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Abstract

Epstein (2009) describes three Ellsberg-style thought experiments and argues that

they pose di¢ culties for the smooth ambiguity model of decision making under un-

certainty developed by Klibano¤, Marinacci and Mukerji (2005). We revisit these

thought experiments and �nd, to the contrary, that they either point to strengths of

the smooth ambiguity model compared to other models, such as the maxmin expected

utility model (Gilboa and Schmeidler, 1989), or, in the case of one thought experiment,

raise criticisms that apply equally to a broad range of current ambiguity models.

1 Introduction

Epstein (2009) describes three Ellsberg (1961)-style thought experiments and argues that

they pose di¢ culties for the smooth ambiguity model of decision making under uncertainty

developed by Klibano¤, Marinacci and Mukerji (2005, KMM). We revisit these thought

experiments and �nd, to the contrary, that they either point to strengths of the smooth am-

biguity model compared to other models, such as the maxmin expected utility (MEU) model

(Gilboa and Schmeidler, 1989), or, in the case of one thought experiment, raise criticisms

that apply equally to a broad range of current ambiguity models. We �rst discuss the second

and third of these thought experiments, which are related, and close by discussing the �rst

thought experiment.

To �x ideas and remind the reader, consider a separable metric state space 
, a convex

consequence space X, and the set � of all probability measures on 
. The smooth ambiguity
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model represents preferences over acts f : 
! X using the following functional:

V (f) =

Z
�

�

�Z



u (f (!)) dp (!)

�
d�(p), (1.1)

where � is a Borel probability measure on �, endowed with the vague topology.1

Similarly, the �-MEU model represents preferences over acts according to

U(f) = � inf
p2C

Z



u (f (!)) dp (!) + (1� �) sup
p2C

Z



u (f (!)) dp (!) ; (1.2)

where � 2 [0; 1] is a weight and C � � is a set of probabilities. When � = 1 we get back to

the original MEU model.

2 Thought Experiment 2

Consider the second thought experiment proposed by Epstein. There is an urn containing 100

balls, of 4 di¤erent types: R1, B1, R2, and B2. A decision maker (DM) is told that R1+B1 =

50 = R2 + B2, and that the relative proportions of (R1; B1) and (R2; B2) are determined

independently. The DM considers bets with outcomes c� > c and the 50-50 lottery between

them. For the sake of this discussion, let us assume that lotteries are evaluated according

to an expected utility function u. This part of both the smooth ambiguity model and the

MEU model is not central to the issues here. Normalize u so that u(c�) = 1 and u(c) = 0.

Then, u(c�; 1=2; c; 1=2) = u(c�)=2 + u(c)=2 = 1=2. With this notation, we can write the acts

in question with utility payo¤s as follows:

R1 B1 R2 B2

f1 1 0 0 0

f2 0 0 1 0
1
2
f1 +

1
2
f2

1
2

0 1
2

0

g1
1
2

1
2

0 0

g2 0 1
2

1
2

0

(2.1)

Epstein claims, �rst, that given the symmetry in the problem, it is plausible that

f1 s f2.
1See KMM for details. Here, as in Epstein (2009), we use an Anscombe-Aumann version of the original

KMM model.
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We agree that symmetry makes this preference reasonable.

Second, he claims the preference

f1 s f2 s
1

2
f1 +

1

2
f2 (2.2)

follows from the fact that the relative proportions of (R1; B1) and (R2; B2) are determined

independently because, he claims, this should mean that f1 and f2 do not hedge one another.

We will argue that because these relative proportions are independent, there is good reason

why an ambiguity averse DM would see averaging f1 and f2 as desirable. In particular, we

will show that it is only in very special circumstances that (2.2) would make sense.

Third, he claims that an ambiguity averse DM would have the preference

g1 � g2

because g1 gives utility of 1=2 on an unambiguous event with probability 1=2, while g2 pays

o¤1=2 on a symmetric but ambiguous event. We agree with this third claim and the intuition

for it.

Formally, his Proposition 3.1 shows that, in the context of the smooth ambiguity model,

his three claims are incompatible. His argument proceeds roughly as follows: If, for a

smooth ambiguity DM under the conditions in the proposition, one observes the preference
1
2
f1 +

1
2
f2 s f1 s f2, then there must be a range over which � fails to be strictly concave

(i.e., the DM is locally not ambiguity averse). On the other hand, g1 � g2 requires � to

be strictly concave (i.e., strictly ambiguity averse) in the relevant range. He interprets this

result as showing that the smooth ambiguity model fails to capture intuitive choices in this

thought experiment. We strongly disagree with this interpretation of the result, as we will

argue that the second indi¤erence in (2.2) is not intuitive for an ambiguity averse DM.

It useful to begin by writing down a simple, concrete set of probabilities that might

plausibly be considered by the DM in the above example. In the context of the smooth

ambiguity model, think of these as probabilities that are given uniform weight by the measure

�.

R1 B1 R2 B2

p1
1
10

4
10

1
10

4
10

p2
1
10

4
10

4
10

1
10

p3
4
10

1
10

1
10

4
10

p4
4
10

1
10

4
10

1
10

(2.3)
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Observe that these measures respect the given information, in that, for each probability pi,

pi (R1 [B1) = pi (R2 [B2) = 1=2. They respect the symmetry of the (lack of) information
about the relative probabilities in each component in that for each marginal over (Ri; Bi)

there is some measure with the corresponding marginal over (Rj; Bj), and these marginals are

given identical weights by �. Finally, these measures respect the believed independence of the

two components in the sense that �xing a marginal over (Ri; Bi) leaves the same possibilities

for the marginals over (Rj; Bj). In other words, informally, knowing the relative proportion

of Ri to Bi places no restrictions on the relative proportion of Rj to Bj, and vice-versa.

Note that this is the polar opposite of the situation where, whatever their value, the relative

proportions of R1 to B1 and of R2 to B2 are known to be equal. This is the distinction

between independently and indistinguishably distributed (IID) versus independently and

identically distributed (iid) as discussed by, for example, Walley (1991) and Epstein and

Schneider (2003).

Let us now examine the expected utilities generated by applying each of the measures pi
to the acts in the example. This will allow us to see the potential e¤ect of the uncertainty over

the probabilities on the DM. We begin with the acts g1 and g2. All four measures yield an

expected utility of 1=4 for g1, re�ecting the lack of ambiguity about the event R1[B1. For g2,
however, the expected utilities vary, and are 5=20; 8=20; 2=20; 5=20 respectively. Importantly,

notice that the uniform average of these expected utilities is 1=4 and any concave averaging

will be less than 1=4. Thus, any smooth ambiguity DM with a concave � and a uniform �

will prefer g1 to g2. Intuitively, it is the dislike of the variation of expected utilities generated

by the uncertainty about p that leads to this preference.

Consider next f1, f2, and 1
2
f1 +

1
2
f2. All of these are bets on ambiguous events, and the

expected utilities generated by each of the p�s are as follows:

p1 p2 p3 p4

f1
1
10

1
10

2
5

2
5

f2
1
10

2
5

1
10

2
5

1
2
f1 +

1
2
f2

1
10

1
4

1
4

2
5

Notice that, again, respecting symmetry, the uniform averages of the expected utilities

for each of these acts is 1=4, thus an ambiguity neutral DM would quite reasonably be

indi¤erent among all three. From symmetry alone, as re�ected by the fact that the expected

utilities for f2 are a permutation of those for f1, taking a common concave averaging would

again yield the indi¤erence between these �rst two acts. However, any concave averaging,

because the distribution of expected utilities for both f1 and f2 is a mean-preserving spread
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of that for 1
2
f1 +

1
2
f2, will lead to a higher average for 1

2
f1 +

1
2
f2 than for either f1 or f2.

Thus, any smooth ambiguity DM with a strictly concave � will have a strict preference for
1
2
f1 +

1
2
f2 over f1 and f2. This strict preference arises because the expected utilities vary

across p2 and p3 under f1 and f2, but this variation is smoothed under 1
2
f1 +

1
2
f2. Observe

that p2 and p3 correspond to the situation where there is one marginal over (R1; B1) and a

di¤erent marginal over (R2; B2). In this sense, it is precisely because it is uncertain whether

the two components are identical (thus leading p2 and p3 to be considered relevant) that the

diversi�cation provided by 1
2
f1+

1
2
f2 is valuable. If, instead, the two components were known

to be identical, even smooth ambiguity preferences would display the indi¤erence in (2.2),

as only p1 and p4 would be relevant. Notice, moreover, that, even in the indistinguishable

but not necessarily identical case as in the example, an aggregation of the possible expected

utilities taking into account only the minimum expected utility will lead to indi¤erence

between all three acts, as they all share the same minimum expected utility value, 1=10,

that is generated by p1.

The observation above can be generalized beyond this speci�c set of priors and to �-

MEU preferences. Let 
 = fR1; B1; R2; B2g and, given a set C � � of probabilities, set

�i = fp (Ri) : p 2 Cg. Consider the following properties:

(1) �1 = �2;

(2) p (R1 [B1) = p (R2 [B2) for all p 2 C;

(3) if x 2 �1 and y 2 �2, there is p 2 C such that p (R1) = x and p (R2) = y.

For example, the set of priors in (2.3) satis�es (1)-(3), with �1 = �2 = f1=4; 4=10g.
Property (1) re�ects the symmetry across the components, (2) re�ects the directly given

information, and (3) seems a necessary condition for independence.

We can now state the following result, which is proved in the Appendix. The result

references the condition

� (p 2 C : p (R1) 2 B) = � (p 2 C : p (R2) 2 B) for all Borel sets B � [0; 1] ; (2.4)

which is meant to re�ect the perceived symmetry across components.2

Proposition 2.1 Suppose C � � is nonsingleton, closed, and satis�es properties (1)-(3).

Then,

2The sets fp 2 C : p (Ri) 2 Bg belong, for all Borel sets B � [0; 1], to the Borel �-algebra of � (see, e.g.,
Theorem 15.13 of Aliprantis and Border, 2006).
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(i) Any smooth ambiguity DM with � strictly concave and � with support C and such that

condition (2.4) holds,3 will have

1

2
f1 +

1

2
f2 � f1 s f2 and g1 � g2.

(ii) Any �-MEU DM will have
1

2
f1 +

1

2
f2 s f1 s f2;

while g1 � g2 if and only if � > 1=2.

Which of these preference patterns is more natural for an ambiguity averse DM? Return

your attention to the original table describing the acts (2.1). The evaluation of act f1
depends on the relative proportion of R1 to B1 but not on the relative proportion of R2
to B2. Similarly, the evaluation of f2 depends on only the relative proportion of R2 to

B2. In contrast, the evaluation of 12f1 +
1
2
f2 depends on the relative proportions in both

components, but has half the exposure to the uncertainty about the relative likelihood in

each component compared to f1 and f2. Recall that the determination of the two relative

proportions are viewed as independent. The act 1
2
f1+

1
2
f2 thus diversi�es the DM�s exposure

across the components: it provides a hedging of the two independent ambiguities in the same

sense as diversifying across bets on independent risks provides a hedging of the risks. To

a DM who is averse to ambiguity (i.e., to subjective uncertainty about relative likelihoods)

because of the uncertainty it induces about expected utilities, such diversi�cation is naturally

valuable. Notice, however, that in this type of problem, preferences that ignore all except the

minimum expected utility possibilities4 will miss the diversi�cation aspect of this situation,

similar to an in�nitely risk averse expected utility individual not valuing diversi�cation across

independent risks. This is extreme behavior. Models such as MEU and �-MEU force this

extreme devaluation of diversi�cation across these independent but not necessarily identical

ambiguities. As we have argued, more moderate behavior, valuing the diversi�cation, is

natural for ambiguity averse DMs. The smooth ambiguity model delivers this moderate

behavior, as it implies that such diversi�cation is valued by almost all ambiguity averse

DMs, though this value may vary in size as ambiguity attitude varies. Furthermore, when,

unlike in this thought experiment, the two components are known to have identical marginals

(and so are iid and not simply IID) and thus it is natural for the indi¤erence in (2.2) to hold,

it may be shown that the smooth ambiguity model indeed produces this.

To summarize our respective arguments regarding this interesting thought experiment

3Here the support of � is de�ned as supp� =
\
fD closed : � (D) = 1g.

4Or a �xed weighted average of the minimum and maximum expected utility possibilities.
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and its implications for the smooth ambiguity model: Epstein argues that 1
2
f1+

1
2
f2 s f1 s f2

and g1 � g2 are natural for a strictly ambiguity averse DM, leading to a seeming inconsistency
in the modelling of ambiguity attitude in the smooth ambiguity model through �. We argue

that for a strictly ambiguity averse DM, 1
2
f1 +

1
2
f2 � f1 s f2 is far more natural (or, at

worst, no less natural) than 1
2
f1+

1
2
f2 s f1 s f2. In this case, there is no con�ict at all with

g1 � g2, since both strict preferences are generated by a strictly concave � in the smooth

ambiguity model. Hence, we conclude, contrary to Epstein, that the choices in thought

experiment 2 that are intuitive for an ambiguity averse DM are indeed captured within

the smooth ambiguity model, whereas they are not captured (at least with symmetry and

independence modelled as above) by the MEU (or �-MEU) model.5 Beyond the speci�c issue

of compatibility with the smooth ambiguity model, this discussion and thought experiment

highlights a point we feel is fundamental in thinking about ambiguity aversion �hedging

across independent sources of ambiguity makes a lot of sense.

3 Thought Experiment 3

Epstein poses this example to claim that �calibration of ambiguity aversion within the KMM

model, or the transferability of the function � across settings, is, in general, inconsistent with

intuitive choices.�He �rst presents Urn I, which is a situation identical to thought experiment

2, except he introduces some information about the composition of the second component

designed to break the symmetry between components. Speci�cally, at least 10 of the 50

balls are known to be Red in the second component. Then he restores indi¤erence between

a bet, f I1 , on Red in the �rst component and a bet, f
I
2 , on Red in the second component by

raising the payo¤ on Red for the bet on the �rst component until the indi¤erence, f I1 s f I2 ,
is attained. Next, he asserts, just as in thought experiment 2, that the independence of

the two components leads to 1
2
f I1 +

1
2
f I2 s f I1 s f I2 . He also presents an Urn II, di¤ering

from Urn I only in that, instead of being told that at least 10 of the 50 balls are Red in

the second component, we are told that exactly half of the balls in the urn are Red (i.e.,

R1 + R2 = 50). With this new information, a 50-50 mixture of a bet on Red in the �rst

component, f II1 , and the same stakes bet on Red in the second component, f
II
2 , will create

an unambiguous act, 1
2
f II1 +

1
2
f II2 . Thus, he argues and we agree, ambiguity aversion suggests

5By no means do we claim that the smooth ambiguity model (and its close relatives Nau, 2006, Ergin
and Gul, 2009, Neilson, 2009, and Seo, forthcoming) is the only model capturing these intuitive choices.
Many other models in the ambiguity aversion literature �e.g., invariant biseparable preferences (Ghirardato,
Maccheroni and Marinacci, 2004, and Amarante, 2009), variational preferences (Maccheroni, Marinacci and
Rustichini, 2006), and vector expected utility preferences (Siniscalchi, 2009) �have cases compatible with
the choices that we claim are intuitive.
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1
2
f II1 +

1
2
f II2 � f II1 s f II2 . In Proposition 4.1, he shows that given 1

2
f I1 +

1
2
f I2 s f I1 s f I2 (and

given g1 � g2, so that the situation where f I1 and f I2 yield the same expected utility for all
probabilities considered by the DM is ruled out), �must be a¢ ne over a given range, and this

implies that, for some level of payo¤s, the intuitive strict preference 1
2
f II1 +

1
2
f II2 � f II1 s f II2

in Urn II is not possible.

As this exposition hopefully makes clear, this example is simply an elaboration of thought

experiment 2, and the driving force behind the conclusion is exactly the same as there: as-

suming 1
2
f I1 +

1
2
f I2 s f I1 s f I2 forces � to be a¢ ne over some range (thus generating ambiguity

neutral behavior over that range) and leads the DM to assign no value to the elimination of

ambiguity provided by the act 1
2
f II1 +

1
2
f II2 over that range in Urn II. Therefore, exactly the

same argument as we presented above, calling into question Epstein�s assertion that there

is nothing gained by spreading bets across independent sources of ambiguity, applies here.

As we have argued, this is an unwarranted assertion: in fact, 1
2
f I1 +

1
2
f I2 � f I1 s f I2 is quite

natural for an ambiguity averse DM. The smooth ambiguity model with a single, strictly

concave � is perfectly compatible with this latter assumption and the remaining preferences

in Urns I and II. Hence, we conclude, contrary to Epstein, that thought experiment 3 does

not demonstrate any problem with the transferability of the function � across the two urns.

While we think thought experiment 3 does not shed light on transferability issues, we do

agree that such issues are subtle and require careful thought. In particular, there are impor-

tant limitations related to Savage�s (1972) �small worlds�discussion which are relevant when

applying a wide range of models (including not only the smooth ambiguity model, but also

subjective expected utility, MEU, and many others). In that discussion, Savage emphasizes

the uncertain or incompletely observed nature of consequences in any real application of

utility theory and summarizes as follows (p. 84): �Indeed, in the �nal analysis, a conse-

quence is an idealization that can perhaps never be well approximated.�This limits greatly

the extent to which taste parameters, such as risk and ambiguity attitudes, can be measured

in one context and that measurement directly transferred to a very di¤erent context. Since

two contexts may �complete�the consequences in radically di¤erent ways, acts in the two

settings which give the same �nominal� consequences might appear to be the same, but

in reality di¤er. Therefore, even when underlying tastes are stable across the settings, it

would be inappropriate to apply the same functional representation of those tastes to these

�nominal� acts. A simple example in the context of expected utility theory is the follow-

ing: Suppose we observe an individual�s choices among monetary gambles in a laboratory

experiment. Further, suppose that the individual chooses according to expected utility with

a utility function that treats monetary outcome $m as the �consequence�m + c, u(m + c),

where c here is meant to stand for other things the individual cares about that do not vary
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with the outcome of the monetary gambles and are unobserved by the experimenter. From

this choice data, the experimenter infers a utility function over money, û(m). Despite the

fact that c is unobservable (and, in fact, is ignored by the experimenter), û will accurately

represent the risk preferences of the individual over monetary gambles in this context (i.e.,

the risk preferences represented by u(�+c)). To emphasize this last quali�cation, suppose we
observe the same individual again choosing among monetary gambles, but now in a di¤erent

(for example, more �real-life�and/or later in time) setting. Suppose that the individual now

treats monetary outcome $m as the �consequence�m + d where d 6= c. This is meant as a
simple device to re�ect the change in the individual�s circumstances or consumption oppor-

tunities or related matters. Assume choices are still determined according to the expectation

of u(m+ d). In general, the utility function over money, ~u(m), inferred from the second set

of choices will not be equivalent to the û(m) elicited earlier even though the utility u de�ned

over the complete consequences has remained unchanged. Thus, even though risk attitudes

over consequences are stable across the two settings (by assumption), using the risk attitude

toward monetary gambles measured in the �rst setting to predict choices over monetary

gambles in the second setting may fail.

Despite this, within settings, separation of tastes, such as risk or ambiguity attitudes,

from beliefs is important and useful. For instance, the risk aversion calibrated within a setting

can be used to predict further choices in that same setting. In fact, this �internal calibration�

is the nature of many common economic applications e.g., the equity premium/risk-free rate

puzzle. The equity premium puzzle may be posed purely in terms of internal calibration

as follows: Take a �fruit-tree economy�à la Lucas (1978). In such an economy, given an

expected utility maximizing representative agent whose belief is calibrated to salient aspects

of the historical/empirical distribution of (consumption) growth (e.g., matching various mo-

ments), it is impossible to calibrate the agent�s risk aversion parameter such that both the

equilibrium return on the riskfree asset and that on the riskless asset match those in the

observed data. If the risk aversion parameter is set such that the equilibrium risk free rate

matches data, the return on the risky asset is far too low; if the risk aversion parameter is set

such that the return on the risky asset matches the data, the implied equilibrium return on

the riskfree asset is far too high. Note, to articulate the puzzle, we needed a decision model

with a conceptual and applicable separation of risk and risk attitude, so that within the gen-

eral equilibrium model risk (as modelled by the belief) and risk attitude could be calibrated

independently. Just as important to note, the puzzle is framed as a problem of inability to

calibrate the risk aversion parameter in an internally consistent manner. In particular, the

key issue is calibration within a single domain, and not calibration of risk aversion across

domains.
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Similarly, a key issue in a number of recent papers on ambiguity and asset pricing �e.g.,

Chen, Ju, and Miao (2009), Hansen (2007), and Hansen and Sargent (2008) � is whether

replacing the expected utility agent by (variations of) a smooth ambiguity agent and calibrat-

ing (ambiguous) beliefs and ambiguity attitude (holding risk aversion �xed at an externally

calibrated level) within the single domain allows one to better match the data on the riskfree

and risky returns simultaneously. As many of their �ndings show, it is possible to obtain an

internally consistent calibration such that both rates of return are (largely) consistent with

data. Cross-domain transferability is no more problematic in this application of the smooth

ambiguity model than it is for the standard expected utility model. In any case, it is not

Epstein�s thought experiment, but rather Savage�s �small worlds�discussion that seems to

us most relevant to these issues.

4 Thought Experiment 1

The experiment takes Ellsberg�s (1961) 3-color problem and adds a �second-order�urn, also

containing 90 total balls. A draw from this second-order urn will determine the composition

of the Ellsberg 3-color urn. Speci�cally, 30 of the 90 balls in the second-order urn result in the

odds p1 = (1=3; 1=3; 1=3) in the Ellsberg urn, while the remaining balls in the second-order

urn are divided in an unspeci�ed manner between those that give odds p2 = (1=3; 0; 2=3)

and p3 = (1=3; 2=3; 0) in the Ellsberg urn. In addition to the usual bets on the color of the

ball drawn from the Ellsberg urn, Epstein considers bets on the composition of the Ellsberg

urn (equivalently, bets on the type of ball drawn from the second-order urn). He argues

that the standard Ellsberg choices over bets about the color drawn from the Ellsberg urn

would imply Ellsberg choices over bets on the composition of the Ellsberg urn. This is his

�intuitive hypothesis.�Furthermore, he claims that the MEU model satis�es the intuitive

hypothesis while the smooth ambiguity model does not. Below, we refute the �rst part of

this claim and o¤er remarks about the intuitive hypothesis more generally.

First, we show that the MEU model does not deliver choices respecting the �intuitive

hypothesis.�Taking the relevant state space, as Epstein does, to be fR;G;Bg, his hypothesis
in this thought experiment is that the preference over acts based on the Ellsberg urn �i.e.,

f1 � f2 and f4 � f3 as stated in (2.1) of Epstein (2009) �implies Ellsbergian preferences

over second-order acts (�bets on the composition�), i.e., F1 � F2 and F4 � F3 as stated in
(2.2) of Epstein (2009).6 To extend the MEU model to preferences over second-order acts,

6Note that, literally, the second-order acts F1, F2, F3, and F4 are not completely speci�ed, as the table
does not specify what payo¤ is received if an urn composition other than p1; p2; p3 is realized. From the
verbal description the natural way to complete the speci�cation is to assign 0 if any other composition occurs,
and so we assume this. Nothing material would change in our results if this payo¤ were di¤erent than 0 as
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Epstein proposes the following representing functional (see his (2.4)),

U2(F ) = inf
p2C

u(F (p)) (4.1)

wherein a second-order act, F , is evaluated using the minimum utility that it gives under any

of the probability measures in the set C used in the usual MEU representation of preferences

over acts (see (1.2) with � = 1 or his (2.3)). Then, in the middle of p. 7 he states �It is

obvious that the multiple-priors model satis�es the intuitive hypothesis in our experiment....�

However, using (1.2) and (4.1) to evaluate acts and second order acts, respectively, leads to

violation of his hypothesis.

Observation 4.1 Fix any set C such that fp1; p2; p3g � C � � fR;G;Bg, where p(R) =
1=3 for all p 2 C. According to (1.2) with � = 1, f1 � f2 and f4 � f3, while according to
(4.1), F1 s F2 s F3 s F4.

Proof. By (1.2) with � = 1, U(f1) = U(f3) = u(100)=3, U(f2) = u(0), and U(f4) =

2u(100)=3, and so f1 � f2 and f4 � f3. By (4.1), U(F1) = U(F2) = U(F3) = U(F4) = u(0)
since each of these second-order acts has a common minimum payo¤ of 0.

The only way to reach a di¤erent conclusion, it seems to us, would be to change the state

space to fR;G;Bg � fp1; p2; p3g. But then, it is easy to satisfy Epstein�s hypothesis with
either the smooth ambiguity model or the multiple priors model, as in each, the additional

probabilistic information about the distribution over fp1; p2; p3g (speci�cally, that p1 occurs
with probability 1=3) may be incorporated directly into the set C in the same way that it

was concerning fR;G;Bg. On p. 6, Epstein argues that moving to the expanded state space
does not solve the problem, as examples involving bets on probabilities over fR;G;Bg �
fp1; p2; p3g could then be constructed. Our point here is that the same �problem,�illustrated
in Observation 4.1, would exist for the MEU model one level up as well. We believe that

whatever message is conveyed by this thought experiment, if one is to interpret it as a critique

of the smooth ambiguity model then, by our arguments above, one should equally interpret

it as a critique of the MEU model.

Our second remark concerns the more general point of this thought experiment. Namely,

strong asymmetries in the quality of information about the likelihood of di¤erent possible

probabilities make violations of the sure-thing principle more plausible when choosing among

bets on probability distributions. In the thought experiment, this asymmetry is operational-

ized by specifying the likelihood of probability p1 precisely (30 of 90 balls in the second-order

urn) while leaving the relative likelihoods of p2 and p3 unspeci�ed. We largely agree with

long as it was the same for all four second-order acts.
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this point, though, based on our discussion above, we disagree that this is a critique unique

to the smooth ambiguity model. We think this indicates a more general limitation present

in many models of decision making under ambiguity: for events over which (�rst-order) acts

are de�ned, variation in the extent of ambiguity is allowed and captured, while events at

higher levels are modeled as having a uniform degree of ambiguity. To understand the nature

of this limitation, let us focus on the smooth ambiguity model.

Intuitively, ambiguity averse DMs prefer acts whose evaluation is more robust to possible

variation in probabilities. In KMM that is translated as an aversion to mean preserving

spreads in the induced distribution of expected utilities. This is shown to be equivalent to

concavity of � and to the DM being more averse to the subjective uncertainty about priors

than he is to the risk in lotteries. It is as if we imagine an ambiguity averse DM to be

thinking as follows. �My best guess of the chance that the return distribution is �p�is 20%.

However, this is based on �softer�information than knowing that the chance of a particular

outcome in an objective lottery is 20%. Hence, I would like to behave with more caution

with respect to the former risk.�

This caution translates into behavior in the smooth ambiguity model in the following

way. When the DM is strictly ambiguity averse, a bet that the return distribution is �p�is

valued less than a same-stakes lottery with a 20% chance of winning, while, at the same

time a bet against the return distribution being �p�is also valued less than a same-stakes

lottery with an 80% chance of winning. In general, strict ambiguity aversion will thus make

it impossible to calibrate the likelihood of second-order events to lottery probabilities. In

this sense, analogous to the de�nition of ambiguous events given in Section 4 of KMM, these

second-order events are ambiguous. In fact, strict ambiguity aversion combined with non-

degenerate beliefs over the return distribution implies that all (non-empty and non-universal)

second-order events are ambiguous. Similarly, when beliefs over the return distribution are

degenerate, all second-order events are unambiguous. It is in this sense that a uniformity

is imposed on the ambiguity of events at the second-order level, that is most certainly not

imposed on events at the level of the space on which (�rst-order) acts are de�ned. This is

why a situation as in the thought experiment, where the second-order event �p1�is plausibly

unambiguous while the second-order events �p2�and �p3�are plausibly ambiguous, is not able

to be handled by the smooth ambiguity model.

A related limitation of the model, not directly evident in the thought experiment, is that,

while second-order events are treated as more ambiguous than lottery events, to the extent

that third-order, fourth-order or higher level events are considered, the model treats them as

second-order events. This is a second type of uniformity imposed by the smooth ambiguity
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model.7

Both of these uniformities (shared also by the MEU model and others) are implications

that undoubtedly con�ict with some plausible behavior, but are the result of exactly the

kind of pragmatic modeling choices that are often useful in building tractable and insightful

models. They allow us to focus attention of the domain of primary interest, preferences

over (�rst-order) acts, and the (allowed) non-uniformity of information quality relevant to

decisions on that domain.

In sum, this thought experiment raises issues of variation in the quality of information

about higher-order events and the DM�s reaction to this variation. The smooth ambiguity

model (as well as MEU and many other models) does not naturally incorporate such vari-

ation. We have argued that such a limitation should be viewed as a pragmatic modeling

choice and is of little importance in many applications. Furthermore, to the extent that, in a

particular application, this variation up to a given order of events is deemed important, there

is, as Epstein and we have noted, an easy way, both for MEU and for the smooth ambiguity

model, to capture it. Simply expand the state space on which acts are de�ned to incorporate

events up to that order. In the thought experiment, this corresponds to incorporating the

true probability law, by using fR;G;Bg � fp1; p2; p3g as the state space.

5 Appendix: Proof of Proposition 2.1

Observe that, under (1) and (2), C nonsingleton implies �i nonsingleton for i = 1; 2. By (3),

this implies that there is p 2 C such that p (R1) 6= p (R2).

(i) Suppose supp� = C and � (p 2 C : p (R1) 2 B) = � (p 2 C : p (R2) 2 B) for all
Borel sets B in R. Since � is strictly increasing, by (1) we have f(� � p) (R1) : p 2 Cg =
f(� � p) (R2) : p 2 Cg, and so

R
�
(� � p) (R1) d� (p) =

R
�
(� � p) (R2) d� (p) because of the

assumption on �. Hence, f1 s f2. On the other hand,

�

�
1

2
p (R1) +

1

2
p (R2)

�
� 1

2
(� � p) (R1) +

1

2
(� � p) (R2) ; 8p 2 supp�;

with strict inequality if p (R1) 6= p (R2).

Claim There is a Borel set A � supp�, with � (A) > 0, such that p (R1) 6= p (R2) for all

p 2 A.
7In the terminology of the source-preference literature (see, e.g., Tversky and Fox, 1995, Chew and Sagi,

2008, and Wakker, 2008) the space of second-order and higher events is a single source of uncertainty as is
the space of lotteries. For comparisons within a single source, preferences are expected utility, but not for
comparisons across sources, such as comparisons of bets on second-order events with lotteries.
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Proof of the Claim There is p 2 supp� such that p (R1) 6= p (R2). Suppose �rst that p is
an isolated point in supp�. Then, � (p) > 0 and the claim trivially holds. Suppose that p is

not an isolated point in supp�. Then, B" (p)\supp� 6= ; for every neighborhood B" (p) of p.
Since p (R1) 6= p (R2), by taking " small enough there is B" (p) such that p (R1) 6= p (R2) for
all p 2 B" (p). By setting A = B" (p)\ supp�, this proves the claim since � (A) > 0 because
B" (p) \ supp� 6= ;. For, if � (A) = 0, then � (B" (p)) = � (A) + � (B" (p) \ (supp�)c) = 0,
and so supp� � B" (p)c, a contradiction (see Aliprantis and Border, 2006, p. 442). 4

The Claim impliesZ
�

�
1

2
p (R1) +

1

2
p (R2)

�
d� (p) >

1

2

Z
(� � p) (R1) d� (p) +

1

2

Z
(� � p) (R2) d� (p) ;

that is, 1
2
f1 +

1
2
f2 � f1 s f2.

We have � (p (R1 [B1) =2) = � (1=4) for all p 2 supp�. Moreover, � (p (B1 [R2) =2) =
� (1=4 + (p (R2)� p (R1)) =2). De�ne 
 : �! R by 
 (p) = 1=4+(p (R2)� p (R1)) =2. Since

 (p) 6= 1=4 for all p 2 A, by the Jensen inequality we haveZ
(� � 
) (p) d� (p) < �

�Z

 (p) d� (p)

�
= �

�Z �
1

4
+
1

2
(p (R2)� p (R1))

�
d� (p)

�
= �

�
1

4

�
;

that is, g1 � g2.

(ii) By (1)-(3), maxp2C p (R1) = maxp2C p (R2) and minp2C p (R1) = minp2C p (R2), as

well as

max
p2C

�
1

2
p (R1) +

1

2
p (R2)

�
=

1

2
max
p2C

p (R1) +
1

2
max
p2C

p (R2)

min
p2C

�
1

2
p (R1) +

1

2
p (R2)

�
=

1

2
min
p2C

p (R1) +
1

2
min
p2C

p (R2)

Hence, f1 s f2. From minp2C (p (R2)� p (R1)) = �maxp2C (p (R2)� p (R1)) < 0, it follows

�min
p2C

�
1

2
p (B1) +

1

2
p (R2)

�
+ (1� �)max

p2C

�
1

2
p (B1) +

1

2
p (R2)

�
=

1

4
+
1� 2�
2

max
p2C

(p (R2)� p (R1)) ;

and so g1 � g2 if and only if 1=4 > 1=4+ (1=2� �)maxp2C (p (R2)� p (R1)), i.e., if and only
if � > 1=2. �
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