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Abstract

We consider an agent who has to repeatedly make choices in an uncertain

and changing environment, who has full information of the past, who discounts

future payoffs, but who has no prior. We provide a learning algorithm that

performs almost as well as the best of a given finite number of experts or

benchmark strategies and does so at any point in time, provided the agent

is sufficiently patient. The key is to find the appropriate degree of forgetting

distant past. Standard learning algorithms that treat recent and distant past

equally do not have the sequential epsilon optimality property.
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1 Introduction

Real-life processes are very complex, and even a mathematician who is skilled in

computing optimal strategies may find decision making in a natural environment to
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be a daunting task. People often cope with such tasks by seeking advice of experts,

imitating their peers or business partners. This typically does not solve the problem

as the amount of advice one receives seems to increase in the complexity of the

environment. The choice is shifted to a different level, to decide whose advice to

follow. Given that the environment is constantly changing, the problem is further

complicated, as one wants to be flexible enough to switch to a different expert if there

is a sign that the current one is not providing the best advice any more. Flexibility

has to be sufficient in order to prevent the decision maker from wishing to abandon

the strategy in favor of a different one after a particular, possibly unlikely sequence

of events. So one needs strategies that are sequentially rational, much in the spirit of

focusing on subgame perfection instead of Nash. There exists an extensive literature

both in machine learning1 and economics2 that provides simple learning algorithms

for natural environments. However, we show that these are not sequentially rational.

So the question of existence of a simple algorithm remains.

The environment considered in this paper is as follows. A decision maker (for

short, Agent) repeatedly makes decisions in an unknown environment (for short,

Nature). In every discrete period of time Agent chooses an action and, simultaneously,

a state of Nature is realized. Agent’s payoff in a given period depends on her action,

as well as on the realized state. We assume that all past states are observable by

Agent. Agent can thus compute the payoff that would have been realized by each

action in each past period, a scenario also referred to as learning under “foregone

payoffs” or “full information”. Agent has no prior beliefs about Nature’s behavior:

it may be as simple as a deterministic sequence of states or a stationary stochastic

process, or as complicated as strategic decisions of a hostile player who seeks to inflict

Agent maximum harm. So Agent is trying to learn in a distribution-free environment.

We do not aspire to find the first best strategy for Agent. In fact, this is an

impossible task if one does not add priors, which is equivalent to adding structure

on the environment. Since Nature’s complexity is unbounded, even a very patient

1Littlestone and Warmuth (1994); Cesa-Bianchi et al. (1996); Vovk (1998); Auer and Long (1999);

Foster and Vohra (1999); Freund and Schapire (1999); Cesa-Bianchi and Lugosi (2003, 2006); Green-

wald and Jafari (2003); Cesa-Bianchi et al. (2007); Gordon et al. (2008).
2Hannan (1957); Foster and Vohra (1993, 1997, 1998); Fudenberg and Levine (1995, 1999); Hart

and Mas-Colell (2000, 2001a); Lehrer (2003); Hart (2005).
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Agent cannot hope to “learn” Nature’s behavior. Instead, we wish to find a strategy

so that Agent performs as well as those surrounding her that are facing the same

environment. These can be experts that are making recommendations to Agent,

other agents that are also making choices, or simply strategies that Agent considers

as benchmarks. In what follows we summarize these three entities in the term expert

and assume that these experts are given and finite in number. It is important that

we allow Agent to observe past states so that the past performance of each of these

experts can be evaluated.3 The objective of Agent is to perform similarly to the best

of the experts without prior knowledge which expert is actually the best.4 That is,

she wishes to guarantee that the expected sum of the discounted future payoffs is

close to or above that of each expert. Moreover, Agent aims to achieve this objective

not only in the first period, but at any point in time. So, we search for a strategy that

is dynamically consistent. This prevents Agent from choosing some strategy in period

1 and then changing her mind at some later time after a particular sequence of events

(thus precluding the problem of choosing some strategy when knowing in advance

that it will not be carried out). Moreover, Agent will also prefer not to change her

strategy after she has made a mistake. This is just the standard condition of sequential

rationality (or subgame perfection) that demands optimality of a strategy after every

history – including those that have zero probability.

We find that a strategy need not be very complex to achieve this objective. We

design a simple learning algorithm for Agent that guarantees the expected sum of the

discounted future payoffs to be ε-close to that of the best of the experts, consistently

in all periods of time, regardless of Nature’s behavior. Furthermore, we show that

Agent can approach the performance of the best expert arbitrarily closely, provided

she is sufficiently patient. The algorithm is described as follows. In every period,

Agent assesses the past performance of each expert (a weighted sum of the payoffs

that Agent would have gotten if she always followed that expert’s advice in the past).

Then Agent follows an expert’s advice with probability proportional to how much

better that expert performed in the past relative to Agent herself, similarly to Hart

3Alternatively, one can assume that Agent does not observe past states but instead observes own

past payoff as well as those of all experts (see also Section 7).
4In fact, different experts may be best in different periods.
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and Mas-Colell’s regret matching strategy (Hart and Mas-Colell, 2000, 2001a).5

The key to our strategy designed for Agent is the way in which the past per-

formance of experts is assessed. Unlike Hart and Mas-Colell (2000), where all past

periods count equally, here Agent puts higher weights on more recent events, regard-

ing more distant events and associated foregone payoffs as less relevant. Though this

way of treating the past has been well documented in the psychology literature as the

recency effect (see Ray and Wang 2001 and the references within) and has been used

in a few papers (Roth and Erev, 1995; Erev and Roth, 1998), here this has a strategic

reason. The ability to gradually forget the past helps Agent to adapt to changing

environments. In contrast, incorporating all past events equally makes the strategy

too inflexible, and, indeed, we show that the regret matching strategy of Hart and

Mas-Colell (2000) does not satisfy the sequential rationality property.

It is important to note that Agent herself cannot compute expected future payoffs

neither for her strategy nor for the experts, since she does not know Nature’s behavior;

computation is possible only from an observer’s point of view. Yet, with our algorithm

Agent can make a comparative statement about her expected future payoffs relative

to the experts’. We provide a bound on how much Agent’s expected payoffs can differ

from that of the best expert and show that Agent can perform arbitrarily close to

or better than the best of the experts provided she is sufficiently patient. We also

extend this result to the setting where we allow for errors in observing outcomes.

This paper is different from the existing literature in three aspects. The first

aspect relates to the richness of our setting. The set of Agent’s actions, as well

as the set of states of Nature, need not be finite, as opposed to those in finite-

game models such as Fudenberg and Levine (1995, 1999); Hart and Mas-Colell (2000,

2001a). Agent’s utility function need not be linear or convex, and the experts need

not play deterministic strategies, as it is assumed throughout the machine learning

literature.

The second difference from the literature concerns the objective that we specify

for Agent. Future payoffs are discounted in line with classic decision theory. In each

period these cumulated payoffs are compared to those of the experts. In contrast,

5Alternatively, Agent chooses a convex combination of the experts’ recommendations with weights

proportional to the correspondent differences in performance, if Agent’s action space is convex and

her utility function is concave.
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the existing literature uses time-averaging and evaluates payoffs from the perspective

of the first period only (see Cesa-Bianchi and Lugosi, 2006, and references within).

Furthermore, we compare expected payoffs of strategies used by Agent and experts

while the existing literature compares realized payoffs and establishes almost sure

bounds. For better comparison to this literature we formulate our results in terms of

probabilistic bounds in Appendix B.

In fact, Agent’s discount factor plays a novel role in this setting. A less patient

Agent has higher goals as she aspires to achieve higher period-by-period payoffs. The

reason is that Agent wishes to do as well as the best expert. Payoffs accumulated from

following the best expert in each short run will be higher than that from following

the single best expert in the long run. But, of course, a less patient Agent has greater

difficulties in learning, as she needs to learn which expert is best in each short run.

Depending on which effect is greater, from the viewpoint of an outside observer, a

more patient agent may or may not perform on average better than a less patient

one.

The third difference of our paper from the literature is that we achieve our objec-

tive by conditioning future choices on a weighted assessment of past payoffs, putting

larger weights on more recent periods. In contrast, practically all strategies found in

the literature condition future play on time-averages of the past performance. As we

show in this paper, they thus lack the property of dynamic consistency and hence

cannot guarantee Agent’s sum of discounted future payoffs to be close to that of the

best expert in all periods. The problem of time averaging of the past is that it even-

tually leads to an inability to react to changes in the environment. As time passes,

a decision maker adds smaller and smaller weights on new observations and thus re-

quires increasingly large body of evidence to change her opinion once it is settled.

So, a decision maker who treats past events equally is likely to end up in a situation

where in response to a changing environment she would prefer to “forget” all the past

and start afresh, with an empty history, rather than to continue using the original

strategy.

There are a few papers that previously considered discounting of past payoffs.

Roth and Erev (1995) and Erev and Roth (1998) use reinforcement learning models

with a small degree of “gradual forgetting” to explain experimental data on some
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simple games, such as the ultimatum bargaining game. Cesa-Bianchi and Lugosi

(2006) consider maximizing discounted past payoffs as Agent’s objective (while we

use this assessment of previous performance only to determine Agent’s future play).

Marden et al. (2007) study a special class of finite games that are acyclic in better

replies and show that if all players play strategies based on discounted past payoffs

with inertia, their play converges to a Nash equilibrium.

The paper is organized as follows. We begin with a motivational example (Section

2). The model is described in Section 3. In Section 4 we introduce strategies based

on past payoffs and state our main result. Section 5 discusses the role of adaptation

in Agent’s behavior and highlights what happens when there is too little adaptation

(as in models that condition on time-average payoffs) or too much adaptation. In

Section 6 we discuss the role of Agent’s discount factor. Section 7 expands the main

result to noisy environments. Section 8 concludes. All proofs omitted in the text are

deferred to Appendix A. In Appendix B we derive probabilistic bounds on realized

discounted future payoffs.

2 Motivational Example

Let us start with a brief motivational example. Consider an investor who trades on

a stock exchange and makes a portfolio rebalancing decision once a week. There are

various possibilities how the investor can make decisions. She may follow the lead

of a respectable company and hold the same portfolio; she may choose to use one

of a variety of analytical tools for evaluation of the future dynamics of the financial

market, applying it to information obtained from diverse sources. Whose lead to

follow? Which analytical tool to use? Which source of information to trust? These

are the questions that the investor needs to answer.

In our terminology, any basis for decision making (a company whose lead is fol-

lowed, or an analytical tool in combination with an information source) is called an

expert who provides advice. The task of the investor is to choose which expert to fol-

low in every decision that she makes. Unfortunately, there does not exist (and cannot

exist in principle) a universally good expert. Following advice of a particular expert

can bring benefit or loss, depending on future states of Nature. Some experts provide
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the best advice when the economy is steadily growing; others when it is declining;

and others when there is a large degree of uncertainty and fluctuations on the stock

market.

We assume that the investor has no prior information or beliefs about future states

of Nature and about quality of advice of various experts. Yet, we design a strategy

for the investor, based on available experts’ advice, that yields the expected annual

return nearly as high as the best portfolio among those recommended by the experts,

steadily over time, provided that the investor is sufficiently patient.

We illustrate our result by the following stylized example. Suppose that the

investor has a certain cash fund and three instruments at her disposal. She can write

a certain number of binary call options that the S&P 500 ends the week with a growth,

binary put options that the S&P 500 ends the week with a decline, or she can keep

cash in bank. Assume that each option costs 50, 000 and yields 100, 000 if the event

occurs (thus yielding 100% of conditional return), and otherwise expires worthless (a

conditional loss of 100%). The bank yields a safe annual return of 5.2% (or 0.1% per

week). Short-selling of the instruments is not allowed.6

Denote by xt(j) the fraction of instrument j in the investor’s portfolio in period t,

where j is call option, put option, or cash, j ∈ {call, put, cash}. In every period t the

investor receives the return (net of the cost of the portfolio) of ut = xt(call)−xt(put)+

0.001 · xt(cash) in the event of growth and ut = −xt(call) + xt(put) + 0.001 · xt(cash)

in the event of decline. The present-value payoff of the investor evaluated at some

period t0 is the discounted sum of all future payoffs,

Ut0 =
∞∑
t=t0

δt−t0ut,

where δ is the investor’s discount factor.

Consider the following strategy of the investor. For every period t denote by

ût(j) the return in period t of the portfolio that consists only of instrument j, j ∈
{call, put, cash}. Next, denote by Cα,t(j) the weighted average value of holding the

6Usually, a binary call (put) option would be conditioned on the event that the S&P 500 grows

(declines) by x points, x > 0. For simplicity we choose x = 0 and forbid short sales to prevent

arbitrage. One can easily construct a slightly more complex example with x > 0 and then also allow

for short sales.
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portfolio consisting of instrument j up to period t,

Cα,t(j) = (1− α)
t∑
i=1

αt−iût(j).

Similarly, let

Cα,t(0) = (1− α)
t∑
i=1

αt−iut

be the weighted average of past payoffs of the investor. Thus Cα,t(j) is a measure of

the value of holding the portfolio consisting of instrument j in all previous periods,

putting highest weight on the most recent periods. Similarly, Cα,t(0) is a measure

of how well the investor has performed. The excess weighting of recent past will be

instrumental to ensure good performance of the strategy when the environment is

changing.

The strategy prescribes to hold the portfolio with fraction of instrument j pro-

portional to [Cα,t(j)− Cα,t(0)]+ = max {Cα,t(j)− Cα,t(0), 0}, that is,

xt+1(j) =
[Cα,t(j)− Cα,t(0)]+∑

j′∈{call,put,cash} [Cα,t(j′)− Cα,t(0)]+
,

whenever Cα,t(j) ≥ Cα,t(0) for some j, and otherwise chooses an arbitrary portfolio

(for instance, keep the one from the previous period). Thus, only recommendations

of experts whose performance is evaluated superior to own will be followed, the prob-

ability of following the recommendation of any such expert being proportional to how

much better he performed.

We show that a sufficiently patient investor (δ close enough to 1) can guarantee

an expected discounted future payoff that is arbitrarily close to the best that can

be obtained by any portfolio that remains constant over time. This is true from the

perspective of any period t, evaluating future payoffs with discount factor δ, no matter

what states of Nature will be realized in future. The value 1 − α can be considered

as the rate of adaptation of the investor’s portfolio, and it has to be fine-tuned to

guarantee the best result. If α is too close to 1, then the rate of adaptation is very

slow. For example, in the case when a long series of growth is followed by a long

series of decline, it will take the investor a substantial period of time to adapt and

cause her to hold a big share of call options in the portfolio for a long time. If α is too

small, then the investor reacts to every fluctuation of the events, and her portfolio
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will be too volatile and susceptible to small fluctuations. As we show later, the right

balance dictates to choose 1− α to be of the order of
√

1− δ.
To be more specific, suppose that it turns out that the annual rate of return on the

call option is equal to 20%, resulting from the S&P 500 exhibiting a weekly growth

x% more often than a decline. Then the above strategy guarantees the investor the

expected annual rate of return 20%−ε(δ), where ε(δ) converges to zero as the level of

the investor’s patience, δ, approaches 1. If instead the annual rate of the put option is

20%, then this strategy will yield the same expected annual rate of return, 20%−ε(δ).
In fact, given such a limited set of instruments, the worst case for the investor is a

constant fluctuation of the S&P 500 around zero with no long-run tendency of growth

or decline, where the best portfolio is to hold 100% of cash in a bank. In this case the

above strategy guarantees the investor the annual rate of return of 5%− ε(δ). Thus,

this strategy is almost as safe as keeping cash in a bank, yet it allows the investor to

obtain much more whenever there exists a portfolio that yields a higher return.

3 Preliminaries

A decision maker (for short, Agent) repeatedly faces an uncertain environment (re-

ferred to as Nature). In every discrete period of time t = 1, 2, . . . Agent chooses an

action at from a set A of available actions, and, simultaneously, a state of Nature,

ωt ∈ Ω, is realized. There are also N experts (or benchmark strategies) who, before

each period, make recommendations to Agent about what action to choose; expert j

recommends an action ajt from A in period t. Let u be Agent’s payoff function, so

u(a, ω) ∈ R is Agent’s payoff when choosing action a in state ω. We assume that

A and Ω are compact measurable sets (finite or infinite), and u : A × Ω → R is

measurable and bounded. In every period Agent may condition her choice on the

recommendations of the experts made for that period as well as on everything that

happened in previous periods. There is perfect information about everything that

occurred in the past. Specifically, Agent can observe for each past period the ac-

tions chosen by each of the experts as well the state of Nature that occurred. In

particular, Agent can derive for each previous period t and each expert j the utility

she would have received if she had followed the recommendation of expert j in that
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period. Denote by ae =
(
a1, ..., aN

)
∈ AN a profile of actions recommended by the

N experts, by h := (at, a
e
t , ωt)

∞
t=1 a sequence (or path) of actions, recommendations

and states, and by ht := ((a1, a
e
1, ω1), . . . , (at, a

e
t , ωt)) the history of play up to t. Let

H be the set of all finite histories including the empty history. A strategy of Agent

is a map7 p : H × AN → ∆(A) that associates with every history ht−1 and every

profile of recommendations ae a randomized action in A to be played in period t.

For short, we write pt = p(ht−1, a
e) for the randomized action chosen by Agent in

period t. Similarly, each expert j is endowed with a strategy pj : H → ∆(A) where

pjt = pj (ht−1) is the randomized action belonging to ∆A that is recommended in

period t by expert j after ht−1 has occurred. The state of Nature realized in period

t may also depend on what happened previously, formally it is described by a map

q : H → ∆(Ω) where qt = q(ht−1) denotes the randomized state of Nature that occurs

in period t conditional on the previous history ht−1. We assume that the utility of

Agent is bounded. In fact, all we need is that the set of possible utilities that can be

generated by following some expert after some history is bounded. To simplify further

exposition, we can transform Agent’s utility function affinely so that whenever Agent

follows any expert’s recommendation, her utility is contained in the interval [0, I] for

some I > 0.8

It is as if Agent faces an opponent, called Nature, that chooses a state based on

the strategy q which is unknown to Agent. Agent could be facing a deterministic

sequence of states or a stochastic process independent of Agent’s actions. Equally,

the sequence of future states may depend on past actions of the Agent and of the

experts. For instance, it could be that Nature has its own objectives and is engaged

in a repeated game with Agent. In particular, we include the case in which Nature

knows the strategy p of Agent and is adversarial in the sense that it aims to inflict

maximal “harm” on Agent.

The experts have various interpretations. Note that Agent need not know strategy

pj of an expert j. She knows only realizations of j’s recommended actions (in the

current period as well as in all past periods). Thus, in our setting experts may know

more about the environment than Agent does. Some experts may even know Nature’s

7∆(B) denotes the set of probability distributions over a finite set B.
8Let u = inf{u(pj (h) , ω) : h ∈ H, ω ∈ Ω} and let I = sup{u(pj (h) , ω) : h ∈ H, ω ∈ Ω} − u.

Then replace in the original utility function u (a, ω) by (u(a, ω)− u).
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strategy q, though, of course, it does not mean that they will reveal the best actions

to Agent. One interesting interpretation is that experts are forecasters. An expert

makes a forecast of a next-period state of Nature (it could be a point forecast, a

confidence interval, a distribution, etc.). Then Agent’s problem is to decide which

expert to follow, or possibly how to aggregate the forecasts of the different experts.

On the other hand, in some applications it is plausible to assume that the strategies

pj of the experts are known by Agent. Such a setting emerges when there are no

explicit experts but instead each pj describes an algorithm, a benchmark strategy,

that Agent wants to compare her own performance to. This approach is popular in

the computer science literature (see Cesa-Bianchi and Lugosi, 2006, and references

within). When the set of actions is finite, then it is common in the literature (e.g.,

Hannan, 1957; Fudenberg and Levine, 1995; Hart and Mas-Colell, 2001a) to consider

as benchmarks the set of constant strategies {pa, a ∈ A} as experts where pa specifies

to play a ∈ A in every period, irrespective of the history of play.

In this paper we assume that the set of experts or benchmarks is given. How the

experts are selected is not considered here (see some comments in Section 8 below).

We would like to note that everything goes through if the set of feasible actions and

states are time dependent, at, a
j
t ∈ At and ωt ∈ Ωt where At and Ωt are endowed with

the same properties as A and Ω defined above. Similarly, everything holds if, as in a

more classic decision making setting, outcomes are observable while states are not. In

this case X is a set of outcomes, u : X → R is bounded and q : A×Ω→ ∆(X) is the

underlying process that generates outcomes given actions chosen and states realized.

Agent’s payoffs accumulated in different periods are combined as in classical deci-

sion making by means of discounting. Agent discounts future payoffs with a discount

factor δ ∈ (0, 1). For given strategies p and q, Agent’s expected utility at time t0 is

denoted by Ut0,δ(p, q|ht0−1) and defined by9

Ut0,δ(p, q|ht0−1) = E
[
(1− δ)

∑∞

t=t0
δt−t0u(at, ωt)

∣∣∣ht0−1

]
. (1)

9Strategies p and q, together with an initial history ht0−1, define a stochastic process that de-

termines a probability measure over histories in H; the expectation is taken with respect to that

measure. Note that formally the stochastic process depends also on the strategies of the experts,

but we omit them in the notations as we assume these strategies are given as a part of the problem

description.
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Note that these expectations only refer to the randomness inherent in p and q.

Agent herself does not know q, and hence cannot compute these expectations. We

assume that Agent has no prior beliefs about Nature’s behavior q (a distribution-

free environment). We will be measuring how well Agent’s strategies perform in this

unknown, possibly, hostile environment. Instead of assigning a prior on Nature’s

behavior and finding a Bayesian-optimal strategy, or applying some standard non-

Bayesian approach, such as the maximin objective of finding the best strategy against

the worst-case scenario, we consider a very simplistic objective. The objective of

Agent is to perform nearly as well as the best expert, regardless of what Nature does

and without knowing in advance which expert is actually the best. Moreover, we

assume that this objective is maintained after any history. To put it formally, we say

that strategy p is sequentially ε-as good as strategy p′ if for every strategy q of Nature,

every period t0 and every history ht0−1,

Ut0,δ(p, q|ht0−1) ≥ Ut0,δ(p
′, q|ht0−1)− ε.

A strategy p is sequentially ε-optimal w.r.t. the given experts if it is sequentially

ε-as good as every pj, j ∈ J = {1, 2, . . . , N}.10 This is the analogue of the concept

of contemporaneous perfect ε-equilibrium introduced by Mailath et al. (2005) in the

context of repeated games (see also Radner, 1980). Finally, we say that a strategy p

is sequentially ε-optimal if it is sequentially ε-optimal w.r.t. any set of experts.

The requirement that the expected performance evaluated in period t0 be ε-as

good as that of every expert irrespective of the previous history ht0−1 is of particular

importance in this paper. On the one hand, this is a dynamic consistency constraint

on Agent’s objective: if Agent decides to choose a strategy p in period t0, she should

not change her mind in any period t > t0. A strategy that does not satisfy this con-

straint would require Agent’s commitment at period t0 to an infinite sequence of future

decisions. On the other hand, this is a condition of sequential rationality (or subgame

perfection) that ensures optimal behavior of Agent even after zero-probability histo-

ries achieved by “mistakes” in past decisions of Agent or Nature. In particular, we

do not restrict Agent to start with the empty history, the problem is well defined for

every initial history, regardless of the way it has been reached.

10An expert’s strategy can be treated as the same mathematical object as Agent’s strategy, with

the property that it does not depend on experts’ recommendations.
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Consider the special case where the set A of actions is finite and the set of experts

consists of all constant strategies pa, a ∈ A. Then Agent’s goal is to guarantee the

expected utility nearly as high as what could be obtained by playing any constant

action in all periods. This is analogous to no (Hannan) regrets (Hannan, 1957) or

universal consistency (Fudenberg and Levine, 1995) objective stipulating that Agent’s

realized long-run average payoff be at least as high as the best-reply payoff to the

empirical distribution of states of Nature. For example, in the context of a firm

producing a good when demand is unknown, a constant strategy is to produce a fixed

quantity z of the good in all periods, and no regrets objective stipulates that the firm

receives the long-run average profit at least as high as what could be achieved by

any constant strategy. Note, however, that even the best constant strategy can do

quite poorly if the random demand is serially correlated: for instance, a strategy that

recommends the firm to best-reply to the demand realization in the last period can

outperform the best constant strategy. In fact, non-constant experts are present in

many applications, and allowing Agent to follow advice of such experts is an essential

part of our framework.

4 Conditioning on the Past

In this paper we regard Agent as an unsophisticated, non-Bayesian decision maker

who uses her past “experience” in a simple way. More specifically, we will consider

strategies where decisions of Agent depend in a simple way on own past performance,

as well as on that of the experts. Loosely speaking, Agent will choose to follow advice

of those experts who performed better than she did. An important part of this paper

will deal with how to appropriately measure past performance. Note that this should

not be confused with the fact that future payoffs are evaluated using discount factor

δ.

The standard in the literature (see Cesa-Bianchi and Lugosi, 2006, and references

within) is to condition next choice in period t + 1 on average past performance (i.e.

the arithmetic mean) of self and of each of the experts, averaging over periods from 1

to t. We say that performance is measured using past average payoffs if performance

up to time t given history ht is evaluated by its average in periods from 1 to t. Agent’s
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own performance is denoted by C1,t(0) and given by

C1,t(0) =
1

t

∑t

i=1
u(at, ωt)

performance of expert j ∈ J = {1, . . . , N} is denoted by C1,t(j) and given by

C1,t(j) =
1

t

∑t

i=1
u(ajt , ωt).

In this paper we focus on the setting where past performance is measured with

“decay”, assigning a higher weight to more recent experiences, referred as discounted

past payoffs. Specifically, for α ∈ (0, 1) and every j ∈ J define the past α-discounted

payoff at period t = 1, 2, . . . recursively by setting Cα,0(j) = 0, and for every t ≥ 1

Cα,t(j) = αCα,t−1(j) + (1− α)u(ajt , ωt). (2)

To put it differently, Cα,t(j) is defined as

Cα,t(j) = (1− α)
t∑
i=1

αt−iu(aji , ωt). (3)

Analogously, the past α-discounted payoff Cα,t(0) of Agent is defined.

One may choose to interpret discounting of past payoffs as a decay of past in-

formation, an active underweighing of older outcomes as these are perceived as less

relevant than recent events. The discounted past payoff, Cα,t (j), is an aggregate of

the past information, and according to the recursive formula (2), every new piece of

information receives the weight of 1−α in this aggregate, thus the term 1−α can be

viewed as Agent’s rate of adaptation to new conditions. Indeed, large 1 − α means

that Agent places a considerable weight on new information and adjusts the aggre-

gate values fast; 1 − α close to zero means that Agent places a little weight on new

information, and the aggregate values change slowly. In this sense, the evaluation

according to past average payoffs can be considered as declining rate of adaptation,

the rate of adaptation in period t being equal to 1/t.

It is worth noting that strategies based on discounted past payoffs are not compu-

tationally demanding. Agent need not remember all the past information, she only

needs to know the current values of the discounted past payoffs and to update them

by the recursive formula (2) in every period.
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Consider a strategy p such that for every period t Agent’s next-period behavior

depends only on her evaluation of the past performance of the N experts as well

as on her own past performance. That is, given a vector xt ∈ RN+1 consisting of

performance measure xt (0) of Agent and xt (j) of expert j, j = 1, .., N , the next

period mixed action of Agent is a function of xt only: pt+1 = σ(xt). Such a strategy p

is called a better-reply strategy if for every period t, whenever xt (j) ≥ xt (0) for some

j ∈ J ,

xt(j) < xt (0) ⇒ pt+1(j) = 0, j ∈ J. (4)

The better-reply property is a natural condition that stipulates to never follow the

advice of those experts whose performance is inferior to Agent’s own performance.

The related literature in this area has chosen to explain everything in terms of

regret (see Appendix A for formal definitions). For each expert one computes the

regret of not following this expert in a given period as the difference between the

payoff of that expert and own payoff. The choice among experts is governed by the

average regret of not following recommendations of these experts. The better-reply

condition on Agent’s strategy means to never follow the advice of an expert that Agent

has negative regret for not following his advice in the past. While the interpretations

are different, mathematically the two approaches are identical. We provide a few

examples that come from this literature.

Example 1 The better reply strategy pt+1 = σ (xt) is the regret matching strategy

(Hart and Mas-Colell, 2000) if the recommendation of expert j is followed with prob-

ability proportional to how much better expert j performed than Agent in the past,

formally, if σ(x) is defined for every j ∈ J by

σj(x) =
[x (j)− x (0)]+∑
k∈J [x (k)− x (0)]+

(5)

whenever x(j′) ≥ x(0) for some j′ ∈ J , where [z]+ = max{0, z}.11

Example 2 More generally, let P be the lp-norm, P (x) =
(∑

j∈J x
p
j

)1/p

. Then σ(x)

is called the lp-norm strategy (Hart and Mas-Colell, 2001a; Cesa-Bianchi and Lugosi,

11 This strategy should not be confused with the regret matching strategy applied to conditional
regrets that was also introduced by Hart and Mas-Colell (2000).
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2003) if it is defined for every j ∈ J by

σj(x) =
∇jP ([x (j)− x (0)]+)∑
k∈J ∇Pk([x (k)− x (0)]+)

=
[x (j)− x (0)]p−1

+∑
k∈J [x (k)− x (0)]p−1

+

whenever x(j′) ≥ x(0) for some j′ ∈ J . In particular, the l2-norm strategy is equal to

the regret matching strategy. The l∞-norm strategy assigns probability 1 on experts

with the highest performance. It is equivalent to the fictitious play (Brown, 1951)

if performance is measured using past average payoffs. For large p, the lp-norm

strategies based on past average payoffs approximate fictitious play and are called

smooth fictitious play.12

We can now state our main result. For given α ∈ (0, 1) the regret matching strategy

based on past α-discounted payoffs, denoted by pα, is the strategy defined at each time

t by applying the regret matching rule (5) to the vector of performance assessments

given by Cα,t.

Theorem 1 For every ε > 0 there exists δ0 ∈ (0, 1) such that the following holds.

For every δ ≥ δ0 there exists α ∈ (0, 1) such that pα is sequentially ε-optimal.

This result follows directly from Propositions 1 and 2 below. Theorem 1 states

that a sufficiently patient Agent can guarantee the expected utility to be arbitrarily

close to that achieved by the best of the experts consistently in all periods. This

is true without any knowledge about Nature’s behavior and without any possibil-

ity of assessing ex-ante which expert’s strategy is actually the best as measured by

discounted future payoffs.

It is important to note that we provide a uniform bound on the difference between

discounted future payoffs of Agent and the best expert. This bound is independent of

time and history of past play. In contrast, the existing literature (e.g., Hart and Mas-

Colell, 2001a; Cesa-Bianchi and Lugosi, 2003) offer strategies based on time-average

past payoffs that guarantee Agent’s (long-run average) payoffs to be as good as the

best expert, but not uniformly: the later the period the worse the bound. This insight

is the basis of Proposition 4 below.

We first establish an upper bound for given α on how far Agent can fall short

from performing as good as the best expert in the given environment.

12Fudenberg and Levine’s (1995) original definition of smooth fictitious play is different and does
not satisfy the better-reply condition (4).
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Proposition 1 Given discount factor δ the regret-matching strategy pα based on past

α-discounted payoffs is sequentially ε-optimal when

ε =
1− αδ
1− α

I

√
N

4 (1− α)2 + (1− δ)α2

1− δα2
+
α(1− δ)

1− α
I. (6)

All proofs are deferred to the Appendix. Looking at (6) we see that the number of

experts N essentially enters with factor
√
N . The bound is general in the sense that

it only depends on the number of experts, not on their specific strategies. Adding

an expert increases the highest payoff that Agent aspires to reach, the increase is

strict when she faces an environment in which this new expert is better than all the

rest. An addition of any additional expert comes at the cost of strictly reducing how

close Agent can guarantee, according to (6), to be to the highest payoff among the

experts. Thus, adding or removing experts may or may not be beneficial for Agent.

The question of how to choose experts is not considered in this paper (see a brief

discussion in Section 8).

We now show that pα is sequentially ε-optimal for an appropriate choice of α. The

value α = α∗(δ) is chosen to minimize ε = ε (α, δ) over all α ∈ (0, 1) where ε (α, δ)

is given in (6). To get a feeling for how α∗ depends on δ when ε is small we derive

approximations of the bound ε (α∗ (δ) , δ) when δ is close to 1. These are supplemented

with approximations of ε (α, δ) to highlight the trade-off between α and δ.13

Proposition 2 Let ε = ε (α, δ) be defined as in (6). Then

ε (α, δ) = I
√
N

√
2(1− α) +

1

2

1− δ
1− α

+O

(
(1− α) +

1− δ
1− α

)
, (7)

ε (α∗ (δ) , δ) = min
α∈(0,1)

ε (α, δ) = I
√
N

4
√

1− δ + 2I
√

(1− δ) +O
(

(1− δ)3/4
)
, (8)

where

α∗ (δ) = 1− 1

2

√
1− δ +O

(
(1− δ)3/4

)
. (9)

In order for (6) to be small, Agent has to be very patient (δ large) and has to

choose a value of decay of information 1 − α that is small in absolute terms but

relatively large in comparison to 1 − δ. Following (9), the best choice of α when δ

13For two functions f, g : R→ R, we write f(x) = O(g(x)) if there exists a constant C such that

|f(x)| ≤ C|g(x)| for all x close enough to zero.
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is large is to let decay have the same magnitude as the square root of the distance

between δ and 1. To gain a feeling for (8) consider δ close to 1. Note that 1
1−δ can be

interpreted as the mean time horizon of Agent as (1− δ)
∑∞

t=1 tδ
t−1 = 1

1−δ . Then in

order to reduce the bound on maximal expected regret by 10% Agent has to increase

mean time horizon by roughly 50% (as 1
0.94 ≈ 1.52) and consequently increase the

mean time horizon of looking into the past by roughly 25% (as 1
0.92 ≈ 1. 23).

We numerically calculate α∗ and ε∗ = ε (α∗(δ), δ) and compare these to the ap-

proximations α̂ and ε̂ in (8) and (9) in Proposition 2 and show the values in Table 4,

where we set I = 1.

N 1− δ 1− α∗ α∗ − α̂ ε∗ ε∗ − ε̂

2 10−6 5.3× 10−4 3× 10−5 0.0653 5.4× 10−5

2 10−5 1.76× 10−3 1.8× 10−4 0.189 1.07× 10−4

2 10−4 6× 10−3 0.001 0.2206 6× 10−4

4 10−6 5× 10−4 0 0.0898 −1.64× 10−3

Table 1: Numeric examples

So for instance, when there are two experts and 1 − δ = 10−6, then we can

guarantee future expected payoffs to be no worse than 0.065 as compared to those

of the best expert. Here 0.065 can be interpreted as 6.5% of the maximal payoff

difference as utility has been normalized in this table to be contained in [0, 1] .

The literature on no-regret decision making concerns less for expected payoffs than

providing almost sure upper bounds on the difference in payoffs. In Appendix B we

present probabilistic bounds on how close Agent’s discounted future payoffs are to

those of the best expert. Following Cesa-Bianchi and Lugosi (2006), almost sure

bounds are not available when discounting past payoffs.

5 The Role of the Rate of Adaptation

In the previous section we showed that the rate of adaptation, 1− α, has to be fine-

tuned for a given discount factor δ in order to obtain Theorem 1. We now show why

Theorem 1 does not hold if the rate of adaptation is too slow or too fast.
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First, let us show that the rate of adaptation should be a function of δ and, as

δ approaches one, 1 − α should approach zero. In other words, a strategy based on

discounted past payoffs with a given rate of adaptation 1 − α independent of δ will

fail to guarantee a future expected payoff arbitrarily close to that of the best expert,

no matter how patient (or impatient) Agent is.

Before stating the formal result, let us show the intuition behind it. Imagine

that Nature has two states, either Rain or Sun, that occur with probability 1/3

and 2/3, respectively, independently in every period. Agent receives the payoff of

I if she forecasts the state of Nature correctly, otherwise she receives zero. There

are two constant experts: one always forecasts Rain, the other always Sun. Given

this environment, the best strategy for Agent, regardless of her discount factor, is

to forecast Sun in each period, in other words, to always follow the recommendation

of the expert that forecasts Sun. This is what happens asymptotically when Agent

bases her forecast on past average payoffs. Past frequencies, due to the law of large

numbers, eventually reflect true probabilities and hence she will learn to forecast the

more likely event. Now consider an adaptive Agent. More recent events receive more

weight, and after a sufficiently long sequence of periods in which Rain occurred she

will essentially ignore what happened before this sequence and hence forecast Rain.

Of course, the event that such a sequence occurs has a low probability. Yet, this

probability is strictly positive, thus preventing Agent from learning to forecast Sun

in each period.

Proposition 3 Fix α ∈ (0, 1). Then there exists ε0 > 0 such that for every δ ∈ (0, 1)

there does not exist a better-reply strategy based on past α-discounted payoffs that is

sequentially ε0-optimal.

Second, let us show why it is important for the strategy to be sufficiently adaptive,

in other words, what can go wrong when the rate of adaptation is too small. Consider

first the canonical model in which Agent bases here future choice on past average

payoffs. Almost all up-to-date literature (with exception of Marden et al. 2007, Mallet

et al. 2009, Zapechelnyuk 2008, and Lehrer and Solan 2009) chooses this model.

More specifically, for every history ht, the next-period mixed action of Agent is a

function of C1,t only: pt+1 = σ(C1,t). These strategies become decreasingly adaptive

over time, their rate of adaptation is equal to 1/t after t periods. When some expert
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that has been the best so far becomes non-optimal, it may take a very long time for

Agent to learn this and to start following the recommendation of a different expert.

The later the period, the longer it will take Agent to adapt to changes. Thus, no

matter how patient Agent is, after sufficiently many periods there will be histories

such that Agent may not want to wait until her past average payoffs are able capture

changes in the environment. Thus, the problem of dynamic consistency arises. After

some time and some histories Agent will prefer to “forget” the past and to restart the

strategy from the empty history. Therefore, these strategies fail to be dynamically

consistent as defined by our concept of sequential ε-optimality.

To illustrate, let us return to our previous example and consider a non-stationary

environment in which Sun occurs in periods 1 to m and Rain occurs forever thereafter.

Given T ∈ N, if m is sufficiently large, then Agent will forecast Sun in periods

m+ 1, ...,m+T even though Rain occurs in each of these periods. Payoffs in periods

m + 1 to m + T are equal to 0 and hence in those periods they are far from that of

the best expert. So for any given discount factor δ (δ < 1), one only has to choose m

sufficiently large to make Agent unwilling to maintain her strategy at period m+ 1.

Proposition 4 For every ε < I/2 and every δ ∈ (0, 1) there exists α0 < 1 such that

there does not exist a better-reply strategy based on past average or past α-discounted

payoffs with α > α0 that is sequentially ε-optimal.

In particular, this proposition shows that none of the popular “no regret” strate-

gies considered in the literature, referring to Hart and Mas-Colell’s (2000) regret

matching, lp-norm strategies of Hart and Mas-Colell (2001a) and Cesa-Bianchi and

Lugosi (2003), as well as the fictitious play and its smooth variants, satisfy the ob-

jective of sequential rationality (or dynamic consistency) that is the focus of this

paper.

Remark 1 Assume briefly that Agent does not discount future payoffs, but instead

is concerned in each period t with average payoffs in the next T periods. Proposition

4 immediately extends. This follows directly from our example above in which we

demonstrated how it can happen that Agent attains the lowest payoff in T consecutive

periods when conditioning play on past average payoffs.

Similarly, our main result, Theorem 1, extends. When Agent is concerned with
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average payoffs in the next T periods, then the regret matching based on past α-

discounted payoffs generates a sequentially ε-optimal strategy provided α is chosen

appropriately and T is sufficiently large. The important underlying assumption is

that the decision problem is stationary, that is, in every period Agent is concerned

about the same horizon T of future payoffs.

Remark 2 We hasten to point out that if Agent faces a finitely repeated decision

problem with T periods, then sequentially ε-optimal strategies fail to exist when

ε < I/2, regardless of how past information is used. The intuition is simple. After

facing T − 1 periods, Agent is only concerned with her payoff in the final period T .

Since Nature’s strategy is arbitrary, the past information is irrelevant. Thus, Agent

can guarantee only the maximin payoff, in our above example this is I/2, while the

payoff of the best expert in the final round is equal to I.

6 The Role of the Discount Factor

In this paper, the discount factor is a parameter that describes the patience of the

decision maker (who we call Agent), her intertemporal preferences that relate today’s

and tomorrow’s utility. The statement in Theorem 1 may leave an impression that a

more patient decision maker can achieve a better result in terms of discounted future

payoffs. In this section we argue that this need not be true, and that the relationship

between the discount factor and learning the best strategy is far more complex.

Recall that in this paper the decision maker’s objective is to do as well as the best

expert, and we find a more patient decision maker can get closer to the best expert.

Consider now an outside observer who measures the performance of the decision maker

by her long-run average payoff. What is the value for the decision maker of following

the best expert from the perspective of the observer? The answer is not trivial, since

an expert’s discounted future payoff depends on the decision maker’s discount factor,

δ. When δ is higher, then maximum discounted payoff among experts can be higher

when the environment is stationary, but it can be lower when the environment is

non-stationary. Indeed, an expert who is best in the long run is not getting very good

short-run average payoffs if the environment is changing. Therefore, it could well be

that for the observer a less patient decision maker will show a better performance
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than a more patient one.

To illustrate, consider our example from the previous section. In every period

Nature chooses Rain or Sun, the decision maker needs to forecast the state of Nature,

and there are two constant experts: one always forecasts Rain, the other always Sun.

Suppose that Nature deterministically alternates between m periods of Sun and m

periods of Rain. Consider first an infinitely patient decision maker, who values all

future payoffs equally. In our framework this decision maker aspires to obtain the

long-run average payoff as high as the best of the experts (and both are equally good

in the long run), that is, to make correct guesses on average in 1/2 of the periods.

Now consider a different, infinitely impatient decision maker (with δ = 0) who enjoys

only today’s utility and assigns zero weight on all future payoffs. Since in every period

at least one of the experts makes a correct recommendation, for this decision maker

the objective of achieving the (discounted future) payoff as high as the best of the

experts, consistently in all periods, means to forecast the state correctly in each and

every period! This goal is impossible to attain, since the decision maker does not

know the strategy of Nature, but, for instance, the regret-matching strategy pα based

on the regret from the last period only (α = 0) would choose the state that occurred

in previous period as the forecast for the next period. Hence this decision maker can

correctly forecast a fraction (m− 1)/m of the states.

It follows that an impatient decision maker aspires to a higher goal than a patient

one, as she wishes to achieve a high payoff in every short run, as opposed to achieving

a high average payoff in the long run. We can now explain the trade-off between

focusing on long run payoffs and short run payoffs as follows. In the long run one can

get arbitrarily close to the payoff of the best expert, as her performance is based on

all periods, and hence the entire past can be used to learn which expert is the best.

The downside is that the long run payoff will not be very large if the environment is

changing. When focusing on performance of the best expert in the short run, one has

higher goals, as now one is fine-tuning the best expert to the upcoming environments,

ignoring those in the distant future. The disadvantage is that it is harder to reach

these goals, to get close to the best expert for the near future. The reason is that one

cannot use information from the distant past as it may not be relevant. Instead one

needs to focus on more recent past which essentially limits the amount of information
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one is gathering. This is best seen by our result that information from the recent

past is not enough to learn which action is best in a stationary environment (see the

example in Section 5).

Note that a higher goal may be alternatively set by adding more sophisticated ex-

perts that take into account past dependencies and adjust to changing environments.

However, one has to be aware of the fact that there are many ways to condition on

the past. In fact, one cannot add all experts that condition on the payoffs obtained

in the previous period when infinitely many payoffs can be realized. Even when there

are only finitely many payoffs, the set of all experts that condition on the past k

rounds increases exponentially in k . Selecting the appropriate sophisticated experts

can itself be a difficult task, in particular in view of the fact that the precision of how

close the decision maker can get to the payoff of the best expert negatively depends on

the number of experts. In contrast, reducing the discount factor is a unidimensional

problem that highlights in a simple way the trade-off between adapting to a changing

environment and gathering sufficient information to be able to adapt.

It would be interesting to consider the framework where the decision maker sets

her goals by strategically choosing the discount factor. We leave formalization and

analysis of this problem for future research. Here we only note that a decision maker

who is interested in long-run average payoffs may wish to decrease the discount factor

away from 1, understanding the trade-off between a higher aspiration level when δ is

smaller and more efficient learning when δ is larger. In applications this is done by

calibrating δ to past observations, as undergone by Mallet et al. (2009).

7 Noisy Observations

In this section we return to our basic model and extend it to allow for observations

of expert payoffs to be noisy. We will show that Theorem 1 continues to hold, with

a slightly looser upper bound due to the additional source of error.

In our basic model, Agent observes the state of nature and computes the forgone

payoff of not following the recommendation ajt of expert j in period t as u(ajt , ωt).

Suppose now that Agent does not observe states of Nature. Instead, she only observes

payoffs, and these are subject to noise. Let ũt (0) be Agent’s observed payoff generated
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in period t and let ũt(j) be that of expert j. We assume that

ũt(0) = (1− λ)ut(at, ωt) + λξt(0),

ũt(j) = (1− λ)ut(a
j
t , ωt) + λξt(j) for j ∈ J.

Here λ is a parameter that measures the level of contamination of Agent’s information

and satisfies 0 ≤ λ < 1. The only assumption on noisy payoffs is that they satisfy

the same constraints as the true payoffs, namely for every t = 1, 2, . . . and every

j ∈ J ∪ {0},
0 ≤ ũt(j) ≤ I. (10)

In particular, no assumptions are made on the relationship of the noise of different

experts in different periods.

The following examples fall within this framework.

(i) Agent’s payoffs are perfectly observable, while those of experts can be noisy.

So noise in observed experts’ payoffs only matters for those experts who have chosen

a different action. Here ũt(0) = ut(at, ωt) and ũt(j) = ut(a
j
t , ωt) whenever ajt = at. For

instance, one can model the situation where with some probability bounded above by

λ expert 1 acts as if he obtained the payoff of the best expert in that period (instead

of her reporting his own).

(ii) Payoffs are perfectly observable, but experts possibly do not face the same

state as Agent does. Here λ is the maximal probability that expert j does not face

the same state as Agent in period t. The probability of facing a different state than

Agent can be drawn independently for each period. It could also be that some experts

simply never face the environment of Agent.

(iii) Sometimes an expert’s payoffs are not observable. With probability smaller

than λ the payoff of expert j is not observed in period t. In this case ξt(j) is a

part of the strategy of Agent and we set ξt(j) = 0. Analogous to (ii), there are no

assumptions on how the event that the payoff of expert j is not observed in period

t depends on other events. Here the most natural model is the case where the event

that the payoff of expert j is observed is independent of whether payoffs of other

experts were observed.

We continue to measure performance by discounting the past, the only difference

is that these calculations are now based on the noisy payoffs ũt(j). Specifically, the
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past α-discounted payoff of expert j is defined the same way as before, Cα,0(j) = 0,

and for every t ≥ 1

Cα,t(j) = αCα,t−1(j) + (1− α)ũt(j).

Future performance is still measured in terms of discounted future payoffs, here only

the true utilities ut matter. Let Ut,δ (j) be the discounted future payoff of expert j.

The same notations with “tilde” refer to the corresponding expressions with noisy

payoffs. Let ξt,δ(j) = (1− δ)
∑∞

i=0 δ
iξt+i(j).

There is no need for new proofs. Following Theorem 1 we know there exists ε

such that Ũt,δ ≥ Ũt,δ (j)− ε for all t and all j. Thus, we obtain that

(1− λ)Ut,δ ≥ (1− λ)Ut,δ (j) + λ (ξt,δ (j)− ξt,δ(0))− ε

and hence

Ut,δ ≥ Ut,δ (j) +
λ

1− λ
(ξt,δ (j)− ξt,δ(0))− ε

1− λ
.

This leads us to the next proposition, in particular we find that Theorem 1 continues

to hold.

Proposition 5 Given discount factor δ and observation of noisy payoffs, let θ, bt ∈
[0, I] be such that E (ξt (j) |ht−1) ∈ [bt, bt + θ] for all t and all ht−1 then regret-matching

strategy pα based on α-discounted past payoffs is sequentially ε-optimal when

ε =
1

1− λ

1− αδ
1− α

I

√
N

4 (1− α)2 + (1− δ)α2

1− δα2
+
α(1− δ)

1− α

+
λθ

1− λ
. (11)

Note that when θ = 0, the above bound is precisely the bound (6) for the noiseless

environment increased by the factor of 1/(1− λ). The effect of noise is rather small:

if, for instance, the information is contaminated by 10% (λ = 0.1), then the resulting

bound is greater only by about 11%. When θ > 0 then there is an additional term

reflecting the difference between the expected utility observed by Agent and expected

utility generated for Agent.

8 Discussion and Conclusion

In conclusion, we discuss various issues related to our results.
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A comment on Propositions 1 and 6. The proofs of the central result of this

paper, Proposition 1, and its counterpart that concerns probabilistic bounds, Propo-

sition 6 in Appendix B, contain new elements. As in Hart and Mas-Colell (2000),

we use a quadratic potential function to bound past regret, but we cannot use the

Approachability Theorems (Hart and Mas-Colell, 2001a; Lehrer, 2003) to derive our

result, as they apply to averaging the past, while we discount the past. Further steps

that are new in our proofs involve connecting discounted past payoffs to discounted

future payoffs (in Proposition 1), and extension of the Hoeffding-Azuma inequality to

infinite series and its application for derivation of probabilistic bounds (Proposition

6).

Convex action sets. According to our sequentially ε-optimal strategy, if there are,

say, two experts whose past recommendations would have brought to Agent higher

past-discounted payoffs, then Agent chooses to follow advice of each of those experts

with a specified positive probability. However, in many applications a strategy that

requires to play a lottery does not sound convincing. Instead, one would expect

Agent to choose a compromise action between recommendations of these experts.

For instance, consider the situation where Agent is a financial broker and there are

two experts who did equally well in the past and better than Agent herself. Suppose

that for the next period one expert recommends to increase holding of a certain

stock by 20%, while the other recommends to do nothing. Than a reasonable action

for Agent is to increase the stock holding by 10%, rather than to toss a coin and

choose 20% or nothing with equal probability. To make this behavior possible, two

additional assumptions are necessary. First, Agent’s set of actions, A, should be

convex, so that “compromise” actions exist, and second, Agent should be risk averse

and prefer compromises to lotteries, that is, her utility function, u(a, ω), should be

(weakly) concave in a.

Define the following strategy of Agent. Given the vector of discounted past payoffs,

xt, the next-period action is a convex combination of recommendation ajt+1 of each

expert j ∈ J with the weight proportional to how much better expert j performed

relative to Agent,

at+1 =
∑
j∈J

[x (j)− x (0)]+∑
k∈J [x (k)− x (0)]+

· ajt+1 (12)

This strategy and the one given by (5) use the same weights, but the former to
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obtain pure action as a convex combination of experts’ recommendations, while the

latter to obtain a lottery over experts’ recommendations. By concavity of Agent’s

utility function in her own action, for every state ω the former strategy yields at least

as high utility as the latter, with the equality when the utility function is linear. It

follows that by strategy (12) Agent can attain the utility at least as high as by strategy

(5), and hence all the results go through without changes with this modification.

Behavior of Nature independent of Agent’s actions. One can argue that the mag-

nitude of the bound in Proposition 1 is driven by the worst case for Agent, where

she is engaged in a game with Nature that seeks to inflict Agent the maximum harm.

Thus one may wonder if a better result can be achieved by assuming that Nature’s

strategy is independent of Agent’s past actions. This assumption, however, is of no

help. The statements in Theorem 1 and Proposition 1 have to hold for every deter-

ministic sequence of states of Nature, including those sequences that, by coincidence,

are unfavorable to Agent and ex post look like Nature’s adverse behavior.

Bounded-recall strategies. A different class of strategies that adapt to a changing

environment is the strategies based on bounded recall, where Agent observes only the

information from a certain number of the last periods (Zapechelnyuk, 2008; Lehrer and

Solan, 2009). It is an open question whether our objective can be achieved by these

strategies. Note, however, that bounded recall strategies are more computationally

complex than strategies based on discounting the past. In order to implement a

bounded recall strategy with length of recall m, a decision maker has to remember

the information about each of the lastm periods. For our strategy based on discounted

past payoffs she needs to remember the accumulated discounted value of payoffs for

each expert and for herself from the last period and update this with information in

every period. So Agent’s memory consists of N + 1 real numbers (in particular, she

does not have to remember which period she is in).

The problem of expert selection. An interesting feature of the literature on learning

in an unknown environment is how one deals with the complexity of the environment.

One cannot hope to perform well in each period, thus compares performance to a

given finite set of experts or benchmark strategies. An open question not analyzed

in this paper is how to choose such experts. The more experts there are, the higher

is our bound, as it increases with
√
N and it does not depend on the specific types
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of experts. Naturally the bound can be lowered if one adds assumptions on the

relationship between the experts. Note that it does not make sense to add new

experts that are convex combinations of the existing experts. This is because our

bound not only applies to the given finite set of experts, but also to their convex

hull. A more general analysis of the interplay between experts and the bound is not

straightforward and hence is left for future research.

Other questions for future research. We consider learning with full information

and include an extension where there are errors in observability of past payoffs. A

natural extension is to consider the so-called bandit setting where only payoffs of the

action chosen are observed (but not the forgone payoffs).14 Another natural road for

future research is to consider how our strategy performs in games. The approach

in the present literature has been to get good performance in terms of learning by

focusing on conditional regrets, which can be modeled by considering special experts

that condition their play on the outcome in the past period (e.g., Hart and Mas-Colell,

2000; Hart, 2005).

Appendix A: Proofs

Below are the proofs omitted in the previous sections. In order to retain proximity to

the literature we formulate proofs in terms of regrets. We use the following notation.

For every period t and every j ∈ J denote by rt(j, at, ωt) the instantaneous regret

for not following the recommendation of expert j in that period, defined by

r (j, at, ωt) = u(ajt , ωt)− u(at, ωt).

In later proofs we will use the fact that |r (j, at, ωt) | ≤ I (since the utilities are in

[0, I]). Define Agent’s discounted future regret for expert j ∈ J at time t0 by

Rt0,δ(j) = (1− δ)
∑∞

t=t0
δt−t0rt(j). (13)

Observe that Rt0,δ(j) = Ut0,δ(j)−Ut0,δ(0) for j ∈ J. Then a strategy p is sequentially

ε-optimal if for every strategy q of Nature, every initial period t0 and every initial

14See Hart and Mas-Colell (2001b) for similar results in the setting of Hannan regret learning and

Foster and Young (2006) in the setting of regret testing.
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history ht0−1

E [Rt0,δ(j)|ht0−1] ≤ ε.

Let D1,t denote the average of past regrets of not following expert j, so

D1,t(j) =
1

t

∑t

i=1
ri(j),

and let Dα,t(j) be the following measure of discounted past regrets:

Dα,t(j) = (1− α)
t∑
i=1

αt−iri(j).

Observe that D1,t(j) = C1,t (j)−C1,t (0) and Dα,t(j) = Cα,t (j)−Cα,t (0) for all j ∈ J.

A.1 Proof of Proposition 1

Consider discounted future regrets from the perspective of time t0. Suppose that

Agent plays the regret matching strategy (5) w.r.t. discounted past regrets. Denote

by D+
α,t and D−α,t the positive and negative parts of Dα,t, respectively, i.e., D+

α,t(j) =

max {Dα,t(j), 0} and D−α,t(j) = min {Dα,t(j), 0}, j ∈ J . Also, denote by rt and

Dα,t the correspondent vectors of instantaneous and discounted past regrets, i.e.,

rt = (rt(j))j∈J and Dα,t = (Dα,t(j))j∈J . The proof is divided into three steps.

Step 1. For every t = 1, 2, . . . we define Xt = D+
α,t−1 · rt and show that

E [Xt|ht−1] ≡ D+
α,t−1 · E [rt|ht−1] = 0.

Step 2. Define ρ2
t =

∥∥D+
α,t

∥∥2 ≡
∥∥Dα,t −D−α,t

∥∥2
, where ‖·‖ denotes the Euclidean

norm in RN . We derive an upper bound on
[
(1− δ)

∑∞
t=t0

δt−t0ρ2
t

]
for the regret

matching strategy with α-discounting. We show that

(1− δ)
∞∑
t=t0

δt−t0ρ2
t ≤

∞∑
t=t0

btXt + I2N
4(1− α)2 + (1− δ)α2

1− δα2
, (14)

where bt0 , bt0+1, . . . are some positive bounded coefficients.

By Step 1, for every t ≥ t0, E[Xt|ht−1] = 0, and the following is immediate:

E

[
(1− δ)

∞∑
t=t0

δt−t0ρ2
t

∣∣∣∣∣ht0−1

]
≤ I2N

4(1− α)2 + (1− δ)α2

1− δα2
. (15)
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Step 3. We show that for every j ∈ J ,

Rt0,δ(j) ≤
1− αδ
1− α

√√√√(1− δ)
∞∑
t=t0

δt−t0ρ2
t +

α(1− δ)
1− α

I.

Following (15) and applying Jensen’s inequality, we obtain

max
j∈J

E[Rt0,δ(j)|ht0−1] ≤
1− αδ
1− α

I

√
N

4(1− α)2 + (1− δ)α2

1− δα2
+
α(1− δ)

1− α
I.

Proof of Step 1. Suppose that D+
α,t−1(j) > 0 for some j ∈ J (otherwise it

is immediate that D+
α,t−1 · rt = 0). In every period t the regret matching strategy

pt assigns probability
D+
α,t−1(j)P

j′∈J D
+
α,t−1(j′)

to action recommended by expert j. Hence, for

every expert k ∈ J and every ω ∈ Ω we have

E[rt(k)|ht−1] =

∫
A

u(a, ω)dpkt (a)−
∫
A

u(a, ω)dpt(a)

=

∫
A

u(a, ω)dpkt (a)−
∑
j∈J

D+
α,t−1(j)∑

j′∈J D
+
α,t−1(j

′)

∫
A

u(a, ω)dpjt(a).

For short, we write u(pkt , ω) for
∫
A
u(a, ω)dpkt (a), k ∈ J . Therefore,

D+
α,t−1 · E[rt|ht−1] =

∑
k∈J

D+
α,t−1(k)

[
u(pkt , ω)−

∑
j∈J

u(pjt , ω)
D+
α,t−1(j)∑

j′∈J D
+
α,t−1(j

′)

]

=
∑
k∈J

D+
α,t−1(k)u(pkt , ω)−

∑
j∈J

u(pjt , ω)
D+
α,t−1(j)∑

j′∈J D
+
α,t−1(j

′)

∑
k∈J

D+
α,t−1(k)

=
∑
k∈J

D+
α,t−1(k)u(pkt , ω)−

∑
j∈J

u(pjt , ω)D+
α,t−1(j) = 0.

Proof of Step 2. We have Dα,t = αDα,t−1 + (1−α)rt for every t > 1. Therefore,

ρ2
t =

∥∥Dα,t −D−α,t
∥∥2 ≤

∥∥Dα,t −D−α,t−1

∥∥2
=
∥∥α(Dα,t−1 −D−α,t−1) + (1− α)(rt −D−α,t−1)

∥∥2

= α2ρ2
t−1 + 2α(1− α)(Dα,t−1 −D−α,t−1)(rt −D−α,t−1) + (1− α)2(rt −D−α,t−1)

2,

where the inequality follows from D−α,t being the closest point to Dα,t in R|A|− . Since

the instantaneous regret in every period is bounded by I, we have (rt − D−α,t−1)
2 ≤

N · (2I)2 = 4I2N . Now, using Dα,t−1 − D−α,t−1 = D+
α,t−1, D

−
α,t−1 · D+

α,t−1 = 0, and

replacing D+
α,t−1rt by Xt, we have

ρ2
t ≤ α2ρ2

t−1 + 2α(1− α)Xt + (1− α)2 · 4I2N.
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Repeatedly applying the above inequality to ρt−1, ρt−2, . . . , ρt0 yields

ρ2
t ≤ α2(t−t0+1)ρ2

t0−1 + 2α(1− α)
t∑

i=t0

α2(t−i)Xi + (1− α)24I2N
t∑

i=t0

α2(t−i).

By the fact that ρ2
t0−1 ≤ I2N , we obtain

ρ2
t ≤ α2(t−t0+1)I2N + 2α(1− α)

t∑
i=t0

α2(t−i)Xi + 4I2N
(1− α)

(
1− α2(t−t0+1)

)
1 + α

≤ 2α(1− α)
t∑

i=t0

α2(t−i)Xi + 4I2N
1− α
1 + α

+ I2Nα2(t−t0+1)

(
1− 4

1− α
1 + α

)
. (16)

Next, consider the expression (1− δ)
∑∞

t=t0
δt−t0ρ2

t , so

(1− δ)
∞∑
t=t0

δt−t0ρ2
t ≤

∞∑
t=t0

btXt + 4I2N
1− α
1 + α

(1− δ)
∞∑
i=0

δi

+I2N

(
1− 4

1− α
1 + α

)
(1− δ)

∞∑
i=0

δiα2(i+1)

=
∞∑
t=t0

btXt + 4I2N
1− α
1 + α

+ I2N

(
1− 4

1− α
1 + α

)
(1− δ)α2

1− δα2

=
∞∑
t=t0

btXt + I2N
4(1− α)2 + (1− δ)α2

1− δα2
,

where bt0 , bt0+1, . . . are the resulting coefficients on the respective Xt. The coefficient

of Xi in (16) corresponding to ρ2
t is equal to 2α (1− α)α2(t−i) provided t0 ≤ i ≤ t. So

we obtain for every t ≥ t0

bt = (1− δ)
∞∑
i=t

δt−t0+i2α (1− α)α2i = 2δt−t0(1− δ)α(1− α)

1− δα2
. (17)

Proof of Step 3. First, we have

ρt =

√∑
j∈J

(
D+
α,t(j)

)2 ≥ max
j∈J

D+
α,t(j) ≥ max

j∈J
Dα,t(j) ≥ Dα,t(j), j ∈ J. (18)

Next, using (18), we obtain√√√√(1− δ)
∞∑
t=t0

δt−t0ρ2
t ≥ (1− δ)

∞∑
t=t0

δt−t0ρt

≥ (1− δ)
∞∑
t=t0

δt−t0Dα,t(j), j ∈ J. (19)
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Recall that Rt0,δ = (1 − δ)(rt0 + δrt0+1 + δ2rt0+2 + . . .). Thus, by rearranging the

summands, we obtain

(1− δ)
∞∑
t=t0

δt−t0Dα,t = (1− δ)((1− α)rt0 + αDt0−1,α)

+ (1− δ)δ((1− α)(rt0+1 + αrt0) + α2Dt0−1,α)

+ (1− δ)δ2((1− α)(rt0+2 + αrt0+1 + α2rt0) + α3Dt0−1,α)

+ . . .

= (1− α)(1− δ)(rt0 + δrt0+1 + δ2rt0+2 + . . .)

+ (1− α)αδ(1− δ)(rt0 + δrt0+1 + δ2rt0+2 + . . .)

+ . . .+ (1− δ)α(Dt0−1,α + αδDt0−1,α + (αδ)2Dt0−1,α + . . .)

= ((1− α)Rt0,δ + α(1− δ)Dt0−1,α)
∞∑
i=0

(αδ)i.

Next, using
∑∞

i=0(αδ)
i = 1/(1− αδ) yields

(1− δ)
∞∑
t=t0

δt−t0Dα,t =
1− α
1− αδ

Rt0,δ +
α(1− δ)
1− αδ

Dt0−1,α

≥ 1− α
1− αδ

Rt0,δ −
α(1− δ)
1− αδ

I. (20)

Step 3 is immediate by (19) and (20). End of Proof.

A.2 Proof of Proposition 2

The proof is straightforward but tedious so we here only show how to verify the

claims. Set y = 1− δ, x = 1− α and z = y/x.

We show how to prove (7). Let g (x, z) be the difference between the expression

given in (6) and the first term in (7). So we wish to show that g (x, z) = O (x+ z)

which is established by verifying the following: g (0, 0) = 0, d
dx
g (x, z) is bounded for

each given z and d
dz
g (x, z) is bounded for each given x.

We now show how to derive (9). Replace in (7) each appearance of the symbol O

with a different constant and then take the derivative with respect to x. Then show

that these first order conditions have a root when x =
(

1
2

+ w
)√

y for w = O
(

4
√
y
)

which yields x = 1
2

√
y +O

(
y3/4

)
.
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The asymptotic bound given in (8) is derived by taking the difference between the

expression in (6) and
√

2N 4
√

1− δ + 2
√

1− δ, setting x = 1
2

√
y and then expanding

with respect to y.

A.3 Proof of Proposition 3

The proposition is proven by example. Normalize utilities such that I = 1. Consider

two actions H and T , two states H and T and payoffs given by u (a, a′) = 1 if a = a′

and u (a, a′) = 0 if a 6= a′. There are two experts, labeled H and T , who forecast

constant actions, H and T , respectively. Suppose that states H and T are realized

with probability π and 1− π, respectively, independently in all periods.

Fix α < 1 and consider any better-reply strategy p of Agent based on α-discounted

past regret. Note that r (T, at, ωt) = 1 if at = H and ωt = T and r (T, at, ωt) = −1

if at = ωt = H and r (T, at, ωt) = 0 otherwise. So the regret for not choosing T only

depends on states that realize in rounds in which H is chosen. Recall that Dt,α(T ) =

(1− α)
∑t

i=0 α
t−ir (T, at, ωt) .We derive a lower bound on Pr (Dt,α(T ) > 0|nt (H) = n)

where nt (H) = # {t′ ≤ t : at′ = H} .
Fix m ≤ nt (H). Let χ1, χ2, . . . , χnt(H) be the subsequence of periods up to t where

Agent played H. The probability that regrets are equal to 1 in the m most recent

periods in which H was played is equal to (1− π)m . If regrets are equal to 1 in the m

most recent periods, then Dt,α(T ) is smallest if all previous regrets are equal to −1.

For t ≥ m we verify that

(1− α)

nt(H)−m∑
i=1

(−1)αt−χi + (1− α)

nt(H)∑
i=nt(H)−m+1

αt−χi ≥ αnt(H) (1− 2αm) .

So if we choose m = m (α) such that 1− 2αm(α) > 0 and if nt (H) ≥ m (α) then

Pr (Dt,α(T ) > 0|nt (H) ≥ m (α)) ≥ (1− π)m(α) .

In fact, our above calculations show that

Pr (Dt,α(T ) > 0|nt (H) > 0) ≥ (1− π)m(α) .

Similarly we verify that Pr (Dt,α(H) < 0|nt (T ) > 0) ≥ πm(α). Moreover, condi-

tional on t and on nt (H) , Dt,α(T ) and Dt,α(H) are independent random variables.
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Hence

Pr (Dt,α(T ) > 0 > Dt,α(H)|0 < nt (H) < t) ≥ (π (1− π))m(α) .

Consider a path on which agent plays both H and T. If Dt,α(T ) > 0 > Dt,α(H)

then by the better reply property at+1 = T. We have thus put a lower bound on

the probability of choosing action T where this lower bound does not depend on δ.

Assume that π > 1/2. This means that H is the better action, then

R1,δ (T ) ≥ (π (1− π))m(α) (2π − 1) .

which is a strictly positive lower bound that does not depend on δ.

In order to get around the final case in which agent plays H in all rounds we

assume that nature chooses before period 1 equally likely π ∈ {0.4, 0.6} . All bounds

above are cut in half which does not change the result to be proven.

A.4 Proof of Proposition 4

The proposition is proven by example. Normalize utilities such that I = 1. Consider

the example used in the proof of Proposition 3. Assume w.l.o.g. that Agent chooses

H in period 1 with probability at least 1/2. Fix an integer m and let Nature select

state H in periods t = 1, . . . ,m. If Agent have chosen H in period 1, then r1 (H) = 0

and r1 (T ) = −1. By the better reply condition, Agent will choose H in period 2 and

analogously also in all periods 3 ≤ t ≤ m+ 1.

Consider first the past-average payoff criterion. Note that mD1,m(T ) = −m and

mD1,m (H) = 0. In periods t = m+ 1,m+ 2, . . . , 2m let Nature choose state T . Then

(m+ 1)D1,m+1(T ) = −m+ 1 and Agent continues to choose H up to period 2m, and

only in period 2m her past average regret for T becomes nonnegative, D1,2m(T ) = 0.

Let us now evaluate the discounted future regret at period m+1. Since rt (T ) = 1

for m+ 1 ≤ t ≤ 2m, we obtain

Rm+1,δ(T ) = (1− δ)
2m∑

t=m+1

δt−m−1 + δmR2m+1,δ(T ) ≥ 1− 2δm.

Hence, given δ < 1 and ε > 0, if m is sufficiently large, then Rm+1,δ(T ) > 1− ε.
Now consider the past α-discounted payoff criterion. It can be verified that in this

case Agent will choose H in periods m+ 1,m+ 2, . . . ,m+ k(α,m), where k(α) < m
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and k(α,m) will approach m as α → 1. Hence, Rm+1,δ(T ) ≥ 1− 2δk(α,m) > ε if m is

sufficiently large and α is sufficiently close to 1, which completes the proof.

Appendix B: Probabilistic Bounds

The literature on regret-minimizing decision making is mostly concerned about al-

most sure upper bounds on maximum regret (in our setting, the maximum difference

between the payoff of the best expert and Agent’s own payoff) and that Agent may

accumulate during the play. As noted by Cesa-Bianchi and Lugosi (2006), a strategy

based on α-discounted past payoffs (or regrets) cannot guarantee to approach the best

expert with probability one. Indeed, since the stochastic process generated by such a

strategy is characterized by a positive variance of the order of 1−α for the discounted

past payoff vector in every period, the event that the realized discounted past payoffs

fall below the best expert’s payoff minus ε always has a positive probability that does

not converge to zero as t → ∞. Guaranteeing future realized discounted payoff to

be as high as that of the best expert with probability one is even a harder task, and

thus it is impossible as well.

The goal of this section is to provide upper bounds on Agent’s realized past α-

discounted payoff, as well as on realized future δ-discounted payoff with a given prob-

ability (or confidence level) γ < 1.

Define

εP (α; γ) = I
√
N

√
2

√
−1− α

1 + α
ln (1− γ) + 4

1− α
1 + α

+ α2(t−t0).

and

εF (α, δ; γ) = I
√
N

1− αδ
1− α

√
2α(1− α)

1− δα2

√
−2

1− δ
1 + δ

ln (1− γ) +
4 (1− α)2 + (1− δ)α2

1− δα2

+
α(1− δ)

1− α
I.

Proposition 6 Suppose that Agent has discount factor δ and uses the regret-matching

strategy based on past α-discounted payoffs. Then for every time t, every history ht−1

and every strategy q of Nature,

Pr

[
Cα,t(0) ≥ max

j=1,...,N
Cα,t(j)− εP (α; γ)

]
≥ γ (21)
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and

Pr

[
Ut,δ(pα) ≥ max

j=1,...,N
Ut,δ(p

j)− εF (α, δ; γ)

]
≥ γ. (22)

We wish to consider these bounds when δ is close to 1. Assume that α is chosen

to minimize the bound on expected payoff given in (6), so α∗ = 1 − 1
2

√
1− δ +

O
(

(1− δ)3/4
)
. Then

εF = I
√
N

√
2 +

√
− ln (1− γ)

4
√

1− δ + 2I
√

1− δ +O
(

(1− δ)
3
4

)
and for t0 large enough

εP = I
√
N 4
√
− ln (1− γ)

8
√

1− δ +O
(

(1− δ)
3
8

)
.

These bounds are easily verified.

To proof Proposition 6 we first extend the Hoeffding-Azuma inequality (Hoeffding,

1963; Azuma, 1967) to infinite sums of dependent bounded random variables centered

at conditional expectation.

Lemma 1 Let Z1, Z2, . . . be an infinite sequence of random variables that satisfy

at ≤ Zt ≤ bt for every t. Then for every ε > 0,

Pr

[
∞∑
t=1

(Zt − E[Zt|Zt−1, . . . , Z1]) ≥ ε

]
≤ exp

(
− 2ε2∑∞

t=1(bt − at)2

)
. (23)

Proof of Lemma 1. Suppose that
∑∞

t=1(bt − at)
2 < ∞ (otherwise inequal-

ity (23) holds trivially). It is sufficient to prove the claim when at ≤ 0 ≤ bt and

E (Zt|Zt−1, ..., Z1) = 0 holds for all t. Define Z ′t = Zt −E[Zt|Zt−1, . . . , Z1]. Following

Hoeffding (1963, Theorem 2 and p.18), we obtain for every T0 that

Pr

[
T0∑
t=1

Z ′t ≥ ε

]
≤ exp

(
− 2ε2∑T0

t=1(bt − at)2

)
. (24)

We now extend (24) to T =∞. Using Chebyscheff’s inequality we obtain

Pr

[
∞∑
t=T0

Z ′t ≥ ε

]
≤

∞∑
t=T0

Pr [Z ′t ≥ ε] ≤ 1

ε2

∞∑
t=T0

(bt − at)2 .

Therefore,

Pr

[
∞∑
t=1

Z ′t ≥ ε

]
≤ Pr

[
T0∑
t=1

Z ′t ≥ ε

]
+ Pr

[
∞∑

t=T0+1

Z ′t ≥ ε

]

≤ exp

(
− 2ε2∑T0

t=1(bt − at)2

)
+

1

ε2

∞∑
t=T0+1

(bt − at)2 . (25)
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Taking the limit as T0 tends to infinity, using the assumption that
∑∞

t=1(bt−at)2 <∞,

and hence limT0→∞
∑∞

t=T0
(bt − at)2 = 0, we obtain (23). End of Proof.

Proof of Proposition 6. By (18) we have

max
j∈J

Dα,t(j) ≤
√
ρ2
t (26)

and by Step 3 of the proof of Proposition 1 we have

max
j∈J

Rt0,δ(j) ≤
1− αδ
1− α

√√√√(1− δ)
∞∑
t=t0

δt−t0ρ2
t +

α(1− δ)
1− α

I. (27)

To obtain the bounds in (21) and (22), we will bound the probability of events{√
ρ2
t ≥ ε

}
and

{
(1− δ)

∑∞
t=t0

δt−t0ρ2
t ≥ ε

}
using the extended Hoeffding-Azuma in-

equality from Lemma 1.

First, let us deal with
√
ρ2
t . By (16) we have

ρ2
t ≤

t−t0∑
i=0

b′iXt−i + 4I2N
1− α
1 + α

+ I2Nα2(t−t0+1)

(
1− 4

1− α
1 + α

)
, (28)

where

b′i = 2α(1− α)α2i, i = 0, 1, . . . , t− t0.

Since |b′iXt−i| ≤ b′iI
2N and

t−t0∑
i=0

(b′i)
2 = 4α2(1− α)2

t−t0∑
i=0

α4i = 4α2(1− α)2 1− α4(t−t0+1)

1− α4

≤ 4α2(1− α)

(1 + α)(1 + α2)
≤ 2(1− α)

1 + α
,

by Lemma 1 we obtain

Pr

[
t−t0∑
i=0

b′iXt−i ≥ ε

]
≤ exp

(
2ε2∑t−t0

i=0 (2b′iI
2N)2

)
≤ exp

(
ε2(1 + α)

2I4N2(1− α)

)
.

Next, from (28)

Pr

[
t−t0∑
i=0

b′iXt−i ≥ ε

]
≥ Pr

[
ρ2
t ≥ ε+ 4I2N

1− α
1 + α

+ I2Nα2(t−t0+1)

(
1− 4

1− α
1 + α

)]
≥ Pr

[
ρ2
t ≥ ε+ 4I2N

1− α
1 + α

+ I2Nα2(t−t0+1)

]
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Let 1− γ = exp
(

ε2(1+α)
2I4N2(1−α)

)
, then

ε =

√
−2I4N2

1− α
1 + α

ln(1− γ) = I2N

√
−2

1− α
1 + α

ln(1− γ).

Hence, we obtain

Pr

[
ρ2
t ≥ I2N

√
−2

1− α
1 + α

ln(1− γ) + 4I2N
1− α
1 + α

+ I2Nα2(t−t0+1)

]
≤ 1− γ,

and inequality (21) is straightforward by (26).

Now, let us deal with (1− δ)
∑∞

t=t0
δt−t0ρ2

t . By Step 2 of the proof of Proposition

1, we have

(1− δ)
∞∑
t=t0

δt−t0ρ2
t ≤

∞∑
t=t0

btXt + I2N
4(1− α)2 + (1− δ)α2

1− δα2
, (29)

where from (17) coefficients bt satisfy

bt = 2δt−t0(1− δ)α(1− α)

1− δα2
.

Since |btXt| ≤ btI
2N and

∞∑
t=t0

b2t =

(
2(1− δ)α(1− α)

1− δα2

)2 ∞∑
t=t0

δ2(t−t0) =

(
2(1− δ)α(1− α)

1− δα2

)2
1

1− δ2

=

(
2
α(1− α)

1− δα2

)2
1− δ
1 + δ

,

by Lemma 1 we obtain

Pr

[
∞∑
t=t0

btXt ≥ ε

]
≤ exp

(
2ε2∑∞

i=t0
(2btI2N)2

)
= exp

(
2ε2 1 + δ

I4N2(1− δ)

(
1− δα2

4α(1− α)

)2
)
.

Next, from (29)

Pr

[
∞∑
t=t0

btXt ≥ ε

]
≥ Pr

[
(1− δ)

∞∑
t=t0

δt−t0ρ2
t ≥ ε+ I2N

4(1− α)2 + (1− δ)α2

1− δα2

]
.

Let 1− γ = exp

(
2ε2 1+δ

I4N2(1−δ)

(
1−δα2

4α(1−α)

)2
)

, then

ε = I2N
2α(1− α)

1− δα2

√
−2

1− δ
1 + δ

ln(1− γ).
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Hence, we obtain

Pr

[
(1− δ)

∞∑
t=t0

δt−t0ρ2
t ≥ I2N

2α(1− α)

1− δα2

√
−2

1− δ
1 + δ

ln(1− γ)

+ I2N
4(1− α)2 + (1− δ)α2

1− δα2

]
≤ 1− γ,

and inequality (22) is straightforward by (27). End of Proof
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