rothstein [2007]
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Define Di ⊂ X to the set of joint strategies at which Si is discontinuous and let the set ∆ =
⋃
i∈I

Di be then all of the joint strategies at which one or more of the sharing rules is discontinuous.

The set X\∆ is all of the joint strategies at which all of the sharing rules are continuous.

Rothstein [2007] shows a shared resource game possesses a pure strategy Nash equilibrium if

the following conditions are satisfied:

(1) X is compact and convex;

(2) ui is continuous on X and quasiconcave in xi,

(3) Si satisfies:

(3.i) For all x ∈ X \∆,
∑n

i=1 Si(x) = s̄;

(3.ii) There exists s ∈ [0, s̄] such that for all x ∈ ∆,
∑n

i=1 Si(x) = s;

(3.iii) For all i, all (xi, x−i) ∈ Di and every neighborhood of xi , there

exists x′i ∈ Xi such that (x′i, x−i) ∈ X \Di;

(3.iv) For all i, there exists a constant s̃ satisfying s̄ ≥ s̃ > s̄/n such

that for all (xi, x−i) ∈ ∆ and all (xi, x−i) ∈ X \Di, Si(x′i, x−i ≥
si ≥ Si(xi, x−i).

(4) For all i, Fi satisfies:

(4.i) Fi is continuous;

(4.ii) For all xi ∈ Xi, Fi(xi, ·) is nondecreasing in si;

(4.iii) Given any si > s̄/n, max
xi∈Xi

Fi(x′i, si) > max
xi∈Xi

Fi(xi, s̄/n).

In the following, we will give an existence result with much simpler conditions:

Assumption 1: For each i ∈ I , Xi is convex and compact and ui(., x−i) is bounded and quasi-

concave for each x−i ∈ X−i.

Assumption 2: If (yi, x−i) ∈ Di and Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)) for player i, then there

exist some player j ∈ I and y′j such that (y′j , x−j) ∈ X\Dj and Fj(y′j , Sj(y′j , x−j)) >

Fj(xj , Sj(x)).

Assumption 3: If (yi, x−i) ∈ X\Di and Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)) for player i, then

there exist a deviation strategy profile y′ and a neighborhood V(x) of x such that for each

z ∈ V(x), there exists a player j ∈ I such as Fj(y′j , Sj(y′j , z−j)) > Fj(zj , Sj(z)).

Assumption 1 is standard. A well-known sufficient condition for a compose function ui =

Fi[xi, Si(xi, x−i)] to be quasiconcave is that Fi is quasiconcave and nondecreasing in si, and

Si is concave. Assumption 2 means that if x is not an equilibrium and can be improved at a
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discontinuous strategy profile (yi, x−i) when player i uses the deviation strategy yi, then there

exists a player j such that it must also be improved by a continuous strategy profile (y′i, x−i) when

player j uses the deviation strategy y′i. Assumption 3 means that if a strategy profile x is not an

equilibrium and can be improved by a continuous strategy profile (yi, x−i) when player i uses

a deviation strategy yi, then there exist a securing strategy profile y′ and a neighborhood of x

such that all points in the neighborhood cannot be equilibria. Note that, if Fi is continuous, then

Assumption 3 is satisfied.

We then have the following result.

PROPOSITION 3.5 Each shared resource game possesses a pure strategy Nash equilibrium if it

satisfies Assumptions 1-3.

3.5.2 The Bertrand Price Competition Games

Bertrand competition is a normal form game in which each of n ≥ 2 firms, i = 1, 2, ..., n,

simultaneously sets a price pi ∈ Pi = [0, p]. Under the assumption of profit maximization, the

payoff to each firm i is

πi(pi, p−i) = piDi(pi, p−i)− Ci(Di(pi, p−i)),

where p−i denotes the vector of prices charged by all firms other than i, Di(pi, p−i) represents the

total demand for firm i’s product at prices (pi, p−i), and Ci(Di(pi, p−i)) is firm i’s total cost of

producing the output Di(pi, p−i). A Bertrand equilibrium is a Nash equilibrium of this game.

Let Ai ⊂ X = Π
i∈I

Pi be the set of joint strategies at which πi is discontinuous, ∆ =
⋃
i∈I

Ai be

the set of all of the joint strategies at which one or more of the payoff is discontinuous, and X\∆
be the set of all joint strategies at which all of payoffs are continuous.

We make the following assumptions:

Assumption 1: For each i ∈ I , πi(., p−i) is quasiconcave for each p−i ∈ X−i.

Assumption 2: If (qi, p−i) ∈ Ai and πi(qi, p−i) > πi(pi, p−i) for i ∈ I , then there exist a firm

j ∈ I , and q′j such that (q′j , p−j) ∈ X\Aj and πj(q′j , p−j) > πj(pj , p−j).

We then have the following result.

PROPOSITION 3.6 Each Bertrand price competition game has a pure strategy Nash equilibrium

if it satisfies (A1)-(A2).

PROOF. It is similar to the proof of Proposition 3.5.
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EXAMPLE 3.7 Consider a two-player Bertrand price competition game on the square [0, a] ×
[0, a], with a > 0. Assume that the demande function is discontinuous and is defined by

Di(pi, p−i) =





αif(pi) if pi < p−i

βif(pi) if pi = p−i

γif(pi) if pi > p−i

where f : R+ → R+ is a continuous function, αi, βi > 0, γi ≥ 0 and αi > βi. Suppose that the

total cost of production is zero for each firm. Then, the payoff of each firm i becomes

πi(pi, p−i) =





αipif(pi) if pi < p−i

βipif(pi) if pi = p−i

γipif(pi) if pi > p−i

We show that Assumption 2 is satisfied. To see this, note that A1 = A2 = {(p1, p2) : p1 = p2 ∈
[0, a]}. Suppose (qi, qi) ∈ Ai and πi(qi, qi) > πi(pi, qi) for some pi ∈ [0, a]. we then must have

qi = 0. Thus

βiqif(qi) > πi(pi, qi), (3.3)

and therefore f(qi) > 0. Since the function xf(x) is continuous then for ε = qif(qi)/θ > 0 with

θ = αi
αi−βi

, there exists δ > 0 such as for all x with qi − δ < x < qi + δ, qif(qi)− ε ≤ xf(x) ≤
qif(qi) + ε. Thus, there exists q

′
i ∈ [0, a] such that

0 < q
′
i < qi and αiq

′
if(q

′
i) ≥ βiqif(qi). (3.4)

(3.3) and (3.4) imply that there exists q
′
i ∈ [0, a] such that (q

′
i, p−i) ∈ X\Ai and πi(q

′
i, p−i) >

πi(pi, p−i). Then, by Proposition 3.6, the game has a pure strategy Nash equilibrium, if it is

quasiconcave.

4 Existence of Dominant Strategy Equilibria

In this section we investigate the existence of dominant strategy equilibria in discontinuous and/or

nonconvex games.

4.1 Dominant Strategy Equilibria in Discontinuous Games

We start by reviewing some of the basic definitions and results introduced and obtained in Baye et

al. [1993].

DEFINITION 4.1 A game G = (Xi, ui)i∈I is transfer upper semicontinuous if for each i ∈
I , xi ∈ Xi and y ∈ X , ui(y) > ui(xi, y−i) implies that there exist a point y′ ∈ X and a

neighborhood V(xi) of xi such that ui(y′) > ui(x′i, y
′
−i), for all x′i ∈ V(xi).
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DEFINITION 4.2 A game G = (Xi, ui)i∈I is uniformly transfer quasiconcave on X if, for

each i ∈ I and any finite subset Y m = {y1, ..., ym} ⊂ X , there exists a corresponding finite

subset {x1
i , ..., x

m
i } ⊂ Xi such that for any subset {yk1

i , yk2

i , ..., yks

i }, 1 ≤ s ≤ m, and any

xi ∈ co{xk1

i , xk2

i , ..., xks

i }, we have min
1≤l≤s

{ui(ykl
)− ui(xi, y

kl

−i)} ≤ 0.

Baye et al. [1993] showed that a game G = (Xi, ui)i∈I that is convex, compact and trans-

fer upper continuous must possess a dominant strategy equilibrium if and only if it is uniformly

transfer quasiconcave.

In the following, we provide a new result on the existence of dominant strategy equilibria

in discontinuous games. We start by introducing the notion of weak dominant transfer upper

continuity.

DEFINITION 4.3 A game G = (Xi, ui)i∈I is said to be weakly dominant transfer upper contin-

uous if x ∈ X is not a dominant strategy equilibrium, then there exist a player i, a strategy y ∈ X

and a neighborhood V(xi) of xi such that ui(y) > ui(zi, y−i), for each zi ∈ V(xi).

A game is weakly dominant transfer upper continuous if for every non dominant strategy equi-

librium x∗, some player i has a strategy yi which dominates all other strategy zi in a neighborhood

of x∗i when other players play y−i.

An even weaker form of dominant transfer continuity is the following.

DEFINITION 4.4 A game G = (Xi, ui)i∈I is said to be weakly dominant transfer upper quasi-

continuous if x is not a dominant strategy equilibrium, then there exist a strategy y ∈ X and a

neighborhood V(x) of x so that for each z ∈ V(x) there exists a player i ∈ I such as ui(y) >

ui(zi, y−i).

A game is weakly dominant transfer upper quasi-continuous if for every nondominant strat-

egy equilibrium x, there is a neighborhood V(x) of x that does not contain a dominant strategy

equilibrium.

REMARK 4.1 It is clear that if the game G is weakly dominant transfer upper continuous or

transfer upper semicontinuous (See Definition 4.1), then it is weakly dominant transfer upper

quasi-continuous.

DEFINITION 4.5 A game G = (Xi, ui)i∈I is said to be strongly uniformly transfer quasi-

concave if for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset

{x1, ..., xm} ⊂ X such that for any subset {xk1
, xk2

, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, and any

x ∈ co{xk1
, xk2

, ..., xks}, there exists yh ∈ {yk1
, ..., yks} so that

ui(ykh
) ≤ ui(xi, y

kh

−i) ∀i ∈ I. (4.1)
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Strong uniform transfer quasiconcavity roughly says that given any finite subset Y m =

{y1, ..., ym} of deviation profiles , there exists a corresponding finite subset Xm = {x1, ..., xm}
of candidate profiles such that for any subset {xk1

, xk2
, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, its con-

vex combinations are not dominated simultaneously by all deviations in Xm̃ for all players. We

will see from Theorem 4.1 below that strong uniform transfer quasiconcavity is necessary for the

existence of a dominant strategy equilibrium of a game when it is weakly dominant transfer up-

per quasi-continuous. It is clear that a game is uniformly transfer quasiconcave if it is strongly

uniformly transfer quasiconcave. Indeed, by (4.1), we have min
1≤l≤s

{ui(ykl
)− ui(xi, y

kl

−i)} ≤ 0.

REMARK 4.2 Let the correspondence F : X → 2X be defined by F (y) = {x ∈ X : ui(y) ≤
ui(xi, y−i), ∀i ∈ I}. Then it is transfer FS-convex if and only if the game is strongly uniformly

transfer quasiconcave.

The following theorem characterizes the existence of dominant strategy equilibrium if the

game is weakly dominant transfer upper quasi-continuous and the strategy spaces of players are

convex.

THEOREM 4.1 Suppose G = (Xi, ui)i∈I is convex, compact and weakly dominant transfer up-

per quasi-continuous. Then, the game G possesses a dominant strategy equilibrium if and only if

it is strongly uniformly transfer quasiconcave.

Let m ∈ N∗ and let the following special simplex:

∆(n,m) = {λ = (λi,j)i=1,...,n
j=1,...,m

∈MR(n,m) : λi,j ≥ 0 and
∑

i,j

λi,j = 1}.

DEFINITION 4.6 A game G = (Xi, ui)i∈I is said to be weakly uniformly transfer quasiconcave

if for any finite subset {y1, ..., ym} ⊂ X , there exists a corresponding finite subset {x1, ..., xm} ⊂
X such that for each x̃ =

∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m}, we have

min
(i,j)∈J

[ui(yj)− ui(x̃i, y
j
−i)] ≤ 0, (4.2)

where J = {(i, j) : λi,j > 0}.

REMARK 4.3 Definition 4.6 is equivalent to the following definition: A game G = (Xi, ui)i∈I is

weakly transfer quasiconcave if and only if for any finite subset {y1, ..., ym} ⊂ X , there exists a

corresponding finite subset {x1, ..., xm} ⊂ X such that for each λ ∈ ∆(n,m), there exist a player

i ∈ I such that

min
j∈J(i)

[ui(yj)− ui(x̃i, y
j
−i)] ≤ 0,

where J(i) = {j = 1, ..., m : λi,j > 0} and x̃ =
∑
i,j

λi,jx
j .
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Weak uniform transfer quasiconcavity roughly says that given any finite subset Y m =

{y1, ..., ym} of deviation profiles, there exists a corresponding finite subset Xm = {x1, ..., xm}
of candidate profiles such that for any subset {xk1

, xk2
, ..., xks} ⊂ Xm, 1 ≤ s ≤ m, there exists

some player i so that its convex combinations are not dominated by all deviations in Xm̃ which

have nonzero weights. We will see from Theorem 4.2 below that weak uniform transfer quasi-

concavity is necessary for the existence of a dominant strategy equilibrium of a game when it is

weakly dominant transfer upper continuous. If a game G is strongly uniformly transfer quasicon-

cave, then it is weakly uniformly transfer quasiconcave.

The following theorem characterizes the existence of dominant strategy equilibrium if the

game is weakly dominant transfer upper continuous and the strategy spaces of players are convex.

THEOREM 4.2 Suppose G = (Xi, ui)i∈I is compact, bounded, convex and weakly dominant

transfer upper continuous. Then, the game G has a dominant strategy equilibrium if and only if G

is weakly uniformly transfer quasiconcave.

The following proposition provides sufficient conditions for a game to be weakly dominant

transfer upper continuous.

PROPOSITION 4.1 Any of the following conditions implies that the game G = (Xi, ui)i∈I is

weakly dominant transfer upper continuous.

(a) ui is continuous in xi.

(b) ui is upper semi-continuous in xi.

(c) ui is transfer upper continuous in xi.

4.2 Dominant Strategy Equilibria in Discontinuous and Nonconvex Games

In this subsection we characterize the existence of dominant strategy equilibria in games that may

be discontinuous or nonconvex. We generalize the results above as well as the existence results of

Baye et al. [1993] without assuming the convexity of strategy spaces or any form of quasiconcavity

of payoff functions.

The following theorem generalizes Theorems 4.1 and 4.2 by relaxing the convexity of strategy

spaces and uniform transfer quasiconcavity of payoff functions.

THEOREM 4.3 Suppose G = (Xi, ui)i∈I is compact, and weakly dominant transfer upper quasi-

continuous. Then, the game G has a dominant strategy equilibrium if and only if for all A ∈ 〈X〉,
there exists x ∈ X such that ui(y) ≤ ui(xi, y−i), for each y ∈ A and i ∈ I .

Since weak dominant transfer upper continuity and transfer upper semicontinuity imply weak

dominant transfer upper quasi-continuity, Theorem 4.3 generalizes Theorem 4.2 and Theorem 4
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in Baye et al. [1993] by relaxing the convexity of strategy spaces and uniform transfer quasicon-

cavity.

DEFINITION 4.7 Let X be a nonempty subset of a topological space and Y be a nonempty subset.

A function f : X × Y → R is said to be α-transfer lower continuous in x with respect to Y if for

(x, y) ∈ X × Y , f(x, y) > α implies that there exist some point y
′ ∈ Y and some neighborhood

V(x) ⊂ X of x such that f(z, y
′
) > α for all z ∈ V(x).

Let X̂ = Π
i∈I

X = Xn. A generic element of X̂ is denoted by ŷ = (y1, . . . , yn). Define a

function φ : X × X̂ → R by

φ(x, ŷ) =
n∑

i=1

{ui(yi)− ui(xi, y
i
−i)}, ∀(x, ŷ) ∈ X × X̂.

Assume that for each i, Xi is a nonempty and compact subset of a topological space Ei and ui

is continuous on X . Then, for all x ∈ X , the maximum of φ(x, .) over X̂ and min
x∈X

max
ŷ∈X̂

φ(x, ŷ)

exist.

Note that, by the definition of φ, we have

∀x ∈ X, max
ŷ∈X̂

φ(x, ŷ) ≥ 0. (4.3)

The following lemma shows the relationship between the solution of φ and dominant strategy

equilibrium for G = (Xi, ui)i∈I .

LEMMA 4.1 A strategy profile x ∈ X is a dominant strategy equilibrium for G = (Xi, ui)i∈I if

and only if max
ŷ∈X̂

φ(x, ŷ) = 0.

By the inequality (4.3) and Lemma 4.1, we have the following proposition.

PROPOSITION 4.2 Suppose that X is compact and ui is continuous on X . Let

α = min
x∈X

max
ŷ∈X̂

φ(x, ŷ). (4.4)

Then, the game G = (Xi, ui)i∈I has at least one dominant strategy equilibrium if and only if

α = 0.

DEFINITION 4.8 G = (Xi, ui)i∈I is 0-transfer lower continuous if φ is 0-transfer lower contin-

uous in x with respect to X̂ .

We then have the following result.

THEOREM 4.4 Suppose G = (Xi, ui)i∈I is compact and 0-transfer lower continuous in x with

respect to X̂ . Then, G = (Xi, ui)i∈I has a dominant strategy equilibrium if and only if for all

A ∈ 〈Xn〉, there exists x ∈ X such that φ(x, ỹ) ≤ 0, for each ỹ ∈ A.
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COROLLARY 4.1 Suppose that the game (2.1) is partially separable8, Xi is a nonempty and

compact subset of a topological space Ei, and hi(xi) is upper semicontinuous over Xi, ∀i ∈ I .

Then, the game G = (Xi, ui)i∈I has a dominant strategy equilibrium.

EXAMPLE 4.1 Again consider Example 3.7.

u1(x) = x2x
2
1,

u2(x) = −x1x
2
2.

Since Xi is not convex ∀i ∈ I , Theorem 4 in Baye et al. [1993] is not applicable.

For x = (x1, x2) and y = (y1, y2), we have

φ(x, (y, z)) = y2y
2
1 − x2

1y2 − z1z
2
2 + z1x

2
2.

Note that φ is continuous on X × X̂ . For any subset {((1y1,2 y2), (1z1,2 z2)),

..., ((ky1,k y2), (kz1,k z2))} of X̂ , let x = (x1, x2) ∈ X such that x1 = max
h=1,...,k

iy1 and

x2 = min
h=1,...,k

iz2. Then

{
iz

2
2 ≥ x2

2, ∀i = 1, ..., k,

iy
2
1 ≤ x2

1.

Thus,
{

iz1 iz
2
2 ≥i z1 x2

2, ∀i = 1, ..., k,

iy2 iy
2
1 ≤i y2 x2

1.
and then

{
− iz1 iz

2
2 + iz1 x2

2 ≤ 0, ∀i = 1, ..., k,

iy2 iy
2
1 − iy2 x2

1 ≤ 0.

Therefore, φ(x, ( iy, iz)) ≤ 0, ∀i = 1, ..., k. According to Theorem 4.3, this game has a dominant

strategy equilibrium. Indeed, x = (4, 1) is such a point.

5 Nash Equilibria in Mixed Strategies

In this section, we consider the existence of mixed strategy Nash equilibrium by applying the pure

strategy existence results derived in the previous sections. Assume that each Xi is a compact Haus-

dorff space. Let ui be bounded and measurable for all i ∈ I and let Mi be the regular, countably

additive probability measures on the Borel subsets of Xi, Mi is compact in the weak* topology.

Let us consider Ui be the extension of ui to M = Π
i∈I

Mi by defining Ui(µ) =
∫
X

ui(x)dµ(x) for all

µ ∈ M with dµ(x) = dµ1(x1) × dµ2(x2) × ... × dµn(xn), and let G = (Mi, Ui)i∈I denote the

mixed extension of G.
8A game G = (I, (X)i∈I , (f)i∈I) is partially separable if for each i ∈ I there exist two functions hi : Xi → R

and g−i : X−i → R such that ui(x) = hi(xi) + g−i(x−i) for all x ∈ X .
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DEFINITION 5.1 A mixed strategy Nash equilibrium of the game G is an n-tuple of probability

measures (µ∗1, ..., µ
∗
n) ∈ M such that for all i ∈ I

Ui(µ∗) =
∫

X

ui(x)dµ∗(x) ≥ max
µi∈Mi

∫

X

ui(x)dµ∗1(x1)× ...× dµi(xi)× ....× dµ∗n(xn).

The definitions of weak transfer continuity, weak transfer upper continuity, weak transfer lower

continuity, upper semicontinuity, payoff security, etc. given in Subsection 3.1 apply in obvious

ways to the mixed extension G by replacing Xi with Mi in each definition. However, it may

be noted that weak transfer continuity (resp., weak transfer upper continuity, weak transfer lower

continuity, payoff security) of G neither implies nor is implied by weak transfer continuity (resp.,

weak transfer upper continuity, weak transfer lower continuity, payoff security) of G.

LEMMA 5.1 If G is upper semicontinuous, then the mixed extension of G is also upper semicon-

tinuous.

PROOF. See the proof of Proposition 5.1 in Reny [1999] page 1052.

Nash [1950] and Glicksberg [1952] shows that a game that is compact, Hausdorff, and contin-

uous possesses mixed strategy Nash equilibrium. Robson [1994] proves that in a compact game

with metric strategy spaces, if each player’s payoff is upper semicontinuous in all players’ strate-

gies, and continuous in other players’ strategies, then the game possesses a mixed strategy Nash

equilibrium.

The following theorem strictly generalizes the mixed strategy Nash equilibrium existence of

Nash [1950], Glicksberg [1952], Dasgupta and Maskin [1986], Robson [1994], Simon [1987] and

Reny [1999] by weakening continuity conditions.

THEOREM 5.1 Suppose that G = (Xi, ui)i∈I is a compact, Hausdorff game. Then G has a

mixed strategy Nash equilibrium if its mixed extension G is weakly transfer quasi-continuous.

Moreover, G is weakly transfer quasi-continuous if it is 1) weakly transfer continuous, 2) better

reply secure, 3) weakly transfer upper continuous and payoff secure, or 4) weakly transfer lower

continuous and upper semicontinuous.

Monteiro and Page [2007] introduce the concept of uniform payoff security for games that

are compact, Hausdorff, bounded and measurable. They show that if a game is compact and

uniformly payoff secure, then its mixed extension Ḡ is payoff secure, but the reverse may not be

true, as shown by an example in Carmona [2005].

DEFINITION 5.2 The game G is uniformly payoff secure if for each i ∈ I , xi ∈ Xi, and every

ε > 0, there is a strategy xi ∈ Xi such that for every y−i ∈ X−i there exists a neighborhood

V(y−i) of y−i such that ui(xi, z−i) ≥ ui(xi, y−i)− ε, for all z−i ∈ V(y−i).
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DEFINITION 5.3 The game G is said to be uniformly transfer continuous if for each i ∈ I ,

xi ∈ Xi, and every ε > 0, there is a strategy xi ∈ Xi such that for every y−i ∈ X−i there exists a

neighborhood V(xi, y−i) of (xi, y−i) such that

ui(xi, z−i) + ε ≥ ui(xi, y−i) ≥ ui(z)− ε, for all z ∈ V(xi, y−i).

Thus, a game G is uniformly transfer continuous if for any strategy xi ∈ Xi, player i can

choose a strategy xi ∈ Xi to secure a payoff of ui(xi, y−i)− ε against deviations by other players

in some neighborhood of y−i ∈ X−i, and would be better off at (xi, y−i) even if all players deviate

slightly from (xi, y−i) for all strategy profiles y−i ∈ X−i.

PROPOSITION 5.1 If a game G = (Xi, ui)i∈I is 1) uniformly payoff secure and upper semi-

continuous or 2) uniformly transfer continuous, then the mixed extension G is weakly transfer

quasi-continuous.

Proposition 5.1, together with THEOREM 5.1, immediately yields the following useful result.

COROLLARY 5.1 If a game G = (Xi, ui)i∈I is compact, bounded, Hausdorff, and 1) uniformly

payoff secure and upper semicontinuous or 2) uniformly transfer continuous, then it possesses a

mixed strategy Nash equilibrium.

As an application of the above proposition, consider the following well-known concession

game.

EXAMPLE 5.1 Let us consider i = 1, 2 and x1, x2 ∈ [0, 1] with:

ui(xi, x−i) =





li(xi), if xi < x−i,

φi(xi), if xi = x−i,

mi(xi), if xi > x−i.

We make the following assumption on ui:

ASSUMPTION 5.1

a) ∀x ∈ [0, 1], ∀ε > 0, there exists a neighborhood V(x) of x such that φi(x) ≥
max(mi(z), li(z))− ε, for every z ∈ V(x).

b) ∀x ∈ [0, 1], ∀ε > 0, there exists y ∈ [0, 1] such that min{φi(y),mi(y), li(y)} ≥
max{φi(x),mi(x), li(x)} − ε.

Then we have the following result.

PROPOSITION 5.2 Suppose the concession game satisfies Assumption 5.1, and the functions

li(.), mi(.) and φi(.) are upper semicontinuous on [0, 1]. Then, the game has a mixed strategy

Nash equilibrium.

27



6 Conclusion

In this paper, we characterize the existence of equilibria in games with possibly nonconvex strategy

spaces or non-quasiconcave payoffs. We first offer new Nash equilibrium existence results for a

large class of discontinuous games, which rely on weak transfer (quasi-) continuities. We then

characterize the existence of pure strategy, dominant strategy, and mixed strategy Nash equilibria

in noncooperative games which may not have convex strategy spaces or non-quasiconcave payoff

functions.

These results permit us to significantly weaken the key assumptions, such as continuity, con-

vexity, and quasi-concavity on the existence of Nash equilibrium, and contains almost all the

known results in the literature such as those in Baye et al. [1993] and Reny [1999]. We also

provide examples and economic applications where our general results are applicable, but the

existing theorems for pure strategy, dominant strategy, and mixed strategy Nash equilibria fail

to hold. These new results help us understand the existence or non-existence of pure strategy,

dominant strategy, and mixed strategy Nash equilibria in discontinuous and non-concave games.
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Appendix

PROOF OF PROPOSITION 3.1. It is clear that a game G is weakly transfer quasi-continuous if

it is weakly transfer continuous. We only need to prove either of diagonal transfer continuity and

better-reply security implies weak transfer quasi-continuity.

We first consider the case of diagonal transfer continuity. Suppose x∗ ∈ X is not an equilib-

rium. Then, by diagonal transfer continuity of U , there exist a strategy ȳ ∈ X and a neighborhood

V(x∗) of x∗ such that U(z, ȳ) > U(z, z) for each z ∈ V(x∗), i.e.
∑
i∈I

[ui(ȳi, z−i) − ui(z)] > 0

for each z ∈ V(x∗). Thus, for each z ∈ V(x∗), there exists a player i ∈ I such as

ui(ȳi, z−i)− ui(z) > 0.

We now consider the case of better-reply security. Suppose, by way of contradiction, that the

game is not weakly transfer quasi-continuous. Then, there exists a nonequilibrium x∗ ∈ X such

that, for every ȳ ∈ X and every neighborhood V(x∗) of x∗, there exists z ∈ V(x∗) with

ui(ȳi, z−i) ≤ ui(z) for all i ∈ I. (6.1)

Letting ū be the limit of the vector of payoffs corresponding to some sequence of strategies con-

verging to x∗, and U∗ the set of all such points, which is a compact set by the boundedness of pay-

offs, we have (x∗, ū) ∈ cl Γ for all ū ∈ U∗. Then, by better-reply security, for each (x∗, ū) ∈ cl Γ

with ū ∈ U∗, there exist a player i, a strategy ȳi, and a neighborhood V̄(x∗−i) of x∗−i such that

ui(ȳi, z−i) > ūi for all z−i ∈ V̄(x∗−i). Then, we have ϕi(ȳi, x
∗
−i) > ūi

9. Choose ε > 0 with

ϕi(ȳi, x
∗
−i) > ūi + ε. Since ϕi(ȳi, .) is lower semi-continuous (cf. Reny [1999]), then

ui(ȳi, z−i) > ūi + ε, for each z−i ∈ V∗(x∗−i).

Let U∗
i be the projection of U∗ to coordinate i and u∗i = sup{ūi ∈ U∗

i : ui(ȳi, z−i) > ūi +

ε for all z−i ∈ V̄(x∗−i)}. Then, for ε/2 > 0, there is a y∗i such that ui(y∗i , z−i) > (u∗i +ε)−ε/2 =

u∗i + ε/2 for all z−i ∈ V∗(x∗−i).

Now, since the game is not weakly transfer quasi-continuous, for such a securing strategy y∗i ,

we can find a directed system of neighborhoods {Vα(x∗)}α∈Λ and a net zα ∈ Vα(x∗) such that

zα →α x∗ and

ui(y∗i , z
α
−i) ≤ ui(zα) →α ūi ≤ u∗i .

Thus, for ε/2 > 0, there exists α1 such that whenever α > α1, we have

ui(y∗i , z
α
−i) ≤ u∗i + ε/2 < ui(y∗i , z−i), for each z−i ∈ V∗(x∗−i). (6.2)

9The function ϕi(yi, x−i) is defined by ϕi(yi, x−i) = sup
V∈Ω(x−i)

inf
z−i∈V

ui(yi, z−i) (cf. Reny [1999]).
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Since the net {zα}α∈Λ also converges to x∗, then for each V(x∗) of x∗ with

Proj−i(V(x∗)) j V(x∗−i),
10 there exists α2 such that zα ∈ V(x∗) for α > α2. Con-

sequently, zα
−i ∈ Proj−i(V∗(x∗)) with α > max(α1, α2). Thus, by (6.2), we obtain

ui(y∗i , z
α
−i) ≤ u∗i + ε < ui(y∗i , z

α
−i), a contradiction. Hence, the game must be weakly transfer

quasi-continuous.

To prove Theorem 3.1, we need the following lemma.

A correspondence C : X → 2Y is open inverse-image or have lower open sections if the set

{x ∈ X : y ∈ C(x)} is open in X , for all y ∈ Y .

LEMMA 6.1 (See Theorem 3a, page 264 in Deguire and Lassonde [1995]) Let Xi be a nonempty,

compact and convex space, i ∈ I and {Ci : X → Xi, i ∈ I} be a family of correspondences such

that:

(1) for all i ∈ I , Ci(x) is convex for every x ∈ X ,

(2) for all i ∈ I , Ci is open inverse-image,

(3) for each x ∈ X , there exists i ∈ I such that Ci(x) 6= ∅.

Then, there as x ∈ X and i ∈ I such that xi ∈ Ci(x).

PROOF OF THEOREM 3.1. For each player i ∈ I and every (xi, y) ∈ Xi ×X , let

ϕi(xi, y) = sup
V∈Ω(y)

inf
z∈V

[ui(xi, z−i)− ui(z)]

where Ω(y) is the set of all open neighborhoods of y.

For each i and every xi ∈ Xi, the function ϕi(xi, .) is real-valued by boundedness of payoff

function. We show it is also lower semicontinuous over X . Indeed, for each i ∈ I , let xi ∈ Xi

and V be an open neighborhood. Consider the following function

gi
V(xi, y) =





inf
z∈V

[ui(xi, z−i)− ui(z)], if y ∈ V,

−∞, otherwise.

We want to show that gi
V(xi, .) is lower semicontinuous on X , which is equivalent to show the set

A(xi) = {y ∈ X : gi
V(xi, y) ≤ α}, α ∈ R.

is closed for all xi ∈ Xi. Suppose that there exists a point y ∈ X such that y is in the closure

of A(xi), but not in A(xi). Then, there exists a net {yp}p∈Λ ⊂ A(xi) converging to y. Since

y /∈ A(xi), inf
z∈V

[ui(xi, z−i)− ui(z)] > α. If y /∈ V , then −∞ > α, which is impossible, and thus

10Proji(A) is the projection of A on space Xi
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y ∈ V and gi
V(xi, y) > α. Thus, we have {yp}p∈Λ ⊂ A(xi), and then gi

V(xi, y
p) ≤ α for every

p ∈ Λ. If there exists p̄ ∈ Λ such that yp̄ ∈ V , then inf
z∈V

[ui(xi, z−i)−ui(z)] ≤ α, which contradicts

the fact that inf
z∈V

[ui(xi, z−i) − ui(z)] > α. Thus, for all p ∈ Λ, yp /∈ V . Since the net {yp}p∈Λ

converges to y ∈ V , there exists η ∈ Λ such that, for all p ≥ η, yp ∈ V , which contradicts the fact

that yp /∈ V for all p ∈ Λ. Thus, A(xi) is closed, which means that the function gi
V(xi, .) is lower

semicontinuous over X . Since the function ϕi(xi, .) is the pointwise supremum of a collection of

lower semicontinuous functions on X , by Lemma 2.39, page 43 in Aliprantis and Border [1994],

ϕi(xi, .) is lower semicontinuous on X .

Let us consider the following sets:

For each y ∈ X , let

F (y) = {x ∈ X : ui(yi, x−i) ≤ ui(x), ∀i ∈ I},

G(y) = {x ∈ X : ϕi(yi, x) ≤ 0, ∀i ∈ I},

and for each x ∈ X and i ∈ I , let

Ci(x) = {yi ∈ Xi : ϕi(yi, x) > 0}.

We first prove that F is transfer closed valued. 11 Let x, y ∈ X with x /∈ F (y). Then x is

not an equilibrium. By the weak transfer quasi-continuity of the game G, there exist a strategy

y′ ∈ X and a neighborhood of x so that for every z ∈ V(x), there exists a player i such as

ui(y
′
i, z−i) > ui(z). Therefore, for all z ∈ V(x) z /∈ F (y′), i.e. x /∈ cl F (y′). Consequently,

⋂

y∈X

F (y) =
⋂

y∈X

cl F (y).

Since ϕi(xi, .) is lower semicontinuous on X , then G(y) is closed. Moreover, G(y) ⊂ cl F (y)

for all y ∈ X . Indeed, let y ∈ X , and x ∈ G(y). Then, for all players i ∈ I , ϕi(yi, x) ≤ 0, i.e.,

each i ∈ I there exists a neighborhood V i(x) of x such that

∀z ∈ V i(x), ui(yi, z−i) ≤ ui(z). (6.3)

If x /∈ cl F (y), then there exists a neighborhood V(x) of x such that

∀z ∈ V(x), ∃i ∈ I, such as ui(yi, z−i) > ui(z). (6.4)

Let z̃ ∈ V(x) ∩ (
⋂
i∈I

V i(x)). Then, inequality (6.4) implies that there exists i ∈ I such that

ui(yi, z̃−i) > ui(z̃), a contradiction to (6.3). Thus, for all y ∈ X , G(y) ⊂ cl F (y). Therefore

⋂

y∈X

G(y) ⊂
⋂

y∈X

cl F (y) =
⋂

y∈X

F (y). (6.5)

11F is transfer closed valued if x /∈ F (y) implies that there exists y′ ∈ X such that x /∈ cl F (y′).

31



We now show {Ci}i∈I is convex and open inverse-image for all i ∈ I . Indeed, let i ∈ I , x ∈
X , yi, yi be two elements of Ci(x) and θ ∈ [0, 1]. Since yi and yi are in Ci(x), ϕi(yi, x) > 0 and

ϕi(yi, x) > 0. Then, there exist V1(x) and V2(x) of x such that for all (z1, z2) ∈ V1(x)× V2(x)
{

ui(yi, z
1
−i) > ui(z1)

ui(yi, z
2
−i) > ui(z2).

Thus, there exists a neighborhood V(x) = V1(x) ∩ V2(x) such that

min{ui(yi, z−i), ui(yi, z−i)} > ui(z), ∀z ∈ V(x).

Since G is quasiconcave in xi, then min{ui(yi, z−i), ui(yi, z−i)} ≤ ui(θyi + (1− θ)yi, z−i), for

each z−i. Therefore, ui(θyi+(1−θ)yi, z−i) > ui(z), ∀z ∈ V(x). Thus, θyi+(1−θ)yi ∈ Ci(x).

Also, let i ∈ I . Since ϕi(yi, .) is lower semicontinuous, the set {x ∈ X : ϕi(yi, x) > 0} is open

in X , for each yi ∈ Xi, which means Ci is open inverse-image.

Now suppose, by way of contradiction, that for each x ∈ X , there exists a player i ∈ I such

that Ci(x) 6= ∅. Then, by Lemma 6.1, there exist a point x̃ ∈ X and i ∈ I such that x̃i ∈ Ci(x̃),

i.e., ϕi(x̃i, x̃) > 0. Thus, by lower semicontinuity of ϕi(xi, .), there exists a neighborhood V(x̃)

of x̃ such that ui(x̃i, z−i) > ui(z), for each z ∈ V(x̃). Letting z = x̃ in the last inequality, we

obtain ui(x̃) > ui(x̃), which is impossible. Thus, there exists x ∈ X such that for each i ∈ I ,

we have Ci(x) = ∅. Therefore, for each i ∈ I and for each yi ∈ Xi, ϕi(yi, x) ≤ 0. Hence,

x ∈ ⋂
y∈X

G(y) ⊂ ⋂
y∈X

F (y), i.e. x is a Nash equilibrium.

PROOF OF THEOREM 3.2. Necessity (⇒): Suppose the game G has a pure strategy Nash equilib-

rium x ∈ X . We want to prove that G is strongly diagonal transfer quasiconcave. Indeed, for any

finite subset {y1, ..., ym} ⊂ X , let the corresponding finite subset {x1, ..., xm} = {x}. Thus, for

any J ⊂ {1, ..., m} and each x ∈ co{xh, h ∈ J} = {x}, we have ∀h ∈ J , ui(yh
i , x−i) ≤ ui(x)

for each player i.

Sufficiency (⇐). For each y ∈ X , let

F (y) = {x ∈ X : ui(yi, x−i) ≤ ui(x), ∀i ∈ I}.

Since G is weakly transfer quasi-continuous, then F is transfer closed valued.

For y ∈ X , let F̄ (y) = cl F (y). Then F̄ (y) is closed, and by the strong diagonal transfer

quasiconcavity (Remark 3.4), it is also transfer FS-convex. From Lemma 1 in Tian [1993], we

deduce
⋂

y∈X

F (y) =
⋂

y∈X

F̄ (y) 6= ∅. Thus, there exists a strategy profile x ∈ X such that

ui(yi, x−i) ≤ ui(x), for all y ∈ X and i ∈ I.

Thus x is a pure strategy Nash equilibrium of game G.
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PROOF OF PROPOSITION 3.2. Suppose that the aggregate function U(x, y) =
n∑

i=1
ui(yi, x−i) is diagonally transfer quasiconcave. Then, for any finite subset Y m =

{y1, ..., ym} ⊂ X , there exists a corresponding finite subset Xm = {x1, ..., xm} ⊂ X

such that for each x̃ =
∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m} we have min

s∈J1

U(x, ys) ≤ U(x, x) where

J1 = {j = 1, ..., m :
∑
i∈I

λi,j > 0} and λ ∈ ∆(n,m). Thus, min
s∈J1

n∑
i=1

[ui(ys
i , x−i) − ui(x)] ≤ 0.

Therefore, there exists (i, j) ∈ J = {(i, j) : λi,j > 0} such that ui(y
j
i , x−i) − ui(x) ≤ 0. We

conclude that min
(i,j)∈J

[ui(y
j
i , x̃−i)− ui(x̃)] ≤ 0 with J = {(i, j) : λi,j > 0}.

PROOF OF THEOREM 3.3. Necessity (⇒): Suppose the game G has a pure strategy Nash equi-

librium x ∈ X . We want to prove that G is weakly diagonally transfer quasiconcave. Indeed, for

any finite subset {y1, ..., ym} ⊂ X , let the corresponding finite subset {x1, ..., xm} = {x}. Thus,

for any λ ∈ ∆(n,m) x =
∑
i,j

λi,jx
j = x, we have for each i ∈ I

min
j∈J(i)

ui(y
j
i , x−i) ≤ ui(yh

i , x−i) ≤ ui(x),

for each h such that λi,h > 0 where J(i) = {j : λi,j > 0}.

Sufficiency (⇐): For each player i ∈ I and every (xi, y) ∈ Xi ×X , let

ϕi(xi, y) = sup
V∈Ω(y)

inf
z∈V

[ui(xi, z−i)− ui(z)]

where Ω(y) is the set of all open neighborhoods of y. For each i and every xi ∈ Xi, the function

ϕi(xi, .) is lower semicontinuous over X from the proof of Theorem 3.1.

Let us consider the following sets: for each y ∈ X , let

F (y) = {x ∈ X : ui(yi, x−i) ≤ ui(x), ∀i ∈ I},

G(y) = {x ∈ X : ϕi(yi, x) ≤ 0, ∀i ∈ I}.

By proof of Theorem3.1, F is also transfer closed valued, and thus G(y) is closed and

⋂

y∈X

G(y) ⊂
⋂

y∈X

cl F (y) =
⋂

y∈X

F (y). (6.6)

Now, suppose, by way of contradiction, that
⋂

y∈X

G(y) = ∅. Then, we have

∀x ∈ X, there exists y ∈ X, i ∈ I such that ϕi(yi, x) > 0. (6.7)

Thus, X can be covered by the following subsets

θi,y = {x ∈ X : ϕi(yi, x) > 0}, i ∈ I and y ∈ X.
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Since ϕi(yi, .) is lower semicontinuous on X , the subset θi,y is open in X , for each i ∈ I and y ∈
X . Also, since X is compact, it can be covered by a finite number of subsets {θi,yj : i =

1, ..., n and j = 1, ..., m}. Consider a continuous partition of unity {αi,j}i=1,...,n
j=1,...,m

associated to the

finite covering {θ1,y1 , ..., θn,ym}.

Since G is weakly diagonal transfer quasiconcave, there exists a corresponding finite subset

{x1, ..., xm} ⊂ X such that for each x̃ =
∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m} and if J = {(i, j) :

λi,j > 0}, then

min
(i,j)∈J

[ui(y
j
i , x̃−i)− ui(x̃)] ≤ 0. (6.8)

Let us now consider the following function defined on X into X by

f(x) =
∑

i,j

αi,j(x)xj .

Since the functions αi,j are continuous over the compact convex X into X , by Brouwer Fixed-

Point Theorem, there exists x̃ = f(x̃) =
∑
i,j

αi,j(x̃)xj . Let J(x̃) = {(i, j) : αi,j(x̃) > 0}.

If (i, j) ∈ J(x̃), then x̃ ∈ supp(αi,j) ⊂ θi,yj . Thus, ϕi(y
j
i , x̃) > 0 for each (i, j) ∈ J(x̃).

Therefore,

min
(i,j)∈J(x̃)

ϕi(y
j
i , x̃) > 0. (6.9)

Since ϕi(y
j
i , x̃) ≤ ui(y

j
i , x̃−i) − ui(x̃), then inequalities (6.8) and (6.9) imply 0 <

min
(i,j)∈J(x̃)

ϕi(y
j
i , x̃) ≤ 0, which is impossible. Therefore,

∅ 6=
⋂

y∈X

G(y) ⊂
⋂

y∈X

F (y).

Thus, x ∈ X such that x ∈ ⋂
y∈X

F (y) is a Nash equilibrium.

PROOF OF PROPOSITION 3.3. Suppose x ∈ X is not a Nash equilibrium. Then, by weak

transfer upper continuity, some player i has a strategy x̂i ∈ Xi and a neighborhood V(x) of x such

that ui(x̂i, x−i) > ui(z) for all z ∈ V(x). Choose ε > 0 such that ui(x̂i, x−i)− ε > sup
z∈V(x)

ui(z).

The payoff security of G implies that there exist a strategy yi and a neighborhood Ṽ(x−i) of x−i

such that ui(yi, z−i) ≥ ui(x̂i, x−i) − ε for all z−i ∈ Ṽ(x−i). Thus, there exist yi ∈ Xi and a

neighborhood of V̂(x) of x such that ui(yi, z−i) > ui(z) for all z ∈ V̂(x).

PROOF OF PROPOSITION 3.4. Suppose x ∈ X is not a Nash equilibrium. Then, by

weak transfer lower continuity, some player i has a strategy x̂i ∈ Xi and a neighborhood
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V(x−i) of xi such that ui(x̂i, z−i) > ui(x) for all z−i ∈ V(x−i). Choose ε > 0 such that

inf
z−i∈V(x−i)

ui(x̂i, z−i) > ui(x) + ε. The upper semicontinuity of G implies that there exists a

neighborhood Ṽ(x) of x such that ui(x) + ε ≥ ui(z) for all z ∈ Ṽ(x). Thus, there exist yi ∈ Xi

and a neighborhood of V̂(x) of x such that ui(yi, z−i) > ui(z) for all z ∈ V̂(x).

PROOF OF THEOREM 3.4. Sufficiency (⇐). The proof of sufficiency is the same as that of

Theorem 3.2 except the last paragraph. Note that

F (x) = {y ∈ X : ui(xi, y−i) ≤ ui(y), ∀i ∈ I},

for each x ∈ X , F is transfer closed valued. Then,
⋂

x∈X

F (x) =
⋂

x∈X

F̄ (x). For x ∈ X , let

F̄ (x) = cl F (x). Then, F̄ (x) is closed in the compact set X . Therefore, F (x) is a compact

subset for every x ∈ X . Thus, it suffices to show that the family {F (x)}x∈X possesses the finite

intersection property. Indeed, by assumption, for every A ∈ 〈X〉, there exists ŷ ∈ X such that

ui(xi, ŷ−i) ≤ ui(ŷ), ∀x ∈ A and ∀i ∈ I . Then, for every A ∈ 〈X〉, there exists ŷ ∈ X such that

ŷ ∈ ⋂
x∈A

F (x).

Necessity (⇒): Let x∗ ∈ X be a pure strategy Nash equilibrium of the game G. Then for all

i ∈ I , ui(yi, x
∗
−i) ≤ ui(x∗) for all y ∈ Xi, and thus we have max

y∈A
ui(yi, x

∗
−i) ≤ ui(x∗) for any

subset A = {y1, ..., ym} ∈ 〈Y 〉.

PROOF OF PROPOSITION 3.5. Suppose x is not an equilibrium. Then some player

i has a strategy yi such that ui(yi, x−i) > ui(x), i.e., Fi(yi, Si(yi, x−i)) > Fi(xi, Si(x)).

If (yi, x−i) ∈ X\Di, then by Assumption 3, there exist a strategy profile y′ and a neigh-

borhood V(x) of x so that for each z ∈ V(x), there exists a player j ∈ I such as

Fj(y′j , Sj(y′j , z−j)) > Fj(zj , Sj(z)), i.e. uj(y′j , z−j) > uj(z). If (yi, x−i) ∈ Di, then by

Assumption 2, then there exist a player j ∈ I and y
′
j such that (y′j , x−j) ∈ X\Dj and

Fj(y′j , Sj(y′j , x−j)) > Fj(xj , Sj(x)). Thus, by Assumption 3, there exist a strategy profile ỹ

and a neighborhood V(x) of x so that for each z ∈ V(x), there exists a player k ∈ I such that

Fk(ỹk, Sk(ỹk, z−k)) > Fj(zk, Sk(z)), i.e. uk(ỹk, z−k) > uk(z). Thus, the game is weakly

transfer quasi-continuous. It is also convex, compact, bounded and quasiconcave, then by

Theorem 3.1 it has a pure strategy Nash equilibrium.

PROOF OF THEOREM 4.1. Sufficiency (⇐): Suppose the game G has a dominant strategy

equilibrium x ∈ X . We want to prove that G is strongly uniformly transfer quasiconcave. Indeed,

for any finite subset {y1, ..., ym} ⊂ X , let the corresponding finite subset {x1, ..., xm} = {x}.

Thus, for any J ⊂ {1, ..., m} and each x ∈ co{xh, h ∈ J} = {x}, we have ∀h ∈ J , ui(yh) ≤
ui(xi, y

h
−i) for each player i.
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Sufficiency (⇐). For each y ∈ X , let

F (y) = {x ∈ X : ui(y) ≤ ui(xi, y−i), ∀i ∈ I}.

We first prove that F is transfer closed valued. Let x, y ∈ X with x /∈ F (y). Then x is not

a dominant strategy equilibrium. By the weak dominant transfer upper quasi-continuity of the

game G, there exist a strategy y′ ∈ X and a neighborhood V(x) of x so that for every z ∈ V(x),

there exists a player i such as ui(y
′
) > ui(zi, y

′
−i). Therefore, for all z ∈ V(x) z /∈ F (y′), i.e.

x /∈ cl F (y′).

For y ∈ X , let F̄ (y) = cl F (y). Then F̄ (y) is closed, and by the strong uniform transfer

quasiconcavity (Remark 4.3), it is also transfer FS-convex. From Lemma 1 in Tian [1993], we

deduce
⋂

y∈X

F (y) =
⋂

y∈X

F̄ (y) 6= ∅. Thus, there exists a strategy profile x ∈ X such that

ui(y) ≤ ui(xi, y−i), for all y ∈ X and i ∈ I.

Thus x is a dominant strategy equilibrium of game G.

PROOF OF THEOREM 4.2. Sufficiency (⇐): For each player i ∈ I and every (y, xi) ∈ X ×Xi,

let

πi(y, xi) = sup
V∈Ω(xi)

inf
zi∈V

[ui(y)− ui(zi, y−i)]

where Ω(xi) is the set of all open neighborhoods of xi.

For each i and every y ∈ X , the function πi(y, .) is both real-valued and lower semicontinuous

over Xi (see the sufficiency proof of Theorem 3.3).

If there exists x̄ ∈ X such that for all i ∈ I ,

sup
y∈X

πi(y, x̄i) ≤ 0,

then x̄ is a dominant strategy equilibrium.

Now, suppose, by way of contradiction, that any strategy profile x ∈ X , x is not a dominant

strategy equilibrium. Then, by weakly dominant transfer upper continuous, there exist a player

i, a strategy y ∈ X and a neighborhood V(xi) of xi such that ui(y) − ui(zi, y−i) > 0 for each

zi ∈ V(xi). Thus,

∀x ∈ X, there exists y ∈ X, i ∈ I such that πi(y, xi) > 0.

Thus, X can be covered by the following open subsets:

θi,y = {xi ∈ Xi : πi(y, xi) > 0} ×X−i.
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Since X is compact, then it can be covered by a finite number of subsets {θi,yj : i ∈ I and j =

1, ..., m}. Consider a continuous partition of unity {αi,j}i=1,...,n
j=1,...,m

associated to the finite covering

{θ1,y1 , ..., θn,ym}.

Since G is strongly uniformly transfer quasiconcave, then there exists a corresponding finite

subset {x1, ..., xm} ⊂ X such that for each x̃ =
∑
i,j

λi,jx
j ∈ co{xh, h = 1, ..., m} and if

J = {(i, j) : λi,j > 0}, then

min
(i,j)∈J

[ui(yj)− ui(x̃i, y
j
−i)] ≤ 0. (6.10)

Let us now consider the following function defined on X into X by

f(x) =
∑

i,j

αi,j(x)xj .

Since the functions αi,j are continuous over the compact convex X into X , then by Brouwer

Fixed-Point Theorem, there exists x̃ = f(x̃) =
∑
i,j

αi,j(x̃)xj . Let J(x̃) = {(i, j) : αi,j(x̃) > 0}.

If (i, j) ∈ J(x̃), then x̃ ∈ supp(αi,j) ⊂ θi,yj . Thus, πi(yj , x̃i) > 0 for each (i, j) ∈ J(x̃).

Therefore,

min
(i,j)∈J(x̃)

πi(yj , x̃i) > 0. (6.11)

Since πi(yj , x̃i) ≤ ui(yj) − ui(x̃i, y
j
−i), then inequalities (6.10) and (6.11) imply

0 < min
(i,j)∈J(x̃)

πi(yj , x̃i) ≤ 0, which is impossible.

Necessity (⇒): It is the same as that of Theorem 3.3, so it is omitted here.

PROOF OF THEOREM 4.3. Sufficiency (⇐). The proof of sufficiency is the same as that of

Theorem 4.1 except the last paragraph. Note that

F (y) = {x ∈ X : ui(y) ≤ ui(xi, y−i), ∀i ∈ I}.

F is transfer closed valued. Then,
⋂

y∈X

F (y) =
⋂

y∈X

F̄ (y). For y ∈ X , let F̄ (y) = cl F (y). Then,

F̄ (y) is closed in the compact set X . Therefore, F (y) is a compact subset for every y ∈ X . Thus,

it suffices to show that the family {F (y)}y∈X possesses the finite intersection property. Indeed,

by assumption, for every A ∈ 〈X〉, there exists x̂ ∈ X such that ui(y) ≤ ui(x̂i, y−i), ∀y ∈ A and

∀i ∈ I . Then, for every A ∈ 〈X〉, there exists x̂ ∈ X such that x̂ ∈ ⋂
y∈A

F (y).

Necessity (⇒): Let x∗ ∈ X be a dominant strategy equilibrium of the game G. Then for all

i ∈ I , ui(y) ≤ ui(x∗i , y−i) for all y ∈ X , and thus we have max
y∈A

[ui(y)− ui(x∗i , y−i)] ≤ 0 for any
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subset A = {y1, ..., ym} ∈ 〈X〉 and for all i ∈ I .

PROOF OF LEMMA 4.1. Necessity (⇒): Let x ∈ X be a dominant strategy equilibrium for

G = (Xi, ui)i∈I . Then, ui(xi, y
i
−i) ≥ ui(yi), ∀yi ∈ X , ∀i ∈ I . Hence, φ(x, ŷ) =

n∑
i=1
{ui(yi) −

ui(xi, y
i
−i)} ≤ 0, ∀ŷ ∈ X̂ , i.e., max

ŷ∈X̂
φ(x, ŷ) ≤ 0. Combining this inequality with inequality (4.3),

we have max
ŷ∈X̂

φ(x, ŷ) = 0.

Sufficiency (⇐): Let x ∈ X be a strategy profile such that max
ŷ∈X̂

φ(x, ŷ) = 0. This

equality implies ∀ŷ ∈ X̂ , φ(x, ŷ) =
n∑

i=1
{ui(yi) − ui(xi, y

i
−i)} ≤ 0. For each i ∈ I ,

we write φ(x, ŷ) = ui(yi) − ui(xi, y
i
−i) +

n∑
j=1,j 6=i

{uj(yj) − uj(xj , y
j
−j)} ≤ 0 ∀ŷ ∈ X̂ .

Letting ŷ = (x, ..., x, yi, x, ..., x) ∈ X̂ with yi arbitrarily chosen in X , we have
n∑

j=1,j 6=i

{uj(x) − uj(xj , x̄−j)} = 0, and thus ui(yi) ≤ ui(xi, y
i
−i) ∀yi ∈ X , i = 1, . . . , I .

Thus, x is a dominant strategy equilibrium for the game G = (Xi, ui)i∈I .

PROOF OF THEOREM 4.4. It is similar to the proof of Theorem 4.3.

Necessity (⇒): Let x ∈ X be a dominant strategy equilibrium of the game G. Ac-

cording to Lemma 4.1, φ(x, ŷ) ≤ 0, for each ŷ ∈ X̂ . Then, for each A ∈ 〈Xn〉,
max
ŷ∈A

φ(x, ŷ) ≤ max
ŷ∈X̂

φ(x, ŷ) = 0.

Sufficiency (⇐). Let

G(ŷ) = {x ∈ X : φ(x, ŷ) ≤ 0}.

Since φ is 0-transfer lower continuous in x with respect to X̂ , then G is transfer closed valued.

Thus,
⋂

ŷ∈Xn

G(ŷ) =
⋂

ŷ∈Xn

Ḡ(ŷ). For ŷ ∈ Xn, let Ḡ(ŷ) = cl G(ŷ). Then, Ḡ(ŷ) is closed in the

compact set X . Therefore, G(ŷ) is a compact subset for every ŷ ∈ Xn. Thus, it suffices to show

that the family {G(ŷ)}ŷ∈Xn possesses the finite intersection property. Indeed, by assumption, for

every A ∈ 〈Xn〉, there exists x ∈ X such that φ(x, ỹ) ≤ 0, for each ỹ ∈ A. Then, for every

A ∈ 〈Xn〉, there exists x̂ ∈ X such that x̂ ∈ ⋂
ỹ∈A

G(ỹ).

PROOF OF PROPOSITION 5.1. Suppose µ ∈ X is not a mixed strategy Nash equilibrium. Then,

there exist a player i, a measure µ∗i ∈ Mi and a ε > 0 such that

Ui(µ∗i , µ−i)− ε =
∫

X

ui(x)dµ∗i (xi)dµ−i(x−i)− ε > Ui(µ) =
∫

X

ui(x)dµ(x). (6.12)

Since the game G is uniformly transfer continuous, then the function ui is upper semicon-

tinuous over X and uniformly payoff secure. According to Proposition 5.1 of Reny [1999], the
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function
∫
X

ui(x)dµ(x) is upper semicontinuous in µ. Thus, there exists V1(µ) such that:

∫

X

ui(x)dµ(x) ≥
∫

X

ui(x)dµ(x)− ε/2, for all µ ∈ V1(µ). (6.13)

Also, according to the proof of Theorem 1 in Monteiro and Page [2007], there exist a measure

µ̃i ∈ Mi and a neighborhood V2(µ−i) of µ−i such that
∫

X

ui(x)dµ̃i(xi)dµ−i(x−i) ≥
∫

X

ui(x)dµ∗i (xi)dµ−i(x−i)−ε/2, for all µ−i ∈ V2(µ−i). (6.14)

Combining (6.12), (6.13) and (6.14), we conclude: there exist a measure µ̃i ∈ Mi and a

neighborhood V(µ) of µ such that for all µ ∈ V(µ), we have

∫
X

ui(x)dµ̃i(xi)dµ−i(x−i) + ε/2 ≥ ∫
X

ui(x)dµ∗i (xi)dµ−i(x−i)

>
∫
X

ui(x)dµ(x) + ε

≥ ∫
X

ui(x)dµ(x) + ε/2

Thus, the mixed game G is weakly transfer continuous.

PROOF OF PROPOSITION 5.2. Upper semicontinuity of li(.), mi(.) and φi(.), together

with condition a) in Assumption 5.1, implies that the concession game is upper semicontinuous.

Condition b) implies that for each xi ∈ Xi, and ε > 0 there exists a strategy xi ∈ Xi such that for

every yi ∈ X−i there exists a neighborhood V(yi) of yi such that ui(xi, zi) ≥ ui(xi, yi) − ε, for

all zi ∈ V(yi). Then, it is uniformly transfer continuous. It is clear that this game G is compact,

then by Corollary 5.1, we conclude that the game has a mixed strategy Nash equilibrium.
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