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Grading Exams:
100, 99, 98,... or A, B, C?∗

Pradeep Dubey† and John Geanakoplos‡

May 9, 2009

Abstract

We introduce grading into games of status. Each player chooses effort, pro-
ducing a stochastic output or score. Utilities depend on the ranking of all the
scores. By clustering scores into grades, the ranking is coarsened, and the incen-
tives to work are changed.
We apply games of status to grading exams. Our main conclusion is that

if students care primarily about their status (relative rank) in class, they are
often best motivated to work not by revealing their exact numerical exam scores
(100, 99, ..., 1), but instead by clumping them into coarse categories (A,B,C).
When student abilities are disparate, the optimal absolute grading scheme

is always coarse. Furthermore, it awards fewer A’s than there are alpha-quality
students, creating small elites. When students are homogeneous, we characterize
optimal absolute grading schemes in terms of the stochastic dominance between
student performances (when they shirk or work) on subintervals of scores, show-
ing again why coarse grading may be advantageous.
In both the disparate case and the homogeneous case, we prove that ab-

solute grading is better than grading on a curve, provided student scores are
independent.
Keywords: Status, Grading, Incentives, Education, Exams

JEL Classification: C70, I20, I30, I33

1 Introduction

Examiners typically record scores on a precise scale 100, 99, ..., 1. Yet when they
report final grades, many of them nowadays tend to clump students together in broad
categories A, B, C, discarding information that is at hand. Why?

Many explanations come to mind. Less precision in grading may reflect the nois-
iness of performance: a 95 may be statistically insignificantly better than a 94. Al-
ternatively, the professor may require less effort in dividing students among three

∗This is a revision of the first part of Dubey-Geanakoplos (2005), which in turn was based on
Dubey—Geanakoplos (2004).

†Center for Game Theory in Economics, SUNY, Stony Brook and Cowles Foundation, Yale Uni-
versity

‡Cowles Foundation, Yale University and Santa Fe Institute, Santa Fe, New Mexico.
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categories rather than a hundred. Finally, it may be that lenient grading is a device
by which professors lure students into their class; unable to call an exam with 70%
correct answers a 95, they call it an A instead.

We call attention to a different explanation. Suppose that the professor judges
each student’s performance exactly, though the performance itself may depend on
random factors, in addition to ability and effort. Suppose also that the professor
is motivated solely by the desire to induce his students to work hard. Third, and
most importantly, suppose that the students care about their relative rank in the
class, that is about their status. We show that, in this scenario, coarse grading often
motivates students to work harder.

Status is a great motivator.1 For many people, honors conferring status, but little
remuneration now or in the future, often bring forth the greatest effort.2 Ranks and
titles are ubiquitous, in academia, in the armed forces, in corporations, and in public
bureaucracies. They define a hierarchy which, even when its original purpose might
have been organizational (say to signal lines of authority), always creates incentives
for people to exert effort in order to obtain higher status.

One might think that finer hierarchies generate more incentives. But this is often
not the case. Coarse hierarchies can paradoxically create more competition for status,
and thus provide better incentives for work.

To analyze the incentive effects of status, Section 2 introduces games of ordinal
status, i.e., games in which the utilities are solely in terms of the relative ranking of the
players. The players choose effort levels, which then jointly yield (possibly random)
scores for each player. The grading scheme converts the scores into a ranking, with
ties allowed even for scores that are different. For simplicity, we focus on additive
status, in which a player gains one utile for each opponent he outranks and loses one
utile for each opponent who outranks him.

The designer defines a different game according to how he clumps scores into
grades, coarsening the ranking. There are many possible grading schemes, and we
look for those that elicit maximal effort.

The advantage of coarse grading can most succinctly be seen with two students
α and β who have disparate abilities, so that α achieves a random but uniformly
higher score even when he shirks and β works.3 Suppose, for example, that β scores

1Veblen (1899) famously introduced conspicuous consumption, i.e., the idea that people strive to
consume more than others partly for the sake of higher status. A large empirical literature, starting
from Easterlin (1974), has shown that happiness indeed depends not just on absolute, but also on
relative, consumption.
The modeling of status has taken two forms. The cardinal approach makes utility depend on

the difference between an individual’s consumption and others’ consumption (see, e.g., Duesenberry
(1949), Pollak (1976), Fehr—Schmidt (1999), Itoh (2004), Demougin-Fluet-Helm (2006), Englmaier-
Wambach (2006)). The ordinal approach makes utility depend on the individual’s rank in the
distribution of consumption (see, e.g., Frank (1985), Robson (1992), Direr (2001), and Hopkins—
Kornienko (2004)). Our model of status is in the ordinal tradition.

2This should be contrasted with the purely instrumental role status might play, for instance when
higher consumption signals higher wealth and hence eligibility as a marriage partner (see e.g., Cole—
Mailath—Postlewaite (1992, 1995, 1998) and Corneo—Jeanne (1998)). Like the authors in the previous
footnote, we take seriously the value of status to people, in and of itself.

3The hypothesis of disparate abilities is strong, but not as strong as it seems, and can be plausibly
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between 40 and 50 if he shirks, and between 50 and 60 if he works, while α scores
between 70 and 80 if he shirks and uniformly between 80 and 90 if he works. With
perfectly fine grading, α will come ahead of β, regardless of their effort levels. Since
they care only about rank, both will shirk.

But, by assigning a grade A to scores above 85, B to scores between 50 and 85,
and C to scores below 50, the professor can inspire β to work, for then β stands a
chance to acquire the same status B as α, even when α is working. This in turn
generates the competition which in fact spurs α to work, so that with luck he can
get an A and distinguish himself from β. Notice that very coarse grading (giving
everyone an A) would not elicit effort since then nobody has anything to gain by
improving his score. Optimal grading must be coarse, but not too coarse.

Coarse grading is also useful when students are homogeneous (ex ante identi-
cal). For example, suppose each student scores according to the normal distribution
N(μ, σ) with mean μ and standard deviation σ if he works, and according to N(μ̂, σ̂)
if he shirks, where μ > μ̂ and σ < σ̂. It is intuitively evident that an extraordinarily
high score is more likely to come from a lucky shirker than from a worker. We show
that the optimal grading scheme gives the same grade A to all scores above some
threshold xA, and is perfectly fine for scores less than xA.

Coarse grading no doubt reduces the screening content delivered by schools. But
our analysis reveals that if the schools sought to convey more information about the
quality of their students, they would produce students of lower quality!4

It should be emphasized that coarse grading does not involve what are commonly
called handicaps. Handicaps discriminate between contestants by bestowing an ad-
vantage on the weak. Handicaps thus presume knowledge of individual contestants’
abilities, as well as the “legality” of the discrimination. The grading we describe in
this paper is, in contrast, required to be completely anonymous in that grades depend
only on the exam scores of the students and not on their names. It is also required
to be monotonic in the scores: if a student gets a better score than another, he is
awarded at least as good a grade. On either count, handicaps are ruled out since they
would necessarily entail an artificial boost to the score/grade of the weak student.

Let S denote the class of all anonymous, monotonic grading schemes. Two canon-
ical examples, which are most often used in practice to grade exams, are absolute
grading (90 to 100 gets an A, 80 to 89 gets a B and so on) and relative grading
(popularly called grading on a curve: the top 5 students get an A, the next 8 get a
B, and so on). Let A and C denote the classes of all absolute grading schemes and
all relative grading schemes, respectively.

For any class W ⊂ S we shall say that a grading scheme γ ∈ W is W-optimal
if no other scheme in W can generate higher incentives to work. In general we have
found it difficult to characterize optimal grading schemes. We therefore concentrate

interpreted. For example, one might imagine that students have many effort levels, and that when
the alpha students exert their second best effort they will come ahead of the beta students, no matter
how hard the betas work or how lucky they get. If the professor wants to motivate each student to
do his very best, then our analysis still applies.

4We take the “quality” of a graduating student to depend on both his (innate) ability and on how
hard he studied.
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on two special classes (A or C), and on two extremal contexts, (student abilities are
disparate or homogeneous).

In Section 3 we characterize A-optimal grading schemes for an arbitrary number
of students of disparate abilities. Our first and most important conclusion is that
in order to create the largest incentives to work, the professor should always use
coarse grading. Our second conclusion is that A-optimal grading creates small elites,
excluding many from membership who have equal abilities and have also worked
hard but have been unlucky in the scores realized. In a population made up of equal
numbers of students of three disparate abilities, say alpha and beta and gamma, fewer
A grades will be given than B’s, and fewer B’s will be given than C’s. In particular,
though they all work hard, only some alphas get A and only some betas get B. If
less able students have higher costs from studying hard, as Spence (1974) suggested,
then the pyramiding becomes still more extreme.

In Section 4 we characterize A-optimal grading schemes when students are homo-
geneous, and their score densities are independent and regular.5 The key analytical
concepts in this analysis are (first order) stochastic dominance and uniform stochas-
tic dominance. We show that an absolute partition of scores into cells (each cell
signifying a distinct grade) is A-optimal if and only if the shirker’s performance sto-
chastically dominates the worker’s inside each cell, while across cells the worker’s
uniformly stochastically dominates the shirker’s. This enables us to construct A-
optimal grading schemes for regular score densities. We find that perfectly fine or
perfectly coarse partitions are typically not A-optimal, though we pinpoint special
circumstances in which they are not merely A-optimal but also optimal in the bigger
class S of all anonymous grading schemes.

Given that the students only care about their relative rank, which kind of grading
is better: absolute or relative (A or C)? We show in Sections 3 and 5 that if the
students are disparate or homogeneous, then absolute grading is always better than
grading on a curve. (For instance, in the example of two disparate students α and β,
grading on a curve provides no incentives whatsoever.)

The inferiority of grading on a curve is surprising, especially since it is so com-
monly used in practice. One explanation is that professors fear damaging their repu-
tation if their grade profile differs too much from the school norm. Another possibility
is that our theorem is no longer valid if the professor is significantly uncertain about
the distribution of students’ abilities, or if their scores are correlated.

Our analysis presumes for the most part that each student knows his own ability
and that the students and the professor all know the distribution of abilities in the
class. (They do not necessarily know which student has which ability.) By virtue
of repeated meetings of the class, or similar classes held over many years, it is not
unreasonable to suppose that this distribution can be fairly well estimated by the
professor and the students alike. Nevertheless, in Section 6 we do take up the case of
incomplete information with absolute grading.6

5See the Density Assumption in Section 4.3.
6Moldovanu, Sela and Shi (2005) take our model and reconsider our results, replacing our hypoth-

esis that the distribution of abilities in the actual class is known with the incomplete information
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Our exploration of optimal grading has been carried out in a limited context:
students have binary effort levels, their performances are independent, they are ei-
ther disparate or ex ante homogeneous, and grading schemes are mostly absolute or
relative (in A or C). We believe some of our themes can be extended to more gen-
eral settings, and we hope that this will be taken up in future work. One extension
that we have undertaken is "How to pay workers when wages also confer status"
(Dubey-Geanakoplos 2009).

2 Games of Status

In this section we precisely define what we mean by games of status, and the freedom
the principal has to create grades.

Imagine a set N of students who are taking an exam. Depending on their effort
levels (en)n∈N , they will get exam scores, (xn)n∈N , which might also depend on
random events, such as whether they were lucky enough to have studied the material
precisely relevant to the questions, or how they felt that day, or how accurately the
professor corrected the exams. It is natural to assume, as we often do, that a student’s
score does not depend on others’ efforts; but actually several of our results do not
require this independence assumption.7 Given the exam scores x = (xn)n∈N , the
professor must assign letter grades γ(x). Students are assumed to care only about
relative status, and not about the education they are getting. We capture this by
assuming that they obtain 1 utile for each student whose grade is strictly lower, and
they lose 1 utile for each student whose grade is strictly higher.8

We suppose that the students are told in advance how the professor converts scores
to grades, i.e., they know γ. Absolute grading is achieved by specifying intervals of
scores corresponding to each grade, say [85, 100] gives A, [70, 85) gives B, and so on.
Grading on a curve is based in contrast on relative performance alone, for example,
that the top 10% of students get A, the next 20% get B’s, and so on. Absolute and
relative grading are quite different, though both are widely used.

What grading scheme γ should a professor use, if he wants to incentivize (whenever
feasible) all his students to put in maximal effort?9 No matter what scheme he

hypothesis that student abilities are independently drawn from that distribution, so that the dis-
tribution of abilities in the actual class may be different. With a continuum of students, which we
sometimes assume, the two hypotheses are the same. Moreover, with absolute grading and additive
status our analysis covers the incomplete information case as well (as explained in Section 6). Only
when the student population is small, and the professor grades on a curve, will there be a difference
between complete and incomplete information. This is the case considered by Moldovanu, Sela and
Shi.

7When the score xn of one player depends (perhaps negatively) on the effort em, m 6= n of another
player, we can reinterpret our model as a parlor game.

8This is to keep matters simple. A “harmonic” utility might give 1/n utiles to a student who
alone has rank n, and (1/n+ · · ·+1/(n+m−1)) · (1/m) utiles to each of m students who tie at rank
n. Coming first instead of second provides a much bigger gain in utility than moving from 27th to
26th. Both additive and harmonic utilities are instances of “positional” status, that reward a player
solely on the basis of his own position in the hierarchy.

9We could have considered other goals, like what grading scheme would give the highest expected
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chooses, and no matter what efforts the students put in, total utility awarded via
grades will be zero, since for every utile gained by a higher-ranked student, there is a
utile lost by a lower-ranked student. Indeed when all students work hard, their total
net utility is minimized (since work inflicts disutility). Status seeking is the ultimate
rat race!

Nevertheless, by the right choice of γ, the professor can often motivate his status-
conscious students into working hard, and thus willy-nilly becoming educated.

2.1 The Performance Map

The strategy set En ⊂ R+ of each student n ∈ N consists of a set of effort levels that
are w.l.o.g. identified with the disutility they inflict on n. Efforts lead to (random)
performance scores. For x ∈ RN , the nth-component xn of x represents the score
(output) obtained by n. Let E ≡ Xn∈NEn and let ∆(Y ) denote the set of probability
distributions on Y, for any set Y . The performance map

π : E → ∆(RN)

associates stochastic scores with effort levels. Here π(e) gives the probability distri-
bution of score vectors when the students put in effort e ∈ E.10

2.2 Grading

Let R denote all possible orderings of N with ties allowed. There is a grading map

γ : RN → R

which ranks students according to γ(x) when the scores obtained are x ∈ RN . Each
rank corresponds to a grade. Coarse grading puts different scores into the same
rank. We consider, in principle, only maps γ that are anonymous and monotonic.
Anonymity means that the grades depend on the scores, not on the names. Monotonic-
ity means two things: first, if a player j scores at least as high as another player i,
then j’s rank is at least as high as i’s; second, if j increases his score, his rank relative
to each other player is at least as good as before.11

Our focus will be on two particular ways of generating γ.

2.2.1 Absolute Grading

Let P be a partition of R into consecutive intervals, each of which has nonempty
interior and some of which are designated “fine.” We assume throughout that any

total score, even when it is not feasible to induce all students to exert full effort. The results would
have a similar flavor, but we leave them for future research.
10 In the natural case (see our examples), higher effort levels tend to improve scores in the sense of

first-order stochastic dominance.
11That is, if yi = xi for all i ∈ N\{j}, and yj ≥ xj , then (a) j Âγ(y) i if j Âγ(x) i and (b) j ºγ(y) i

if j ≈γ(x) i.
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bounded interval of R is covered by finitely many intervals from P. When an interval12
[a, b) is designated fine, it is taken to represent the partition {{x} : x ∈ [a, b)}
consisting of singleton cells. An interval [a, b) not so designated will signify the
standard unbroken interval, and will also be called a cell in the partition P.13

Fix a partition P as above. Then for any two scores a, b ∈ R we define a ÂP b iff
the cell in P containing a lies strictly above the cell in P containing b. This defines the
absolute grading γP : RN → R. Thus γP(x) coarsens the information in x, creating
ties between players whose scores lie in the same cell of P.

2.2.2 Random Grading

We could also introduce randomness in γ without violating monotonicity or anonymity
of the grading scheme. For example, the professor could announce that he will flip
a coin just before grading the exam: if heads he will take the interval [86, 100] to be
an A, while if tails he will count any score in the interval [84, 100] as an A. When
the performance map π is deterministic, random grading may be needed to induce
maximal effort.

Let us extend the grading map γ to

γ : RN → ∆(R)

with scores being assigned random grades. We now discuss how this randomness
arises naturally with grading on a curve when there are ties.

2.2.3 Grading on a Curve with Random Tie Breaking

Given distinct scores x = (xn)n∈N ∈ RN , a grading curve is defined by the vector
(nA, nB, ...) with nA + nB + ... = N. The grades are obtained by ranking student
exam scores, and taking the top nA scores and giving all the students who got them
A, and so on.

When there are ties in the scores, we break them randomly, generating many
strict rankings with equal probability, and then we apply the grading curve to each
of them. This generates random grades.

2.3 Utilities

The exam payoff to a student n from being ranked according to R ∈ R is

#{j ∈ N : n >R j}−#{j ∈ N : j >R n}

reflecting the fact that n gets a utile for each student he beats, and loses a utile for
each student who beats him. He cares about ordinal status.
12We use [a, b) as a proxy for [a, b), (a, b], (a, b) or [a, b]. Our analysis works equally in all cases.
13Recall that students care only about their relative grade in the class. The professor could ex

ante fix a different letter grade for each cell. Equivalently, he could wait until the realization of exam
scores, and ex post assign the letter grade A to the highest cell that includes at least one student’s
score, a B to the next highest cell that includes at least one score, and so on. That way some student
always gets an A, and the number of grades never exceeds the number of students in the class.
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Notice again that the student is indifferent to learning. Had he put value on it,
our task of incentivizing him to work would have been much simpler.

2.4 The Game Γγ

Fix a grading function γ : RN → ∆(R). Then, given effort levels e ≡ (ek)k∈N ∈ E,
the payoff to n ∈ N is his expected net utility = expected exam payoff - disutility of
effort:

unγ(e)− en ≡ Expπ(e)[Expγ(x)[#{j ∈ N : n >R j}−#{j ∈ N : j >R n}]]− en.

Here Expπ(e) denotes expectation w.r.t. the distribution π(e) over scores x ∈ RN , and
Expγ(x) denotes expectation w.r.t. the distribution γ(x) over score rankings R ∈ R.14

2.5 Binary Effort Levels and Incentives to Work

We shall concentrate on the case of two effort levels: high (work) Hn and low (shirk)
Ln, with Hn > Ln for each agent n. Let H = (H1, ...,HN) be the strategy profile of
maximal effort and let H−n ≡ (Hk)k∈N\{n}. Define the incentive to work created for
each n ∈ N by the grading scheme γ (assuming all others are working) to be

In(γ) = unγ(H)− unγ(H−n, Ln)

2.6 Optimal Grading

Let S be the class of all anonymous, monotonic grading schemes γ : RN → ∆(R).
Let W ⊂ S. Denote

I(γ) = (I1(γ), ..., IN(γ))

I(W) = {I(γ) : γ ∈W}

We shall say that a grading scheme γ ∈W is W-efficient if there is no γ0 ∈W with
I(γ0) ¢ I(γ) and that it is W-maxmin if there is no γ0 ∈ W with minn∈N In(γ0) >
minn∈N In(γ). Finally we shall say that γ is W-optimal if it is both W-efficient and
W-maxmin.

Let dn = Hn − Ln be n’s disutility for switching from shirk to work and let
d = (d1, ..., dn). Then H is a Nash equilibrium of the game Γγ if and only if I(γ) ≥ d.

Since our goal is to find grading schemes that incentivize every student to study
hard, we will focus on optimal schemes.

14Note that it is not necessarily the case that a higher expected exam score for n means a higher
exam payoff to him. For example, if grading is perfectly fine, then getting a much lower score than his
rival with probability .49 and getting a slightly higher score with probability .51 yields him positive
exam payoff, though he has a lower expected exam score than his rival.
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3 Disparate Students

We begin with the first of our two extremal contexts, namely the one in which stu-
dents have “disparate" abilities. More precisely, suppose there are types 1, ..., c. Each
student of type i scores according to a nonatomic probability distribution with sup-
port in the interval J iH when he works, and any probability distribution with support
on the interval J iL if he shirks.

15 We assume that the score of any student is indepen-
dent of the effort levels and scores of the other students. This considerably simplifies
our analysis, but the reader can check that many of our basic results hold even with
correlation.

We call the types disparate if J iL < J iH < J i+1L < J i+1H for every i = 1, ..., c − 1,
where I < J means that the two intervals are disjoint and I lies below J . Higher
types score better than lower types no matter what effort levels either is choosing.

3.1 Coarsening

We begin with the simplest example, in which we can compute an optimal absolute
grading partition, illustrating the benefits of coarse grading.

First suppose N = {α, β}, i.e., there are just two disparate students with perfor-
mance intervals given in Figure 1 below. If the professor were to grade them finely,
neither would work, since status could not be affected by effort. More precisely,
(Lα, Lβ) is the unique NE of the game Γγ eP where eP ≡ {{x} : x ∈ R} denotes the
finest partition — even more, it is an NE in strictly dominant strategies. Neither
would they work if he graded them on a curve, for then he would have to distinguish
them all the time, which would be tantamount to fine absolute grading, or give them
the same grade all the time, which obviously induces shirking.

The professor can do better with a judiciously chosen coarse partition P. Indeed
consider the partition P(p) ≡ {A,B,C} shown in Figure 1. Anything below JβH gets
grade C (including all scores in JβL obtained when the beta type shirks). All scores
in JβH and JαL get B, as well as the bottom (1− p) fraction of the scores in JαH . The
partition is completely characterized by the single parameter 0 ≤ p ≤ 1, specifying
the fraction of JαH that counts for the grade A (so that we may abbreviate γP(p) ≡ p,
without confusion).

C B A
1 p− p

LJ β
LJ α

HJ α
HJ β Score

Figure 1: The Partition P(p)

The incentive In(p) to switch from effort level Ln to Hn for any student n (assuming

15The continuous randomness in scores if a student works is crucial to the analysis. If these scores
were deterministic instead, we could still achieve the same incentives by randomizing the grading
(e.g., in the example below, randomizing the cutoff to get an A).
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that his rival is working hard) is given by:

Iα(p) = uαp (Hα,Hβ)− uαp (Lα,Hβ) = p− 0 = p.

Iβ(p) = uβp (Hα,Hβ)− uβp (Hα, Lβ) = −p− (−1) = 1− p.

The optimal p∗ = 1/2 is given by

p∗ = argmax
0≤p≤1

min{Iα(p), Iβ(p)} = 1/2.

Note that In(1/2) = 1/2 for both students n.
Recall that dn = Hn−Ln is n’s disutility for switching from shirk to work, and that

(Hα,Hβ) is a Nash equilibrium if and only if Iα(p) = p ≥ dα and Iβ(p) = 1−p ≥ dβ.
As long as dα + dβ < 1, both students can be induced to work with several different
p. If dα + dβ = 1, then only p = dα will do the job.

Multiple Effort Levels and Less Disparateness The hypothesis of disparate
students is not as strong as it seems. One may imagine that each student has several
effort levels and that JnL is the performance interval for n ∈ N when n exerts his
second-highest effort. Now the two students are not as heterogeneous as before: all
we are postulating is that α is sufficiently more able than β so that his second-highest
effort leads to uniformly better scores than β’s highest effort. (The term dn = Hn−Ln

must be interpreted as the extra disutility incurred when n switches from his second-
highest to his highest effort.) In this setting, it is harder to sustain maximal effort as
an NE (more conditions will have to be met), and our analysis gives only necessary
conditions. It shows that any partition that induces both agents to work their hardest
must pool part of JαH with part of JβH .

3.2 Pyramiding

Notice that the optimal grading partition, given by p∗ = 1/2, implies:

Expected # of students getting A = p∗ =
1

2

Expected # of students getting B = 1 + (1− p∗) =
3

2
.

In other words, optimal grading creates a pyramid with fewer expected A’s than B’s
even though there are equal numbers of strong and weak students in the class.

Spence (1974) postulated that typically the weak student incurs more disutility
from effort than the strong, i.e.,

dβ > dα.

It is evident that the Spence condition has the effect of accentuating the pyramid.
When disutilities are severe and dα+ dβ = 1, we have to pick p = dα to induce work,
as we just saw. This falls as dβ rises, diminishing the expected number of A’s to dα,
and increasing the B’s to 1 + dβ.
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3.2.1 Multiple Students of Each Type

Now we show that coarsening and pyramiding persist with many students of each
type. Suppose there are Nβ β-type students of low ability and Nα α-type students
of high ability. The reader can check that the incentive functions become:

Iα(p) = pδ

Iβ(p) = −pNα − (−(Nβ +Nα − 1)) = (1− μHp)δ

where δ ≡ Nβ + Nα − 1 ≡ utiles to a student when he beats all the others and
μH ≡ Nα/(Nβ + Nα − 1) gives the fraction of high ability in the population, when
a single low-ability student stands aside. The status incentive grows pro forma with
the population, as if there were 100 times more status in being the President of
India’s 1 billion than of Greece’s 10 million. If this were really true it would be
easier to incentive Indian students to work than Greek students. But the optimal
absolute grading scheme would be virtually the same for both populations, as we see
immediately below.

The optimal (maxmin) p = 1/(1+μH) is obtained by solving 1−μHp = p. When
Nα and Nβ are large and equal, μH is nearly 1/2, and the optimal p converges to
2/3 < 1. The pyramid remains. Indeed, the pyramid becomes more visible since
the expected number of students getting a letter grade is approximately equal to the
actual number of students getting that grade, by the law of large numbers.16

3.3 Many Disparate Student-Types

When there are c disparate types, the optimal absolute grading partition will entail
c + 1 letter grades (i.e., will divide the numerical score line into c + 1 consecutive
cells). Each type i will have a positive probability 0 < pi ≤ 1 of obtaining grade i if
he works; but will lapse into the lower grade i− 1 with certainty if he shirks.

We illustrate the case of three disparate types: 1 (low ability), 2 (middle ability),
3 (high ability) in Figure 2.

C B AD

3
LJ 3

HJ2
LJ 2

HJ1
LJ 1

HJ Score
11 p− 21 p− 31 p− 3p2p1p

Figure 2. The Partition P(p1, p2, p3)

Suppose there are N1, ...Nc students of type i = 1, ..., c. Given the grading parti-

16Observe that if the population changes to include more α-type students, this will lower the
fraction of the α-type students who get A. (Recall that all the β-type get B.) This is so since
p = 1/(1 + μH) is decreasing in μH . It is also interesting to observe that so long as there is at
least one β student, the proportion of A’s in the whole population is always less than 1/2, since
pμH = μH/(1 + μH) < 1/2.
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tion p = (p1, ..., pc), the incentive to work for the c types is

I1c (p) = p1[(N1 − 1) + (1− p2)N2]

Iic(p) = pi[(Ni − 1) + pi−1Ni−1 + (1− pi+1)Ni+1] for 2 ≤ i ≤ c− 1
Icc (p) = pc[(Nc − 1) + pc−1Nc−1].

When working, a student of type 2 ≤ i ≤ c−1 might get unlucky, with probability
1 − pi, and find himself no better off than if he shirked. But with probability pi he
will be lucky, beating the fraction pi−1 of type i − 1 he otherwise would be equal
with, and coming equal with the fraction 1− pi+1, of type i+ 1 he would otherwise
have lost out against. In addition, he either beats (instead of equalling) or equals
(instead of losing to) every student of his own type. This gives the formula Iic(p) for
2 ≤ i ≤ c− 1. Taking N0 = Nc+1 = 0 in this same expression gives the formulas for
I1c (p) and Icc (p).

When there are vastly more students of some types than others, an optimal par-
tition will not necessarily equalize all the incentives. For example, suppose there are
one billion students of the lowest type 1, and just two students of types 2 and 3. An
efficient partition will always set p1 = 1, giving an incentive to work of at least one
billion (minus one) to type 1 students. A top student (of type 3) is only competing
against the students of type 3 and 2, and can therefore never have incentives exceed-
ing three utiles. This also shows that maxmin grading schemes need not be unique,
since choosing p1 < 1 (but not too small) will also achieve the maxmin.

Surprisingly, if 2 ≤ N1 ≤ · · · ≤ Nc, there will be a unique maxmin partition,
and it will indeed equalize all the incentives, and be optimal. Furthermore, it will
generate pyramiding. Indeed, each student of type i > 1 will have positive probability
of getting a grade lower than his type.17

Theorem 1a: There always exists an optimal absolute grading scheme when stu-
dents are disparate.

Theorem 1b: Let 2 ≤ N1 ≤ · · · ≤ Nc. Then Ic ≡ maxp∈[0,1]c min1≤i≤c Iic(p) is
achieved at a unique p̄; moreover, p̄1 = 1 and 0 < p̄i < 1 for i = 2, ..., c, and all
agents have the same incentive: Iic(p̄) = Ic ∀i = 1, ..., c. Therefore P(p̄) is A-optimal,
that is, optimal in the class of all absolute grading schemes. Furthermore, there is
a grading pyramid: the ratio of students obtaining the highest grade to the number
of top students is equal to p̄c < 1, whereas the ratio of students getting the lowest
observed grade to the number of bottom students is p̄1 + (1− p̄2) = 1 + (1− p̄2) > 1.

17 It is worth noting that with one student of each of three types, the optimal (p1, p2, p3) = (1, 1/2, 1)
yielding incentive 1/2 to each, so that the expected number of A’s = 1, of B’s = 1/2 and of C’s =
3/2, giving us pyramiding but not in the strongest sense. But even here, if we introduce the Spence
condition d3 ¿ d2 ¿ d1 on disutility of effort, the inequalities Ii(p) ≥ di will (as is obvious) require
p3 < p2 < p1 by way of a solution, bringing back the full pyramid.
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Proof of 1a: The functions Iic(p) are continuous on the compact set [0, 1]
c. Hence

C = argmaxp∈[0,1]c [mini I
i
c(p)] is a nonempty, compact subset of [0, 1]

c. Clearly, q ∈ C

and I(q̃) ≥ I(q) together imply that q̃ ∈ C. Therefore D = argmaxp∈C
Pc

i=1 I
i
c(p) is

also nonempty (and compact), and every point p ∈ D is optimal.¥

Proof of 1b: Since each Iic(p) is continuous in p, Ic(p) is also continuous, and so
Ic = maxp∈[0,1]c min1≤i≤c I

i
c(p) is achieved at some p̄. Clearly any maxmin p̄À 0, for

otherwise Ic = Ic(p̄) = 0, which can be bettered by choosing all pi = 1.
Inspection of the formulae immediately reveals that raising p̄i raises Iic(p̄) and

Ii+1c (p̄), but lowers Ii−1c (p̄). Furthermore, for any 2 ≤ i ≤ c, if p̄i = 1, then from
N1 ≤ · · · ≤ Nc we get Iic(p̄) ≥ Ni − 1 + p̄i−1Ni−1 ≥ p̄i−1[p̄i−2Ni−2 − 1 + Ni−1] =
p̄i−1[Ni−1−1+ p̄i−2Ni−2+(1− p̄i)Ni] = Ii−1c (p̄), where the second inequality is strict
if p̄i−1 < 1 and Ni−2 ≥ 2.

Now we argue that for any maxmin p̄, Iic(p̄) = Ic for all i = 1, ..., c. Take any
maxmin p̄ with the fewest number of coordinates i with Iic(p̄) = Ic. Suppose i is the
largest coordinate with I ic(p̄) = Ic. If i < c, then Ijc (p̄) > Iic(p̄) for all j > i. Lowering
p̄i+1, which is possible since p̄À 0, raises I ic(p̄), and lowers the irrelevant I

i+1
c (p̄) and

Ii+2c (p̄). This either raises Ic or reduces the number of i at which Ic is attained, a
contradiction either way. Hence Icc (p̄) = Ic. Suppose I

i−1
c (p̄) > Iic(p̄) = Ic, for some

i = 2, ..., c. Then from the last line of the last paragraph, p̄i < 1. But then raising
p̄i raises Iic(p̄) and Ii+1c (p̄), lowering the irrelevant Ii−1c (p̄). This either raises Ic or
reduces the number of i at which Ic is attained, a contradiction either way. Thus
Iic(p̄) = Ic for all i and any maxmin p̄.

Now we show that Ic is achieved at a unique p̄. Observe first that at any maxmin
p̄, p̄1 = 1, for if p̄1 < 1, increasing p̄1 will increase I1c (p̄) without lowering any other
Iic(p̄), contradicting I1c (p̄) = Ic for every maxmin p̄. But p̄1 = 1 and I1c (p̄) = Ic
uniquely determines p̄2. But then p̄1, p̄2, and I2c (p̄) = Ic uniquely determines p̄3, and
so on.

Observe that if p̄1 = p̄2 = 1, then obviously I1c (p̄) < I2c (p̄), contradicting all
Iic(p̄) = Ic. This shows p̄2 < 1. We showed earlier that for any 3 ≤ i ≤ c, if p̄i−1 < 1
and p̄i = 1, then Iic(p̄) > Ii−1c (p̄), contradicting their equality. Thus we have shown
that p̄i < 1 for all i = 2, ..., c.¥18

3.4 Grading on a Curve

We have assumed that students care only about their relative grade. It would seem
therefore that relative grading, i.e., grading on a curve, would provide the best in-
centives. But in fact the contrary is true. When all the students are disparate (or

18One more observation. C onsider an infinite sequence of disparate types with populations 1 ≤
N1 ≤ N2 ≤ · · · . For each c, let Ic be the maxmin incentive for the status game with types 1, ...c, as
above. Then Ic is monotonically increasing in c, converging to some I∗ ≤ N1 +N2 − 1 as c→∞.
To verify this, let Ic = Ic(p̄). Define p̂ = (p̂1, ..., p̂c, p̂c+1) = (p̄1, ..., p̄c, 1). Then Ic+1 ≥ Ic+1(p̂). But

Iic+1(p̂) = Iic(p̄) = Ic for all i = 1, ..., c. Moreover, Ic+1c+1 (p̂) = p̂c+1((Nc+1 − 1) + p̂cNc) = 1 · ((Nc+1 −
1) + p̄cNc) ≥ p̄c(Nc − 1) + p̄c−1p̄cNc−1 = p̄c(Nc − 1 + p̄c−1Nc−1) = Ic. But Ic ≤ I1c ≤ N1 +N2 − 1
for all c. ¥
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homogeneous — see Section 5), it is always better to grade according to an absolute
scale, no matter how many students are in the class.19

Theorem 2 (Absolute Grading Beats Grading on a Curve): Consider mul-
tiple disparate students, as in Section 3.3. For any grading on a curve, there exists an
absolute grading scheme that generates at least as much incentive for every student
as the curve. Consequently, every optimal absolute grading scheme generates higher
minimum incentive than any grading on a curve.

Proof: Let there be Ni students of type i = 1, ..., c, as in Section 3.3. Grading on a
curve means specifying integers K = (KA,KB, ...,KZ) with KA +KB + · · ·+KZ =
N = Nc + · · ·+N1, where the top KA student exam scores get A, the next KB get
B and so on. (The probability of ties is zero.)

If there is only one disparate student of each type, then the student of type i will
score below c− i students and above i−1 students whether he works or shirks. With
grading on a curve, his letter grade must therefore be independent of his effort, and
so grading on a curve provides no work incentive whatsoever.

Consider a general population N = (N1, ...,Nc), and any grading on a curve
K = (KA,KB, ...,KZ). We can find an absolute grading scheme that creates the
same incentives to work for types 2, ..., c, and at least as much for type 1.

Let μi measure the distribution of scores of a type i agent when he works (so
μi(T ) = Prob(xHi ∈ T ) for every T ⊂ R). Define μ ≡

Pc
i=1Niμi. For any relative

grade G, cut R at the minimum point x such that

KA + · · ·+KG = μ[x,∞).

It is easy to check that the absolute partition defined by these cuts does the job.¥

3.5 More General Grading Schemes

Absolute grading, though better than grading on a curve, is not optimal in the class
of all anonymous and monotonic grading schemes.

Recall the case of Nβ β-type students of low ability and Nα α-type students of
high ability, and the A-optimal grading scheme described in Section 3.2.1. We shall
now present a grading scheme that does better.

When every agent of α-type is working hard, so that no score lies in JαL , we
assign the same grades as in our A-optimal scheme (with pβ = 1 and pα = 1/(1 +
Nα/(Nβ + Nα − 1)). However, if there is any score in JαL , then apply the absolute
grading scheme with pβ = pα = 1. This new grading scheme is the same as before,
except that when some α-type student shirks, more As are expected to be given (if
Nα − 1 > 0), though never to the shirker. Thus if Nα > 1, the payoff to the shirker

19Of course, with a continuum of students of each type, there is no difference between grading on
a curve and absolute grading. Giving an A to the top 10% of students can be replicated by giving
an A to all scores above xA, for some appropriate threshold xA.
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is lower than before. Hence the incentive of the α-type goes up, while the incentive
of the β-type is unchanged.20

4 Homogeneous Students

Until now we have concentrated on the case where students differ substantially in
their abilities. In that case, coarsening the grading allows the weaker student to
compete with the stronger. We turn now to the case where all students have the
same ability, i.e. the same map from effort to random scores on the exam. They are
free to choose different effort levels, and their scores are subject to random shocks
that may give them diffferent scores even when they choose the same effort levels.
We show that coarsening still has a role to play.

Homogeneity simplifies our task in several ways. First, the incentives of all the
players are aligned. Maxmin and optimal become identical. Second, when all the
students work, each has an expected exam payoff of zero. This is so because the
sum of their exam payoffs is zero for every ex post realization of scores, and because
they are ex ante identical. Hence the incentive to work is simply the negative of
the expected exam payoff to a sole shirker when the remaining N − 1 students are
working.

It follows that there is no simplification gained by assuming that each student’s
performance is independent of the others’ effort levels. For example, if we let (f, f, g)
be the score densities of the (worker, worker, shirker), then we could compute directly
the expected payoff of the shirker. If the shirker switched to working and we had
assumed independence, we would then know that the densities would become (f, f, f).
Without independence we might have to deal with new densities (h, h, h). But this
does not alter the computations, since the exam payoffs with densities (h, h, h) are
zero, just as they would be with (f, f, f); h would be irrelevant.

The following conditional independence simplifies the analysis as much as would
have been achieved by assuming full independence.

Assumption: Conditional on any choice of effort levels (e1, ..., en), students’ exam
scores are independent.

We shall maintain this assumption for the rest of the paper. It immediately
implies that the incentive to work is the probability that a shirker is ranked lower
than a worker minus the probability that his score is ranked above the worker’s, all
multiplied by N − 1.

After presenting several examples, we give sufficient conditions for perfectly fine
or perfectly coarse grading to be optimal in the class S of all anonymous, monotonic
20There are natural ways of cutting down the class S of grading schemes to S∗, so that any A-

optimal scheme is also S∗-optimal. For instance, consider the following "independence of irrelevant
score changes" hypothesis (satisfied by absolute grading and grading on a curve): if a student i’s
score falls to a level still higher than the score of a student j, then j’s payoff is unchanged relative to
any student k 6= i whose score is above his. The proof of Theorem 1 in Dubey-Geanakoplos (2005)
confirms all this when there are two disparate types.
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schemes. In general we are unable to pin down the optimal grading scheme in S.
However, under weak regularity assumptions on the score densities, we are able to
characterize optimal schemes in the class A ⊂ S of absolute grading schemes. In
Section 5 we shall prove that absolute grading gives better incentives than grading
on a curve.

4.1 Examples

We present four examples that can be encompassed in our theory. Example 1 il-
lustrates the advantage of coarse grading when score densities are piecewise differen-
tiable. Example 2 shows that in some circumstances perfectly fine grading is optimal.
Example 3 illustrates that our theory is applicable with discrete distributions, and
that even here coarse grading has a role to play. Example 4 shows that the theory
can be used for the important case of normal distributions.

Consider a situation in which N identical students take an exam. Suppose that
if a student works hard, his score will be uniformly distributed on [50%, 100%], that
is, his score has density f(x) = 2 if 50% ≤ x ≤ 100%, and 0 otherwise,independent
of the others’ scores and effort levels. If he shirks, suppose his score has density
g(x) = 2x for 0 ≤ x ≤ 100%, and 0 otherwise, again independent of the others.

1

0

2

50 100 Score

f

g

Figure 3: Score Densities

The probability the shirker comes behind a worker is
R 1/2
0 2xdx +

R 1
1/2 2x2(1 −

x)dx = 7/12. The probability the shirker comes ahead of a worker is therefore
1 − 7/12 = 5/12, and we conclude that shirking gives an expected exam payoff
(N − 1)( 512 −

7
12) = −

1
6(N − 1). This shows that the incentive to study hard is

1
6(N − 1), which must be compared to the disutility of effort.
Suppose instead that just two grades are issued, namely A for scoring between

50% and 100%, and B for scoring between 0 and 50%. If a student works, along
with all his N − 1 rivals, then all will receive a score above 50% and therefore all will
receive A. Each student will get a payoff of 0. If a single student fails to study, then
his expected payoff is (N−1) multiplied by −1

R 1/2
0 2xdx+0

R 1
1/2 2xdx = −1/4 giving
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an incentive to study of 14(N − 1). Since this is greater than
1
6(N − 1), we see that

giving only two grades creates significantly higher incentives to work than perfectly
fine grading.

We will show later that our partition of scores

P = {[0, 50%), [50%, 100%]}
into just two grades yields the optimal absolute grading partition.

With three students the incentive to work under P is (1/4)(3 − 1) = 1/2. Now
consider grading on a curve. Giving everybody an A provides no incentive at all.
Giving three grades is just like the perfectly fine partition with absolute grading
and is therefore not as good as the optimal partition ([0, 50), [50, 100)). (Indeed we
computed that fine grading gave incentive 1/3). With a curve that gives two B’s and
one A, the incentive to work is 99/324 < 1/2, while with a curve that gives one B
and two A’s it is 63/324 < 1/2. Once again optimal absolute grading is better than
any grading on a curve.

Next we give an example where fine grading is optimal. Suppose an exam contains
K questions, and that a student who studies has (independent) probability p of
getting each question right, while if he shirks the probability drops to q < p. Theorem
4 will imply that for this example, perfectly fine absolute grading is optimal in the
class S of all anonymous and monotonic schemes.

Our third example shows that coarseness can be important even when scores are
discrete. Imagine an exam with two questions covering the two halves of the course.
Suppose that if a student studies hard, he has probability p = .6 of getting any
question right, independently across questions. If he shirks and studies only half the
course, he has probability q = .8 of getting the corresponding question right, and
zero chance of getting the other question. Thus the probabilities for getting (0, 1, 2)
questions right are (.2, .8, 0) for the shirker and (.16, .48, .36) for the worker. Clearly
the hard working student will do better most of the time (his score stochastically
dominates the shirker’s score). How should the professor grade the exams?21

Suppose there are just two students, and that the second student studies hard.
What incentive does the first student have to work? Fine grading gives the shirker an
expected exam payoff of (1−p)2q−[p2q+p2(1−q)+2p(1−p)(1−q)] = −0.328. If both
students work, then by symmetry and the fact that total exam payoff is inevitably
zero, the expected utility of each is 0. The incentive to work with fine grading is thus
0.328.

Suppose instead that the professor uses just two grades, an A for a perfect exam,
and a B for anything else. Then the expected exam payoff of a shirker is −[p2q +
p2(1 − q)] = −p2 = −0.36. His incentive to work is thus 0.36, since again if they
both work, each has an expected exam payoff of zero. Since 0.36 > 0.328, we see that
coarse grading gives higher incentives to work.

As a final example, suppose that we are grading the relative performances of two
hedge funds. Suppose that a hedge fund that works on research will generate log
21Suppose the shirker could study either half of the course, so the professor cannot distinguish the

two students by attaching higher weight to the second question. We assume his grading depends
only on the total number of correct answers of each student.
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returns normally distributed with mean μ and standard deviation σ, while a hedge
fund that shirks will generate returns distributed according to μ̂ < μ and σ̂ > σ. If
the fund managers cared only about their relative grade, would they be motivated to
work harder if the grade was simply their return? Intuitively that seems wrong, since
an extraordinarily high return is more likely from the high variance shirker, despite
his lower expected return. We shall see that the optimal grading scheme indeed does
not reward higher returns after some point.

4.2 The General Theory with iid Students

We turn first to the general situation, identifying conditions under which it is optimal,
in the class of all anonymous monotonic grading schemes, to completely reveal the
scores or to completely mask them.

A key role in all that follows is played by the notion of stochastic dominance.

4.2.1 Stochastic Dominance

Definition: When we say "conditional on x and y being in [a, b) something hap-
pens" we mean that it happens if P (x ∈ [a, b) ∧ y ∈ [a, b)) > 0.

Definition: We say that the random variable x (stochastically) dominates the in-
dependent random variable y on the interval [a, b) if, conditional on both being in
[a, b), x (first order) stochastically dominates y, i.e.

P (x ∈ [θ, b)|x ∈ [a, b))− P (y ∈ [θ, b)|y ∈ [a, b)) ≥ 0,

or,
P (x ∈ [θ, b))
P (y ∈ [θ, b)) ≥

P (x ∈ [a, b))
P (y ∈ [a, b)) ≥

P (x ∈ [a, θ))
P (y ∈ [a, θ))

for all θ ∈ (a, b). In this case we write

x % y on [a, b).

If the inequality is strict for all θ ∈ (a, b), we write x Â y on [a, b) and call it strict
dominance. If [a, b) = (−∞,∞), then we simply write x % y or x Â y.

Stochastic dominance has an extremely important role to play in monotonic grad-
ing schemes, including absolute grading.

Lemma 1: Suppose x % y. Let the exam scores x and y be independent of the exam
scores of every student n = 1, ..., N − 1. Let γ be any monotonic grading scheme for
N students. Then the expected exam payoff to the last student N is at least as high
under an exam score of x as it is under y.
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Proof: By independence, the payoffs from exam scores x and y depend only on their
distributions. According to Theorem 1.A.1 of Shaked—Shanthikumar, there exist x̂
and ŷ with the same distributions as x and y respectively, such that x̂ ≥ ŷ with
probability one. But then for any realization of the other N − 1 scores, x̂ will clearly
get a (weakly) higher payoff than ŷ. ¥

It follows that

Theorem 3: (When Perfectly Coarse Grading is Optimal) If a shirker has
exam scores distributed according to xL while the worker’s is distributed according to
xH , and xL & xH , then no anonymous, monotonic grading scheme can provide any
incentive to work. We might as well give all students an A.

In the first three examples of this section, the worker scores stochastically dom-
inated the shirker’s scores, and indeed this is what gave the student an incentive to
work under all the grading schemes.

It will be useful to also consider a strengthened form of domination.

Definition: We say that x uniformly dominates y on the interval [A,B) if x dom-
inates y on every subinterval [a, b) ⊂ [A,B). In this case we write x %U y on [A,B).

Uniform domination can be characterized in terms of likelihood ratios in a manner
that makes it much more handy to work with.

Lemma 2: Let x and y be independent on [A,B) with density functions f and g,
respectively. Then x uniformly dominates y on [A,B) if and only if the likelihood
ratio f(t)/g(t) is increasing almost everywhere on [A,B), where f(t)/g(t) can be
defined suitably arbitrarily if f(t) = g(t) = 0.

Proof: This follows from Theorem 1.C.2 in Shaked—Shanthikumar. ¥

It is critical in understanding the first and third examples of this section to observe
that although the worker’s scores (stochastically) dominates the shirker’s, there are
subintervals on which the shirker’s score uniformly (stochastically) dominates the
worker’s. In the first example of this section xL uniformly dominates xH on [50, 100].
In the third example, q/(2p(1 − p)) = .8/.48 > .2/.16 = (1 − q)/(1 − p)2, so on the
cell {0, 1} the shirker uniformly dominates the worker.

Another instance of uniform domination occurs in the second example, where an
exam has K independent questions, and a student has a probability p of getting any
answer correct. If another student independently has probability q of getting each
question right, then the likelihood ratio condition reduces to³

K
k

´
pk(1− p)K−k³

K
k−1

´
pk−1(1− p)K−k+1

>

³
K
k

´
qk(1− q)K−k³

K
k−1

´
qk−1(1− q)K−k+1
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or
p

1− p
>

q

1− q
.

Thus if p > q, the first score uniformly dominates the second score over the range of
all scores.22

When f and g are differentiable, f(t)/g(t) is increasing if and only if f 0(t)/f(t) ≥
g0(t)/g(t). Let N(μ, σ) denote the normal distribution with mean μ and standard
deviation σ. If x ∼ N(μ, σ) with density f(t) and y ∼ N(μ̃, σ̃) with density g(t) then

f 0(t)

f(t)
=
−(t− μ)

σ2
;
−(t− μ̃)

σ̃2
=

g0(t)

g(t)
∀t ∈ (−∞,∞).

If μ > μ̃ and σ = σ̃, then x uniformly dominates y on all of (−∞,∞). More generally,
x will uniformly dominate y on the interval including all t such that

t

σ2
− t

σ̃2
<

μ

σ2
− μ̃

σ̃2

and y will uniformly dominate x on the complementary interval. Thus if σ2 < σ̃2,
then x uniformly dominates y on the lower tail, and y uniformly dominates x on the
upper tail. This is crucial in understanding the fourth example.23

The phrase “N iid students who can work or shirk” means that each student has
two effort levels, and that assuming any one student shirks while the others work,
he has score xL with density g while each other student k has an independent score
xk ∼ xH , with density f . (Here ∼ denotes identical in distribution.) We begin with
a simple theorem showing that when xH &U xL, perfectly fine grading is optimal,
even in the wider class S of all monotonic and anonymous grading schemes.

Theorem 4 (When Perfectly Fine Grading is Optimal): Let there be N iid
students who can work or shirk. Suppose xH &U xL. Further, suppose xH and xL
are either discrete or have piecewise continuous densities f and g with no atoms.
Then perfectly fine grading is optimal in the class S of all monotonic, anonymous
grading schemes.

Proof: Consider the case of two of the students, the shirker L and one of the workers
H. Fix the scores of all the other workers. A monotonic grading scheme γ gives a
different payoff (from fine) to L against H precisely on the set

W = {(xL, xH) ∈ R2 : xL 6= xH , yet γ gives xL and xH the same grade}.
22The notion of domination does not rely on independence. For example, suppose that with

probability π the two students have chance p1 > q1 of getting each question, while with probability
1 − π they have chance p2 > q2 of getting each question; still the score of the first student would
uniformly dominate that of the second. This suggests that much of our analysis can be extended to
nonindependent scores, but we have not undertaken this extension here.
23The attentive reader might be puzzled, since the binomial exam scores “converge” to normal as

K →∞, yet we never see the tail where xq dominates xp . That is because this tail is always beyond
K. In fact it is not the exam scores, but normalized exam scores, which converge to normal, and the
means of xp and xq are diverging at the rate K (not

√
K).
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By anonymity, (α, β) ∈W if and only if (β, α) ∈W . Suppose first that the densities
f and g are discrete. By independence, f and g also give the densities of scores for
H and L conditional on the other scores being fixed. From the uniform domination
xH &U xL, we know that if β > α, then f(β)/g(β) ≥ f(α)/g(α). Hence replacing
the masking grading γ on W with fine grading lowers the expected exam payoff to
the shirker by X

(α,β)∈W
α<β

[f(β)g(α)− g(β)f(α)] ≥ 0.

Next suppose that f and g are piecewise continuous. Since W is measurable it
can be approximated arbitrarily closely (in Lebesgue measure) by a union of small
rectangles Qα,β = {(xL, xH) : α − ε ≤ xL < α + ε and β − η ≤ xH < β + η} whose
interiors do not contain any points of discontinuity of f and g. By anonymity, we
may assume that the mirror square Q∗ = {(xL, xH) : β − η ≤ xL < β + η and
α − ε ≤ xH < α + ε} is also part of the approximation. These squares have area
approximately equal to 4εηf(α)g(β) or 4εηg(α)f(β). If β > α, then by uniform
stochastic dominance, f(β)g(α) ≥ g(β)f(α). The masking on W thus hides the fact
that xH would have come ahead of xL more often than behind xL when both variables
are in W . Hence masking W does not improve the incentive to work. Integrating
over all possible fixed scores of the other workers shows that the expected payoff of
L against H is lower when grading is perfectly fine. ¥

Domination and uniform domination can be defined exactly the same way for any
totally ordered set, such as a partition P. The likelihood ratio criterion for uniform
domination appearing in Lemma 2 also carries over to partitions. Given a density f
and a partition P, define the density

fP(x) =

(
f(x) if x ∈ [a, b) a perfectly fine cell in P
1

b−a
R b
a f(t)dt if x ∈ [a, b) a masked cell in P

The analogue of Lemma 2 still holds: x uniformly dominates y on [A,B) with respect
to P if and only if fP(t)/gP(t) is increasing on [A,B). More importantly, Theorems 3
and 4 and their proofs all hold for totally ordered sets consisting of cells of any arbi-
trary absolute partition.24 In particular, if xH uniformly dominates xL on (−∞,∞)
with respect to P, then grading according to P penalizes a shirker at least as much
as any anonymous, monotonic grading scheme that cannot distinguish scores that are
indistinguishable in P.

We have found conditions for perfectly coarse and perfectly fine grading to be
optimal in S. The general characterization of optimal schemes in S is quite elusive.
So we turn to the narrower class A of absolute grading schemes, where we can com-
pletely characterize optimal grading. Later we show that an optimal absolute grading
partition beats any grading on a curve.
24Theorem 3 in fact holds for an arbitrary ordered set by the same proof. For Theorem 4 we

must adjust the proof for the case of orders derived from partitions. In the second half of the proof
of Theorem 4, allow rectangles Qα,β where α ∈ [a, b) a masked cell in P, only if α = (a+ b)/2 and
ε = (b − a)/2. Similarly, if β ∈ [a, b), a masked cell in P, then only consider the rectangle Qα,β if
β = (a+ b)/2 and η = (b− a)/2.
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4.3 Optimal Absolute Grading Partitions: A-optimality
Our characterization of optimal absolute grading partitions begins by asking whether
the shirker’s payoff can be lowered below zero by a single cut at θ, creating a two
cell partition {(−∞, θ), [θ,∞)}. We shall find that if the worker’s score distribution
f stochastically dominates the shirker’s score distribution g, then any cut will help,
while under the reverse domination, every cut will hurt.

Next we consider a partition and ask whether cutting a cell in the partition into
two cells will further help incentives or set them back. The answer depends on who is
the better player, conditional on both scores lying inside the same cell. If the shirker
is better, we must not reveal this, since we are trying to minimize his score, and keep
the cell uncut. For example, the shirker may be very unlikely to get a score above
90. But conditional on both the shirker and worker getting above 90, it may be more
likely that the shirker does better. (The shirker may have memorized the answers to
last year’s exam. In the unlikely event that this year’s exam questions are the same
he will get 100; otherwise he will get 0.)

The guiding principle in creating optimal partitions is to mask regions of the score
space where the shirker is better than the worker, and to ensure that across cells the
worker is better, so that the partition reveals the deficiencies of the shirker. This
characterization will be used in Section 5 to prove that absolute grading is better
than grading on a curve.

Lemma 3: Suppose two students H and L take an exam, yielding independent
scores xH and xL. If the grading partition is {(−∞, θ), [θ,∞)}, then the expected
exam payoff to L is

P (xL ∈ [θ,∞))− P (xH ∈ [θ,∞)).

Similarly, if the grading partition includes cells [a, θ), [θ, b), for a < θ < b, then
conditional on both xH and xL being in [a, b), the expected exam payoff to L is

P (xL ∈ [θ, b))
P (xL ∈ [a, b))

− P (xH ∈ [θ, b))
P (xH ∈ [a, b))

.

Proof: In the first case, the expected exam payoff to L is

P (xL ∈ [θ,∞) ∧ xH ∈ (−∞, θ))− P (xH ∈ [θ,∞) ∧ xL ∈ (−∞, θ)).

With independence, this becomes

P (xL ∈ [θ,∞))P (xH ∈ (−∞, θ))− P (xH ∈ [θ,∞))P (xL ∈ (−∞, θ))

= P (xL ∈ [θ,∞))(1− P (xH ∈ [θ,∞))− P (xH ∈ [θ,∞))(1− P (xL ∈ [θ,∞)))
= P (xL ∈ [θ,∞))− P (xH ∈ [θ,∞)).

The second case is analogous. ¥
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Corollary: If P is a partition of scores including the cell [a, b) and if P∗ modifies
P by cutting [a, b) at θ, into [a, θ) and [θ, b), leaving all the other cells intact, then
the move from P to P∗ increases the expected exam payoff to L by

P (xL ∈ [a, b))P (xH ∈ [a, b))
∙
P (xL ∈ [θ, b))
P (xL ∈ [a, b))

− P (xH ∈ [θ, b))
P (xH ∈ [a, b))

¸
.

and thus increases if and only if

P (xL ∈ [θ, b))
P (xH ∈ [θ, b))

≥ P (xL ∈ [a, b))
P (xH ∈ [a, b))

≥ P (xL ∈ [a, θ))
P (xH ∈ [a, θ))

.

Proof: The first display follows from Lemma 1 after observing that if either xL /∈
[a, b) or xH /∈ [a, b), the payoff is the same under P or P∗. The first inequality of
the second display just rearranges terms, and the second inequality follows by noting
that if xL is relatively more likely (than xH) to fall in the right half of the interval,
then it is less likely to fall in the left half. ¥

We are now ready to state some theorems about the optimal absolute grading
partition. It turns out that stochastic dominance plays the central role in determining
whether or not there should be masking (i.e., giving the same grade to different
scores).

Theorem 5 (Coarseness in the Optimal Absolute Grading): Let there be N
iid students who can work or shirk. Suppose that on some interval [a, b), xL dominates
xH . Then for any partition P that cuts [a, b), there is another partition P∗ that gives
at least as much incentive to work without cutting [a, b). Furthermore P∗ adds no
extra cuts to P except possibly at a or b.

If xL strictly dominates xH on [a, b), then every optimal grading partition is
coarse on [a, b).

Proof: Consider the following picture:

βα a θ b
Figure 4: Cutting (a, b) at θ

Let P be a partition consisting entirely of perfectly masked cells. Let α be the
cut at the highest score less than or equal to a, and let β be the cut at the lowest
score greater than or equal to β, where −α or β might be infinite. Then we may
write P = {[α, θ1), ..., [θk, β)}, where a < θ1 < ... < θk < b. We shall show that it is
always possible to find another partition with no cuts inside [a, b) without reducing
incentives to work. For the rest of the proof all probabilities will be taken conditional
on xL and xH being in [α, β]. For ease of notation, we suppress this conditionality,
writing (e.g.) PL[c, d) ≡ P (xL ∈ [c, d))/P (xL ∈ [α, β)) for any [c, d) ⊂ [α, β).
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If adding a cut at a increases incentives, then add it and WLOG take a = α.
Otherwise by Corollary 3 we must have

PL[α, a)

PH [α, a)
≤ PL[a, θ1)

PH [a, θ1)

Since xL dominates xH on [a, b), we know that

PL[a, θ1)

PH [a, θ1)
≤ PL[θ1, b)

PH [θ1, b)

It follows that
PL[α, a)

PH [α, a)
≤ PL[a, θ1) + PL[θ1, b)

PH [a, θ1) + PH [θ1, b)
=

PL[a, b)

PH [a, b)

and therefore
PL[α, b)

PH [α, b)
=

PL[α, a) + PL[a, b)

PH [α, a) + PH [a, b)
≤ PL[a, b)

PH [a, b)

Since we will not contemplate any cuts between α and a, we shall treat the cell
[α, a) as a single element We shall now demonstrate that xL dominates xH on the
ordered set {[α, a)} ∪ [a, b), where [a, b) represents the usual continuum of elements.
Take any cut c ∈ [a, b). Then it follows from the last display that

PL[c, b)/PL[α, b)

PH [c, b)/PH [α, b)
≥ PL[c, b)/PL[a, b)

PH [c, b)/PH [a, b)

Since xL dominates xH on [a, b), we know that

PL[c, b)/PL[a, b)

PH [c, b)/PH [a, b)
≥ 1

Since c was arbitrary, we conclude that xL dominates xH on [α, b).
By an identical argument we can now show that either b = β, or xL dominates

xH on the ordered set {[α, a)} ∪ [a, b) ∪ {[b, β)}.
By theorem 4 applied to ordered sets, we conclude that removing all the cuts in

[a, b) from the partition P will not reduce the incentive to work. ¥

Theorem 5 shows that if work leads to a normal distribution N(μ, σ) of scores,
and shirk leads to N(μ̃, σ̃), where σ 6= σ̃, then one tail of scores will be completely
masked in any A-optimal partition.

Theorem 5 also leads to necessary and sufficient conditions for the A-optimality
of a partition P. We say that xL dominates xH inside a partition P if xL & xH on
[a, b) for every cell [a, b) ∈ P. We say that xH uniformly dominates xL outside a
partition P if xH &U xL on P, i.e., across the ordered set of cells of P.

Theorem 6 (Inside Domination and Uniform Outside Domination Imply
Optimality): Let there be N iid students who can work or shirk. A partition P is
an optimal absolute grading partiton if xL dominates xH inside P and xH uniformly
dominates xL outside P.

24



Proof: Take a bounded interval I ⊂ (−∞,∞) such that the probability that both
xL and xH are in I is at least 1 − ε. Consider a finite cover of I by consecutive
intervals in P whose union [a, b) ⊃ I. Let I1 = [a1, b1), I2 = [a2, b2), ...Ik = [akbk) be
all the intervals in the cover that are not perfectly fine.

Suppose P 0 is any partition. If P 0 cuts interval I1, by Theorem 5 we can remove
those cuts, possibly adding new cuts at a1,b1, obtaining a new partition P 01 which
does at least as well as P 0. Note that the new cuts, if any, do not cut any of the
intervals I1, I2, ...Ik. In general, given P 0i, use the process defined by the proof of
Theorem 5 to remove the cuts of P 0i that lie inside [ai+1, bi+1), possibly adding new
cuts at ai+1, bi+1, to obtain a partition P 0i+1 that does at least as well as P 0i. Iterate
the process k times to arrive at P 0k. P 0k does at least as well as P 0, and does not cut
any cell of P lying in [a, b). Thus restricted to [a, b), P 0k is a coarsening of P. Since
xH %U xL across the cells of P it follows from Theorem 4 that, conditional on both
xL and xH lying in [a, b), the payoff to xL is (weakly) lower in P than in P 0k. But the
difference in incentive between P 0k and P 0 is at most (N − 1)ε. Since ε was arbitrary,
P 0 cannot provide strictly better incentive than P ¥

Suppose that all students are homogeneous, with independent, and normally dis-
tributed exam scores. If work raises a student’s expected exam score, without chang-
ing its variance, then Theorem 5 implies that anA-optimal grading scheme is perfectly
fine.

Similarly, if the K exam questions are identical, independent trials, and if hard
work allows a student to raise his probability of getting each answer right, then again
an A-optimal grading scheme is to reveal the exact scores.

But consider the first and third examples of this section. There we found that
giving just two grades, A and B, improved incentives beyond what could be achieved
by fully revealing the scores. Theorem 6 guarantee that these are indeed optimal
partitions. In the third example, xL uniformly dominates xH on {0, 1}, while xH
uniformly dominates xL across the partition cells {0, 1}, {2}, since .36/.64 > 0/1.
In the first example, inside the cell [0, 50), xH has probability zero, so xL trivially
uniformly dominates it. Inside the other cell [50, 100), f(t)/g(t) = 2/2t = 1/t is
strictly falling, so xL uniformly dominates xH . Across cells we can check that xH
uniformly dominates xL. On [0, 50), we can define the effective density of a worker
as fP(t) = 0, and that of a shirker as gP(t) = .5. On [50, 100) the effective densities
become fP(t) = 2 and gP(t) = 1.5. Clearly fP(t)/gP(t) is increasing.

In our next theorem we show that inside domination and uniform outside domi-
nation are also necessary conditions for a partition to be A-optimal, when agents are
homogeneous. For the theorem we need to impose slightly stronger conditions.

Density Assumption: We assume that one of the following three condtions holds:
(1) xH and xL all both discrete; (2) xH and xL both have piecewise continuously
differentiable densities f and g, and furthermore, at any (isolated) point x of non-
differentiability of discontinuity, f+(x), f−(x), g+(x), g−(x) all exist; (3) xH and xL,
with densities f and g, are generic, i.e. there is a countable set {· · · < ai < ai+1 <
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· · · } such that f(t) and g(t) are continuous and f(t)/g(t) is continuous and strictly
increasing on [ai, ai+1) for all even i and strictly decreasing for all odd i.

The density assumption allows us to clarify the roles of uniform domination and
domination.

Lemma 4: Uniform Domination vs. Strict Domination Let [a, b) be any
(possibly infinite) interval, and let the random variables xH and xL satisfy the density
assumption. Then either xH %U xL on [a, b), or else there is a subinterval [c, d) ⊂
[a, b) on which xL Â xH .

Proof: First let the random variables be discrete. Either f(t)/g(t) is weakly in-
creasing everywhere on [a, b), or else there is a subinterval [c, d) on which f(t)/g(t) is
strictly decreasing. (The subinterval [c, d) may contain only two consecutive points
in the support of either f or g.) By Lemma 2, we get the even stronger conclusion
that either xH %U xL on [a, b), or else xL ÂU xH on [c, d).

If the random variables are generic, as in case 3, we get the same conclusion by
exactly the same argument.

Now consider case 2. If the derivative of the function f(t)/g(t) is negative at some
interior point a < x < b, then there is a small interval [c, d) containing x on which
f(t)/g(t) is strictly decreasing. By lemma 2, xL ÂU xH on [c, d).

If f(t)/g(t) jumps down at some non-differentiable point a < x < b, then by
hypothesis f(t)/g(t) is differentiable at all t ∈ [c, x) ∪ (x, d) for any small enough
interval [c, d) = [x− ε, x+ ε) containing x. Now let θ = x− δ be any cut of [c, d) to
the left of x. (Cuts to the right of x can be handled exactly the same way.) Then
δ < ε. By continuity, for very small ε, we must have

P [xL ∈ [θ, d)|xL ∈ [c, d)]
P [xL ∈ [c, d)]

/
P [xH ∈ [θ, d)|xH ∈ [c, d)]

P [xH ∈ [c, d)]

≈ g(x−)δ + g(x+)ε

g(x−)ε+ g(x+)ε
/
f(x−)δ + f(x+)ε

f(x−)ε+ f(x+)ε
> 1

where the last inequality follows from δ/ε < 1 and the fact that

g(x−)

g(x+)
<

f(x−)

f(x+)

On the other hand, if the derivative of the function f(t)/g(t) is nonnegative at
every interior point a < x < b at which it exists, and if every jump of f(t)/g(t) is
up, then clearly f(t)/g(t) is weakly increasing on all of [a, b), and so by lemma 2,
xH %U xL on [a, b).¥

Theorem 7 (Optimality Implies Inside Domination and Uniform Outside
Domination): Let there be N iid students who can work or shirk, and suppose the
density assumption holds. Let P be an optimal absolute grading partition. Then xL
dominates xH inside P and xH uniformly dominates xL outside P.
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Proof: Consider any cell [a, b) in P such that P (xL ∈ [a, b))P (xH ∈ [a, b)) > 0.
Suppose there is some θ ∈ [a, b) with

P (xL ∈ [θ, b))
P (xL ∈ [a, b))

− P (xH ∈ [θ, b))
P (xH ∈ [a, b))

< 0.

Change P to P∗ by replacing [a, b) with [a, θ) and [θ, b). By the Corollary to Lemma
3, this must lower the expected exam payoff to the shirker against each worker. But
this means that P∗ is a better partition than P, a contradiction proving the inside
domination xL % xH on [a, b).

For the outside domination, consider two consecutive cells [a, b) and [b, c) in P
whose union (a, b] ∪ (b, c] has positive probability of being reached by both xL and
xH . Then it is clear from the Corollary to Lemma 3 that

P (xH ∈ [b, c))
P (xH ∈ [a, c))

≥ P (xL ∈ [b, c))
P (xL ∈ [a, c))

,

otherwise the partition P∗ obtained from P by replacing the two cells [a, b) and [b, c)
with the single cell [a, c) would lower the expected exam score to L, contradicting
the optimality of P. Hence the likelihood ratio property holds for fP and gP across
consecutive masked intervals. This same logic applies when exam scores are discrete.

The partition P must consist of intervals, each of which is fine or masked. If
fP(x)/gP(x) is weakly increasing, then by Lemma 2 we have that x &U y on P.
Suppose to the contrary that there is α < β with fP(α)/gP(α) > fP(β)/gP(β). Then
we can assume that either (1) α and β are in the same fine interval, or (2) α is in a
fine interval and β is in the next (coarse) interval, or the reverse (3).

Suppose α and β are in the same fine interval. If xH does not uniformly dominate
xL on [α, β), then by lemma 4 there is a subinterval [c, d) ⊂ [α, β) such that xL ÂU

xH on [c, d). But then by Theorem 5, any optimal partition should mask [c, d), a
contradiction.

It only remains to consider the case where the drop in fP(x)/gP(x) occurs at θ
because θ is the cut between a perfectly fine cell [c, θ) of P and a masked cell [θ, d) of
P (or vice versa). We argue along the lines of lemma 4 that P could not be optimal,
because moving the cut from θ to θ − ε would lower the payoff to xL. We rely on
the continuity of f to the left of θ, which holds for the generic case or the piecewise
differentiable case.

Indeed, the change in expected payoff to L from moving the cut to θ − ε is

P (xH ∈ [θ, d))P (θ − ε ≤ xL < θ)− P (xL ∈ [θ, d))P (θ − ε ≤ xH < θ)

+ P (θ − ε ≤ xH < θ)P (θ − ε ≤ xL < θ)[P (xH > xL|θ − ε ≤ xL, xH < θ)

− P (xL > xH |θ − ε ≤ xL, xH < θ)].

Observe that the third term goes to zero as ε2 when ε→ 0, whereas the first two
terms are of the order of ε. As ε → 0, P (θ − ε ≤ xH < θ) converges to εf(θ−), and
P (θ− ε ≤ xL < θ) converges to εg(θ−). Thus if f(θ−)/g(θ−) > fP(θ+)/gP(θ+), then
the first two terms add to less than zero. This shows that the extra masking obtained
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by lowering the cut θ to θ − ε reduces the expected exam payoff to L, contradicting
the optimality of P. ¥

We can use Theorems 5, 6, and 7 to completely characterize the A-optimal par-
titions for the normally distributed case, and more generally, for the generic case.
Consider again the situation where f ∼ N(μ, σ) and g ∼ N(μ̃, σ̃) with σ < σ̃. We
have seen that the function f(t)/g(t) is differentiable and single-peaked, strictly rising
for −∞ < t ≤ x̄ and strictly falling for x̄ ≤ t < ∞. See Figure 5. Thus the normal
case is differentiable and generic. We know from Theorem 5 that any partition that
cuts (x̄,∞) can be strictly improved by a partition that leaves (x̄,∞) uncut.

maskedperfectly fine

( )
( )

f x
g x

−∞ ∞
Ax x

Figure 5: Normally Distributed: μ > μ̃, σ > σ̃

Moreover, since f(t)/g(t) is strictly increasing on (−∞, x̄), we know from Theorem
7 that if there is any cut in (−∞, x̄), say at xA, then (−∞, xA) should be perfectly
fine. It follows that the optimal partition must be of the form {(−∞, xA), [xA,∞)}
with (−∞, xA) perfectly fine and [xA,∞) completely masked, and xA < x̄. The point
xA is uniquely defined by the greatest x ≤ x̄ such that

f(xA)

g(xA)
=

P (xH ≥ xA)

P (xL ≥ xA)
.

We argue that the point xA exists. At x = x̄, f(x̄)/g(x̄) > P (xH ≥ x̄)/P (xL ≥ x̄). As
x falls to the left of x̄, f(x)/g(x) also falls, but P (xH ≥ x)/P (xL ≥ x) rises as long as
f(x)/g(x) > P (xH ≥ x)/P (xL ≥ x). Since f(x̄)/g(x̄) > 1 and limx→−∞ f(x)/g(x) =
0, xA exists.

If x > xA, then the partition {(−∞, x), [x,∞)} violates the outside condition
of Theorem 7, while if x < xA it violates the inside condition on the cell [x,∞),
as seen by cutting this cell at xA. The cut at x = xA preserves both the outside
uniform domination, and the inside domination guaranteeing its optimality according
to Theorem 6.

The general picture is as follows

Theorem 8 (Optimal Partitions for Generic Densities): Consider the case of
generic densities f and g. In any optimal partition P, all the cuts are in the rising
segments (ai, ai+1) of f/g, where i is even. If there is a cut in (ai, ai+1), then the
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set of all cuts in (ai, ai+1) is a fine interval [αi, βi) ⊂ (ai, ai+1) in P , or else a point
αi = βi. In either case,

f(βi)

g(βi)
=

R y
βi
f(t)dtR y

βi
g(t)dt

where y is the smallest cut to the right of βi, and

f(αi)

g(αi)
=

R αi
x f(t)dtR αi
x g(t)dt

where x is the biggest cut to the left of αi. Thus the optimal partition has at most
one more cell than the number of extremal points of f/g.

Proof: Immediate from Theorems 5 and 7, and Lemma 2, using the same logic as
in Figure 5. ¥

masked

−∞ ∞
AxCx 1a 2a

fine fine
Bx 3a

masked

( )
( )

f x
g x

Figure 6: Generic Regular Densities

5 Grading on a Curve with Homogeneous Students

Though we have only been able to characterize optimal absolute grading schemes, at
least we can show that they are better than any grading on a curve.

Theorem 9 (Absolute Grading Beats Grading on a Curve): Let there be N
iid students who can work or shirk, and suppose the density assumption holds. Let P
be an optimal absolute grading partition. Then P gives at least as much incentive to
work as any grading on a curve, assuming ties are broken randomly.

The proof relies on the necessity of the inside and uniform outside domination
criteria for any A-optimal partition, given in Theorem 7. Starting from an A-optimal
partition, we prove the stronger result that conditional on the number of students
who get each absolute grade, no grading on a curve will do better.

For the proof we first establish a simple lemma.
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Lemma 5: Denote scores in [θ,∞) as A. Suppose N − 1 students work hard, and
each has probability p of getting an A, while one student shirks and has probability
q < p of getting an A. Suppose all scores are independent. If exactly K students wind
up with A, the conditional probability that the shirker got A is less than K/N , while
the probability any hard worker got A is more than K/N .

Proof: The conditional probability the shirker got A is

q

µ
N − 1
K − 1

¶
pK−1(1− p)N−K

q

µ
N − 1
K − 1

¶
pK−1(1− p)N−K + (1− q)

µ
N − 1
K

¶
pK(1− p)N−K−1

which is strictly monotonically increasing in q (as can easily be seen by dividing
numerator and denominator by the numerator). But when q = p, symmetry implies
that the expression must be exactly K/N . Hence the probability the shirker got A is
less than K/N . Since exactly the proportion K/N students did get A, the probability
of the good students getting A must then be more than K/N . ¥

Proof of Theorem 9: In case the scores are discrete, we can extend each possible
score x ∈ {1, 2, ...} by the interval [x, x+ 1), and furthermore assume that an agent
who scores x in the discrete model scores uniformly in the interval [x, x + 1) in the
extended model. The new game thus created is identical to the original discrete
game with ties broken randomly. With this extension the discrete case of the density
assumption is reduced to the piecewise differentiable case. From now on we shall
therefore assume that ties occur with zero probability.

Let Q be any partition of class rank {1, 2, ..., |N |}, representing an arbitrary grad-
ing on a curve.

For any possible distinct exam scores x = (xn)n∈N , and any absolute interval G
in P (whether coarse or fine), let μG(x) be the number of exam scores lying in G. For
any curved grade κ, let μκG(x) be the number of scores in G that also get curved grade
κ. Note that since there are no ties, (μκG)G∈P can be deduced from μ ≡ (μG)G∈P . A
picture helps to clarify the situation.

δ γ β α

ABC
Figure 7. Absolute vs. Relative Grading

In the picture there are 4 A’s, 3 B’s, and 3 C’s on the absolute scale. The curve gives
grade α to the top score, β to scores 2 and 3, γ to {4, 5, 6, 7, 8, 9}, and δ to the 10th
highest score. We can deduce that μγA = 1, μ

γ
B = 3, and μγC = 2.

Define the join P ∨ Q of P and Q as follows: given scores (xn)n∈N , the exam
grade for xn is strictly higher according to P ∨ Q than the exam grade for xm iff
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either the absolute grade for xn is strictly higher than for xm, or the curved grade
for xn is strictly higher than for xm. Conditional on μ = (4, 3, 3), as in the picture,
that is achieved by cutting the curved grade cell γ into three curved grades γA, γB,
and γC with cardinalities 1, 3, and 2, respectively.

We will now argue that if we grade according to the join P ∨Q then the expected
exam payoff of the shirker is no more than it was in Q. In fact we will prove more.
If any curved grade, such as γ in Q, is refined in P ∨Q, we show that the expected
score of the shirker, conditional on μ and on his being in γ, will not go up. Since
splitting γ does not affect scores against students outside γ, it suffices to show that
the expected exam score of the shirker against the other students in γ must be at
most zero.

The idea is as follows. Suppose B is a higher absolute grade than C, and both
intersect γ. If they were contained in γ, then by the outside uniform domination
property of P (assured by Theorem 7) and by Lemma 5 we would know that the
worker is relatively more likely to get B vs C than is the shirker. Revealing these
absolute grades would help the worker and hurt the shirker. If B and C are not
contained completely within γ, the same conclusion holds more strongly. Since C <
B, it is the upper portion of C (and the lower portion of B) that intersects γ. By the
inside domination property of P (assured by Theorem 7) the worker is more likely
than the shirker to be in the lower portion of any absolute grade. Thus conditional
on being in γ∩ (B∪C), it is still more likely that the worker is in B. Now we present
the details.

Let μ be an arbitrary absolute distribution of scores such that μG ≤ 1 for every
fine interval G in P. By subdividing fine intervals into smaller and smaller fine
intervals, the probability that two scores fall in a single fine interval goes to zero, so
we can restrict attention to such μ.

Let γ be any curved grade with P (xL ∈ γ|μ) > 0. Let P∗ be the collection of
intervals G in P such that μγG ≥ 1. Clearly P∗ has a finite number of elements.

Let q̃ denote the probabilities of a shirker getting each absolute grade, conditional
on the absolute grade distribution μ and the shirker being in γ.

We shall show that if C < B are intervals in P∗ with q̃B > 0, then q̃C > 0 and

q̃B
q̃C
≤ μγB

μγC
.

If q̃B > 0, then P (xL ∈ B|μ) > 0, and from the outside uniform domination
property of P (assured by Theorem 7) and by Lemma 5,

P (xL ∈ B|μ)
P (xL ∈ C|μ) ≤

μB
μC
≤ P (xH ∈ B|μ)

P (xH ∈ C|μ) .

Hence P (xL ∈ C|μ) > 0.
If C is fine, then by hypothesis μγC = μC = 1, and obviously P (xL ∈ C∩γ|μ& xL ∈

C) = 1. If the interval C is masked, then by Theorem 7 the shirker dominates inside
the cell, hence in either case

P (xL ∈ C ∩ γ|μ & xL ∈ C) ≥ μγC
μC

.
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By Bayes Law used twice,

q̃C = P (xL ∈ C|μ & xL ∈ γ) = P (xL ∈ C ∩ γ)|μ)/P (xL ∈ γ|μ)
= P (xL ∈ C|μ)P (xL ∈ C ∩ γ|μ & xL ∈ C)/P (xL ∈ γ|μ).

Thus

q̃C ≥
μγC
μC

P (xL ∈ C|μ)
P (xL ∈ γ|μ) .

Similarly, if only the bottom part of scores in B are included in γ, then again by using
Theorem 7

P (xL ∈ B ∩ γ|μ & xL ∈ B) ≤ μγB
μB

.

Thus again by using Bayes Law twice,

q̃B ≤
μγB
μB

P (xL ∈ B|μ)
P (xL ∈ γ|μ) .

Therefore
q̃B
q̃C
≤ μγBP (xL ∈ B|μ)

μBP (xL ∈ C|μ)
μC
μγC
≤ μγB

μγC
,

as claimed.
It follows that the shirker’s expected exam payoff according to P ∨Q against the

other
P

G∈P∗ μ
γ
G − 1 scores in γ must be non-positive. Thus, conditional on μ alone,

the expected exam payoff of a shirker is lower when grading by P ∨ Q than when
grading by Q.

Thus we have shown that the expected exam payoff to a shirker is lower under
P ∨Q than under Q.

To conclude the proof, we need only show that the expected exam payoff of the
shirker in P is even lower (weakly) than his expected exam payoff in P ∨ Q. This
follows at once from Theorem 7, which says that conditional on being in a masked cell
of P, the score of the shirker dominates the score of a worker. For then, by Lemma
1, any monotonic grading scheme within cells of P (such as is induced by P ∨Q) will
inevitably work in the wrong direction, weakly increasing the payoff of the shirker.¥

6 Games of Separable Status with Incomplete Informa-
tion

So far we have considered games of complete information. Every student in the class
knows the characteristics of all the others. One might wonder if our analysis can
be extended to games of incomplete information, in which each student knows his
own characteristic, but has a probability distribution on those of others. If there is
a common prior, and if the exam score of each student is independent of the effort
levels and scores of the other students (as we have often assumed), and if there is
absolute grading, then the answer is yes, because the exam payoff of each student is
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“separable" across his rivals, in a sense to be made precise shortly. We shall show
that in this scenario, any finite-player game of incomplete information is strategically
equivalent to a continuum-player game of complete information. This equivalence is
useful because the continuum games are easy to analyze.

Suppose as before that there is a set N = {1, ..., N} of players, each of whom
can be one of a finite number of types t ∈ T . Previously we assumed that the type
of each player was commonly known. Now we suppose that they are all drawn i.i.d.
from T with probability (common prior) μ (so

P
t∈T μ(t) = 1).

Let γ be an absolute grading scheme. Let Et be the action (effort) space of agents
of type t ∈ T, as before. Given two players of types t ∈ T and s ∈ T, who are choosing
actions et ∈ Et and es ∈ Es, define

ut,sγ : Et ×Es →
ut,sγ (et, es) = Pr ob(xt >γ xs|t, et, s, es)− Pr ob(xs >γ xt|t, et, s, es)

where xt, xs are the stochastic scores resulting from effort levels et, es, and, recall,
"xt >γ xs" means that γ awards a higher grade to xt than to xs etc. In games
of (additive) status the payoff of a player is the aggregate of his payoffs against all
his rivals. More precisely, let players 1, ..., N of types t = (t1, ..., tN ) choose actions
e = (e1, ..., eN ). The ex post payoff of player n is

Un
γ (e, t) = unγ(e, t)− en = [

X
j∈N\n

u
tn,tj
γ (en, ej)]− en

This defines a game of incomplete information Gγ = (N,T, (Et)t∈T , μ, (Un)n∈N ). Our
equivalence theorem below depends on the separability property:

unγ(e, t) =
X

j∈N\n
u
tn,tj
γ (en, ej)

and not on any of the special features of utn,tjγ (en, ej).
We define a Bayesian Nash equilibrium (BNE) to be an (ex ante) symmetric Nash

equilibrium (NE) of the game just described.
Using the fact that players are iid and are all choosing the same strategy, we see

that ẽ : T → ∪t∈TEt is a BNE if, ∀t ∈ T

ẽ(t) ∈ argmax
a∈Et

{(N − 1)[
X
s∈T

μ(s)ut,s(a, ẽ(s))]− a}

Now consider instead the finite-type continuum-player game of complete informa-
tion defined as follows. There are disjoint intervals It, t ∈ T, of Lebesgue (population)
measure λ(It) = (N−1)μ(t), representing players of type t, with action set Et. Given
any measurable function ẽ : ∪It → ∪Et with ẽ(x) ∈ Et whenever x ∈ It, define the
payoff to any agent x ∈ It byX

s∈T

Z
Is

ut,s(ẽ(t), ẽ(s))dλ(s)
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Theorem 10: BNE of the finite-player incomplete information game are in one-to-
one correspondence with the type-symmetric NE of the continuum-player complete
information game.

Proof: The one-to-one correspondence is evident from the argmax display above,
interpreting ẽ(t) in the BNE as a constant function on It in the NE of the continuum
game.¥

We now apply theorem 10 to the case of disparate students described in section 3.
(The case of homogeneous students does not allow for incomplete information, since
an agent who knows his own type and knows that all the students have to be of the
same type as him must know the type of every student.)

Suppose there are N students, each of whom can be of disparate type 1, ..., c, with
probability μ(1), ..., μ(c). Each student is informed of his type, but not of the others’.
The number of students Ni that turn out to be type i is now random, and unknown
to them and to the professor. What is the best absolute grading scheme? Theorem 10
applies, since the spearability hypothesis holds under absolute grading. By Theorem
10, we need only analyze the continuum player game with complete information. The
analysis of this game is given by exactly the same formulas displayed in section 3.3
for the finite player game of complete information except that both Ni and Ni − 1
need to be replaced by μ(i). The analysis of Section 3.3 applies simply and directly
for the continuum player game, without any need to approximate the continuum with
finite-player sets.

Equilibrium of the incomplete information game is thus easy to compute. Consider
c = 20, and fix the measures μ1 = μ2 = · · · = μc = 1 of being of any type 1, ..., c.
For c = 20, the incentive Ic ≈ I∗ is about 1.389 for each student. Since p1 = 1, I∗ is
also the measure of students receiving the lowest grade i = 1: I1(p̄) = p̄1(2− p̄2) =
(2− p̄2) = 1 + (1− p̄2).

In the table below we list the optimal (p1, ..., p20) and the measure of students for
each grade i = (1, ..., 20).

TABLE A. Pyram iding
Partition Number of

G rade probabilities students in grade
Lowest 1 1 1.389726998

2 0.610273002 0.887761199
3 0.722511804 1.036040471
4 0.686471333 0.9887908
5 0.697680533 1.00352003
6 0.694160503 0.998897996
7 0695262507 1.000345096
8 0.69491741 0.99989156
9 0.69502585 1.000032891
10 0.694992959 0.999986499
11 0.69500646 0.999996886
12 0.695009574 0.99997551
13 0.695034064 0.999925241
14 0.695108824 0.999760849
15 0.695347975 0.999235638
16 0.696112336 0.997568329
17 0.698544007 0.992284376
18 0.706259632 0.975830841
19 0.730428791 0.927161102

H ighest 20 0.803267689 0.803267689

Observe that there are more C’s than B’s, and more B’s than A’s, but for lower
grades the number of students stay equal until the very bottom is reached. The
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bottom grade (aside from the failing grade i = 0 that nobody gets) i = 1 is the most
commonly given.

7 Concluding Comments

7.1 Heterogeneous Students

Consider the situation in which students are neither identical nor disparate. To be
concrete, suppose that an exam consists of K questions. Each student n = 1, ..., N
who works has a probability pn of getting any question right, where answers are
independent across students and questions. Suppose that if n shirks this probability
drops to pn−1 where 0 = p0 < p1 < p2 < · · · < pN = 1, and pn − pn−1 = 1/N for all
n.

We have seen that working gives each student an exam performance that uni-
formly dominates his performance from shirking. Were all the students identical (say
pn(work) = 1/2 for all n, and pn(shirk) < 1/2 for all n) then the optimal grading
partition would be perfectly fine, by Theorem 5. But on account of the heterogeneity,
each student must compete with the performance of other students who are not like
him.

A standard variant of the central limit theorem shows that as N gets large, the
class performance converges to the distribution given by p = 1/2. For pn near 0
(and pn near 1), a student n will almost surely finish near the bottom (near the
top) whether or not he works. Thus with perfectly fine grading the best and worst
students have little incentive to work. The interesting thing is that coarse grading will
increase their incentive to work. Since students in the middle with pn near 1/2 can
surpass a large number of others by switching from shirk to work, they already have
huge incentives to work. Even if coarse grading diminishes the middling students’
incentives, it is still the most effective device to incentivize all students to work, i.e.,
to maximize the minimum incentive.

We illustrate this by considering the case where K = 26 and N = 10 in our
working paper Dubey-Geanakoplos (2005). We show by simulation that the coarse
partition {[0, 9), [9, 18), [18, 27)} into just three grades gives greater minimum incen-
tive than the perfectly fine partition {[0], [1], [2], ..., [27]}.

7.2 Midterms

The introduction of midterms before a final often makes it even more advantageous to
have coarse grading. Even the coarsening achieved by first averaging the numerical
scores of the midterm and the final, and then clumping these averages into letter
grades, may not suffice. It might become necessary to clump midterm scores into
grades, and to clump final scores into grades, and then to average the grades.

This point is illustrated in a detailed example in our working paper Dubey-
Geanakoplos (2005).
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